blob: b9e28578bc7bd7463485c316020af6e9cdaf9d02 [file] [log] [blame]
/*
* Copyright (C) 2007, 2011 Wolfgang Grandegger <wg@grandegger.com>
* Copyright (C) 2012 Stephane Grosjean <s.grosjean@peak-system.com>
*
* Derived from the PCAN project file driver/src/pcan_pci.c:
*
* Copyright (C) 2001-2006 PEAK System-Technik GmbH
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the version 2 of the GNU General Public License
* as published by the Free Software Foundation
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/netdevice.h>
#include <linux/delay.h>
#include <linux/pci.h>
#include <linux/io.h>
#include <linux/can.h>
#include <linux/can/dev.h>
#include "peak_canfd_user.h"
MODULE_AUTHOR("Stephane Grosjean <s.grosjean@peak-system.com>");
MODULE_DESCRIPTION("Socket-CAN driver for PEAK PCAN PCIe/M.2 FD family cards");
MODULE_SUPPORTED_DEVICE("PEAK PCAN PCIe/M.2 FD CAN cards");
MODULE_LICENSE("GPL v2");
#define PCIEFD_DRV_NAME "peak_pciefd"
#define PEAK_PCI_VENDOR_ID 0x001c /* The PCI device and vendor IDs */
#define PEAK_PCIEFD_ID 0x0013 /* for PCIe slot cards */
#define PCAN_CPCIEFD_ID 0x0014 /* for Compact-PCI Serial slot cards */
#define PCAN_PCIE104FD_ID 0x0017 /* for PCIe-104 Express slot cards */
#define PCAN_MINIPCIEFD_ID 0x0018 /* for mini-PCIe slot cards */
#define PCAN_PCIEFD_OEM_ID 0x0019 /* for PCIe slot OEM cards */
#define PCAN_M2_ID 0x001a /* for M2 slot cards */
/* PEAK PCIe board access description */
#define PCIEFD_BAR0_SIZE (64 * 1024)
#define PCIEFD_RX_DMA_SIZE (4 * 1024)
#define PCIEFD_TX_DMA_SIZE (4 * 1024)
#define PCIEFD_TX_PAGE_SIZE (2 * 1024)
/* System Control Registers */
#define PCIEFD_REG_SYS_CTL_SET 0x0000 /* set bits */
#define PCIEFD_REG_SYS_CTL_CLR 0x0004 /* clear bits */
/* Version info registers */
#define PCIEFD_REG_SYS_VER1 0x0040 /* version reg #1 */
#define PCIEFD_REG_SYS_VER2 0x0044 /* version reg #2 */
/* System Control Registers Bits */
#define PCIEFD_SYS_CTL_TS_RST 0x00000001 /* timestamp clock */
#define PCIEFD_SYS_CTL_CLK_EN 0x00000002 /* system clock */
/* CAN-FD channel addresses */
#define PCIEFD_CANX_OFF(c) (((c) + 1) * 0x1000)
#define PCIEFD_ECHO_SKB_MAX PCANFD_ECHO_SKB_DEF
/* CAN-FD channel registers */
#define PCIEFD_REG_CAN_MISC 0x0000 /* Misc. control */
#define PCIEFD_REG_CAN_CLK_SEL 0x0008 /* Clock selector */
#define PCIEFD_REG_CAN_CMD_PORT_L 0x0010 /* 64-bits command port */
#define PCIEFD_REG_CAN_CMD_PORT_H 0x0014
#define PCIEFD_REG_CAN_TX_REQ_ACC 0x0020 /* Tx request accumulator */
#define PCIEFD_REG_CAN_TX_CTL_SET 0x0030 /* Tx control set register */
#define PCIEFD_REG_CAN_TX_CTL_CLR 0x0038 /* Tx control clear register */
#define PCIEFD_REG_CAN_TX_DMA_ADDR_L 0x0040 /* 64-bits addr for Tx DMA */
#define PCIEFD_REG_CAN_TX_DMA_ADDR_H 0x0044
#define PCIEFD_REG_CAN_RX_CTL_SET 0x0050 /* Rx control set register */
#define PCIEFD_REG_CAN_RX_CTL_CLR 0x0058 /* Rx control clear register */
#define PCIEFD_REG_CAN_RX_CTL_WRT 0x0060 /* Rx control write register */
#define PCIEFD_REG_CAN_RX_CTL_ACK 0x0068 /* Rx control ACK register */
#define PCIEFD_REG_CAN_RX_DMA_ADDR_L 0x0070 /* 64-bits addr for Rx DMA */
#define PCIEFD_REG_CAN_RX_DMA_ADDR_H 0x0074
/* CAN-FD channel misc register bits */
#define CANFD_MISC_TS_RST 0x00000001 /* timestamp cnt rst */
/* CAN-FD channel Clock SELector Source & DIVider */
#define CANFD_CLK_SEL_DIV_MASK 0x00000007
#define CANFD_CLK_SEL_DIV_60MHZ 0x00000000 /* SRC=240MHz only */
#define CANFD_CLK_SEL_DIV_40MHZ 0x00000001 /* SRC=240MHz only */
#define CANFD_CLK_SEL_DIV_30MHZ 0x00000002 /* SRC=240MHz only */
#define CANFD_CLK_SEL_DIV_24MHZ 0x00000003 /* SRC=240MHz only */
#define CANFD_CLK_SEL_DIV_20MHZ 0x00000004 /* SRC=240MHz only */
#define CANFD_CLK_SEL_SRC_MASK 0x00000008 /* 0=80MHz, 1=240MHz */
#define CANFD_CLK_SEL_SRC_240MHZ 0x00000008
#define CANFD_CLK_SEL_SRC_80MHZ (~CANFD_CLK_SEL_SRC_240MHZ & \
CANFD_CLK_SEL_SRC_MASK)
#define CANFD_CLK_SEL_20MHZ (CANFD_CLK_SEL_SRC_240MHZ |\
CANFD_CLK_SEL_DIV_20MHZ)
#define CANFD_CLK_SEL_24MHZ (CANFD_CLK_SEL_SRC_240MHZ |\
CANFD_CLK_SEL_DIV_24MHZ)
#define CANFD_CLK_SEL_30MHZ (CANFD_CLK_SEL_SRC_240MHZ |\
CANFD_CLK_SEL_DIV_30MHZ)
#define CANFD_CLK_SEL_40MHZ (CANFD_CLK_SEL_SRC_240MHZ |\
CANFD_CLK_SEL_DIV_40MHZ)
#define CANFD_CLK_SEL_60MHZ (CANFD_CLK_SEL_SRC_240MHZ |\
CANFD_CLK_SEL_DIV_60MHZ)
#define CANFD_CLK_SEL_80MHZ (CANFD_CLK_SEL_SRC_80MHZ)
/* CAN-FD channel Rx/Tx control register bits */
#define CANFD_CTL_UNC_BIT 0x00010000 /* Uncached DMA mem */
#define CANFD_CTL_RST_BIT 0x00020000 /* reset DMA action */
#define CANFD_CTL_IEN_BIT 0x00040000 /* IRQ enable */
/* Rx IRQ Count and Time Limits */
#define CANFD_CTL_IRQ_CL_DEF 16 /* Rx msg max nb per IRQ in Rx DMA */
#define CANFD_CTL_IRQ_TL_DEF 10 /* Time before IRQ if < CL (x100 µs) */
#define CANFD_OPTIONS_SET (CANFD_OPTION_ERROR | CANFD_OPTION_BUSLOAD)
/* Tx anticipation window (link logical address should be aligned on 2K
* boundary)
*/
#define PCIEFD_TX_PAGE_COUNT (PCIEFD_TX_DMA_SIZE / PCIEFD_TX_PAGE_SIZE)
#define CANFD_MSG_LNK_TX 0x1001 /* Tx msgs link */
/* 32-bits IRQ status fields, heading Rx DMA area */
static inline int pciefd_irq_tag(u32 irq_status)
{
return irq_status & 0x0000000f;
}
static inline int pciefd_irq_rx_cnt(u32 irq_status)
{
return (irq_status & 0x000007f0) >> 4;
}
static inline int pciefd_irq_is_lnk(u32 irq_status)
{
return irq_status & 0x00010000;
}
/* Rx record */
struct pciefd_rx_dma {
__le32 irq_status;
__le32 sys_time_low;
__le32 sys_time_high;
struct pucan_rx_msg msg[0];
} __packed __aligned(4);
/* Tx Link record */
struct pciefd_tx_link {
__le16 size;
__le16 type;
__le32 laddr_lo;
__le32 laddr_hi;
} __packed __aligned(4);
/* Tx page descriptor */
struct pciefd_page {
void *vbase; /* page virtual address */
dma_addr_t lbase; /* page logical address */
u32 offset;
u32 size;
};
#define CANFD_IRQ_SET 0x00000001
#define CANFD_TX_PATH_SET 0x00000002
/* CAN-FD channel object */
struct pciefd_board;
struct pciefd_can {
struct peak_canfd_priv ucan; /* must be the first member */
void __iomem *reg_base; /* channel config base addr */
struct pciefd_board *board; /* reverse link */
struct pucan_command pucan_cmd; /* command buffer */
dma_addr_t rx_dma_laddr; /* DMA virtual and logical addr */
void *rx_dma_vaddr; /* for Rx and Tx areas */
dma_addr_t tx_dma_laddr;
void *tx_dma_vaddr;
struct pciefd_page tx_pages[PCIEFD_TX_PAGE_COUNT];
u16 tx_pages_free; /* free Tx pages counter */
u16 tx_page_index; /* current page used for Tx */
spinlock_t tx_lock;
u32 irq_status;
u32 irq_tag; /* next irq tag */
};
/* PEAK-PCIe FD board object */
struct pciefd_board {
void __iomem *reg_base;
struct pci_dev *pci_dev;
int can_count;
spinlock_t cmd_lock; /* 64-bits cmds must be atomic */
struct pciefd_can *can[0]; /* array of network devices */
};
/* supported device ids. */
static const struct pci_device_id peak_pciefd_tbl[] = {
{PEAK_PCI_VENDOR_ID, PEAK_PCIEFD_ID, PCI_ANY_ID, PCI_ANY_ID,},
{PEAK_PCI_VENDOR_ID, PCAN_CPCIEFD_ID, PCI_ANY_ID, PCI_ANY_ID,},
{PEAK_PCI_VENDOR_ID, PCAN_PCIE104FD_ID, PCI_ANY_ID, PCI_ANY_ID,},
{PEAK_PCI_VENDOR_ID, PCAN_MINIPCIEFD_ID, PCI_ANY_ID, PCI_ANY_ID,},
{PEAK_PCI_VENDOR_ID, PCAN_PCIEFD_OEM_ID, PCI_ANY_ID, PCI_ANY_ID,},
{PEAK_PCI_VENDOR_ID, PCAN_M2_ID, PCI_ANY_ID, PCI_ANY_ID,},
{0,}
};
MODULE_DEVICE_TABLE(pci, peak_pciefd_tbl);
/* read a 32 bits value from a SYS block register */
static inline u32 pciefd_sys_readreg(const struct pciefd_board *priv, u16 reg)
{
return readl(priv->reg_base + reg);
}
/* write a 32 bits value into a SYS block register */
static inline void pciefd_sys_writereg(const struct pciefd_board *priv,
u32 val, u16 reg)
{
writel(val, priv->reg_base + reg);
}
/* read a 32 bits value from CAN-FD block register */
static inline u32 pciefd_can_readreg(const struct pciefd_can *priv, u16 reg)
{
return readl(priv->reg_base + reg);
}
/* write a 32 bits value into a CAN-FD block register */
static inline void pciefd_can_writereg(const struct pciefd_can *priv,
u32 val, u16 reg)
{
writel(val, priv->reg_base + reg);
}
/* give a channel logical Rx DMA address to the board */
static void pciefd_can_setup_rx_dma(struct pciefd_can *priv)
{
#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
const u32 dma_addr_h = (u32)(priv->rx_dma_laddr >> 32);
#else
const u32 dma_addr_h = 0;
#endif
/* (DMA must be reset for Rx) */
pciefd_can_writereg(priv, CANFD_CTL_RST_BIT, PCIEFD_REG_CAN_RX_CTL_SET);
/* write the logical address of the Rx DMA area for this channel */
pciefd_can_writereg(priv, (u32)priv->rx_dma_laddr,
PCIEFD_REG_CAN_RX_DMA_ADDR_L);
pciefd_can_writereg(priv, dma_addr_h, PCIEFD_REG_CAN_RX_DMA_ADDR_H);
/* also indicates that Rx DMA is cacheable */
pciefd_can_writereg(priv, CANFD_CTL_UNC_BIT, PCIEFD_REG_CAN_RX_CTL_CLR);
}
/* clear channel logical Rx DMA address from the board */
static void pciefd_can_clear_rx_dma(struct pciefd_can *priv)
{
/* DMA must be reset for Rx */
pciefd_can_writereg(priv, CANFD_CTL_RST_BIT, PCIEFD_REG_CAN_RX_CTL_SET);
/* clear the logical address of the Rx DMA area for this channel */
pciefd_can_writereg(priv, 0, PCIEFD_REG_CAN_RX_DMA_ADDR_L);
pciefd_can_writereg(priv, 0, PCIEFD_REG_CAN_RX_DMA_ADDR_H);
}
/* give a channel logical Tx DMA address to the board */
static void pciefd_can_setup_tx_dma(struct pciefd_can *priv)
{
#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
const u32 dma_addr_h = (u32)(priv->tx_dma_laddr >> 32);
#else
const u32 dma_addr_h = 0;
#endif
/* (DMA must be reset for Tx) */
pciefd_can_writereg(priv, CANFD_CTL_RST_BIT, PCIEFD_REG_CAN_TX_CTL_SET);
/* write the logical address of the Tx DMA area for this channel */
pciefd_can_writereg(priv, (u32)priv->tx_dma_laddr,
PCIEFD_REG_CAN_TX_DMA_ADDR_L);
pciefd_can_writereg(priv, dma_addr_h, PCIEFD_REG_CAN_TX_DMA_ADDR_H);
/* also indicates that Tx DMA is cacheable */
pciefd_can_writereg(priv, CANFD_CTL_UNC_BIT, PCIEFD_REG_CAN_TX_CTL_CLR);
}
/* clear channel logical Tx DMA address from the board */
static void pciefd_can_clear_tx_dma(struct pciefd_can *priv)
{
/* DMA must be reset for Tx */
pciefd_can_writereg(priv, CANFD_CTL_RST_BIT, PCIEFD_REG_CAN_TX_CTL_SET);
/* clear the logical address of the Tx DMA area for this channel */
pciefd_can_writereg(priv, 0, PCIEFD_REG_CAN_TX_DMA_ADDR_L);
pciefd_can_writereg(priv, 0, PCIEFD_REG_CAN_TX_DMA_ADDR_H);
}
static void pciefd_can_ack_rx_dma(struct pciefd_can *priv)
{
/* read value of current IRQ tag and inc it for next one */
priv->irq_tag = le32_to_cpu(*(__le32 *)priv->rx_dma_vaddr);
priv->irq_tag++;
priv->irq_tag &= 0xf;
/* write the next IRQ tag for this CAN */
pciefd_can_writereg(priv, priv->irq_tag, PCIEFD_REG_CAN_RX_CTL_ACK);
}
/* IRQ handler */
static irqreturn_t pciefd_irq_handler(int irq, void *arg)
{
struct pciefd_can *priv = arg;
struct pciefd_rx_dma *rx_dma = priv->rx_dma_vaddr;
/* INTA mode only to sync with PCIe transaction */
if (!pci_dev_msi_enabled(priv->board->pci_dev))
(void)pciefd_sys_readreg(priv->board, PCIEFD_REG_SYS_VER1);
/* read IRQ status from the first 32-bits of the Rx DMA area */
priv->irq_status = le32_to_cpu(rx_dma->irq_status);
/* check if this (shared) IRQ is for this CAN */
if (pciefd_irq_tag(priv->irq_status) != priv->irq_tag)
return IRQ_NONE;
/* handle rx messages (if any) */
peak_canfd_handle_msgs_list(&priv->ucan,
rx_dma->msg,
pciefd_irq_rx_cnt(priv->irq_status));
/* handle tx link interrupt (if any) */
if (pciefd_irq_is_lnk(priv->irq_status)) {
unsigned long flags;
spin_lock_irqsave(&priv->tx_lock, flags);
priv->tx_pages_free++;
spin_unlock_irqrestore(&priv->tx_lock, flags);
/* wake producer up (only if enough room in echo_skb array) */
spin_lock_irqsave(&priv->ucan.echo_lock, flags);
if (!priv->ucan.can.echo_skb[priv->ucan.echo_idx])
netif_wake_queue(priv->ucan.ndev);
spin_unlock_irqrestore(&priv->ucan.echo_lock, flags);
}
/* re-enable Rx DMA transfer for this CAN */
pciefd_can_ack_rx_dma(priv);
return IRQ_HANDLED;
}
static int pciefd_enable_tx_path(struct peak_canfd_priv *ucan)
{
struct pciefd_can *priv = (struct pciefd_can *)ucan;
int i;
/* initialize the Tx pages descriptors */
priv->tx_pages_free = PCIEFD_TX_PAGE_COUNT - 1;
priv->tx_page_index = 0;
priv->tx_pages[0].vbase = priv->tx_dma_vaddr;
priv->tx_pages[0].lbase = priv->tx_dma_laddr;
for (i = 0; i < PCIEFD_TX_PAGE_COUNT; i++) {
priv->tx_pages[i].offset = 0;
priv->tx_pages[i].size = PCIEFD_TX_PAGE_SIZE -
sizeof(struct pciefd_tx_link);
if (i) {
priv->tx_pages[i].vbase =
priv->tx_pages[i - 1].vbase +
PCIEFD_TX_PAGE_SIZE;
priv->tx_pages[i].lbase =
priv->tx_pages[i - 1].lbase +
PCIEFD_TX_PAGE_SIZE;
}
}
/* setup Tx DMA addresses into IP core */
pciefd_can_setup_tx_dma(priv);
/* start (TX_RST=0) Tx Path */
pciefd_can_writereg(priv, CANFD_CTL_RST_BIT, PCIEFD_REG_CAN_TX_CTL_CLR);
return 0;
}
/* board specific CANFD command pre-processing */
static int pciefd_pre_cmd(struct peak_canfd_priv *ucan)
{
struct pciefd_can *priv = (struct pciefd_can *)ucan;
u16 cmd = pucan_cmd_get_opcode(&priv->pucan_cmd);
int err;
/* pre-process command */
switch (cmd) {
case PUCAN_CMD_NORMAL_MODE:
case PUCAN_CMD_LISTEN_ONLY_MODE:
if (ucan->can.state == CAN_STATE_BUS_OFF)
break;
/* going into operational mode: setup IRQ handler */
err = request_irq(priv->board->pci_dev->irq,
pciefd_irq_handler,
IRQF_SHARED,
PCIEFD_DRV_NAME,
priv);
if (err)
return err;
/* setup Rx DMA address */
pciefd_can_setup_rx_dma(priv);
/* setup max count of msgs per IRQ */
pciefd_can_writereg(priv, (CANFD_CTL_IRQ_TL_DEF) << 8 |
CANFD_CTL_IRQ_CL_DEF,
PCIEFD_REG_CAN_RX_CTL_WRT);
/* clear DMA RST for Rx (Rx start) */
pciefd_can_writereg(priv, CANFD_CTL_RST_BIT,
PCIEFD_REG_CAN_RX_CTL_CLR);
/* reset timestamps */
pciefd_can_writereg(priv, !CANFD_MISC_TS_RST,
PCIEFD_REG_CAN_MISC);
/* do an initial ACK */
pciefd_can_ack_rx_dma(priv);
/* enable IRQ for this CAN after having set next irq_tag */
pciefd_can_writereg(priv, CANFD_CTL_IEN_BIT,
PCIEFD_REG_CAN_RX_CTL_SET);
/* Tx path will be setup as soon as RX_BARRIER is received */
break;
default:
break;
}
return 0;
}
/* write a command */
static int pciefd_write_cmd(struct peak_canfd_priv *ucan)
{
struct pciefd_can *priv = (struct pciefd_can *)ucan;
unsigned long flags;
/* 64-bits command is atomic */
spin_lock_irqsave(&priv->board->cmd_lock, flags);
pciefd_can_writereg(priv, *(u32 *)ucan->cmd_buffer,
PCIEFD_REG_CAN_CMD_PORT_L);
pciefd_can_writereg(priv, *(u32 *)(ucan->cmd_buffer + 4),
PCIEFD_REG_CAN_CMD_PORT_H);
spin_unlock_irqrestore(&priv->board->cmd_lock, flags);
return 0;
}
/* board specific CANFD command post-processing */
static int pciefd_post_cmd(struct peak_canfd_priv *ucan)
{
struct pciefd_can *priv = (struct pciefd_can *)ucan;
u16 cmd = pucan_cmd_get_opcode(&priv->pucan_cmd);
switch (cmd) {
case PUCAN_CMD_RESET_MODE:
if (ucan->can.state == CAN_STATE_STOPPED)
break;
/* controller now in reset mode: */
/* stop and reset DMA addresses in Tx/Rx engines */
pciefd_can_clear_tx_dma(priv);
pciefd_can_clear_rx_dma(priv);
/* disable IRQ for this CAN */
pciefd_can_writereg(priv, CANFD_CTL_IEN_BIT,
PCIEFD_REG_CAN_RX_CTL_CLR);
free_irq(priv->board->pci_dev->irq, priv);
ucan->can.state = CAN_STATE_STOPPED;
break;
}
return 0;
}
static void *pciefd_alloc_tx_msg(struct peak_canfd_priv *ucan, u16 msg_size,
int *room_left)
{
struct pciefd_can *priv = (struct pciefd_can *)ucan;
struct pciefd_page *page = priv->tx_pages + priv->tx_page_index;
unsigned long flags;
void *msg;
spin_lock_irqsave(&priv->tx_lock, flags);
if (page->offset + msg_size > page->size) {
struct pciefd_tx_link *lk;
/* not enough space in this page: try another one */
if (!priv->tx_pages_free) {
spin_unlock_irqrestore(&priv->tx_lock, flags);
/* Tx overflow */
return NULL;
}
priv->tx_pages_free--;
/* keep address of the very last free slot of current page */
lk = page->vbase + page->offset;
/* next, move on a new free page */
priv->tx_page_index = (priv->tx_page_index + 1) %
PCIEFD_TX_PAGE_COUNT;
page = priv->tx_pages + priv->tx_page_index;
/* put link record to this new page at the end of prev one */
lk->size = cpu_to_le16(sizeof(*lk));
lk->type = cpu_to_le16(CANFD_MSG_LNK_TX);
lk->laddr_lo = cpu_to_le32(page->lbase);
#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
lk->laddr_hi = cpu_to_le32(page->lbase >> 32);
#else
lk->laddr_hi = 0;
#endif
/* next msgs will be put from the begininng of this new page */
page->offset = 0;
}
*room_left = priv->tx_pages_free * page->size;
spin_unlock_irqrestore(&priv->tx_lock, flags);
msg = page->vbase + page->offset;
/* give back room left in the tx ring */
*room_left += page->size - (page->offset + msg_size);
return msg;
}
static int pciefd_write_tx_msg(struct peak_canfd_priv *ucan,
struct pucan_tx_msg *msg)
{
struct pciefd_can *priv = (struct pciefd_can *)ucan;
struct pciefd_page *page = priv->tx_pages + priv->tx_page_index;
/* this slot is now reserved for writing the frame */
page->offset += le16_to_cpu(msg->size);
/* tell the board a frame has been written in Tx DMA area */
pciefd_can_writereg(priv, 1, PCIEFD_REG_CAN_TX_REQ_ACC);
return 0;
}
/* probe for CAN-FD channel #pciefd_board->can_count */
static int pciefd_can_probe(struct pciefd_board *pciefd)
{
struct net_device *ndev;
struct pciefd_can *priv;
u32 clk;
int err;
/* allocate the candev object with default isize of echo skbs ring */
ndev = alloc_peak_canfd_dev(sizeof(*priv), pciefd->can_count,
PCIEFD_ECHO_SKB_MAX);
if (!ndev) {
dev_err(&pciefd->pci_dev->dev,
"failed to alloc candev object\n");
goto failure;
}
priv = netdev_priv(ndev);
/* fill-in candev private object: */
/* setup PCIe-FD own callbacks */
priv->ucan.pre_cmd = pciefd_pre_cmd;
priv->ucan.write_cmd = pciefd_write_cmd;
priv->ucan.post_cmd = pciefd_post_cmd;
priv->ucan.enable_tx_path = pciefd_enable_tx_path;
priv->ucan.alloc_tx_msg = pciefd_alloc_tx_msg;
priv->ucan.write_tx_msg = pciefd_write_tx_msg;
/* setup PCIe-FD own command buffer */
priv->ucan.cmd_buffer = &priv->pucan_cmd;
priv->ucan.cmd_maxlen = sizeof(priv->pucan_cmd);
priv->board = pciefd;
/* CAN config regs block address */
priv->reg_base = pciefd->reg_base + PCIEFD_CANX_OFF(priv->ucan.index);
/* allocate non-cacheable DMA'able 4KB memory area for Rx */
priv->rx_dma_vaddr = dmam_alloc_coherent(&pciefd->pci_dev->dev,
PCIEFD_RX_DMA_SIZE,
&priv->rx_dma_laddr,
GFP_KERNEL);
if (!priv->rx_dma_vaddr) {
dev_err(&pciefd->pci_dev->dev,
"Rx dmam_alloc_coherent(%u) failure\n",
PCIEFD_RX_DMA_SIZE);
goto err_free_candev;
}
/* allocate non-cacheable DMA'able 4KB memory area for Tx */
priv->tx_dma_vaddr = dmam_alloc_coherent(&pciefd->pci_dev->dev,
PCIEFD_TX_DMA_SIZE,
&priv->tx_dma_laddr,
GFP_KERNEL);
if (!priv->tx_dma_vaddr) {
dev_err(&pciefd->pci_dev->dev,
"Tx dmaim_alloc_coherent(%u) failure\n",
PCIEFD_TX_DMA_SIZE);
goto err_free_candev;
}
/* CAN clock in RST mode */
pciefd_can_writereg(priv, CANFD_MISC_TS_RST, PCIEFD_REG_CAN_MISC);
/* read current clock value */
clk = pciefd_can_readreg(priv, PCIEFD_REG_CAN_CLK_SEL);
switch (clk) {
case CANFD_CLK_SEL_20MHZ:
priv->ucan.can.clock.freq = 20 * 1000 * 1000;
break;
case CANFD_CLK_SEL_24MHZ:
priv->ucan.can.clock.freq = 24 * 1000 * 1000;
break;
case CANFD_CLK_SEL_30MHZ:
priv->ucan.can.clock.freq = 30 * 1000 * 1000;
break;
case CANFD_CLK_SEL_40MHZ:
priv->ucan.can.clock.freq = 40 * 1000 * 1000;
break;
case CANFD_CLK_SEL_60MHZ:
priv->ucan.can.clock.freq = 60 * 1000 * 1000;
break;
default:
pciefd_can_writereg(priv, CANFD_CLK_SEL_80MHZ,
PCIEFD_REG_CAN_CLK_SEL);
/* fallthough */
case CANFD_CLK_SEL_80MHZ:
priv->ucan.can.clock.freq = 80 * 1000 * 1000;
break;
}
ndev->irq = pciefd->pci_dev->irq;
SET_NETDEV_DEV(ndev, &pciefd->pci_dev->dev);
err = register_candev(ndev);
if (err) {
dev_err(&pciefd->pci_dev->dev,
"couldn't register CAN device: %d\n", err);
goto err_free_candev;
}
spin_lock_init(&priv->tx_lock);
/* save the object address in the board structure */
pciefd->can[pciefd->can_count] = priv;
dev_info(&pciefd->pci_dev->dev, "%s at reg_base=0x%p irq=%d\n",
ndev->name, priv->reg_base, pciefd->pci_dev->irq);
return 0;
err_free_candev:
free_candev(ndev);
failure:
return -ENOMEM;
}
/* remove a CAN-FD channel by releasing all of its resources */
static void pciefd_can_remove(struct pciefd_can *priv)
{
/* unregister (close) the can device to go back to RST mode first */
unregister_candev(priv->ucan.ndev);
/* finally, free the candev object */
free_candev(priv->ucan.ndev);
}
/* remove all CAN-FD channels by releasing their own resources */
static void pciefd_can_remove_all(struct pciefd_board *pciefd)
{
while (pciefd->can_count > 0)
pciefd_can_remove(pciefd->can[--pciefd->can_count]);
}
/* probe for the entire device */
static int peak_pciefd_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct pciefd_board *pciefd;
int err, can_count;
u16 sub_sys_id;
u8 hw_ver_major;
u8 hw_ver_minor;
u8 hw_ver_sub;
u32 v2;
err = pci_enable_device(pdev);
if (err)
return err;
err = pci_request_regions(pdev, PCIEFD_DRV_NAME);
if (err)
goto err_disable_pci;
/* the number of channels depends on sub-system id */
err = pci_read_config_word(pdev, PCI_SUBSYSTEM_ID, &sub_sys_id);
if (err)
goto err_release_regions;
dev_dbg(&pdev->dev, "probing device %04x:%04x:%04x\n",
pdev->vendor, pdev->device, sub_sys_id);
if (sub_sys_id >= 0x0012)
can_count = 4;
else if (sub_sys_id >= 0x0010)
can_count = 3;
else if (sub_sys_id >= 0x0004)
can_count = 2;
else
can_count = 1;
/* allocate board structure object */
pciefd = devm_kzalloc(&pdev->dev, struct_size(pciefd, can, can_count),
GFP_KERNEL);
if (!pciefd) {
err = -ENOMEM;
goto err_release_regions;
}
/* initialize the board structure */
pciefd->pci_dev = pdev;
spin_lock_init(&pciefd->cmd_lock);
/* save the PCI BAR0 virtual address for further system regs access */
pciefd->reg_base = pci_iomap(pdev, 0, PCIEFD_BAR0_SIZE);
if (!pciefd->reg_base) {
dev_err(&pdev->dev, "failed to map PCI resource #0\n");
err = -ENOMEM;
goto err_release_regions;
}
/* read the firmware version number */
v2 = pciefd_sys_readreg(pciefd, PCIEFD_REG_SYS_VER2);
hw_ver_major = (v2 & 0x0000f000) >> 12;
hw_ver_minor = (v2 & 0x00000f00) >> 8;
hw_ver_sub = (v2 & 0x000000f0) >> 4;
dev_info(&pdev->dev,
"%ux CAN-FD PCAN-PCIe FPGA v%u.%u.%u:\n", can_count,
hw_ver_major, hw_ver_minor, hw_ver_sub);
/* stop system clock */
pciefd_sys_writereg(pciefd, PCIEFD_SYS_CTL_CLK_EN,
PCIEFD_REG_SYS_CTL_CLR);
pci_set_master(pdev);
/* create now the corresponding channels objects */
while (pciefd->can_count < can_count) {
err = pciefd_can_probe(pciefd);
if (err)
goto err_free_canfd;
pciefd->can_count++;
}
/* set system timestamps counter in RST mode */
pciefd_sys_writereg(pciefd, PCIEFD_SYS_CTL_TS_RST,
PCIEFD_REG_SYS_CTL_SET);
/* wait a bit (read cycle) */
(void)pciefd_sys_readreg(pciefd, PCIEFD_REG_SYS_VER1);
/* free all clocks */
pciefd_sys_writereg(pciefd, PCIEFD_SYS_CTL_TS_RST,
PCIEFD_REG_SYS_CTL_CLR);
/* start system clock */
pciefd_sys_writereg(pciefd, PCIEFD_SYS_CTL_CLK_EN,
PCIEFD_REG_SYS_CTL_SET);
/* remember the board structure address in the device user data */
pci_set_drvdata(pdev, pciefd);
return 0;
err_free_canfd:
pciefd_can_remove_all(pciefd);
pci_iounmap(pdev, pciefd->reg_base);
err_release_regions:
pci_release_regions(pdev);
err_disable_pci:
pci_disable_device(pdev);
/* pci_xxx_config_word() return positive PCIBIOS_xxx error codes while
* the probe() function must return a negative errno in case of failure
* (err is unchanged if negative) */
return pcibios_err_to_errno(err);
}
/* free the board structure object, as well as its resources: */
static void peak_pciefd_remove(struct pci_dev *pdev)
{
struct pciefd_board *pciefd = pci_get_drvdata(pdev);
/* release CAN-FD channels resources */
pciefd_can_remove_all(pciefd);
pci_iounmap(pdev, pciefd->reg_base);
pci_release_regions(pdev);
pci_disable_device(pdev);
}
static struct pci_driver peak_pciefd_driver = {
.name = PCIEFD_DRV_NAME,
.id_table = peak_pciefd_tbl,
.probe = peak_pciefd_probe,
.remove = peak_pciefd_remove,
};
module_pci_driver(peak_pciefd_driver);