| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright (C) 2017 Oracle. All Rights Reserved. |
| * Author: Darrick J. Wong <darrick.wong@oracle.com> |
| */ |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_shared.h" |
| #include "xfs_format.h" |
| #include "xfs_trans_resv.h" |
| #include "xfs_mount.h" |
| #include "xfs_defer.h" |
| #include "xfs_btree.h" |
| #include "xfs_bit.h" |
| #include "xfs_log_format.h" |
| #include "xfs_trans.h" |
| #include "xfs_sb.h" |
| #include "xfs_inode.h" |
| #include "xfs_icache.h" |
| #include "xfs_itable.h" |
| #include "xfs_alloc.h" |
| #include "xfs_alloc_btree.h" |
| #include "xfs_bmap.h" |
| #include "xfs_bmap_btree.h" |
| #include "xfs_ialloc.h" |
| #include "xfs_ialloc_btree.h" |
| #include "xfs_refcount.h" |
| #include "xfs_refcount_btree.h" |
| #include "xfs_rmap.h" |
| #include "xfs_rmap_btree.h" |
| #include "xfs_log.h" |
| #include "xfs_trans_priv.h" |
| #include "xfs_attr.h" |
| #include "xfs_reflink.h" |
| #include "scrub/xfs_scrub.h" |
| #include "scrub/scrub.h" |
| #include "scrub/common.h" |
| #include "scrub/trace.h" |
| #include "scrub/btree.h" |
| #include "scrub/repair.h" |
| |
| /* Common code for the metadata scrubbers. */ |
| |
| /* |
| * Handling operational errors. |
| * |
| * The *_process_error() family of functions are used to process error return |
| * codes from functions called as part of a scrub operation. |
| * |
| * If there's no error, we return true to tell the caller that it's ok |
| * to move on to the next check in its list. |
| * |
| * For non-verifier errors (e.g. ENOMEM) we return false to tell the |
| * caller that something bad happened, and we preserve *error so that |
| * the caller can return the *error up the stack to userspace. |
| * |
| * Verifier errors (EFSBADCRC/EFSCORRUPTED) are recorded by setting |
| * OFLAG_CORRUPT in sm_flags and the *error is cleared. In other words, |
| * we track verifier errors (and failed scrub checks) via OFLAG_CORRUPT, |
| * not via return codes. We return false to tell the caller that |
| * something bad happened. Since the error has been cleared, the caller |
| * will (presumably) return that zero and scrubbing will move on to |
| * whatever's next. |
| * |
| * ftrace can be used to record the precise metadata location and the |
| * approximate code location of the failed operation. |
| */ |
| |
| /* Check for operational errors. */ |
| static bool |
| __xfs_scrub_process_error( |
| struct xfs_scrub_context *sc, |
| xfs_agnumber_t agno, |
| xfs_agblock_t bno, |
| int *error, |
| __u32 errflag, |
| void *ret_ip) |
| { |
| switch (*error) { |
| case 0: |
| return true; |
| case -EDEADLOCK: |
| /* Used to restart an op with deadlock avoidance. */ |
| trace_xfs_scrub_deadlock_retry(sc->ip, sc->sm, *error); |
| break; |
| case -EFSBADCRC: |
| case -EFSCORRUPTED: |
| /* Note the badness but don't abort. */ |
| sc->sm->sm_flags |= errflag; |
| *error = 0; |
| /* fall through */ |
| default: |
| trace_xfs_scrub_op_error(sc, agno, bno, *error, |
| ret_ip); |
| break; |
| } |
| return false; |
| } |
| |
| bool |
| xfs_scrub_process_error( |
| struct xfs_scrub_context *sc, |
| xfs_agnumber_t agno, |
| xfs_agblock_t bno, |
| int *error) |
| { |
| return __xfs_scrub_process_error(sc, agno, bno, error, |
| XFS_SCRUB_OFLAG_CORRUPT, __return_address); |
| } |
| |
| bool |
| xfs_scrub_xref_process_error( |
| struct xfs_scrub_context *sc, |
| xfs_agnumber_t agno, |
| xfs_agblock_t bno, |
| int *error) |
| { |
| return __xfs_scrub_process_error(sc, agno, bno, error, |
| XFS_SCRUB_OFLAG_XFAIL, __return_address); |
| } |
| |
| /* Check for operational errors for a file offset. */ |
| static bool |
| __xfs_scrub_fblock_process_error( |
| struct xfs_scrub_context *sc, |
| int whichfork, |
| xfs_fileoff_t offset, |
| int *error, |
| __u32 errflag, |
| void *ret_ip) |
| { |
| switch (*error) { |
| case 0: |
| return true; |
| case -EDEADLOCK: |
| /* Used to restart an op with deadlock avoidance. */ |
| trace_xfs_scrub_deadlock_retry(sc->ip, sc->sm, *error); |
| break; |
| case -EFSBADCRC: |
| case -EFSCORRUPTED: |
| /* Note the badness but don't abort. */ |
| sc->sm->sm_flags |= errflag; |
| *error = 0; |
| /* fall through */ |
| default: |
| trace_xfs_scrub_file_op_error(sc, whichfork, offset, *error, |
| ret_ip); |
| break; |
| } |
| return false; |
| } |
| |
| bool |
| xfs_scrub_fblock_process_error( |
| struct xfs_scrub_context *sc, |
| int whichfork, |
| xfs_fileoff_t offset, |
| int *error) |
| { |
| return __xfs_scrub_fblock_process_error(sc, whichfork, offset, error, |
| XFS_SCRUB_OFLAG_CORRUPT, __return_address); |
| } |
| |
| bool |
| xfs_scrub_fblock_xref_process_error( |
| struct xfs_scrub_context *sc, |
| int whichfork, |
| xfs_fileoff_t offset, |
| int *error) |
| { |
| return __xfs_scrub_fblock_process_error(sc, whichfork, offset, error, |
| XFS_SCRUB_OFLAG_XFAIL, __return_address); |
| } |
| |
| /* |
| * Handling scrub corruption/optimization/warning checks. |
| * |
| * The *_set_{corrupt,preen,warning}() family of functions are used to |
| * record the presence of metadata that is incorrect (corrupt), could be |
| * optimized somehow (preen), or should be flagged for administrative |
| * review but is not incorrect (warn). |
| * |
| * ftrace can be used to record the precise metadata location and |
| * approximate code location of the failed check. |
| */ |
| |
| /* Record a block which could be optimized. */ |
| void |
| xfs_scrub_block_set_preen( |
| struct xfs_scrub_context *sc, |
| struct xfs_buf *bp) |
| { |
| sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN; |
| trace_xfs_scrub_block_preen(sc, bp->b_bn, __return_address); |
| } |
| |
| /* |
| * Record an inode which could be optimized. The trace data will |
| * include the block given by bp if bp is given; otherwise it will use |
| * the block location of the inode record itself. |
| */ |
| void |
| xfs_scrub_ino_set_preen( |
| struct xfs_scrub_context *sc, |
| xfs_ino_t ino) |
| { |
| sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN; |
| trace_xfs_scrub_ino_preen(sc, ino, __return_address); |
| } |
| |
| /* Record a corrupt block. */ |
| void |
| xfs_scrub_block_set_corrupt( |
| struct xfs_scrub_context *sc, |
| struct xfs_buf *bp) |
| { |
| sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; |
| trace_xfs_scrub_block_error(sc, bp->b_bn, __return_address); |
| } |
| |
| /* Record a corruption while cross-referencing. */ |
| void |
| xfs_scrub_block_xref_set_corrupt( |
| struct xfs_scrub_context *sc, |
| struct xfs_buf *bp) |
| { |
| sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT; |
| trace_xfs_scrub_block_error(sc, bp->b_bn, __return_address); |
| } |
| |
| /* |
| * Record a corrupt inode. The trace data will include the block given |
| * by bp if bp is given; otherwise it will use the block location of the |
| * inode record itself. |
| */ |
| void |
| xfs_scrub_ino_set_corrupt( |
| struct xfs_scrub_context *sc, |
| xfs_ino_t ino) |
| { |
| sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; |
| trace_xfs_scrub_ino_error(sc, ino, __return_address); |
| } |
| |
| /* Record a corruption while cross-referencing with an inode. */ |
| void |
| xfs_scrub_ino_xref_set_corrupt( |
| struct xfs_scrub_context *sc, |
| xfs_ino_t ino) |
| { |
| sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT; |
| trace_xfs_scrub_ino_error(sc, ino, __return_address); |
| } |
| |
| /* Record corruption in a block indexed by a file fork. */ |
| void |
| xfs_scrub_fblock_set_corrupt( |
| struct xfs_scrub_context *sc, |
| int whichfork, |
| xfs_fileoff_t offset) |
| { |
| sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; |
| trace_xfs_scrub_fblock_error(sc, whichfork, offset, __return_address); |
| } |
| |
| /* Record a corruption while cross-referencing a fork block. */ |
| void |
| xfs_scrub_fblock_xref_set_corrupt( |
| struct xfs_scrub_context *sc, |
| int whichfork, |
| xfs_fileoff_t offset) |
| { |
| sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT; |
| trace_xfs_scrub_fblock_error(sc, whichfork, offset, __return_address); |
| } |
| |
| /* |
| * Warn about inodes that need administrative review but is not |
| * incorrect. |
| */ |
| void |
| xfs_scrub_ino_set_warning( |
| struct xfs_scrub_context *sc, |
| xfs_ino_t ino) |
| { |
| sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING; |
| trace_xfs_scrub_ino_warning(sc, ino, __return_address); |
| } |
| |
| /* Warn about a block indexed by a file fork that needs review. */ |
| void |
| xfs_scrub_fblock_set_warning( |
| struct xfs_scrub_context *sc, |
| int whichfork, |
| xfs_fileoff_t offset) |
| { |
| sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING; |
| trace_xfs_scrub_fblock_warning(sc, whichfork, offset, __return_address); |
| } |
| |
| /* Signal an incomplete scrub. */ |
| void |
| xfs_scrub_set_incomplete( |
| struct xfs_scrub_context *sc) |
| { |
| sc->sm->sm_flags |= XFS_SCRUB_OFLAG_INCOMPLETE; |
| trace_xfs_scrub_incomplete(sc, __return_address); |
| } |
| |
| /* |
| * rmap scrubbing -- compute the number of blocks with a given owner, |
| * at least according to the reverse mapping data. |
| */ |
| |
| struct xfs_scrub_rmap_ownedby_info { |
| struct xfs_owner_info *oinfo; |
| xfs_filblks_t *blocks; |
| }; |
| |
| STATIC int |
| xfs_scrub_count_rmap_ownedby_irec( |
| struct xfs_btree_cur *cur, |
| struct xfs_rmap_irec *rec, |
| void *priv) |
| { |
| struct xfs_scrub_rmap_ownedby_info *sroi = priv; |
| bool irec_attr; |
| bool oinfo_attr; |
| |
| irec_attr = rec->rm_flags & XFS_RMAP_ATTR_FORK; |
| oinfo_attr = sroi->oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK; |
| |
| if (rec->rm_owner != sroi->oinfo->oi_owner) |
| return 0; |
| |
| if (XFS_RMAP_NON_INODE_OWNER(rec->rm_owner) || irec_attr == oinfo_attr) |
| (*sroi->blocks) += rec->rm_blockcount; |
| |
| return 0; |
| } |
| |
| /* |
| * Calculate the number of blocks the rmap thinks are owned by something. |
| * The caller should pass us an rmapbt cursor. |
| */ |
| int |
| xfs_scrub_count_rmap_ownedby_ag( |
| struct xfs_scrub_context *sc, |
| struct xfs_btree_cur *cur, |
| struct xfs_owner_info *oinfo, |
| xfs_filblks_t *blocks) |
| { |
| struct xfs_scrub_rmap_ownedby_info sroi; |
| |
| sroi.oinfo = oinfo; |
| *blocks = 0; |
| sroi.blocks = blocks; |
| |
| return xfs_rmap_query_all(cur, xfs_scrub_count_rmap_ownedby_irec, |
| &sroi); |
| } |
| |
| /* |
| * AG scrubbing |
| * |
| * These helpers facilitate locking an allocation group's header |
| * buffers, setting up cursors for all btrees that are present, and |
| * cleaning everything up once we're through. |
| */ |
| |
| /* Decide if we want to return an AG header read failure. */ |
| static inline bool |
| want_ag_read_header_failure( |
| struct xfs_scrub_context *sc, |
| unsigned int type) |
| { |
| /* Return all AG header read failures when scanning btrees. */ |
| if (sc->sm->sm_type != XFS_SCRUB_TYPE_AGF && |
| sc->sm->sm_type != XFS_SCRUB_TYPE_AGFL && |
| sc->sm->sm_type != XFS_SCRUB_TYPE_AGI) |
| return true; |
| /* |
| * If we're scanning a given type of AG header, we only want to |
| * see read failures from that specific header. We'd like the |
| * other headers to cross-check them, but this isn't required. |
| */ |
| if (sc->sm->sm_type == type) |
| return true; |
| return false; |
| } |
| |
| /* |
| * Grab all the headers for an AG. |
| * |
| * The headers should be released by xfs_scrub_ag_free, but as a fail |
| * safe we attach all the buffers we grab to the scrub transaction so |
| * they'll all be freed when we cancel it. |
| */ |
| int |
| xfs_scrub_ag_read_headers( |
| struct xfs_scrub_context *sc, |
| xfs_agnumber_t agno, |
| struct xfs_buf **agi, |
| struct xfs_buf **agf, |
| struct xfs_buf **agfl) |
| { |
| struct xfs_mount *mp = sc->mp; |
| int error; |
| |
| error = xfs_ialloc_read_agi(mp, sc->tp, agno, agi); |
| if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGI)) |
| goto out; |
| |
| error = xfs_alloc_read_agf(mp, sc->tp, agno, 0, agf); |
| if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGF)) |
| goto out; |
| |
| error = xfs_alloc_read_agfl(mp, sc->tp, agno, agfl); |
| if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGFL)) |
| goto out; |
| error = 0; |
| out: |
| return error; |
| } |
| |
| /* Release all the AG btree cursors. */ |
| void |
| xfs_scrub_ag_btcur_free( |
| struct xfs_scrub_ag *sa) |
| { |
| if (sa->refc_cur) |
| xfs_btree_del_cursor(sa->refc_cur, XFS_BTREE_ERROR); |
| if (sa->rmap_cur) |
| xfs_btree_del_cursor(sa->rmap_cur, XFS_BTREE_ERROR); |
| if (sa->fino_cur) |
| xfs_btree_del_cursor(sa->fino_cur, XFS_BTREE_ERROR); |
| if (sa->ino_cur) |
| xfs_btree_del_cursor(sa->ino_cur, XFS_BTREE_ERROR); |
| if (sa->cnt_cur) |
| xfs_btree_del_cursor(sa->cnt_cur, XFS_BTREE_ERROR); |
| if (sa->bno_cur) |
| xfs_btree_del_cursor(sa->bno_cur, XFS_BTREE_ERROR); |
| |
| sa->refc_cur = NULL; |
| sa->rmap_cur = NULL; |
| sa->fino_cur = NULL; |
| sa->ino_cur = NULL; |
| sa->bno_cur = NULL; |
| sa->cnt_cur = NULL; |
| } |
| |
| /* Initialize all the btree cursors for an AG. */ |
| int |
| xfs_scrub_ag_btcur_init( |
| struct xfs_scrub_context *sc, |
| struct xfs_scrub_ag *sa) |
| { |
| struct xfs_mount *mp = sc->mp; |
| xfs_agnumber_t agno = sa->agno; |
| |
| if (sa->agf_bp) { |
| /* Set up a bnobt cursor for cross-referencing. */ |
| sa->bno_cur = xfs_allocbt_init_cursor(mp, sc->tp, sa->agf_bp, |
| agno, XFS_BTNUM_BNO); |
| if (!sa->bno_cur) |
| goto err; |
| |
| /* Set up a cntbt cursor for cross-referencing. */ |
| sa->cnt_cur = xfs_allocbt_init_cursor(mp, sc->tp, sa->agf_bp, |
| agno, XFS_BTNUM_CNT); |
| if (!sa->cnt_cur) |
| goto err; |
| } |
| |
| /* Set up a inobt cursor for cross-referencing. */ |
| if (sa->agi_bp) { |
| sa->ino_cur = xfs_inobt_init_cursor(mp, sc->tp, sa->agi_bp, |
| agno, XFS_BTNUM_INO); |
| if (!sa->ino_cur) |
| goto err; |
| } |
| |
| /* Set up a finobt cursor for cross-referencing. */ |
| if (sa->agi_bp && xfs_sb_version_hasfinobt(&mp->m_sb)) { |
| sa->fino_cur = xfs_inobt_init_cursor(mp, sc->tp, sa->agi_bp, |
| agno, XFS_BTNUM_FINO); |
| if (!sa->fino_cur) |
| goto err; |
| } |
| |
| /* Set up a rmapbt cursor for cross-referencing. */ |
| if (sa->agf_bp && xfs_sb_version_hasrmapbt(&mp->m_sb)) { |
| sa->rmap_cur = xfs_rmapbt_init_cursor(mp, sc->tp, sa->agf_bp, |
| agno); |
| if (!sa->rmap_cur) |
| goto err; |
| } |
| |
| /* Set up a refcountbt cursor for cross-referencing. */ |
| if (sa->agf_bp && xfs_sb_version_hasreflink(&mp->m_sb)) { |
| sa->refc_cur = xfs_refcountbt_init_cursor(mp, sc->tp, |
| sa->agf_bp, agno, NULL); |
| if (!sa->refc_cur) |
| goto err; |
| } |
| |
| return 0; |
| err: |
| return -ENOMEM; |
| } |
| |
| /* Release the AG header context and btree cursors. */ |
| void |
| xfs_scrub_ag_free( |
| struct xfs_scrub_context *sc, |
| struct xfs_scrub_ag *sa) |
| { |
| xfs_scrub_ag_btcur_free(sa); |
| if (sa->agfl_bp) { |
| xfs_trans_brelse(sc->tp, sa->agfl_bp); |
| sa->agfl_bp = NULL; |
| } |
| if (sa->agf_bp) { |
| xfs_trans_brelse(sc->tp, sa->agf_bp); |
| sa->agf_bp = NULL; |
| } |
| if (sa->agi_bp) { |
| xfs_trans_brelse(sc->tp, sa->agi_bp); |
| sa->agi_bp = NULL; |
| } |
| if (sa->pag) { |
| xfs_perag_put(sa->pag); |
| sa->pag = NULL; |
| } |
| sa->agno = NULLAGNUMBER; |
| } |
| |
| /* |
| * For scrub, grab the AGI and the AGF headers, in that order. Locking |
| * order requires us to get the AGI before the AGF. We use the |
| * transaction to avoid deadlocking on crosslinked metadata buffers; |
| * either the caller passes one in (bmap scrub) or we have to create a |
| * transaction ourselves. |
| */ |
| int |
| xfs_scrub_ag_init( |
| struct xfs_scrub_context *sc, |
| xfs_agnumber_t agno, |
| struct xfs_scrub_ag *sa) |
| { |
| int error; |
| |
| sa->agno = agno; |
| error = xfs_scrub_ag_read_headers(sc, agno, &sa->agi_bp, |
| &sa->agf_bp, &sa->agfl_bp); |
| if (error) |
| return error; |
| |
| return xfs_scrub_ag_btcur_init(sc, sa); |
| } |
| |
| /* |
| * Grab the per-ag structure if we haven't already gotten it. Teardown of the |
| * xfs_scrub_ag will release it for us. |
| */ |
| void |
| xfs_scrub_perag_get( |
| struct xfs_mount *mp, |
| struct xfs_scrub_ag *sa) |
| { |
| if (!sa->pag) |
| sa->pag = xfs_perag_get(mp, sa->agno); |
| } |
| |
| /* Per-scrubber setup functions */ |
| |
| /* |
| * Grab an empty transaction so that we can re-grab locked buffers if |
| * one of our btrees turns out to be cyclic. |
| * |
| * If we're going to repair something, we need to ask for the largest possible |
| * log reservation so that we can handle the worst case scenario for metadata |
| * updates while rebuilding a metadata item. We also need to reserve as many |
| * blocks in the head transaction as we think we're going to need to rebuild |
| * the metadata object. |
| */ |
| int |
| xfs_scrub_trans_alloc( |
| struct xfs_scrub_context *sc, |
| uint resblks) |
| { |
| if (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) |
| return xfs_trans_alloc(sc->mp, &M_RES(sc->mp)->tr_itruncate, |
| resblks, 0, 0, &sc->tp); |
| |
| return xfs_trans_alloc_empty(sc->mp, &sc->tp); |
| } |
| |
| /* Set us up with a transaction and an empty context. */ |
| int |
| xfs_scrub_setup_fs( |
| struct xfs_scrub_context *sc, |
| struct xfs_inode *ip) |
| { |
| uint resblks; |
| |
| resblks = xfs_repair_calc_ag_resblks(sc); |
| return xfs_scrub_trans_alloc(sc, resblks); |
| } |
| |
| /* Set us up with AG headers and btree cursors. */ |
| int |
| xfs_scrub_setup_ag_btree( |
| struct xfs_scrub_context *sc, |
| struct xfs_inode *ip, |
| bool force_log) |
| { |
| struct xfs_mount *mp = sc->mp; |
| int error; |
| |
| /* |
| * If the caller asks us to checkpont the log, do so. This |
| * expensive operation should be performed infrequently and only |
| * as a last resort. Any caller that sets force_log should |
| * document why they need to do so. |
| */ |
| if (force_log) { |
| error = xfs_scrub_checkpoint_log(mp); |
| if (error) |
| return error; |
| } |
| |
| error = xfs_scrub_setup_fs(sc, ip); |
| if (error) |
| return error; |
| |
| return xfs_scrub_ag_init(sc, sc->sm->sm_agno, &sc->sa); |
| } |
| |
| /* Push everything out of the log onto disk. */ |
| int |
| xfs_scrub_checkpoint_log( |
| struct xfs_mount *mp) |
| { |
| int error; |
| |
| error = xfs_log_force(mp, XFS_LOG_SYNC); |
| if (error) |
| return error; |
| xfs_ail_push_all_sync(mp->m_ail); |
| return 0; |
| } |
| |
| /* |
| * Given an inode and the scrub control structure, grab either the |
| * inode referenced in the control structure or the inode passed in. |
| * The inode is not locked. |
| */ |
| int |
| xfs_scrub_get_inode( |
| struct xfs_scrub_context *sc, |
| struct xfs_inode *ip_in) |
| { |
| struct xfs_imap imap; |
| struct xfs_mount *mp = sc->mp; |
| struct xfs_inode *ip = NULL; |
| int error; |
| |
| /* We want to scan the inode we already had opened. */ |
| if (sc->sm->sm_ino == 0 || sc->sm->sm_ino == ip_in->i_ino) { |
| sc->ip = ip_in; |
| return 0; |
| } |
| |
| /* Look up the inode, see if the generation number matches. */ |
| if (xfs_internal_inum(mp, sc->sm->sm_ino)) |
| return -ENOENT; |
| error = xfs_iget(mp, NULL, sc->sm->sm_ino, |
| XFS_IGET_UNTRUSTED | XFS_IGET_DONTCACHE, 0, &ip); |
| switch (error) { |
| case -ENOENT: |
| /* Inode doesn't exist, just bail out. */ |
| return error; |
| case 0: |
| /* Got an inode, continue. */ |
| break; |
| case -EINVAL: |
| /* |
| * -EINVAL with IGET_UNTRUSTED could mean one of several |
| * things: userspace gave us an inode number that doesn't |
| * correspond to fs space, or doesn't have an inobt entry; |
| * or it could simply mean that the inode buffer failed the |
| * read verifiers. |
| * |
| * Try just the inode mapping lookup -- if it succeeds, then |
| * the inode buffer verifier failed and something needs fixing. |
| * Otherwise, we really couldn't find it so tell userspace |
| * that it no longer exists. |
| */ |
| error = xfs_imap(sc->mp, sc->tp, sc->sm->sm_ino, &imap, |
| XFS_IGET_UNTRUSTED | XFS_IGET_DONTCACHE); |
| if (error) |
| return -ENOENT; |
| error = -EFSCORRUPTED; |
| /* fall through */ |
| default: |
| trace_xfs_scrub_op_error(sc, |
| XFS_INO_TO_AGNO(mp, sc->sm->sm_ino), |
| XFS_INO_TO_AGBNO(mp, sc->sm->sm_ino), |
| error, __return_address); |
| return error; |
| } |
| if (VFS_I(ip)->i_generation != sc->sm->sm_gen) { |
| iput(VFS_I(ip)); |
| return -ENOENT; |
| } |
| |
| sc->ip = ip; |
| return 0; |
| } |
| |
| /* Set us up to scrub a file's contents. */ |
| int |
| xfs_scrub_setup_inode_contents( |
| struct xfs_scrub_context *sc, |
| struct xfs_inode *ip, |
| unsigned int resblks) |
| { |
| int error; |
| |
| error = xfs_scrub_get_inode(sc, ip); |
| if (error) |
| return error; |
| |
| /* Got the inode, lock it and we're ready to go. */ |
| sc->ilock_flags = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL; |
| xfs_ilock(sc->ip, sc->ilock_flags); |
| error = xfs_scrub_trans_alloc(sc, resblks); |
| if (error) |
| goto out; |
| sc->ilock_flags |= XFS_ILOCK_EXCL; |
| xfs_ilock(sc->ip, XFS_ILOCK_EXCL); |
| |
| out: |
| /* scrub teardown will unlock and release the inode for us */ |
| return error; |
| } |
| |
| /* |
| * Predicate that decides if we need to evaluate the cross-reference check. |
| * If there was an error accessing the cross-reference btree, just delete |
| * the cursor and skip the check. |
| */ |
| bool |
| xfs_scrub_should_check_xref( |
| struct xfs_scrub_context *sc, |
| int *error, |
| struct xfs_btree_cur **curpp) |
| { |
| /* No point in xref if we already know we're corrupt. */ |
| if (xfs_scrub_skip_xref(sc->sm)) |
| return false; |
| |
| if (*error == 0) |
| return true; |
| |
| if (curpp) { |
| /* If we've already given up on xref, just bail out. */ |
| if (!*curpp) |
| return false; |
| |
| /* xref error, delete cursor and bail out. */ |
| xfs_btree_del_cursor(*curpp, XFS_BTREE_ERROR); |
| *curpp = NULL; |
| } |
| |
| sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XFAIL; |
| trace_xfs_scrub_xref_error(sc, *error, __return_address); |
| |
| /* |
| * Errors encountered during cross-referencing with another |
| * data structure should not cause this scrubber to abort. |
| */ |
| *error = 0; |
| return false; |
| } |
| |
| /* Run the structure verifiers on in-memory buffers to detect bad memory. */ |
| void |
| xfs_scrub_buffer_recheck( |
| struct xfs_scrub_context *sc, |
| struct xfs_buf *bp) |
| { |
| xfs_failaddr_t fa; |
| |
| if (bp->b_ops == NULL) { |
| xfs_scrub_block_set_corrupt(sc, bp); |
| return; |
| } |
| if (bp->b_ops->verify_struct == NULL) { |
| xfs_scrub_set_incomplete(sc); |
| return; |
| } |
| fa = bp->b_ops->verify_struct(bp); |
| if (!fa) |
| return; |
| sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; |
| trace_xfs_scrub_block_error(sc, bp->b_bn, fa); |
| } |
| |
| /* |
| * Scrub the attr/data forks of a metadata inode. The metadata inode must be |
| * pointed to by sc->ip and the ILOCK must be held. |
| */ |
| int |
| xfs_scrub_metadata_inode_forks( |
| struct xfs_scrub_context *sc) |
| { |
| __u32 smtype; |
| bool shared; |
| int error; |
| |
| if (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT) |
| return 0; |
| |
| /* Metadata inodes don't live on the rt device. */ |
| if (sc->ip->i_d.di_flags & XFS_DIFLAG_REALTIME) { |
| xfs_scrub_ino_set_corrupt(sc, sc->ip->i_ino); |
| return 0; |
| } |
| |
| /* They should never participate in reflink. */ |
| if (xfs_is_reflink_inode(sc->ip)) { |
| xfs_scrub_ino_set_corrupt(sc, sc->ip->i_ino); |
| return 0; |
| } |
| |
| /* They also should never have extended attributes. */ |
| if (xfs_inode_hasattr(sc->ip)) { |
| xfs_scrub_ino_set_corrupt(sc, sc->ip->i_ino); |
| return 0; |
| } |
| |
| /* Invoke the data fork scrubber. */ |
| smtype = sc->sm->sm_type; |
| sc->sm->sm_type = XFS_SCRUB_TYPE_BMBTD; |
| error = xfs_scrub_bmap_data(sc); |
| sc->sm->sm_type = smtype; |
| if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT)) |
| return error; |
| |
| /* Look for incorrect shared blocks. */ |
| if (xfs_sb_version_hasreflink(&sc->mp->m_sb)) { |
| error = xfs_reflink_inode_has_shared_extents(sc->tp, sc->ip, |
| &shared); |
| if (!xfs_scrub_fblock_process_error(sc, XFS_DATA_FORK, 0, |
| &error)) |
| return error; |
| if (shared) |
| xfs_scrub_ino_set_corrupt(sc, sc->ip->i_ino); |
| } |
| |
| return error; |
| } |
| |
| /* |
| * Try to lock an inode in violation of the usual locking order rules. For |
| * example, trying to get the IOLOCK while in transaction context, or just |
| * plain breaking AG-order or inode-order inode locking rules. Either way, |
| * the only way to avoid an ABBA deadlock is to use trylock and back off if |
| * we can't. |
| */ |
| int |
| xfs_scrub_ilock_inverted( |
| struct xfs_inode *ip, |
| uint lock_mode) |
| { |
| int i; |
| |
| for (i = 0; i < 20; i++) { |
| if (xfs_ilock_nowait(ip, lock_mode)) |
| return 0; |
| delay(1); |
| } |
| return -EDEADLOCK; |
| } |