| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (c) 2009-2013, 2016-2018, The Linux Foundation. All rights reserved. |
| * Copyright (c) 2014, Sony Mobile Communications AB. |
| * |
| */ |
| |
| #include <linux/acpi.h> |
| #include <linux/atomic.h> |
| #include <linux/clk.h> |
| #include <linux/delay.h> |
| #include <linux/dmaengine.h> |
| #include <linux/dmapool.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/err.h> |
| #include <linux/i2c.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/platform_device.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/scatterlist.h> |
| |
| /* QUP Registers */ |
| #define QUP_CONFIG 0x000 |
| #define QUP_STATE 0x004 |
| #define QUP_IO_MODE 0x008 |
| #define QUP_SW_RESET 0x00c |
| #define QUP_OPERATIONAL 0x018 |
| #define QUP_ERROR_FLAGS 0x01c |
| #define QUP_ERROR_FLAGS_EN 0x020 |
| #define QUP_OPERATIONAL_MASK 0x028 |
| #define QUP_HW_VERSION 0x030 |
| #define QUP_MX_OUTPUT_CNT 0x100 |
| #define QUP_OUT_FIFO_BASE 0x110 |
| #define QUP_MX_WRITE_CNT 0x150 |
| #define QUP_MX_INPUT_CNT 0x200 |
| #define QUP_MX_READ_CNT 0x208 |
| #define QUP_IN_FIFO_BASE 0x218 |
| #define QUP_I2C_CLK_CTL 0x400 |
| #define QUP_I2C_STATUS 0x404 |
| #define QUP_I2C_MASTER_GEN 0x408 |
| |
| /* QUP States and reset values */ |
| #define QUP_RESET_STATE 0 |
| #define QUP_RUN_STATE 1 |
| #define QUP_PAUSE_STATE 3 |
| #define QUP_STATE_MASK 3 |
| |
| #define QUP_STATE_VALID BIT(2) |
| #define QUP_I2C_MAST_GEN BIT(4) |
| #define QUP_I2C_FLUSH BIT(6) |
| |
| #define QUP_OPERATIONAL_RESET 0x000ff0 |
| #define QUP_I2C_STATUS_RESET 0xfffffc |
| |
| /* QUP OPERATIONAL FLAGS */ |
| #define QUP_I2C_NACK_FLAG BIT(3) |
| #define QUP_OUT_NOT_EMPTY BIT(4) |
| #define QUP_IN_NOT_EMPTY BIT(5) |
| #define QUP_OUT_FULL BIT(6) |
| #define QUP_OUT_SVC_FLAG BIT(8) |
| #define QUP_IN_SVC_FLAG BIT(9) |
| #define QUP_MX_OUTPUT_DONE BIT(10) |
| #define QUP_MX_INPUT_DONE BIT(11) |
| #define OUT_BLOCK_WRITE_REQ BIT(12) |
| #define IN_BLOCK_READ_REQ BIT(13) |
| |
| /* I2C mini core related values */ |
| #define QUP_NO_INPUT BIT(7) |
| #define QUP_CLOCK_AUTO_GATE BIT(13) |
| #define I2C_MINI_CORE (2 << 8) |
| #define I2C_N_VAL 15 |
| #define I2C_N_VAL_V2 7 |
| |
| /* Most significant word offset in FIFO port */ |
| #define QUP_MSW_SHIFT (I2C_N_VAL + 1) |
| |
| /* Packing/Unpacking words in FIFOs, and IO modes */ |
| #define QUP_OUTPUT_BLK_MODE (1 << 10) |
| #define QUP_OUTPUT_BAM_MODE (3 << 10) |
| #define QUP_INPUT_BLK_MODE (1 << 12) |
| #define QUP_INPUT_BAM_MODE (3 << 12) |
| #define QUP_BAM_MODE (QUP_OUTPUT_BAM_MODE | QUP_INPUT_BAM_MODE) |
| #define QUP_UNPACK_EN BIT(14) |
| #define QUP_PACK_EN BIT(15) |
| |
| #define QUP_REPACK_EN (QUP_UNPACK_EN | QUP_PACK_EN) |
| #define QUP_V2_TAGS_EN 1 |
| |
| #define QUP_OUTPUT_BLOCK_SIZE(x)(((x) >> 0) & 0x03) |
| #define QUP_OUTPUT_FIFO_SIZE(x) (((x) >> 2) & 0x07) |
| #define QUP_INPUT_BLOCK_SIZE(x) (((x) >> 5) & 0x03) |
| #define QUP_INPUT_FIFO_SIZE(x) (((x) >> 7) & 0x07) |
| |
| /* QUP tags */ |
| #define QUP_TAG_START (1 << 8) |
| #define QUP_TAG_DATA (2 << 8) |
| #define QUP_TAG_STOP (3 << 8) |
| #define QUP_TAG_REC (4 << 8) |
| #define QUP_BAM_INPUT_EOT 0x93 |
| #define QUP_BAM_FLUSH_STOP 0x96 |
| |
| /* QUP v2 tags */ |
| #define QUP_TAG_V2_START 0x81 |
| #define QUP_TAG_V2_DATAWR 0x82 |
| #define QUP_TAG_V2_DATAWR_STOP 0x83 |
| #define QUP_TAG_V2_DATARD 0x85 |
| #define QUP_TAG_V2_DATARD_NACK 0x86 |
| #define QUP_TAG_V2_DATARD_STOP 0x87 |
| |
| /* Status, Error flags */ |
| #define I2C_STATUS_WR_BUFFER_FULL BIT(0) |
| #define I2C_STATUS_BUS_ACTIVE BIT(8) |
| #define I2C_STATUS_ERROR_MASK 0x38000fc |
| #define QUP_STATUS_ERROR_FLAGS 0x7c |
| |
| #define QUP_READ_LIMIT 256 |
| #define SET_BIT 0x1 |
| #define RESET_BIT 0x0 |
| #define ONE_BYTE 0x1 |
| #define QUP_I2C_MX_CONFIG_DURING_RUN BIT(31) |
| |
| /* Maximum transfer length for single DMA descriptor */ |
| #define MX_TX_RX_LEN SZ_64K |
| #define MX_BLOCKS (MX_TX_RX_LEN / QUP_READ_LIMIT) |
| /* Maximum transfer length for all DMA descriptors */ |
| #define MX_DMA_TX_RX_LEN (2 * MX_TX_RX_LEN) |
| #define MX_DMA_BLOCKS (MX_DMA_TX_RX_LEN / QUP_READ_LIMIT) |
| |
| /* |
| * Minimum transfer timeout for i2c transfers in seconds. It will be added on |
| * the top of maximum transfer time calculated from i2c bus speed to compensate |
| * the overheads. |
| */ |
| #define TOUT_MIN 2 |
| |
| /* Default values. Use these if FW query fails */ |
| #define DEFAULT_CLK_FREQ I2C_MAX_STANDARD_MODE_FREQ |
| #define DEFAULT_SRC_CLK 20000000 |
| |
| /* |
| * Max tags length (start, stop and maximum 2 bytes address) for each QUP |
| * data transfer |
| */ |
| #define QUP_MAX_TAGS_LEN 4 |
| /* Max data length for each DATARD tags */ |
| #define RECV_MAX_DATA_LEN 254 |
| /* TAG length for DATA READ in RX FIFO */ |
| #define READ_RX_TAGS_LEN 2 |
| |
| static unsigned int scl_freq; |
| module_param_named(scl_freq, scl_freq, uint, 0444); |
| MODULE_PARM_DESC(scl_freq, "SCL frequency override"); |
| |
| /* |
| * count: no of blocks |
| * pos: current block number |
| * tx_tag_len: tx tag length for current block |
| * rx_tag_len: rx tag length for current block |
| * data_len: remaining data length for current message |
| * cur_blk_len: data length for current block |
| * total_tx_len: total tx length including tag bytes for current QUP transfer |
| * total_rx_len: total rx length including tag bytes for current QUP transfer |
| * tx_fifo_data_pos: current byte number in TX FIFO word |
| * tx_fifo_free: number of free bytes in current QUP block write. |
| * rx_fifo_data_pos: current byte number in RX FIFO word |
| * fifo_available: number of available bytes in RX FIFO for current |
| * QUP block read |
| * tx_fifo_data: QUP TX FIFO write works on word basis (4 bytes). New byte write |
| * to TX FIFO will be appended in this data and will be written to |
| * TX FIFO when all the 4 bytes are available. |
| * rx_fifo_data: QUP RX FIFO read works on word basis (4 bytes). This will |
| * contains the 4 bytes of RX data. |
| * cur_data: pointer to tell cur data position for current message |
| * cur_tx_tags: pointer to tell cur position in tags |
| * tx_tags_sent: all tx tag bytes have been written in FIFO word |
| * send_last_word: for tx FIFO, last word send is pending in current block |
| * rx_bytes_read: if all the bytes have been read from rx FIFO. |
| * rx_tags_fetched: all the rx tag bytes have been fetched from rx fifo word |
| * is_tx_blk_mode: whether tx uses block or FIFO mode in case of non BAM xfer. |
| * is_rx_blk_mode: whether rx uses block or FIFO mode in case of non BAM xfer. |
| * tags: contains tx tag bytes for current QUP transfer |
| */ |
| struct qup_i2c_block { |
| int count; |
| int pos; |
| int tx_tag_len; |
| int rx_tag_len; |
| int data_len; |
| int cur_blk_len; |
| int total_tx_len; |
| int total_rx_len; |
| int tx_fifo_data_pos; |
| int tx_fifo_free; |
| int rx_fifo_data_pos; |
| int fifo_available; |
| u32 tx_fifo_data; |
| u32 rx_fifo_data; |
| u8 *cur_data; |
| u8 *cur_tx_tags; |
| bool tx_tags_sent; |
| bool send_last_word; |
| bool rx_tags_fetched; |
| bool rx_bytes_read; |
| bool is_tx_blk_mode; |
| bool is_rx_blk_mode; |
| u8 tags[6]; |
| }; |
| |
| struct qup_i2c_tag { |
| u8 *start; |
| dma_addr_t addr; |
| }; |
| |
| struct qup_i2c_bam { |
| struct qup_i2c_tag tag; |
| struct dma_chan *dma; |
| struct scatterlist *sg; |
| unsigned int sg_cnt; |
| }; |
| |
| struct qup_i2c_dev { |
| struct device *dev; |
| void __iomem *base; |
| int irq; |
| struct clk *clk; |
| struct clk *pclk; |
| struct i2c_adapter adap; |
| |
| int clk_ctl; |
| int out_fifo_sz; |
| int in_fifo_sz; |
| int out_blk_sz; |
| int in_blk_sz; |
| |
| int blk_xfer_limit; |
| unsigned long one_byte_t; |
| unsigned long xfer_timeout; |
| struct qup_i2c_block blk; |
| |
| struct i2c_msg *msg; |
| /* Current posion in user message buffer */ |
| int pos; |
| /* I2C protocol errors */ |
| u32 bus_err; |
| /* QUP core errors */ |
| u32 qup_err; |
| |
| /* To check if this is the last msg */ |
| bool is_last; |
| bool is_smbus_read; |
| |
| /* To configure when bus is in run state */ |
| u32 config_run; |
| |
| /* dma parameters */ |
| bool is_dma; |
| /* To check if the current transfer is using DMA */ |
| bool use_dma; |
| unsigned int max_xfer_sg_len; |
| unsigned int tag_buf_pos; |
| /* The threshold length above which block mode will be used */ |
| unsigned int blk_mode_threshold; |
| struct dma_pool *dpool; |
| struct qup_i2c_tag start_tag; |
| struct qup_i2c_bam brx; |
| struct qup_i2c_bam btx; |
| |
| struct completion xfer; |
| /* function to write data in tx fifo */ |
| void (*write_tx_fifo)(struct qup_i2c_dev *qup); |
| /* function to read data from rx fifo */ |
| void (*read_rx_fifo)(struct qup_i2c_dev *qup); |
| /* function to write tags in tx fifo for i2c read transfer */ |
| void (*write_rx_tags)(struct qup_i2c_dev *qup); |
| }; |
| |
| static irqreturn_t qup_i2c_interrupt(int irq, void *dev) |
| { |
| struct qup_i2c_dev *qup = dev; |
| struct qup_i2c_block *blk = &qup->blk; |
| u32 bus_err; |
| u32 qup_err; |
| u32 opflags; |
| |
| bus_err = readl(qup->base + QUP_I2C_STATUS); |
| qup_err = readl(qup->base + QUP_ERROR_FLAGS); |
| opflags = readl(qup->base + QUP_OPERATIONAL); |
| |
| if (!qup->msg) { |
| /* Clear Error interrupt */ |
| writel(QUP_RESET_STATE, qup->base + QUP_STATE); |
| return IRQ_HANDLED; |
| } |
| |
| bus_err &= I2C_STATUS_ERROR_MASK; |
| qup_err &= QUP_STATUS_ERROR_FLAGS; |
| |
| /* Clear the error bits in QUP_ERROR_FLAGS */ |
| if (qup_err) |
| writel(qup_err, qup->base + QUP_ERROR_FLAGS); |
| |
| /* Clear the error bits in QUP_I2C_STATUS */ |
| if (bus_err) |
| writel(bus_err, qup->base + QUP_I2C_STATUS); |
| |
| /* |
| * Check for BAM mode and returns if already error has come for current |
| * transfer. In Error case, sometimes, QUP generates more than one |
| * interrupt. |
| */ |
| if (qup->use_dma && (qup->qup_err || qup->bus_err)) |
| return IRQ_HANDLED; |
| |
| /* Reset the QUP State in case of error */ |
| if (qup_err || bus_err) { |
| /* |
| * Don’t reset the QUP state in case of BAM mode. The BAM |
| * flush operation needs to be scheduled in transfer function |
| * which will clear the remaining schedule descriptors in BAM |
| * HW FIFO and generates the BAM interrupt. |
| */ |
| if (!qup->use_dma) |
| writel(QUP_RESET_STATE, qup->base + QUP_STATE); |
| goto done; |
| } |
| |
| if (opflags & QUP_OUT_SVC_FLAG) { |
| writel(QUP_OUT_SVC_FLAG, qup->base + QUP_OPERATIONAL); |
| |
| if (opflags & OUT_BLOCK_WRITE_REQ) { |
| blk->tx_fifo_free += qup->out_blk_sz; |
| if (qup->msg->flags & I2C_M_RD) |
| qup->write_rx_tags(qup); |
| else |
| qup->write_tx_fifo(qup); |
| } |
| } |
| |
| if (opflags & QUP_IN_SVC_FLAG) { |
| writel(QUP_IN_SVC_FLAG, qup->base + QUP_OPERATIONAL); |
| |
| if (!blk->is_rx_blk_mode) { |
| blk->fifo_available += qup->in_fifo_sz; |
| qup->read_rx_fifo(qup); |
| } else if (opflags & IN_BLOCK_READ_REQ) { |
| blk->fifo_available += qup->in_blk_sz; |
| qup->read_rx_fifo(qup); |
| } |
| } |
| |
| if (qup->msg->flags & I2C_M_RD) { |
| if (!blk->rx_bytes_read) |
| return IRQ_HANDLED; |
| } else { |
| /* |
| * Ideally, QUP_MAX_OUTPUT_DONE_FLAG should be checked |
| * for FIFO mode also. But, QUP_MAX_OUTPUT_DONE_FLAG lags |
| * behind QUP_OUTPUT_SERVICE_FLAG sometimes. The only reason |
| * of interrupt for write message in FIFO mode is |
| * QUP_MAX_OUTPUT_DONE_FLAG condition. |
| */ |
| if (blk->is_tx_blk_mode && !(opflags & QUP_MX_OUTPUT_DONE)) |
| return IRQ_HANDLED; |
| } |
| |
| done: |
| qup->qup_err = qup_err; |
| qup->bus_err = bus_err; |
| complete(&qup->xfer); |
| return IRQ_HANDLED; |
| } |
| |
| static int qup_i2c_poll_state_mask(struct qup_i2c_dev *qup, |
| u32 req_state, u32 req_mask) |
| { |
| int retries = 1; |
| u32 state; |
| |
| /* |
| * State transition takes 3 AHB clocks cycles + 3 I2C master clock |
| * cycles. So retry once after a 1uS delay. |
| */ |
| do { |
| state = readl(qup->base + QUP_STATE); |
| |
| if (state & QUP_STATE_VALID && |
| (state & req_mask) == req_state) |
| return 0; |
| |
| udelay(1); |
| } while (retries--); |
| |
| return -ETIMEDOUT; |
| } |
| |
| static int qup_i2c_poll_state(struct qup_i2c_dev *qup, u32 req_state) |
| { |
| return qup_i2c_poll_state_mask(qup, req_state, QUP_STATE_MASK); |
| } |
| |
| static void qup_i2c_flush(struct qup_i2c_dev *qup) |
| { |
| u32 val = readl(qup->base + QUP_STATE); |
| |
| val |= QUP_I2C_FLUSH; |
| writel(val, qup->base + QUP_STATE); |
| } |
| |
| static int qup_i2c_poll_state_valid(struct qup_i2c_dev *qup) |
| { |
| return qup_i2c_poll_state_mask(qup, 0, 0); |
| } |
| |
| static int qup_i2c_poll_state_i2c_master(struct qup_i2c_dev *qup) |
| { |
| return qup_i2c_poll_state_mask(qup, QUP_I2C_MAST_GEN, QUP_I2C_MAST_GEN); |
| } |
| |
| static int qup_i2c_change_state(struct qup_i2c_dev *qup, u32 state) |
| { |
| if (qup_i2c_poll_state_valid(qup) != 0) |
| return -EIO; |
| |
| writel(state, qup->base + QUP_STATE); |
| |
| if (qup_i2c_poll_state(qup, state) != 0) |
| return -EIO; |
| return 0; |
| } |
| |
| /* Check if I2C bus returns to IDLE state */ |
| static int qup_i2c_bus_active(struct qup_i2c_dev *qup, int len) |
| { |
| unsigned long timeout; |
| u32 status; |
| int ret = 0; |
| |
| timeout = jiffies + len * 4; |
| for (;;) { |
| status = readl(qup->base + QUP_I2C_STATUS); |
| if (!(status & I2C_STATUS_BUS_ACTIVE)) |
| break; |
| |
| if (time_after(jiffies, timeout)) |
| ret = -ETIMEDOUT; |
| |
| usleep_range(len, len * 2); |
| } |
| |
| return ret; |
| } |
| |
| static void qup_i2c_write_tx_fifo_v1(struct qup_i2c_dev *qup) |
| { |
| struct qup_i2c_block *blk = &qup->blk; |
| struct i2c_msg *msg = qup->msg; |
| u32 addr = i2c_8bit_addr_from_msg(msg); |
| u32 qup_tag; |
| int idx; |
| u32 val; |
| |
| if (qup->pos == 0) { |
| val = QUP_TAG_START | addr; |
| idx = 1; |
| blk->tx_fifo_free--; |
| } else { |
| val = 0; |
| idx = 0; |
| } |
| |
| while (blk->tx_fifo_free && qup->pos < msg->len) { |
| if (qup->pos == msg->len - 1) |
| qup_tag = QUP_TAG_STOP; |
| else |
| qup_tag = QUP_TAG_DATA; |
| |
| if (idx & 1) |
| val |= (qup_tag | msg->buf[qup->pos]) << QUP_MSW_SHIFT; |
| else |
| val = qup_tag | msg->buf[qup->pos]; |
| |
| /* Write out the pair and the last odd value */ |
| if (idx & 1 || qup->pos == msg->len - 1) |
| writel(val, qup->base + QUP_OUT_FIFO_BASE); |
| |
| qup->pos++; |
| idx++; |
| blk->tx_fifo_free--; |
| } |
| } |
| |
| static void qup_i2c_set_blk_data(struct qup_i2c_dev *qup, |
| struct i2c_msg *msg) |
| { |
| qup->blk.pos = 0; |
| qup->blk.data_len = msg->len; |
| qup->blk.count = DIV_ROUND_UP(msg->len, qup->blk_xfer_limit); |
| } |
| |
| static int qup_i2c_get_data_len(struct qup_i2c_dev *qup) |
| { |
| int data_len; |
| |
| if (qup->blk.data_len > qup->blk_xfer_limit) |
| data_len = qup->blk_xfer_limit; |
| else |
| data_len = qup->blk.data_len; |
| |
| return data_len; |
| } |
| |
| static bool qup_i2c_check_msg_len(struct i2c_msg *msg) |
| { |
| return ((msg->flags & I2C_M_RD) && (msg->flags & I2C_M_RECV_LEN)); |
| } |
| |
| static int qup_i2c_set_tags_smb(u16 addr, u8 *tags, struct qup_i2c_dev *qup, |
| struct i2c_msg *msg) |
| { |
| int len = 0; |
| |
| if (qup->is_smbus_read) { |
| tags[len++] = QUP_TAG_V2_DATARD_STOP; |
| tags[len++] = qup_i2c_get_data_len(qup); |
| } else { |
| tags[len++] = QUP_TAG_V2_START; |
| tags[len++] = addr & 0xff; |
| |
| if (msg->flags & I2C_M_TEN) |
| tags[len++] = addr >> 8; |
| |
| tags[len++] = QUP_TAG_V2_DATARD; |
| /* Read 1 byte indicating the length of the SMBus message */ |
| tags[len++] = 1; |
| } |
| return len; |
| } |
| |
| static int qup_i2c_set_tags(u8 *tags, struct qup_i2c_dev *qup, |
| struct i2c_msg *msg) |
| { |
| u16 addr = i2c_8bit_addr_from_msg(msg); |
| int len = 0; |
| int data_len; |
| |
| int last = (qup->blk.pos == (qup->blk.count - 1)) && (qup->is_last); |
| |
| /* Handle tags for SMBus block read */ |
| if (qup_i2c_check_msg_len(msg)) |
| return qup_i2c_set_tags_smb(addr, tags, qup, msg); |
| |
| if (qup->blk.pos == 0) { |
| tags[len++] = QUP_TAG_V2_START; |
| tags[len++] = addr & 0xff; |
| |
| if (msg->flags & I2C_M_TEN) |
| tags[len++] = addr >> 8; |
| } |
| |
| /* Send _STOP commands for the last block */ |
| if (last) { |
| if (msg->flags & I2C_M_RD) |
| tags[len++] = QUP_TAG_V2_DATARD_STOP; |
| else |
| tags[len++] = QUP_TAG_V2_DATAWR_STOP; |
| } else { |
| if (msg->flags & I2C_M_RD) |
| tags[len++] = qup->blk.pos == (qup->blk.count - 1) ? |
| QUP_TAG_V2_DATARD_NACK : |
| QUP_TAG_V2_DATARD; |
| else |
| tags[len++] = QUP_TAG_V2_DATAWR; |
| } |
| |
| data_len = qup_i2c_get_data_len(qup); |
| |
| /* 0 implies 256 bytes */ |
| if (data_len == QUP_READ_LIMIT) |
| tags[len++] = 0; |
| else |
| tags[len++] = data_len; |
| |
| return len; |
| } |
| |
| |
| static void qup_i2c_bam_cb(void *data) |
| { |
| struct qup_i2c_dev *qup = data; |
| |
| complete(&qup->xfer); |
| } |
| |
| static int qup_sg_set_buf(struct scatterlist *sg, void *buf, |
| unsigned int buflen, struct qup_i2c_dev *qup, |
| int dir) |
| { |
| int ret; |
| |
| sg_set_buf(sg, buf, buflen); |
| ret = dma_map_sg(qup->dev, sg, 1, dir); |
| if (!ret) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static void qup_i2c_rel_dma(struct qup_i2c_dev *qup) |
| { |
| if (qup->btx.dma) |
| dma_release_channel(qup->btx.dma); |
| if (qup->brx.dma) |
| dma_release_channel(qup->brx.dma); |
| qup->btx.dma = NULL; |
| qup->brx.dma = NULL; |
| } |
| |
| static int qup_i2c_req_dma(struct qup_i2c_dev *qup) |
| { |
| int err; |
| |
| if (!qup->btx.dma) { |
| qup->btx.dma = dma_request_chan(qup->dev, "tx"); |
| if (IS_ERR(qup->btx.dma)) { |
| err = PTR_ERR(qup->btx.dma); |
| qup->btx.dma = NULL; |
| dev_err(qup->dev, "\n tx channel not available"); |
| return err; |
| } |
| } |
| |
| if (!qup->brx.dma) { |
| qup->brx.dma = dma_request_chan(qup->dev, "rx"); |
| if (IS_ERR(qup->brx.dma)) { |
| dev_err(qup->dev, "\n rx channel not available"); |
| err = PTR_ERR(qup->brx.dma); |
| qup->brx.dma = NULL; |
| qup_i2c_rel_dma(qup); |
| return err; |
| } |
| } |
| return 0; |
| } |
| |
| static int qup_i2c_bam_make_desc(struct qup_i2c_dev *qup, struct i2c_msg *msg) |
| { |
| int ret = 0, limit = QUP_READ_LIMIT; |
| u32 len = 0, blocks, rem; |
| u32 i = 0, tlen, tx_len = 0; |
| u8 *tags; |
| |
| qup->blk_xfer_limit = QUP_READ_LIMIT; |
| qup_i2c_set_blk_data(qup, msg); |
| |
| blocks = qup->blk.count; |
| rem = msg->len - (blocks - 1) * limit; |
| |
| if (msg->flags & I2C_M_RD) { |
| while (qup->blk.pos < blocks) { |
| tlen = (i == (blocks - 1)) ? rem : limit; |
| tags = &qup->start_tag.start[qup->tag_buf_pos + len]; |
| len += qup_i2c_set_tags(tags, qup, msg); |
| qup->blk.data_len -= tlen; |
| |
| /* scratch buf to read the start and len tags */ |
| ret = qup_sg_set_buf(&qup->brx.sg[qup->brx.sg_cnt++], |
| &qup->brx.tag.start[0], |
| 2, qup, DMA_FROM_DEVICE); |
| |
| if (ret) |
| return ret; |
| |
| ret = qup_sg_set_buf(&qup->brx.sg[qup->brx.sg_cnt++], |
| &msg->buf[limit * i], |
| tlen, qup, |
| DMA_FROM_DEVICE); |
| if (ret) |
| return ret; |
| |
| i++; |
| qup->blk.pos = i; |
| } |
| ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++], |
| &qup->start_tag.start[qup->tag_buf_pos], |
| len, qup, DMA_TO_DEVICE); |
| if (ret) |
| return ret; |
| |
| qup->tag_buf_pos += len; |
| } else { |
| while (qup->blk.pos < blocks) { |
| tlen = (i == (blocks - 1)) ? rem : limit; |
| tags = &qup->start_tag.start[qup->tag_buf_pos + tx_len]; |
| len = qup_i2c_set_tags(tags, qup, msg); |
| qup->blk.data_len -= tlen; |
| |
| ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++], |
| tags, len, |
| qup, DMA_TO_DEVICE); |
| if (ret) |
| return ret; |
| |
| tx_len += len; |
| ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++], |
| &msg->buf[limit * i], |
| tlen, qup, DMA_TO_DEVICE); |
| if (ret) |
| return ret; |
| i++; |
| qup->blk.pos = i; |
| } |
| |
| qup->tag_buf_pos += tx_len; |
| } |
| |
| return 0; |
| } |
| |
| static int qup_i2c_bam_schedule_desc(struct qup_i2c_dev *qup) |
| { |
| struct dma_async_tx_descriptor *txd, *rxd = NULL; |
| int ret = 0; |
| dma_cookie_t cookie_rx, cookie_tx; |
| u32 len = 0; |
| u32 tx_cnt = qup->btx.sg_cnt, rx_cnt = qup->brx.sg_cnt; |
| |
| /* schedule the EOT and FLUSH I2C tags */ |
| len = 1; |
| if (rx_cnt) { |
| qup->btx.tag.start[0] = QUP_BAM_INPUT_EOT; |
| len++; |
| |
| /* scratch buf to read the BAM EOT FLUSH tags */ |
| ret = qup_sg_set_buf(&qup->brx.sg[rx_cnt++], |
| &qup->brx.tag.start[0], |
| 1, qup, DMA_FROM_DEVICE); |
| if (ret) |
| return ret; |
| } |
| |
| qup->btx.tag.start[len - 1] = QUP_BAM_FLUSH_STOP; |
| ret = qup_sg_set_buf(&qup->btx.sg[tx_cnt++], &qup->btx.tag.start[0], |
| len, qup, DMA_TO_DEVICE); |
| if (ret) |
| return ret; |
| |
| txd = dmaengine_prep_slave_sg(qup->btx.dma, qup->btx.sg, tx_cnt, |
| DMA_MEM_TO_DEV, |
| DMA_PREP_INTERRUPT | DMA_PREP_FENCE); |
| if (!txd) { |
| dev_err(qup->dev, "failed to get tx desc\n"); |
| ret = -EINVAL; |
| goto desc_err; |
| } |
| |
| if (!rx_cnt) { |
| txd->callback = qup_i2c_bam_cb; |
| txd->callback_param = qup; |
| } |
| |
| cookie_tx = dmaengine_submit(txd); |
| if (dma_submit_error(cookie_tx)) { |
| ret = -EINVAL; |
| goto desc_err; |
| } |
| |
| dma_async_issue_pending(qup->btx.dma); |
| |
| if (rx_cnt) { |
| rxd = dmaengine_prep_slave_sg(qup->brx.dma, qup->brx.sg, |
| rx_cnt, DMA_DEV_TO_MEM, |
| DMA_PREP_INTERRUPT); |
| if (!rxd) { |
| dev_err(qup->dev, "failed to get rx desc\n"); |
| ret = -EINVAL; |
| |
| /* abort TX descriptors */ |
| dmaengine_terminate_all(qup->btx.dma); |
| goto desc_err; |
| } |
| |
| rxd->callback = qup_i2c_bam_cb; |
| rxd->callback_param = qup; |
| cookie_rx = dmaengine_submit(rxd); |
| if (dma_submit_error(cookie_rx)) { |
| ret = -EINVAL; |
| goto desc_err; |
| } |
| |
| dma_async_issue_pending(qup->brx.dma); |
| } |
| |
| if (!wait_for_completion_timeout(&qup->xfer, qup->xfer_timeout)) { |
| dev_err(qup->dev, "normal trans timed out\n"); |
| ret = -ETIMEDOUT; |
| } |
| |
| if (ret || qup->bus_err || qup->qup_err) { |
| reinit_completion(&qup->xfer); |
| |
| if (qup_i2c_change_state(qup, QUP_RUN_STATE)) { |
| dev_err(qup->dev, "change to run state timed out"); |
| goto desc_err; |
| } |
| |
| qup_i2c_flush(qup); |
| |
| /* wait for remaining interrupts to occur */ |
| if (!wait_for_completion_timeout(&qup->xfer, HZ)) |
| dev_err(qup->dev, "flush timed out\n"); |
| |
| ret = (qup->bus_err & QUP_I2C_NACK_FLAG) ? -ENXIO : -EIO; |
| } |
| |
| desc_err: |
| dma_unmap_sg(qup->dev, qup->btx.sg, tx_cnt, DMA_TO_DEVICE); |
| |
| if (rx_cnt) |
| dma_unmap_sg(qup->dev, qup->brx.sg, rx_cnt, |
| DMA_FROM_DEVICE); |
| |
| return ret; |
| } |
| |
| static void qup_i2c_bam_clear_tag_buffers(struct qup_i2c_dev *qup) |
| { |
| qup->btx.sg_cnt = 0; |
| qup->brx.sg_cnt = 0; |
| qup->tag_buf_pos = 0; |
| } |
| |
| static int qup_i2c_bam_xfer(struct i2c_adapter *adap, struct i2c_msg *msg, |
| int num) |
| { |
| struct qup_i2c_dev *qup = i2c_get_adapdata(adap); |
| int ret = 0; |
| int idx = 0; |
| |
| enable_irq(qup->irq); |
| ret = qup_i2c_req_dma(qup); |
| |
| if (ret) |
| goto out; |
| |
| writel(0, qup->base + QUP_MX_INPUT_CNT); |
| writel(0, qup->base + QUP_MX_OUTPUT_CNT); |
| |
| /* set BAM mode */ |
| writel(QUP_REPACK_EN | QUP_BAM_MODE, qup->base + QUP_IO_MODE); |
| |
| /* mask fifo irqs */ |
| writel((0x3 << 8), qup->base + QUP_OPERATIONAL_MASK); |
| |
| /* set RUN STATE */ |
| ret = qup_i2c_change_state(qup, QUP_RUN_STATE); |
| if (ret) |
| goto out; |
| |
| writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL); |
| qup_i2c_bam_clear_tag_buffers(qup); |
| |
| for (idx = 0; idx < num; idx++) { |
| qup->msg = msg + idx; |
| qup->is_last = idx == (num - 1); |
| |
| ret = qup_i2c_bam_make_desc(qup, qup->msg); |
| if (ret) |
| break; |
| |
| /* |
| * Make DMA descriptor and schedule the BAM transfer if its |
| * already crossed the maximum length. Since the memory for all |
| * tags buffers have been taken for 2 maximum possible |
| * transfers length so it will never cross the buffer actual |
| * length. |
| */ |
| if (qup->btx.sg_cnt > qup->max_xfer_sg_len || |
| qup->brx.sg_cnt > qup->max_xfer_sg_len || |
| qup->is_last) { |
| ret = qup_i2c_bam_schedule_desc(qup); |
| if (ret) |
| break; |
| |
| qup_i2c_bam_clear_tag_buffers(qup); |
| } |
| } |
| |
| out: |
| disable_irq(qup->irq); |
| |
| qup->msg = NULL; |
| return ret; |
| } |
| |
| static int qup_i2c_wait_for_complete(struct qup_i2c_dev *qup, |
| struct i2c_msg *msg) |
| { |
| unsigned long left; |
| int ret = 0; |
| |
| left = wait_for_completion_timeout(&qup->xfer, qup->xfer_timeout); |
| if (!left) { |
| writel(1, qup->base + QUP_SW_RESET); |
| ret = -ETIMEDOUT; |
| } |
| |
| if (qup->bus_err || qup->qup_err) |
| ret = (qup->bus_err & QUP_I2C_NACK_FLAG) ? -ENXIO : -EIO; |
| |
| return ret; |
| } |
| |
| static void qup_i2c_read_rx_fifo_v1(struct qup_i2c_dev *qup) |
| { |
| struct qup_i2c_block *blk = &qup->blk; |
| struct i2c_msg *msg = qup->msg; |
| u32 val = 0; |
| int idx = 0; |
| |
| while (blk->fifo_available && qup->pos < msg->len) { |
| if ((idx & 1) == 0) { |
| /* Reading 2 words at time */ |
| val = readl(qup->base + QUP_IN_FIFO_BASE); |
| msg->buf[qup->pos++] = val & 0xFF; |
| } else { |
| msg->buf[qup->pos++] = val >> QUP_MSW_SHIFT; |
| } |
| idx++; |
| blk->fifo_available--; |
| } |
| |
| if (qup->pos == msg->len) |
| blk->rx_bytes_read = true; |
| } |
| |
| static void qup_i2c_write_rx_tags_v1(struct qup_i2c_dev *qup) |
| { |
| struct i2c_msg *msg = qup->msg; |
| u32 addr, len, val; |
| |
| addr = i2c_8bit_addr_from_msg(msg); |
| |
| /* 0 is used to specify a length 256 (QUP_READ_LIMIT) */ |
| len = (msg->len == QUP_READ_LIMIT) ? 0 : msg->len; |
| |
| val = ((QUP_TAG_REC | len) << QUP_MSW_SHIFT) | QUP_TAG_START | addr; |
| writel(val, qup->base + QUP_OUT_FIFO_BASE); |
| } |
| |
| static void qup_i2c_conf_v1(struct qup_i2c_dev *qup) |
| { |
| struct qup_i2c_block *blk = &qup->blk; |
| u32 qup_config = I2C_MINI_CORE | I2C_N_VAL; |
| u32 io_mode = QUP_REPACK_EN; |
| |
| blk->is_tx_blk_mode = |
| blk->total_tx_len > qup->out_fifo_sz ? true : false; |
| blk->is_rx_blk_mode = |
| blk->total_rx_len > qup->in_fifo_sz ? true : false; |
| |
| if (blk->is_tx_blk_mode) { |
| io_mode |= QUP_OUTPUT_BLK_MODE; |
| writel(0, qup->base + QUP_MX_WRITE_CNT); |
| writel(blk->total_tx_len, qup->base + QUP_MX_OUTPUT_CNT); |
| } else { |
| writel(0, qup->base + QUP_MX_OUTPUT_CNT); |
| writel(blk->total_tx_len, qup->base + QUP_MX_WRITE_CNT); |
| } |
| |
| if (blk->total_rx_len) { |
| if (blk->is_rx_blk_mode) { |
| io_mode |= QUP_INPUT_BLK_MODE; |
| writel(0, qup->base + QUP_MX_READ_CNT); |
| writel(blk->total_rx_len, qup->base + QUP_MX_INPUT_CNT); |
| } else { |
| writel(0, qup->base + QUP_MX_INPUT_CNT); |
| writel(blk->total_rx_len, qup->base + QUP_MX_READ_CNT); |
| } |
| } else { |
| qup_config |= QUP_NO_INPUT; |
| } |
| |
| writel(qup_config, qup->base + QUP_CONFIG); |
| writel(io_mode, qup->base + QUP_IO_MODE); |
| } |
| |
| static void qup_i2c_clear_blk_v1(struct qup_i2c_block *blk) |
| { |
| blk->tx_fifo_free = 0; |
| blk->fifo_available = 0; |
| blk->rx_bytes_read = false; |
| } |
| |
| static int qup_i2c_conf_xfer_v1(struct qup_i2c_dev *qup, bool is_rx) |
| { |
| struct qup_i2c_block *blk = &qup->blk; |
| int ret; |
| |
| qup_i2c_clear_blk_v1(blk); |
| qup_i2c_conf_v1(qup); |
| ret = qup_i2c_change_state(qup, QUP_RUN_STATE); |
| if (ret) |
| return ret; |
| |
| writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL); |
| |
| ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE); |
| if (ret) |
| return ret; |
| |
| reinit_completion(&qup->xfer); |
| enable_irq(qup->irq); |
| if (!blk->is_tx_blk_mode) { |
| blk->tx_fifo_free = qup->out_fifo_sz; |
| |
| if (is_rx) |
| qup_i2c_write_rx_tags_v1(qup); |
| else |
| qup_i2c_write_tx_fifo_v1(qup); |
| } |
| |
| ret = qup_i2c_change_state(qup, QUP_RUN_STATE); |
| if (ret) |
| goto err; |
| |
| ret = qup_i2c_wait_for_complete(qup, qup->msg); |
| if (ret) |
| goto err; |
| |
| ret = qup_i2c_bus_active(qup, ONE_BYTE); |
| |
| err: |
| disable_irq(qup->irq); |
| return ret; |
| } |
| |
| static int qup_i2c_write_one(struct qup_i2c_dev *qup) |
| { |
| struct i2c_msg *msg = qup->msg; |
| struct qup_i2c_block *blk = &qup->blk; |
| |
| qup->pos = 0; |
| blk->total_tx_len = msg->len + 1; |
| blk->total_rx_len = 0; |
| |
| return qup_i2c_conf_xfer_v1(qup, false); |
| } |
| |
| static int qup_i2c_read_one(struct qup_i2c_dev *qup) |
| { |
| struct qup_i2c_block *blk = &qup->blk; |
| |
| qup->pos = 0; |
| blk->total_tx_len = 2; |
| blk->total_rx_len = qup->msg->len; |
| |
| return qup_i2c_conf_xfer_v1(qup, true); |
| } |
| |
| static int qup_i2c_xfer(struct i2c_adapter *adap, |
| struct i2c_msg msgs[], |
| int num) |
| { |
| struct qup_i2c_dev *qup = i2c_get_adapdata(adap); |
| int ret, idx; |
| |
| ret = pm_runtime_get_sync(qup->dev); |
| if (ret < 0) |
| goto out; |
| |
| qup->bus_err = 0; |
| qup->qup_err = 0; |
| |
| writel(1, qup->base + QUP_SW_RESET); |
| ret = qup_i2c_poll_state(qup, QUP_RESET_STATE); |
| if (ret) |
| goto out; |
| |
| /* Configure QUP as I2C mini core */ |
| writel(I2C_MINI_CORE | I2C_N_VAL, qup->base + QUP_CONFIG); |
| |
| for (idx = 0; idx < num; idx++) { |
| if (qup_i2c_poll_state_i2c_master(qup)) { |
| ret = -EIO; |
| goto out; |
| } |
| |
| if (qup_i2c_check_msg_len(&msgs[idx])) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| qup->msg = &msgs[idx]; |
| if (msgs[idx].flags & I2C_M_RD) |
| ret = qup_i2c_read_one(qup); |
| else |
| ret = qup_i2c_write_one(qup); |
| |
| if (ret) |
| break; |
| |
| ret = qup_i2c_change_state(qup, QUP_RESET_STATE); |
| if (ret) |
| break; |
| } |
| |
| if (ret == 0) |
| ret = num; |
| out: |
| |
| pm_runtime_mark_last_busy(qup->dev); |
| pm_runtime_put_autosuspend(qup->dev); |
| |
| return ret; |
| } |
| |
| /* |
| * Configure registers related with reconfiguration during run and call it |
| * before each i2c sub transfer. |
| */ |
| static void qup_i2c_conf_count_v2(struct qup_i2c_dev *qup) |
| { |
| struct qup_i2c_block *blk = &qup->blk; |
| u32 qup_config = I2C_MINI_CORE | I2C_N_VAL_V2; |
| |
| if (blk->is_tx_blk_mode) |
| writel(qup->config_run | blk->total_tx_len, |
| qup->base + QUP_MX_OUTPUT_CNT); |
| else |
| writel(qup->config_run | blk->total_tx_len, |
| qup->base + QUP_MX_WRITE_CNT); |
| |
| if (blk->total_rx_len) { |
| if (blk->is_rx_blk_mode) |
| writel(qup->config_run | blk->total_rx_len, |
| qup->base + QUP_MX_INPUT_CNT); |
| else |
| writel(qup->config_run | blk->total_rx_len, |
| qup->base + QUP_MX_READ_CNT); |
| } else { |
| qup_config |= QUP_NO_INPUT; |
| } |
| |
| writel(qup_config, qup->base + QUP_CONFIG); |
| } |
| |
| /* |
| * Configure registers related with transfer mode (FIFO/Block) |
| * before starting of i2c transfer. It will be called only once in |
| * QUP RESET state. |
| */ |
| static void qup_i2c_conf_mode_v2(struct qup_i2c_dev *qup) |
| { |
| struct qup_i2c_block *blk = &qup->blk; |
| u32 io_mode = QUP_REPACK_EN; |
| |
| if (blk->is_tx_blk_mode) { |
| io_mode |= QUP_OUTPUT_BLK_MODE; |
| writel(0, qup->base + QUP_MX_WRITE_CNT); |
| } else { |
| writel(0, qup->base + QUP_MX_OUTPUT_CNT); |
| } |
| |
| if (blk->is_rx_blk_mode) { |
| io_mode |= QUP_INPUT_BLK_MODE; |
| writel(0, qup->base + QUP_MX_READ_CNT); |
| } else { |
| writel(0, qup->base + QUP_MX_INPUT_CNT); |
| } |
| |
| writel(io_mode, qup->base + QUP_IO_MODE); |
| } |
| |
| /* Clear required variables before starting of any QUP v2 sub transfer. */ |
| static void qup_i2c_clear_blk_v2(struct qup_i2c_block *blk) |
| { |
| blk->send_last_word = false; |
| blk->tx_tags_sent = false; |
| blk->tx_fifo_data = 0; |
| blk->tx_fifo_data_pos = 0; |
| blk->tx_fifo_free = 0; |
| |
| blk->rx_tags_fetched = false; |
| blk->rx_bytes_read = false; |
| blk->rx_fifo_data = 0; |
| blk->rx_fifo_data_pos = 0; |
| blk->fifo_available = 0; |
| } |
| |
| /* Receive data from RX FIFO for read message in QUP v2 i2c transfer. */ |
| static void qup_i2c_recv_data(struct qup_i2c_dev *qup) |
| { |
| struct qup_i2c_block *blk = &qup->blk; |
| int j; |
| |
| for (j = blk->rx_fifo_data_pos; |
| blk->cur_blk_len && blk->fifo_available; |
| blk->cur_blk_len--, blk->fifo_available--) { |
| if (j == 0) |
| blk->rx_fifo_data = readl(qup->base + QUP_IN_FIFO_BASE); |
| |
| *(blk->cur_data++) = blk->rx_fifo_data; |
| blk->rx_fifo_data >>= 8; |
| |
| if (j == 3) |
| j = 0; |
| else |
| j++; |
| } |
| |
| blk->rx_fifo_data_pos = j; |
| } |
| |
| /* Receive tags for read message in QUP v2 i2c transfer. */ |
| static void qup_i2c_recv_tags(struct qup_i2c_dev *qup) |
| { |
| struct qup_i2c_block *blk = &qup->blk; |
| |
| blk->rx_fifo_data = readl(qup->base + QUP_IN_FIFO_BASE); |
| blk->rx_fifo_data >>= blk->rx_tag_len * 8; |
| blk->rx_fifo_data_pos = blk->rx_tag_len; |
| blk->fifo_available -= blk->rx_tag_len; |
| } |
| |
| /* |
| * Read the data and tags from RX FIFO. Since in read case, the tags will be |
| * preceded by received data bytes so |
| * 1. Check if rx_tags_fetched is false i.e. the start of QUP block so receive |
| * all tag bytes and discard that. |
| * 2. Read the data from RX FIFO. When all the data bytes have been read then |
| * set rx_bytes_read to true. |
| */ |
| static void qup_i2c_read_rx_fifo_v2(struct qup_i2c_dev *qup) |
| { |
| struct qup_i2c_block *blk = &qup->blk; |
| |
| if (!blk->rx_tags_fetched) { |
| qup_i2c_recv_tags(qup); |
| blk->rx_tags_fetched = true; |
| } |
| |
| qup_i2c_recv_data(qup); |
| if (!blk->cur_blk_len) |
| blk->rx_bytes_read = true; |
| } |
| |
| /* |
| * Write bytes in TX FIFO for write message in QUP v2 i2c transfer. QUP TX FIFO |
| * write works on word basis (4 bytes). Append new data byte write for TX FIFO |
| * in tx_fifo_data and write to TX FIFO when all the 4 bytes are present. |
| */ |
| static void |
| qup_i2c_write_blk_data(struct qup_i2c_dev *qup, u8 **data, unsigned int *len) |
| { |
| struct qup_i2c_block *blk = &qup->blk; |
| unsigned int j; |
| |
| for (j = blk->tx_fifo_data_pos; *len && blk->tx_fifo_free; |
| (*len)--, blk->tx_fifo_free--) { |
| blk->tx_fifo_data |= *(*data)++ << (j * 8); |
| if (j == 3) { |
| writel(blk->tx_fifo_data, |
| qup->base + QUP_OUT_FIFO_BASE); |
| blk->tx_fifo_data = 0x0; |
| j = 0; |
| } else { |
| j++; |
| } |
| } |
| |
| blk->tx_fifo_data_pos = j; |
| } |
| |
| /* Transfer tags for read message in QUP v2 i2c transfer. */ |
| static void qup_i2c_write_rx_tags_v2(struct qup_i2c_dev *qup) |
| { |
| struct qup_i2c_block *blk = &qup->blk; |
| |
| qup_i2c_write_blk_data(qup, &blk->cur_tx_tags, &blk->tx_tag_len); |
| if (blk->tx_fifo_data_pos) |
| writel(blk->tx_fifo_data, qup->base + QUP_OUT_FIFO_BASE); |
| } |
| |
| /* |
| * Write the data and tags in TX FIFO. Since in write case, both tags and data |
| * need to be written and QUP write tags can have maximum 256 data length, so |
| * |
| * 1. Check if tx_tags_sent is false i.e. the start of QUP block so write the |
| * tags to TX FIFO and set tx_tags_sent to true. |
| * 2. Check if send_last_word is true. It will be set when last few data bytes |
| * (less than 4 bytes) are reamining to be written in FIFO because of no FIFO |
| * space. All this data bytes are available in tx_fifo_data so write this |
| * in FIFO. |
| * 3. Write the data to TX FIFO and check for cur_blk_len. If it is non zero |
| * then more data is pending otherwise following 3 cases can be possible |
| * a. if tx_fifo_data_pos is zero i.e. all the data bytes in this block |
| * have been written in TX FIFO so nothing else is required. |
| * b. tx_fifo_free is non zero i.e tx FIFO is free so copy the remaining data |
| * from tx_fifo_data to tx FIFO. Since, qup_i2c_write_blk_data do write |
| * in 4 bytes and FIFO space is in multiple of 4 bytes so tx_fifo_free |
| * will be always greater than or equal to 4 bytes. |
| * c. tx_fifo_free is zero. In this case, last few bytes (less than 4 |
| * bytes) are copied to tx_fifo_data but couldn't be sent because of |
| * FIFO full so make send_last_word true. |
| */ |
| static void qup_i2c_write_tx_fifo_v2(struct qup_i2c_dev *qup) |
| { |
| struct qup_i2c_block *blk = &qup->blk; |
| |
| if (!blk->tx_tags_sent) { |
| qup_i2c_write_blk_data(qup, &blk->cur_tx_tags, |
| &blk->tx_tag_len); |
| blk->tx_tags_sent = true; |
| } |
| |
| if (blk->send_last_word) |
| goto send_last_word; |
| |
| qup_i2c_write_blk_data(qup, &blk->cur_data, &blk->cur_blk_len); |
| if (!blk->cur_blk_len) { |
| if (!blk->tx_fifo_data_pos) |
| return; |
| |
| if (blk->tx_fifo_free) |
| goto send_last_word; |
| |
| blk->send_last_word = true; |
| } |
| |
| return; |
| |
| send_last_word: |
| writel(blk->tx_fifo_data, qup->base + QUP_OUT_FIFO_BASE); |
| } |
| |
| /* |
| * Main transfer function which read or write i2c data. |
| * The QUP v2 supports reconfiguration during run in which multiple i2c sub |
| * transfers can be scheduled. |
| */ |
| static int |
| qup_i2c_conf_xfer_v2(struct qup_i2c_dev *qup, bool is_rx, bool is_first, |
| bool change_pause_state) |
| { |
| struct qup_i2c_block *blk = &qup->blk; |
| struct i2c_msg *msg = qup->msg; |
| int ret; |
| |
| /* |
| * Check if its SMBus Block read for which the top level read will be |
| * done into 2 QUP reads. One with message length 1 while other one is |
| * with actual length. |
| */ |
| if (qup_i2c_check_msg_len(msg)) { |
| if (qup->is_smbus_read) { |
| /* |
| * If the message length is already read in |
| * the first byte of the buffer, account for |
| * that by setting the offset |
| */ |
| blk->cur_data += 1; |
| is_first = false; |
| } else { |
| change_pause_state = false; |
| } |
| } |
| |
| qup->config_run = is_first ? 0 : QUP_I2C_MX_CONFIG_DURING_RUN; |
| |
| qup_i2c_clear_blk_v2(blk); |
| qup_i2c_conf_count_v2(qup); |
| |
| /* If it is first sub transfer, then configure i2c bus clocks */ |
| if (is_first) { |
| ret = qup_i2c_change_state(qup, QUP_RUN_STATE); |
| if (ret) |
| return ret; |
| |
| writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL); |
| |
| ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE); |
| if (ret) |
| return ret; |
| } |
| |
| reinit_completion(&qup->xfer); |
| enable_irq(qup->irq); |
| /* |
| * In FIFO mode, tx FIFO can be written directly while in block mode the |
| * it will be written after getting OUT_BLOCK_WRITE_REQ interrupt |
| */ |
| if (!blk->is_tx_blk_mode) { |
| blk->tx_fifo_free = qup->out_fifo_sz; |
| |
| if (is_rx) |
| qup_i2c_write_rx_tags_v2(qup); |
| else |
| qup_i2c_write_tx_fifo_v2(qup); |
| } |
| |
| ret = qup_i2c_change_state(qup, QUP_RUN_STATE); |
| if (ret) |
| goto err; |
| |
| ret = qup_i2c_wait_for_complete(qup, msg); |
| if (ret) |
| goto err; |
| |
| /* Move to pause state for all the transfers, except last one */ |
| if (change_pause_state) { |
| ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE); |
| if (ret) |
| goto err; |
| } |
| |
| err: |
| disable_irq(qup->irq); |
| return ret; |
| } |
| |
| /* |
| * Transfer one read/write message in i2c transfer. It splits the message into |
| * multiple of blk_xfer_limit data length blocks and schedule each |
| * QUP block individually. |
| */ |
| static int qup_i2c_xfer_v2_msg(struct qup_i2c_dev *qup, int msg_id, bool is_rx) |
| { |
| int ret = 0; |
| unsigned int data_len, i; |
| struct i2c_msg *msg = qup->msg; |
| struct qup_i2c_block *blk = &qup->blk; |
| u8 *msg_buf = msg->buf; |
| |
| qup->blk_xfer_limit = is_rx ? RECV_MAX_DATA_LEN : QUP_READ_LIMIT; |
| qup_i2c_set_blk_data(qup, msg); |
| |
| for (i = 0; i < blk->count; i++) { |
| data_len = qup_i2c_get_data_len(qup); |
| blk->pos = i; |
| blk->cur_tx_tags = blk->tags; |
| blk->cur_blk_len = data_len; |
| blk->tx_tag_len = |
| qup_i2c_set_tags(blk->cur_tx_tags, qup, qup->msg); |
| |
| blk->cur_data = msg_buf; |
| |
| if (is_rx) { |
| blk->total_tx_len = blk->tx_tag_len; |
| blk->rx_tag_len = 2; |
| blk->total_rx_len = blk->rx_tag_len + data_len; |
| } else { |
| blk->total_tx_len = blk->tx_tag_len + data_len; |
| blk->total_rx_len = 0; |
| } |
| |
| ret = qup_i2c_conf_xfer_v2(qup, is_rx, !msg_id && !i, |
| !qup->is_last || i < blk->count - 1); |
| if (ret) |
| return ret; |
| |
| /* Handle SMBus block read length */ |
| if (qup_i2c_check_msg_len(msg) && msg->len == 1 && |
| !qup->is_smbus_read) { |
| if (msg->buf[0] > I2C_SMBUS_BLOCK_MAX) |
| return -EPROTO; |
| |
| msg->len = msg->buf[0]; |
| qup->is_smbus_read = true; |
| ret = qup_i2c_xfer_v2_msg(qup, msg_id, true); |
| qup->is_smbus_read = false; |
| if (ret) |
| return ret; |
| |
| msg->len += 1; |
| } |
| |
| msg_buf += data_len; |
| blk->data_len -= qup->blk_xfer_limit; |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * QUP v2 supports 3 modes |
| * Programmed IO using FIFO mode : Less than FIFO size |
| * Programmed IO using Block mode : Greater than FIFO size |
| * DMA using BAM : Appropriate for any transaction size but the address should |
| * be DMA applicable |
| * |
| * This function determines the mode which will be used for this transfer. An |
| * i2c transfer contains multiple message. Following are the rules to determine |
| * the mode used. |
| * 1. Determine complete length, maximum tx and rx length for complete transfer. |
| * 2. If complete transfer length is greater than fifo size then use the DMA |
| * mode. |
| * 3. In FIFO or block mode, tx and rx can operate in different mode so check |
| * for maximum tx and rx length to determine mode. |
| */ |
| static int |
| qup_i2c_determine_mode_v2(struct qup_i2c_dev *qup, |
| struct i2c_msg msgs[], int num) |
| { |
| int idx; |
| bool no_dma = false; |
| unsigned int max_tx_len = 0, max_rx_len = 0, total_len = 0; |
| |
| /* All i2c_msgs should be transferred using either dma or cpu */ |
| for (idx = 0; idx < num; idx++) { |
| if (msgs[idx].flags & I2C_M_RD) |
| max_rx_len = max_t(unsigned int, max_rx_len, |
| msgs[idx].len); |
| else |
| max_tx_len = max_t(unsigned int, max_tx_len, |
| msgs[idx].len); |
| |
| if (is_vmalloc_addr(msgs[idx].buf)) |
| no_dma = true; |
| |
| total_len += msgs[idx].len; |
| } |
| |
| if (!no_dma && qup->is_dma && |
| (total_len > qup->out_fifo_sz || total_len > qup->in_fifo_sz)) { |
| qup->use_dma = true; |
| } else { |
| qup->blk.is_tx_blk_mode = max_tx_len > qup->out_fifo_sz - |
| QUP_MAX_TAGS_LEN ? true : false; |
| qup->blk.is_rx_blk_mode = max_rx_len > qup->in_fifo_sz - |
| READ_RX_TAGS_LEN ? true : false; |
| } |
| |
| return 0; |
| } |
| |
| static int qup_i2c_xfer_v2(struct i2c_adapter *adap, |
| struct i2c_msg msgs[], |
| int num) |
| { |
| struct qup_i2c_dev *qup = i2c_get_adapdata(adap); |
| int ret, idx = 0; |
| |
| qup->bus_err = 0; |
| qup->qup_err = 0; |
| |
| ret = pm_runtime_get_sync(qup->dev); |
| if (ret < 0) |
| goto out; |
| |
| ret = qup_i2c_determine_mode_v2(qup, msgs, num); |
| if (ret) |
| goto out; |
| |
| writel(1, qup->base + QUP_SW_RESET); |
| ret = qup_i2c_poll_state(qup, QUP_RESET_STATE); |
| if (ret) |
| goto out; |
| |
| /* Configure QUP as I2C mini core */ |
| writel(I2C_MINI_CORE | I2C_N_VAL_V2, qup->base + QUP_CONFIG); |
| writel(QUP_V2_TAGS_EN, qup->base + QUP_I2C_MASTER_GEN); |
| |
| if (qup_i2c_poll_state_i2c_master(qup)) { |
| ret = -EIO; |
| goto out; |
| } |
| |
| if (qup->use_dma) { |
| reinit_completion(&qup->xfer); |
| ret = qup_i2c_bam_xfer(adap, &msgs[0], num); |
| qup->use_dma = false; |
| } else { |
| qup_i2c_conf_mode_v2(qup); |
| |
| for (idx = 0; idx < num; idx++) { |
| qup->msg = &msgs[idx]; |
| qup->is_last = idx == (num - 1); |
| |
| ret = qup_i2c_xfer_v2_msg(qup, idx, |
| !!(msgs[idx].flags & I2C_M_RD)); |
| if (ret) |
| break; |
| } |
| qup->msg = NULL; |
| } |
| |
| if (!ret) |
| ret = qup_i2c_bus_active(qup, ONE_BYTE); |
| |
| if (!ret) |
| qup_i2c_change_state(qup, QUP_RESET_STATE); |
| |
| if (ret == 0) |
| ret = num; |
| out: |
| pm_runtime_mark_last_busy(qup->dev); |
| pm_runtime_put_autosuspend(qup->dev); |
| |
| return ret; |
| } |
| |
| static u32 qup_i2c_func(struct i2c_adapter *adap) |
| { |
| return I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK); |
| } |
| |
| static const struct i2c_algorithm qup_i2c_algo = { |
| .master_xfer = qup_i2c_xfer, |
| .functionality = qup_i2c_func, |
| }; |
| |
| static const struct i2c_algorithm qup_i2c_algo_v2 = { |
| .master_xfer = qup_i2c_xfer_v2, |
| .functionality = qup_i2c_func, |
| }; |
| |
| /* |
| * The QUP block will issue a NACK and STOP on the bus when reaching |
| * the end of the read, the length of the read is specified as one byte |
| * which limits the possible read to 256 (QUP_READ_LIMIT) bytes. |
| */ |
| static const struct i2c_adapter_quirks qup_i2c_quirks = { |
| .flags = I2C_AQ_NO_ZERO_LEN, |
| .max_read_len = QUP_READ_LIMIT, |
| }; |
| |
| static const struct i2c_adapter_quirks qup_i2c_quirks_v2 = { |
| .flags = I2C_AQ_NO_ZERO_LEN, |
| }; |
| |
| static void qup_i2c_enable_clocks(struct qup_i2c_dev *qup) |
| { |
| clk_prepare_enable(qup->clk); |
| clk_prepare_enable(qup->pclk); |
| } |
| |
| static void qup_i2c_disable_clocks(struct qup_i2c_dev *qup) |
| { |
| u32 config; |
| |
| qup_i2c_change_state(qup, QUP_RESET_STATE); |
| clk_disable_unprepare(qup->clk); |
| config = readl(qup->base + QUP_CONFIG); |
| config |= QUP_CLOCK_AUTO_GATE; |
| writel(config, qup->base + QUP_CONFIG); |
| clk_disable_unprepare(qup->pclk); |
| } |
| |
| static const struct acpi_device_id qup_i2c_acpi_match[] = { |
| { "QCOM8010"}, |
| { }, |
| }; |
| MODULE_DEVICE_TABLE(acpi, qup_i2c_acpi_match); |
| |
| static int qup_i2c_probe(struct platform_device *pdev) |
| { |
| static const int blk_sizes[] = {4, 16, 32}; |
| struct qup_i2c_dev *qup; |
| unsigned long one_bit_t; |
| struct resource *res; |
| u32 io_mode, hw_ver, size; |
| int ret, fs_div, hs_div; |
| u32 src_clk_freq = DEFAULT_SRC_CLK; |
| u32 clk_freq = DEFAULT_CLK_FREQ; |
| int blocks; |
| bool is_qup_v1; |
| |
| qup = devm_kzalloc(&pdev->dev, sizeof(*qup), GFP_KERNEL); |
| if (!qup) |
| return -ENOMEM; |
| |
| qup->dev = &pdev->dev; |
| init_completion(&qup->xfer); |
| platform_set_drvdata(pdev, qup); |
| |
| if (scl_freq) { |
| dev_notice(qup->dev, "Using override frequency of %u\n", scl_freq); |
| clk_freq = scl_freq; |
| } else { |
| ret = device_property_read_u32(qup->dev, "clock-frequency", &clk_freq); |
| if (ret) { |
| dev_notice(qup->dev, "using default clock-frequency %d", |
| DEFAULT_CLK_FREQ); |
| } |
| } |
| |
| if (of_device_is_compatible(pdev->dev.of_node, "qcom,i2c-qup-v1.1.1")) { |
| qup->adap.algo = &qup_i2c_algo; |
| qup->adap.quirks = &qup_i2c_quirks; |
| is_qup_v1 = true; |
| } else { |
| qup->adap.algo = &qup_i2c_algo_v2; |
| qup->adap.quirks = &qup_i2c_quirks_v2; |
| is_qup_v1 = false; |
| if (acpi_match_device(qup_i2c_acpi_match, qup->dev)) |
| goto nodma; |
| else |
| ret = qup_i2c_req_dma(qup); |
| |
| if (ret == -EPROBE_DEFER) |
| goto fail_dma; |
| else if (ret != 0) |
| goto nodma; |
| |
| qup->max_xfer_sg_len = (MX_BLOCKS << 1); |
| blocks = (MX_DMA_BLOCKS << 1) + 1; |
| qup->btx.sg = devm_kcalloc(&pdev->dev, |
| blocks, sizeof(*qup->btx.sg), |
| GFP_KERNEL); |
| if (!qup->btx.sg) { |
| ret = -ENOMEM; |
| goto fail_dma; |
| } |
| sg_init_table(qup->btx.sg, blocks); |
| |
| qup->brx.sg = devm_kcalloc(&pdev->dev, |
| blocks, sizeof(*qup->brx.sg), |
| GFP_KERNEL); |
| if (!qup->brx.sg) { |
| ret = -ENOMEM; |
| goto fail_dma; |
| } |
| sg_init_table(qup->brx.sg, blocks); |
| |
| /* 2 tag bytes for each block + 5 for start, stop tags */ |
| size = blocks * 2 + 5; |
| |
| qup->start_tag.start = devm_kzalloc(&pdev->dev, |
| size, GFP_KERNEL); |
| if (!qup->start_tag.start) { |
| ret = -ENOMEM; |
| goto fail_dma; |
| } |
| |
| qup->brx.tag.start = devm_kzalloc(&pdev->dev, 2, GFP_KERNEL); |
| if (!qup->brx.tag.start) { |
| ret = -ENOMEM; |
| goto fail_dma; |
| } |
| |
| qup->btx.tag.start = devm_kzalloc(&pdev->dev, 2, GFP_KERNEL); |
| if (!qup->btx.tag.start) { |
| ret = -ENOMEM; |
| goto fail_dma; |
| } |
| qup->is_dma = true; |
| } |
| |
| nodma: |
| /* We support frequencies up to FAST Mode Plus (1MHz) */ |
| if (!clk_freq || clk_freq > I2C_MAX_FAST_MODE_PLUS_FREQ) { |
| dev_err(qup->dev, "clock frequency not supported %d\n", |
| clk_freq); |
| return -EINVAL; |
| } |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| qup->base = devm_ioremap_resource(qup->dev, res); |
| if (IS_ERR(qup->base)) |
| return PTR_ERR(qup->base); |
| |
| qup->irq = platform_get_irq(pdev, 0); |
| if (qup->irq < 0) { |
| dev_err(qup->dev, "No IRQ defined\n"); |
| return qup->irq; |
| } |
| |
| if (has_acpi_companion(qup->dev)) { |
| ret = device_property_read_u32(qup->dev, |
| "src-clock-hz", &src_clk_freq); |
| if (ret) { |
| dev_notice(qup->dev, "using default src-clock-hz %d", |
| DEFAULT_SRC_CLK); |
| } |
| ACPI_COMPANION_SET(&qup->adap.dev, ACPI_COMPANION(qup->dev)); |
| } else { |
| qup->clk = devm_clk_get(qup->dev, "core"); |
| if (IS_ERR(qup->clk)) { |
| dev_err(qup->dev, "Could not get core clock\n"); |
| return PTR_ERR(qup->clk); |
| } |
| |
| qup->pclk = devm_clk_get(qup->dev, "iface"); |
| if (IS_ERR(qup->pclk)) { |
| dev_err(qup->dev, "Could not get iface clock\n"); |
| return PTR_ERR(qup->pclk); |
| } |
| qup_i2c_enable_clocks(qup); |
| src_clk_freq = clk_get_rate(qup->clk); |
| } |
| |
| /* |
| * Bootloaders might leave a pending interrupt on certain QUP's, |
| * so we reset the core before registering for interrupts. |
| */ |
| writel(1, qup->base + QUP_SW_RESET); |
| ret = qup_i2c_poll_state_valid(qup); |
| if (ret) |
| goto fail; |
| |
| ret = devm_request_irq(qup->dev, qup->irq, qup_i2c_interrupt, |
| IRQF_TRIGGER_HIGH, "i2c_qup", qup); |
| if (ret) { |
| dev_err(qup->dev, "Request %d IRQ failed\n", qup->irq); |
| goto fail; |
| } |
| disable_irq(qup->irq); |
| |
| hw_ver = readl(qup->base + QUP_HW_VERSION); |
| dev_dbg(qup->dev, "Revision %x\n", hw_ver); |
| |
| io_mode = readl(qup->base + QUP_IO_MODE); |
| |
| /* |
| * The block/fifo size w.r.t. 'actual data' is 1/2 due to 'tag' |
| * associated with each byte written/received |
| */ |
| size = QUP_OUTPUT_BLOCK_SIZE(io_mode); |
| if (size >= ARRAY_SIZE(blk_sizes)) { |
| ret = -EIO; |
| goto fail; |
| } |
| qup->out_blk_sz = blk_sizes[size]; |
| |
| size = QUP_INPUT_BLOCK_SIZE(io_mode); |
| if (size >= ARRAY_SIZE(blk_sizes)) { |
| ret = -EIO; |
| goto fail; |
| } |
| qup->in_blk_sz = blk_sizes[size]; |
| |
| if (is_qup_v1) { |
| /* |
| * in QUP v1, QUP_CONFIG uses N as 15 i.e 16 bits constitutes a |
| * single transfer but the block size is in bytes so divide the |
| * in_blk_sz and out_blk_sz by 2 |
| */ |
| qup->in_blk_sz /= 2; |
| qup->out_blk_sz /= 2; |
| qup->write_tx_fifo = qup_i2c_write_tx_fifo_v1; |
| qup->read_rx_fifo = qup_i2c_read_rx_fifo_v1; |
| qup->write_rx_tags = qup_i2c_write_rx_tags_v1; |
| } else { |
| qup->write_tx_fifo = qup_i2c_write_tx_fifo_v2; |
| qup->read_rx_fifo = qup_i2c_read_rx_fifo_v2; |
| qup->write_rx_tags = qup_i2c_write_rx_tags_v2; |
| } |
| |
| size = QUP_OUTPUT_FIFO_SIZE(io_mode); |
| qup->out_fifo_sz = qup->out_blk_sz * (2 << size); |
| |
| size = QUP_INPUT_FIFO_SIZE(io_mode); |
| qup->in_fifo_sz = qup->in_blk_sz * (2 << size); |
| |
| hs_div = 3; |
| if (clk_freq <= I2C_MAX_STANDARD_MODE_FREQ) { |
| fs_div = ((src_clk_freq / clk_freq) / 2) - 3; |
| qup->clk_ctl = (hs_div << 8) | (fs_div & 0xff); |
| } else { |
| /* 33%/66% duty cycle */ |
| fs_div = ((src_clk_freq / clk_freq) - 6) * 2 / 3; |
| qup->clk_ctl = ((fs_div / 2) << 16) | (hs_div << 8) | (fs_div & 0xff); |
| } |
| |
| /* |
| * Time it takes for a byte to be clocked out on the bus. |
| * Each byte takes 9 clock cycles (8 bits + 1 ack). |
| */ |
| one_bit_t = (USEC_PER_SEC / clk_freq) + 1; |
| qup->one_byte_t = one_bit_t * 9; |
| qup->xfer_timeout = TOUT_MIN * HZ + |
| usecs_to_jiffies(MX_DMA_TX_RX_LEN * qup->one_byte_t); |
| |
| dev_dbg(qup->dev, "IN:block:%d, fifo:%d, OUT:block:%d, fifo:%d\n", |
| qup->in_blk_sz, qup->in_fifo_sz, |
| qup->out_blk_sz, qup->out_fifo_sz); |
| |
| i2c_set_adapdata(&qup->adap, qup); |
| qup->adap.dev.parent = qup->dev; |
| qup->adap.dev.of_node = pdev->dev.of_node; |
| qup->is_last = true; |
| |
| strlcpy(qup->adap.name, "QUP I2C adapter", sizeof(qup->adap.name)); |
| |
| pm_runtime_set_autosuspend_delay(qup->dev, MSEC_PER_SEC); |
| pm_runtime_use_autosuspend(qup->dev); |
| pm_runtime_set_active(qup->dev); |
| pm_runtime_enable(qup->dev); |
| |
| ret = i2c_add_adapter(&qup->adap); |
| if (ret) |
| goto fail_runtime; |
| |
| return 0; |
| |
| fail_runtime: |
| pm_runtime_disable(qup->dev); |
| pm_runtime_set_suspended(qup->dev); |
| fail: |
| qup_i2c_disable_clocks(qup); |
| fail_dma: |
| if (qup->btx.dma) |
| dma_release_channel(qup->btx.dma); |
| if (qup->brx.dma) |
| dma_release_channel(qup->brx.dma); |
| return ret; |
| } |
| |
| static int qup_i2c_remove(struct platform_device *pdev) |
| { |
| struct qup_i2c_dev *qup = platform_get_drvdata(pdev); |
| |
| if (qup->is_dma) { |
| dma_release_channel(qup->btx.dma); |
| dma_release_channel(qup->brx.dma); |
| } |
| |
| disable_irq(qup->irq); |
| qup_i2c_disable_clocks(qup); |
| i2c_del_adapter(&qup->adap); |
| pm_runtime_disable(qup->dev); |
| pm_runtime_set_suspended(qup->dev); |
| return 0; |
| } |
| |
| #ifdef CONFIG_PM |
| static int qup_i2c_pm_suspend_runtime(struct device *device) |
| { |
| struct qup_i2c_dev *qup = dev_get_drvdata(device); |
| |
| dev_dbg(device, "pm_runtime: suspending...\n"); |
| qup_i2c_disable_clocks(qup); |
| return 0; |
| } |
| |
| static int qup_i2c_pm_resume_runtime(struct device *device) |
| { |
| struct qup_i2c_dev *qup = dev_get_drvdata(device); |
| |
| dev_dbg(device, "pm_runtime: resuming...\n"); |
| qup_i2c_enable_clocks(qup); |
| return 0; |
| } |
| #endif |
| |
| #ifdef CONFIG_PM_SLEEP |
| static int qup_i2c_suspend(struct device *device) |
| { |
| if (!pm_runtime_suspended(device)) |
| return qup_i2c_pm_suspend_runtime(device); |
| return 0; |
| } |
| |
| static int qup_i2c_resume(struct device *device) |
| { |
| qup_i2c_pm_resume_runtime(device); |
| pm_runtime_mark_last_busy(device); |
| pm_request_autosuspend(device); |
| return 0; |
| } |
| #endif |
| |
| static const struct dev_pm_ops qup_i2c_qup_pm_ops = { |
| SET_SYSTEM_SLEEP_PM_OPS( |
| qup_i2c_suspend, |
| qup_i2c_resume) |
| SET_RUNTIME_PM_OPS( |
| qup_i2c_pm_suspend_runtime, |
| qup_i2c_pm_resume_runtime, |
| NULL) |
| }; |
| |
| static const struct of_device_id qup_i2c_dt_match[] = { |
| { .compatible = "qcom,i2c-qup-v1.1.1" }, |
| { .compatible = "qcom,i2c-qup-v2.1.1" }, |
| { .compatible = "qcom,i2c-qup-v2.2.1" }, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(of, qup_i2c_dt_match); |
| |
| static struct platform_driver qup_i2c_driver = { |
| .probe = qup_i2c_probe, |
| .remove = qup_i2c_remove, |
| .driver = { |
| .name = "i2c_qup", |
| .pm = &qup_i2c_qup_pm_ops, |
| .of_match_table = qup_i2c_dt_match, |
| .acpi_match_table = ACPI_PTR(qup_i2c_acpi_match), |
| }, |
| }; |
| |
| module_platform_driver(qup_i2c_driver); |
| |
| MODULE_LICENSE("GPL v2"); |
| MODULE_ALIAS("platform:i2c_qup"); |