| #ifdef CONFIG_SMP |
| #include "sched-pelt.h" |
| |
| int __update_load_avg_blocked_se(u64 now, struct sched_entity *se); |
| int __update_load_avg_se(u64 now, struct cfs_rq *cfs_rq, struct sched_entity *se); |
| int __update_load_avg_cfs_rq(u64 now, struct cfs_rq *cfs_rq); |
| int update_rt_rq_load_avg(u64 now, struct rq *rq, int running); |
| int update_dl_rq_load_avg(u64 now, struct rq *rq, int running); |
| |
| #ifdef CONFIG_SCHED_THERMAL_PRESSURE |
| int update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity); |
| |
| static inline u64 thermal_load_avg(struct rq *rq) |
| { |
| return READ_ONCE(rq->avg_thermal.load_avg); |
| } |
| #else |
| static inline int |
| update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity) |
| { |
| return 0; |
| } |
| |
| static inline u64 thermal_load_avg(struct rq *rq) |
| { |
| return 0; |
| } |
| #endif |
| |
| #ifdef CONFIG_HAVE_SCHED_AVG_IRQ |
| int update_irq_load_avg(struct rq *rq, u64 running); |
| #else |
| static inline int |
| update_irq_load_avg(struct rq *rq, u64 running) |
| { |
| return 0; |
| } |
| #endif |
| |
| #define PELT_MIN_DIVIDER (LOAD_AVG_MAX - 1024) |
| |
| static inline u32 get_pelt_divider(struct sched_avg *avg) |
| { |
| return PELT_MIN_DIVIDER + avg->period_contrib; |
| } |
| |
| static inline void cfs_se_util_change(struct sched_avg *avg) |
| { |
| unsigned int enqueued; |
| |
| if (!sched_feat(UTIL_EST)) |
| return; |
| |
| /* Avoid store if the flag has been already reset */ |
| enqueued = avg->util_est; |
| if (!(enqueued & UTIL_AVG_UNCHANGED)) |
| return; |
| |
| /* Reset flag to report util_avg has been updated */ |
| enqueued &= ~UTIL_AVG_UNCHANGED; |
| WRITE_ONCE(avg->util_est, enqueued); |
| } |
| |
| static inline u64 rq_clock_pelt(struct rq *rq) |
| { |
| lockdep_assert_rq_held(rq); |
| assert_clock_updated(rq); |
| |
| return rq->clock_pelt - rq->lost_idle_time; |
| } |
| |
| /* The rq is idle, we can sync to clock_task */ |
| static inline void _update_idle_rq_clock_pelt(struct rq *rq) |
| { |
| rq->clock_pelt = rq_clock_task(rq); |
| |
| u64_u32_store(rq->clock_idle, rq_clock(rq)); |
| /* Paired with smp_rmb in migrate_se_pelt_lag() */ |
| smp_wmb(); |
| u64_u32_store(rq->clock_pelt_idle, rq_clock_pelt(rq)); |
| } |
| |
| /* |
| * The clock_pelt scales the time to reflect the effective amount of |
| * computation done during the running delta time but then sync back to |
| * clock_task when rq is idle. |
| * |
| * |
| * absolute time | 1| 2| 3| 4| 5| 6| 7| 8| 9|10|11|12|13|14|15|16 |
| * @ max capacity ------******---------------******--------------- |
| * @ half capacity ------************---------************--------- |
| * clock pelt | 1| 2| 3| 4| 7| 8| 9| 10| 11|14|15|16 |
| * |
| */ |
| static inline void update_rq_clock_pelt(struct rq *rq, s64 delta) |
| { |
| if (unlikely(is_idle_task(rq->curr))) { |
| _update_idle_rq_clock_pelt(rq); |
| return; |
| } |
| |
| /* |
| * When a rq runs at a lower compute capacity, it will need |
| * more time to do the same amount of work than at max |
| * capacity. In order to be invariant, we scale the delta to |
| * reflect how much work has been really done. |
| * Running longer results in stealing idle time that will |
| * disturb the load signal compared to max capacity. This |
| * stolen idle time will be automatically reflected when the |
| * rq will be idle and the clock will be synced with |
| * rq_clock_task. |
| */ |
| |
| /* |
| * Scale the elapsed time to reflect the real amount of |
| * computation |
| */ |
| delta = cap_scale(delta, arch_scale_cpu_capacity(cpu_of(rq))); |
| delta = cap_scale(delta, arch_scale_freq_capacity(cpu_of(rq))); |
| |
| rq->clock_pelt += delta; |
| } |
| |
| /* |
| * When rq becomes idle, we have to check if it has lost idle time |
| * because it was fully busy. A rq is fully used when the /Sum util_sum |
| * is greater or equal to: |
| * (LOAD_AVG_MAX - 1024 + rq->cfs.avg.period_contrib) << SCHED_CAPACITY_SHIFT; |
| * For optimization and computing rounding purpose, we don't take into account |
| * the position in the current window (period_contrib) and we use the higher |
| * bound of util_sum to decide. |
| */ |
| static inline void update_idle_rq_clock_pelt(struct rq *rq) |
| { |
| u32 divider = ((LOAD_AVG_MAX - 1024) << SCHED_CAPACITY_SHIFT) - LOAD_AVG_MAX; |
| u32 util_sum = rq->cfs.avg.util_sum; |
| util_sum += rq->avg_rt.util_sum; |
| util_sum += rq->avg_dl.util_sum; |
| |
| /* |
| * Reflecting stolen time makes sense only if the idle |
| * phase would be present at max capacity. As soon as the |
| * utilization of a rq has reached the maximum value, it is |
| * considered as an always running rq without idle time to |
| * steal. This potential idle time is considered as lost in |
| * this case. We keep track of this lost idle time compare to |
| * rq's clock_task. |
| */ |
| if (util_sum >= divider) |
| rq->lost_idle_time += rq_clock_task(rq) - rq->clock_pelt; |
| |
| _update_idle_rq_clock_pelt(rq); |
| } |
| |
| #ifdef CONFIG_CFS_BANDWIDTH |
| static inline void update_idle_cfs_rq_clock_pelt(struct cfs_rq *cfs_rq) |
| { |
| u64 throttled; |
| |
| if (unlikely(cfs_rq->throttle_count)) |
| throttled = U64_MAX; |
| else |
| throttled = cfs_rq->throttled_clock_pelt_time; |
| |
| u64_u32_store(cfs_rq->throttled_pelt_idle, throttled); |
| } |
| |
| /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ |
| static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq) |
| { |
| if (unlikely(cfs_rq->throttle_count)) |
| return cfs_rq->throttled_clock_pelt - cfs_rq->throttled_clock_pelt_time; |
| |
| return rq_clock_pelt(rq_of(cfs_rq)) - cfs_rq->throttled_clock_pelt_time; |
| } |
| #else |
| static inline void update_idle_cfs_rq_clock_pelt(struct cfs_rq *cfs_rq) { } |
| static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq) |
| { |
| return rq_clock_pelt(rq_of(cfs_rq)); |
| } |
| #endif |
| |
| #else |
| |
| static inline int |
| update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) |
| { |
| return 0; |
| } |
| |
| static inline int |
| update_rt_rq_load_avg(u64 now, struct rq *rq, int running) |
| { |
| return 0; |
| } |
| |
| static inline int |
| update_dl_rq_load_avg(u64 now, struct rq *rq, int running) |
| { |
| return 0; |
| } |
| |
| static inline int |
| update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity) |
| { |
| return 0; |
| } |
| |
| static inline u64 thermal_load_avg(struct rq *rq) |
| { |
| return 0; |
| } |
| |
| static inline int |
| update_irq_load_avg(struct rq *rq, u64 running) |
| { |
| return 0; |
| } |
| |
| static inline u64 rq_clock_pelt(struct rq *rq) |
| { |
| return rq_clock_task(rq); |
| } |
| |
| static inline void |
| update_rq_clock_pelt(struct rq *rq, s64 delta) { } |
| |
| static inline void |
| update_idle_rq_clock_pelt(struct rq *rq) { } |
| |
| static inline void update_idle_cfs_rq_clock_pelt(struct cfs_rq *cfs_rq) { } |
| #endif |
| |
| |