blob: 8996c73c9779b5fa804e6f913834cf1fe4d071e6 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/sched/em_meta.c Metadata ematch
*
* Authors: Thomas Graf <tgraf@suug.ch>
*
* ==========================================================================
*
* The metadata ematch compares two meta objects where each object
* represents either a meta value stored in the kernel or a static
* value provided by userspace. The objects are not provided by
* userspace itself but rather a definition providing the information
* to build them. Every object is of a certain type which must be
* equal to the object it is being compared to.
*
* The definition of a objects conists of the type (meta type), a
* identifier (meta id) and additional type specific information.
* The meta id is either TCF_META_TYPE_VALUE for values provided by
* userspace or a index to the meta operations table consisting of
* function pointers to type specific meta data collectors returning
* the value of the requested meta value.
*
* lvalue rvalue
* +-----------+ +-----------+
* | type: INT | | type: INT |
* def | id: DEV | | id: VALUE |
* | data: | | data: 3 |
* +-----------+ +-----------+
* | |
* ---> meta_ops[INT][DEV](...) |
* | |
* ----------- |
* V V
* +-----------+ +-----------+
* | type: INT | | type: INT |
* obj | id: DEV | | id: VALUE |
* | data: 2 |<--data got filled out | data: 3 |
* +-----------+ +-----------+
* | |
* --------------> 2 equals 3 <--------------
*
* This is a simplified schema, the complexity varies depending
* on the meta type. Obviously, the length of the data must also
* be provided for non-numeric types.
*
* Additionally, type dependent modifiers such as shift operators
* or mask may be applied to extend the functionality. As of now,
* the variable length type supports shifting the byte string to
* the right, eating up any number of octets and thus supporting
* wildcard interface name comparisons such as "ppp%" matching
* ppp0..9.
*
* NOTE: Certain meta values depend on other subsystems and are
* only available if that subsystem is enabled in the kernel.
*/
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/sched/loadavg.h>
#include <linux/string.h>
#include <linux/skbuff.h>
#include <linux/random.h>
#include <linux/if_vlan.h>
#include <linux/tc_ematch/tc_em_meta.h>
#include <net/dst.h>
#include <net/route.h>
#include <net/pkt_cls.h>
#include <net/sock.h>
struct meta_obj {
unsigned long value;
unsigned int len;
};
struct meta_value {
struct tcf_meta_val hdr;
unsigned long val;
unsigned int len;
};
struct meta_match {
struct meta_value lvalue;
struct meta_value rvalue;
};
static inline int meta_id(struct meta_value *v)
{
return TCF_META_ID(v->hdr.kind);
}
static inline int meta_type(struct meta_value *v)
{
return TCF_META_TYPE(v->hdr.kind);
}
#define META_COLLECTOR(FUNC) static void meta_##FUNC(struct sk_buff *skb, \
struct tcf_pkt_info *info, struct meta_value *v, \
struct meta_obj *dst, int *err)
/**************************************************************************
* System status & misc
**************************************************************************/
META_COLLECTOR(int_random)
{
get_random_bytes(&dst->value, sizeof(dst->value));
}
static inline unsigned long fixed_loadavg(int load)
{
int rnd_load = load + (FIXED_1/200);
int rnd_frac = ((rnd_load & (FIXED_1-1)) * 100) >> FSHIFT;
return ((rnd_load >> FSHIFT) * 100) + rnd_frac;
}
META_COLLECTOR(int_loadavg_0)
{
dst->value = fixed_loadavg(avenrun[0]);
}
META_COLLECTOR(int_loadavg_1)
{
dst->value = fixed_loadavg(avenrun[1]);
}
META_COLLECTOR(int_loadavg_2)
{
dst->value = fixed_loadavg(avenrun[2]);
}
/**************************************************************************
* Device names & indices
**************************************************************************/
static inline int int_dev(struct net_device *dev, struct meta_obj *dst)
{
if (unlikely(dev == NULL))
return -1;
dst->value = dev->ifindex;
return 0;
}
static inline int var_dev(struct net_device *dev, struct meta_obj *dst)
{
if (unlikely(dev == NULL))
return -1;
dst->value = (unsigned long) dev->name;
dst->len = strlen(dev->name);
return 0;
}
META_COLLECTOR(int_dev)
{
*err = int_dev(skb->dev, dst);
}
META_COLLECTOR(var_dev)
{
*err = var_dev(skb->dev, dst);
}
/**************************************************************************
* vlan tag
**************************************************************************/
META_COLLECTOR(int_vlan_tag)
{
unsigned short tag;
if (skb_vlan_tag_present(skb))
dst->value = skb_vlan_tag_get(skb);
else if (!__vlan_get_tag(skb, &tag))
dst->value = tag;
else
*err = -1;
}
/**************************************************************************
* skb attributes
**************************************************************************/
META_COLLECTOR(int_priority)
{
dst->value = skb->priority;
}
META_COLLECTOR(int_protocol)
{
/* Let userspace take care of the byte ordering */
dst->value = skb_protocol(skb, false);
}
META_COLLECTOR(int_pkttype)
{
dst->value = skb->pkt_type;
}
META_COLLECTOR(int_pktlen)
{
dst->value = skb->len;
}
META_COLLECTOR(int_datalen)
{
dst->value = skb->data_len;
}
META_COLLECTOR(int_maclen)
{
dst->value = skb->mac_len;
}
META_COLLECTOR(int_rxhash)
{
dst->value = skb_get_hash(skb);
}
/**************************************************************************
* Netfilter
**************************************************************************/
META_COLLECTOR(int_mark)
{
dst->value = skb->mark;
}
/**************************************************************************
* Traffic Control
**************************************************************************/
META_COLLECTOR(int_tcindex)
{
dst->value = skb->tc_index;
}
/**************************************************************************
* Routing
**************************************************************************/
META_COLLECTOR(int_rtclassid)
{
if (unlikely(skb_dst(skb) == NULL))
*err = -1;
else
#ifdef CONFIG_IP_ROUTE_CLASSID
dst->value = skb_dst(skb)->tclassid;
#else
dst->value = 0;
#endif
}
META_COLLECTOR(int_rtiif)
{
if (unlikely(skb_rtable(skb) == NULL))
*err = -1;
else
dst->value = inet_iif(skb);
}
/**************************************************************************
* Socket Attributes
**************************************************************************/
#define skip_nonlocal(skb) \
(unlikely(skb->sk == NULL))
META_COLLECTOR(int_sk_family)
{
if (skip_nonlocal(skb)) {
*err = -1;
return;
}
dst->value = skb->sk->sk_family;
}
META_COLLECTOR(int_sk_state)
{
if (skip_nonlocal(skb)) {
*err = -1;
return;
}
dst->value = skb->sk->sk_state;
}
META_COLLECTOR(int_sk_reuse)
{
if (skip_nonlocal(skb)) {
*err = -1;
return;
}
dst->value = skb->sk->sk_reuse;
}
META_COLLECTOR(int_sk_bound_if)
{
if (skip_nonlocal(skb)) {
*err = -1;
return;
}
/* No error if bound_dev_if is 0, legal userspace check */
dst->value = skb->sk->sk_bound_dev_if;
}
META_COLLECTOR(var_sk_bound_if)
{
int bound_dev_if;
if (skip_nonlocal(skb)) {
*err = -1;
return;
}
bound_dev_if = READ_ONCE(skb->sk->sk_bound_dev_if);
if (bound_dev_if == 0) {
dst->value = (unsigned long) "any";
dst->len = 3;
} else {
struct net_device *dev;
rcu_read_lock();
dev = dev_get_by_index_rcu(sock_net(skb->sk),
bound_dev_if);
*err = var_dev(dev, dst);
rcu_read_unlock();
}
}
META_COLLECTOR(int_sk_refcnt)
{
if (skip_nonlocal(skb)) {
*err = -1;
return;
}
dst->value = refcount_read(&skb->sk->sk_refcnt);
}
META_COLLECTOR(int_sk_rcvbuf)
{
const struct sock *sk = skb_to_full_sk(skb);
if (!sk) {
*err = -1;
return;
}
dst->value = sk->sk_rcvbuf;
}
META_COLLECTOR(int_sk_shutdown)
{
const struct sock *sk = skb_to_full_sk(skb);
if (!sk) {
*err = -1;
return;
}
dst->value = sk->sk_shutdown;
}
META_COLLECTOR(int_sk_proto)
{
const struct sock *sk = skb_to_full_sk(skb);
if (!sk) {
*err = -1;
return;
}
dst->value = sk->sk_protocol;
}
META_COLLECTOR(int_sk_type)
{
const struct sock *sk = skb_to_full_sk(skb);
if (!sk) {
*err = -1;
return;
}
dst->value = sk->sk_type;
}
META_COLLECTOR(int_sk_rmem_alloc)
{
const struct sock *sk = skb_to_full_sk(skb);
if (!sk) {
*err = -1;
return;
}
dst->value = sk_rmem_alloc_get(sk);
}
META_COLLECTOR(int_sk_wmem_alloc)
{
const struct sock *sk = skb_to_full_sk(skb);
if (!sk) {
*err = -1;
return;
}
dst->value = sk_wmem_alloc_get(sk);
}
META_COLLECTOR(int_sk_omem_alloc)
{
const struct sock *sk = skb_to_full_sk(skb);
if (!sk) {
*err = -1;
return;
}
dst->value = atomic_read(&sk->sk_omem_alloc);
}
META_COLLECTOR(int_sk_rcv_qlen)
{
const struct sock *sk = skb_to_full_sk(skb);
if (!sk) {
*err = -1;
return;
}
dst->value = sk->sk_receive_queue.qlen;
}
META_COLLECTOR(int_sk_snd_qlen)
{
const struct sock *sk = skb_to_full_sk(skb);
if (!sk) {
*err = -1;
return;
}
dst->value = sk->sk_write_queue.qlen;
}
META_COLLECTOR(int_sk_wmem_queued)
{
const struct sock *sk = skb_to_full_sk(skb);
if (!sk) {
*err = -1;
return;
}
dst->value = READ_ONCE(sk->sk_wmem_queued);
}
META_COLLECTOR(int_sk_fwd_alloc)
{
const struct sock *sk = skb_to_full_sk(skb);
if (!sk) {
*err = -1;
return;
}
dst->value = sk_forward_alloc_get(sk);
}
META_COLLECTOR(int_sk_sndbuf)
{
const struct sock *sk = skb_to_full_sk(skb);
if (!sk) {
*err = -1;
return;
}
dst->value = sk->sk_sndbuf;
}
META_COLLECTOR(int_sk_alloc)
{
const struct sock *sk = skb_to_full_sk(skb);
if (!sk) {
*err = -1;
return;
}
dst->value = (__force int) sk->sk_allocation;
}
META_COLLECTOR(int_sk_hash)
{
if (skip_nonlocal(skb)) {
*err = -1;
return;
}
dst->value = skb->sk->sk_hash;
}
META_COLLECTOR(int_sk_lingertime)
{
const struct sock *sk = skb_to_full_sk(skb);
if (!sk) {
*err = -1;
return;
}
dst->value = READ_ONCE(sk->sk_lingertime) / HZ;
}
META_COLLECTOR(int_sk_err_qlen)
{
const struct sock *sk = skb_to_full_sk(skb);
if (!sk) {
*err = -1;
return;
}
dst->value = sk->sk_error_queue.qlen;
}
META_COLLECTOR(int_sk_ack_bl)
{
const struct sock *sk = skb_to_full_sk(skb);
if (!sk) {
*err = -1;
return;
}
dst->value = READ_ONCE(sk->sk_ack_backlog);
}
META_COLLECTOR(int_sk_max_ack_bl)
{
const struct sock *sk = skb_to_full_sk(skb);
if (!sk) {
*err = -1;
return;
}
dst->value = READ_ONCE(sk->sk_max_ack_backlog);
}
META_COLLECTOR(int_sk_prio)
{
const struct sock *sk = skb_to_full_sk(skb);
if (!sk) {
*err = -1;
return;
}
dst->value = READ_ONCE(sk->sk_priority);
}
META_COLLECTOR(int_sk_rcvlowat)
{
const struct sock *sk = skb_to_full_sk(skb);
if (!sk) {
*err = -1;
return;
}
dst->value = READ_ONCE(sk->sk_rcvlowat);
}
META_COLLECTOR(int_sk_rcvtimeo)
{
const struct sock *sk = skb_to_full_sk(skb);
if (!sk) {
*err = -1;
return;
}
dst->value = READ_ONCE(sk->sk_rcvtimeo) / HZ;
}
META_COLLECTOR(int_sk_sndtimeo)
{
const struct sock *sk = skb_to_full_sk(skb);
if (!sk) {
*err = -1;
return;
}
dst->value = READ_ONCE(sk->sk_sndtimeo) / HZ;
}
META_COLLECTOR(int_sk_sendmsg_off)
{
const struct sock *sk = skb_to_full_sk(skb);
if (!sk) {
*err = -1;
return;
}
dst->value = sk->sk_frag.offset;
}
META_COLLECTOR(int_sk_write_pend)
{
const struct sock *sk = skb_to_full_sk(skb);
if (!sk) {
*err = -1;
return;
}
dst->value = sk->sk_write_pending;
}
/**************************************************************************
* Meta value collectors assignment table
**************************************************************************/
struct meta_ops {
void (*get)(struct sk_buff *, struct tcf_pkt_info *,
struct meta_value *, struct meta_obj *, int *);
};
#define META_ID(name) TCF_META_ID_##name
#define META_FUNC(name) { .get = meta_##name }
/* Meta value operations table listing all meta value collectors and
* assigns them to a type and meta id. */
static struct meta_ops __meta_ops[TCF_META_TYPE_MAX + 1][TCF_META_ID_MAX + 1] = {
[TCF_META_TYPE_VAR] = {
[META_ID(DEV)] = META_FUNC(var_dev),
[META_ID(SK_BOUND_IF)] = META_FUNC(var_sk_bound_if),
},
[TCF_META_TYPE_INT] = {
[META_ID(RANDOM)] = META_FUNC(int_random),
[META_ID(LOADAVG_0)] = META_FUNC(int_loadavg_0),
[META_ID(LOADAVG_1)] = META_FUNC(int_loadavg_1),
[META_ID(LOADAVG_2)] = META_FUNC(int_loadavg_2),
[META_ID(DEV)] = META_FUNC(int_dev),
[META_ID(PRIORITY)] = META_FUNC(int_priority),
[META_ID(PROTOCOL)] = META_FUNC(int_protocol),
[META_ID(PKTTYPE)] = META_FUNC(int_pkttype),
[META_ID(PKTLEN)] = META_FUNC(int_pktlen),
[META_ID(DATALEN)] = META_FUNC(int_datalen),
[META_ID(MACLEN)] = META_FUNC(int_maclen),
[META_ID(NFMARK)] = META_FUNC(int_mark),
[META_ID(TCINDEX)] = META_FUNC(int_tcindex),
[META_ID(RTCLASSID)] = META_FUNC(int_rtclassid),
[META_ID(RTIIF)] = META_FUNC(int_rtiif),
[META_ID(SK_FAMILY)] = META_FUNC(int_sk_family),
[META_ID(SK_STATE)] = META_FUNC(int_sk_state),
[META_ID(SK_REUSE)] = META_FUNC(int_sk_reuse),
[META_ID(SK_BOUND_IF)] = META_FUNC(int_sk_bound_if),
[META_ID(SK_REFCNT)] = META_FUNC(int_sk_refcnt),
[META_ID(SK_RCVBUF)] = META_FUNC(int_sk_rcvbuf),
[META_ID(SK_SNDBUF)] = META_FUNC(int_sk_sndbuf),
[META_ID(SK_SHUTDOWN)] = META_FUNC(int_sk_shutdown),
[META_ID(SK_PROTO)] = META_FUNC(int_sk_proto),
[META_ID(SK_TYPE)] = META_FUNC(int_sk_type),
[META_ID(SK_RMEM_ALLOC)] = META_FUNC(int_sk_rmem_alloc),
[META_ID(SK_WMEM_ALLOC)] = META_FUNC(int_sk_wmem_alloc),
[META_ID(SK_OMEM_ALLOC)] = META_FUNC(int_sk_omem_alloc),
[META_ID(SK_WMEM_QUEUED)] = META_FUNC(int_sk_wmem_queued),
[META_ID(SK_RCV_QLEN)] = META_FUNC(int_sk_rcv_qlen),
[META_ID(SK_SND_QLEN)] = META_FUNC(int_sk_snd_qlen),
[META_ID(SK_ERR_QLEN)] = META_FUNC(int_sk_err_qlen),
[META_ID(SK_FORWARD_ALLOCS)] = META_FUNC(int_sk_fwd_alloc),
[META_ID(SK_ALLOCS)] = META_FUNC(int_sk_alloc),
[META_ID(SK_HASH)] = META_FUNC(int_sk_hash),
[META_ID(SK_LINGERTIME)] = META_FUNC(int_sk_lingertime),
[META_ID(SK_ACK_BACKLOG)] = META_FUNC(int_sk_ack_bl),
[META_ID(SK_MAX_ACK_BACKLOG)] = META_FUNC(int_sk_max_ack_bl),
[META_ID(SK_PRIO)] = META_FUNC(int_sk_prio),
[META_ID(SK_RCVLOWAT)] = META_FUNC(int_sk_rcvlowat),
[META_ID(SK_RCVTIMEO)] = META_FUNC(int_sk_rcvtimeo),
[META_ID(SK_SNDTIMEO)] = META_FUNC(int_sk_sndtimeo),
[META_ID(SK_SENDMSG_OFF)] = META_FUNC(int_sk_sendmsg_off),
[META_ID(SK_WRITE_PENDING)] = META_FUNC(int_sk_write_pend),
[META_ID(VLAN_TAG)] = META_FUNC(int_vlan_tag),
[META_ID(RXHASH)] = META_FUNC(int_rxhash),
}
};
static inline struct meta_ops *meta_ops(struct meta_value *val)
{
return &__meta_ops[meta_type(val)][meta_id(val)];
}
/**************************************************************************
* Type specific operations for TCF_META_TYPE_VAR
**************************************************************************/
static int meta_var_compare(struct meta_obj *a, struct meta_obj *b)
{
int r = a->len - b->len;
if (r == 0)
r = memcmp((void *) a->value, (void *) b->value, a->len);
return r;
}
static int meta_var_change(struct meta_value *dst, struct nlattr *nla)
{
int len = nla_len(nla);
dst->val = (unsigned long)kmemdup(nla_data(nla), len, GFP_KERNEL);
if (dst->val == 0UL)
return -ENOMEM;
dst->len = len;
return 0;
}
static void meta_var_destroy(struct meta_value *v)
{
kfree((void *) v->val);
}
static void meta_var_apply_extras(struct meta_value *v,
struct meta_obj *dst)
{
int shift = v->hdr.shift;
if (shift && shift < dst->len)
dst->len -= shift;
}
static int meta_var_dump(struct sk_buff *skb, struct meta_value *v, int tlv)
{
if (v->val && v->len &&
nla_put(skb, tlv, v->len, (void *) v->val))
goto nla_put_failure;
return 0;
nla_put_failure:
return -1;
}
/**************************************************************************
* Type specific operations for TCF_META_TYPE_INT
**************************************************************************/
static int meta_int_compare(struct meta_obj *a, struct meta_obj *b)
{
/* Let gcc optimize it, the unlikely is not really based on
* some numbers but jump free code for mismatches seems
* more logical. */
if (unlikely(a->value == b->value))
return 0;
else if (a->value < b->value)
return -1;
else
return 1;
}
static int meta_int_change(struct meta_value *dst, struct nlattr *nla)
{
if (nla_len(nla) >= sizeof(unsigned long)) {
dst->val = *(unsigned long *) nla_data(nla);
dst->len = sizeof(unsigned long);
} else if (nla_len(nla) == sizeof(u32)) {
dst->val = nla_get_u32(nla);
dst->len = sizeof(u32);
} else
return -EINVAL;
return 0;
}
static void meta_int_apply_extras(struct meta_value *v,
struct meta_obj *dst)
{
if (v->hdr.shift)
dst->value >>= v->hdr.shift;
if (v->val)
dst->value &= v->val;
}
static int meta_int_dump(struct sk_buff *skb, struct meta_value *v, int tlv)
{
if (v->len == sizeof(unsigned long)) {
if (nla_put(skb, tlv, sizeof(unsigned long), &v->val))
goto nla_put_failure;
} else if (v->len == sizeof(u32)) {
if (nla_put_u32(skb, tlv, v->val))
goto nla_put_failure;
}
return 0;
nla_put_failure:
return -1;
}
/**************************************************************************
* Type specific operations table
**************************************************************************/
struct meta_type_ops {
void (*destroy)(struct meta_value *);
int (*compare)(struct meta_obj *, struct meta_obj *);
int (*change)(struct meta_value *, struct nlattr *);
void (*apply_extras)(struct meta_value *, struct meta_obj *);
int (*dump)(struct sk_buff *, struct meta_value *, int);
};
static const struct meta_type_ops __meta_type_ops[TCF_META_TYPE_MAX + 1] = {
[TCF_META_TYPE_VAR] = {
.destroy = meta_var_destroy,
.compare = meta_var_compare,
.change = meta_var_change,
.apply_extras = meta_var_apply_extras,
.dump = meta_var_dump
},
[TCF_META_TYPE_INT] = {
.compare = meta_int_compare,
.change = meta_int_change,
.apply_extras = meta_int_apply_extras,
.dump = meta_int_dump
}
};
static inline const struct meta_type_ops *meta_type_ops(struct meta_value *v)
{
return &__meta_type_ops[meta_type(v)];
}
/**************************************************************************
* Core
**************************************************************************/
static int meta_get(struct sk_buff *skb, struct tcf_pkt_info *info,
struct meta_value *v, struct meta_obj *dst)
{
int err = 0;
if (meta_id(v) == TCF_META_ID_VALUE) {
dst->value = v->val;
dst->len = v->len;
return 0;
}
meta_ops(v)->get(skb, info, v, dst, &err);
if (err < 0)
return err;
if (meta_type_ops(v)->apply_extras)
meta_type_ops(v)->apply_extras(v, dst);
return 0;
}
static int em_meta_match(struct sk_buff *skb, struct tcf_ematch *m,
struct tcf_pkt_info *info)
{
int r;
struct meta_match *meta = (struct meta_match *) m->data;
struct meta_obj l_value, r_value;
if (meta_get(skb, info, &meta->lvalue, &l_value) < 0 ||
meta_get(skb, info, &meta->rvalue, &r_value) < 0)
return 0;
r = meta_type_ops(&meta->lvalue)->compare(&l_value, &r_value);
switch (meta->lvalue.hdr.op) {
case TCF_EM_OPND_EQ:
return !r;
case TCF_EM_OPND_LT:
return r < 0;
case TCF_EM_OPND_GT:
return r > 0;
}
return 0;
}
static void meta_delete(struct meta_match *meta)
{
if (meta) {
const struct meta_type_ops *ops = meta_type_ops(&meta->lvalue);
if (ops && ops->destroy) {
ops->destroy(&meta->lvalue);
ops->destroy(&meta->rvalue);
}
}
kfree(meta);
}
static inline int meta_change_data(struct meta_value *dst, struct nlattr *nla)
{
if (nla) {
if (nla_len(nla) == 0)
return -EINVAL;
return meta_type_ops(dst)->change(dst, nla);
}
return 0;
}
static inline int meta_is_supported(struct meta_value *val)
{
return !meta_id(val) || meta_ops(val)->get;
}
static const struct nla_policy meta_policy[TCA_EM_META_MAX + 1] = {
[TCA_EM_META_HDR] = { .len = sizeof(struct tcf_meta_hdr) },
};
static int em_meta_change(struct net *net, void *data, int len,
struct tcf_ematch *m)
{
int err;
struct nlattr *tb[TCA_EM_META_MAX + 1];
struct tcf_meta_hdr *hdr;
struct meta_match *meta = NULL;
err = nla_parse_deprecated(tb, TCA_EM_META_MAX, data, len,
meta_policy, NULL);
if (err < 0)
goto errout;
err = -EINVAL;
if (tb[TCA_EM_META_HDR] == NULL)
goto errout;
hdr = nla_data(tb[TCA_EM_META_HDR]);
if (TCF_META_TYPE(hdr->left.kind) != TCF_META_TYPE(hdr->right.kind) ||
TCF_META_TYPE(hdr->left.kind) > TCF_META_TYPE_MAX ||
TCF_META_ID(hdr->left.kind) > TCF_META_ID_MAX ||
TCF_META_ID(hdr->right.kind) > TCF_META_ID_MAX)
goto errout;
meta = kzalloc(sizeof(*meta), GFP_KERNEL);
if (meta == NULL) {
err = -ENOMEM;
goto errout;
}
memcpy(&meta->lvalue.hdr, &hdr->left, sizeof(hdr->left));
memcpy(&meta->rvalue.hdr, &hdr->right, sizeof(hdr->right));
if (!meta_is_supported(&meta->lvalue) ||
!meta_is_supported(&meta->rvalue)) {
err = -EOPNOTSUPP;
goto errout;
}
if (meta_change_data(&meta->lvalue, tb[TCA_EM_META_LVALUE]) < 0 ||
meta_change_data(&meta->rvalue, tb[TCA_EM_META_RVALUE]) < 0)
goto errout;
m->datalen = sizeof(*meta);
m->data = (unsigned long) meta;
err = 0;
errout:
if (err && meta)
meta_delete(meta);
return err;
}
static void em_meta_destroy(struct tcf_ematch *m)
{
if (m)
meta_delete((struct meta_match *) m->data);
}
static int em_meta_dump(struct sk_buff *skb, struct tcf_ematch *em)
{
struct meta_match *meta = (struct meta_match *) em->data;
struct tcf_meta_hdr hdr;
const struct meta_type_ops *ops;
memset(&hdr, 0, sizeof(hdr));
memcpy(&hdr.left, &meta->lvalue.hdr, sizeof(hdr.left));
memcpy(&hdr.right, &meta->rvalue.hdr, sizeof(hdr.right));
if (nla_put(skb, TCA_EM_META_HDR, sizeof(hdr), &hdr))
goto nla_put_failure;
ops = meta_type_ops(&meta->lvalue);
if (ops->dump(skb, &meta->lvalue, TCA_EM_META_LVALUE) < 0 ||
ops->dump(skb, &meta->rvalue, TCA_EM_META_RVALUE) < 0)
goto nla_put_failure;
return 0;
nla_put_failure:
return -1;
}
static struct tcf_ematch_ops em_meta_ops = {
.kind = TCF_EM_META,
.change = em_meta_change,
.match = em_meta_match,
.destroy = em_meta_destroy,
.dump = em_meta_dump,
.owner = THIS_MODULE,
.link = LIST_HEAD_INIT(em_meta_ops.link)
};
static int __init init_em_meta(void)
{
return tcf_em_register(&em_meta_ops);
}
static void __exit exit_em_meta(void)
{
tcf_em_unregister(&em_meta_ops);
}
MODULE_DESCRIPTION("ematch classifier for various internal kernel metadata, skb metadata and sk metadata");
MODULE_LICENSE("GPL");
module_init(init_em_meta);
module_exit(exit_em_meta);
MODULE_ALIAS_TCF_EMATCH(TCF_EM_META);