| /* |
| * Copyright (c) 2004 Video54 Technologies, Inc. |
| * Copyright (c) 2004-2008 Atheros Communications, Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| */ |
| |
| /* |
| * Atheros rate control algorithm |
| */ |
| |
| #include "core.h" |
| /* FIXME: remove this include! */ |
| #include "../net/mac80211/rate.h" |
| |
| static u32 tx_triglevel_max; |
| |
| static struct ath_rate_table ar5416_11na_ratetable = { |
| 42, |
| { |
| { TRUE, TRUE, WLAN_PHY_OFDM, 6000, /* 6 Mb */ |
| 5400, 0x0b, 0x00, 12, |
| 0, 2, 1, 0, 0, 0, 0, 0 }, |
| { TRUE, TRUE, WLAN_PHY_OFDM, 9000, /* 9 Mb */ |
| 7800, 0x0f, 0x00, 18, |
| 0, 3, 1, 1, 1, 1, 1, 0 }, |
| { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 12 Mb */ |
| 10000, 0x0a, 0x00, 24, |
| 2, 4, 2, 2, 2, 2, 2, 0 }, |
| { TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 18 Mb */ |
| 13900, 0x0e, 0x00, 36, |
| 2, 6, 2, 3, 3, 3, 3, 0 }, |
| { TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 24 Mb */ |
| 17300, 0x09, 0x00, 48, |
| 4, 10, 3, 4, 4, 4, 4, 0 }, |
| { TRUE, TRUE, WLAN_PHY_OFDM, 36000, /* 36 Mb */ |
| 23000, 0x0d, 0x00, 72, |
| 4, 14, 3, 5, 5, 5, 5, 0 }, |
| { TRUE, TRUE, WLAN_PHY_OFDM, 48000, /* 48 Mb */ |
| 27400, 0x08, 0x00, 96, |
| 4, 20, 3, 6, 6, 6, 6, 0 }, |
| { TRUE, TRUE, WLAN_PHY_OFDM, 54000, /* 54 Mb */ |
| 29300, 0x0c, 0x00, 108, |
| 4, 23, 3, 7, 7, 7, 7, 0 }, |
| { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 6500, /* 6.5 Mb */ |
| 6400, 0x80, 0x00, 0, |
| 0, 2, 3, 8, 24, 8, 24, 3216 }, |
| { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 13000, /* 13 Mb */ |
| 12700, 0x81, 0x00, 1, |
| 2, 4, 3, 9, 25, 9, 25, 6434 }, |
| { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 19500, /* 19.5 Mb */ |
| 18800, 0x82, 0x00, 2, |
| 2, 6, 3, 10, 26, 10, 26, 9650 }, |
| { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 26000, /* 26 Mb */ |
| 25000, 0x83, 0x00, 3, |
| 4, 10, 3, 11, 27, 11, 27, 12868 }, |
| { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 39000, /* 39 Mb */ |
| 36700, 0x84, 0x00, 4, |
| 4, 14, 3, 12, 28, 12, 28, 19304 }, |
| { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 52000, /* 52 Mb */ |
| 48100, 0x85, 0x00, 5, |
| 4, 20, 3, 13, 29, 13, 29, 25740 }, |
| { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 58500, /* 58.5 Mb */ |
| 53500, 0x86, 0x00, 6, |
| 4, 23, 3, 14, 30, 14, 30, 28956 }, |
| { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 65000, /* 65 Mb */ |
| 59000, 0x87, 0x00, 7, |
| 4, 25, 3, 15, 31, 15, 32, 32180 }, |
| { FALSE, FALSE, WLAN_PHY_HT_20_DS, 13000, /* 13 Mb */ |
| 12700, 0x88, 0x00, |
| 8, 0, 2, 3, 16, 33, 16, 33, 6430 }, |
| { FALSE, FALSE, WLAN_PHY_HT_20_DS, 26000, /* 26 Mb */ |
| 24800, 0x89, 0x00, 9, |
| 2, 4, 3, 17, 34, 17, 34, 12860 }, |
| { FALSE, FALSE, WLAN_PHY_HT_20_DS, 39000, /* 39 Mb */ |
| 36600, 0x8a, 0x00, 10, |
| 2, 6, 3, 18, 35, 18, 35, 19300 }, |
| { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 52000, /* 52 Mb */ |
| 48100, 0x8b, 0x00, 11, |
| 4, 10, 3, 19, 36, 19, 36, 25736 }, |
| { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 78000, /* 78 Mb */ |
| 69500, 0x8c, 0x00, 12, |
| 4, 14, 3, 20, 37, 20, 37, 38600 }, |
| { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 104000, /* 104 Mb */ |
| 89500, 0x8d, 0x00, 13, |
| 4, 20, 3, 21, 38, 21, 38, 51472 }, |
| { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 117000, /* 117 Mb */ |
| 98900, 0x8e, 0x00, 14, |
| 4, 23, 3, 22, 39, 22, 39, 57890 }, |
| { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 130000, /* 130 Mb */ |
| 108300, 0x8f, 0x00, 15, |
| 4, 25, 3, 23, 40, 23, 41, 64320 }, |
| { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 13500, /* 13.5 Mb */ |
| 13200, 0x80, 0x00, 0, |
| 0, 2, 3, 8, 24, 24, 24, 6684 }, |
| { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 27500, /* 27.0 Mb */ |
| 25900, 0x81, 0x00, 1, |
| 2, 4, 3, 9, 25, 25, 25, 13368 }, |
| { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 40500, /* 40.5 Mb */ |
| 38600, 0x82, 0x00, 2, |
| 2, 6, 3, 10, 26, 26, 26, 20052 }, |
| { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 54000, /* 54 Mb */ |
| 49800, 0x83, 0x00, 3, |
| 4, 10, 3, 11, 27, 27, 27, 26738 }, |
| { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 81500, /* 81 Mb */ |
| 72200, 0x84, 0x00, 4, |
| 4, 14, 3, 12, 28, 28, 28, 40104 }, |
| { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 108000, /* 108 Mb */ |
| 92900, 0x85, 0x00, 5, |
| 4, 20, 3, 13, 29, 29, 29, 53476 }, |
| { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 121500, /* 121.5 Mb */ |
| 102700, 0x86, 0x00, 6, |
| 4, 23, 3, 14, 30, 30, 30, 60156 }, |
| { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 135000, /* 135 Mb */ |
| 112000, 0x87, 0x00, 7, |
| 4, 25, 3, 15, 31, 32, 32, 66840 }, |
| { FALSE, TRUE_40, WLAN_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */ |
| 122000, 0x87, 0x00, 7, |
| 4, 25, 3, 15, 31, 32, 32, 74200 }, |
| { FALSE, FALSE, WLAN_PHY_HT_40_DS, 27000, /* 27 Mb */ |
| 25800, 0x88, 0x00, 8, |
| 0, 2, 3, 16, 33, 33, 33, 13360 }, |
| { FALSE, FALSE, WLAN_PHY_HT_40_DS, 54000, /* 54 Mb */ |
| 49800, 0x89, 0x00, 9, |
| 2, 4, 3, 17, 34, 34, 34, 26720 }, |
| { FALSE, FALSE, WLAN_PHY_HT_40_DS, 81000, /* 81 Mb */ |
| 71900, 0x8a, 0x00, 10, |
| 2, 6, 3, 18, 35, 35, 35, 40080 }, |
| { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 108000, /* 108 Mb */ |
| 92500, 0x8b, 0x00, 11, |
| 4, 10, 3, 19, 36, 36, 36, 53440 }, |
| { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 162000, /* 162 Mb */ |
| 130300, 0x8c, 0x00, 12, |
| 4, 14, 3, 20, 37, 37, 37, 80160 }, |
| { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 216000, /* 216 Mb */ |
| 162800, 0x8d, 0x00, 13, |
| 4, 20, 3, 21, 38, 38, 38, 106880 }, |
| { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 243000, /* 243 Mb */ |
| 178200, 0x8e, 0x00, 14, |
| 4, 23, 3, 22, 39, 39, 39, 120240 }, |
| { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 270000, /* 270 Mb */ |
| 192100, 0x8f, 0x00, 15, |
| 4, 25, 3, 23, 40, 41, 41, 133600 }, |
| { TRUE_40, FALSE, WLAN_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */ |
| 207000, 0x8f, 0x00, 15, |
| 4, 25, 3, 23, 40, 41, 41, 148400 }, |
| }, |
| 50, /* probe interval */ |
| 50, /* rssi reduce interval */ |
| WLAN_RC_HT_FLAG, /* Phy rates allowed initially */ |
| }; |
| |
| /* TRUE_ALL - valid for 20/40/Legacy, |
| * TRUE - Legacy only, |
| * TRUE_20 - HT 20 only, |
| * TRUE_40 - HT 40 only */ |
| |
| /* 4ms frame limit not used for NG mode. The values filled |
| * for HT are the 64K max aggregate limit */ |
| |
| static struct ath_rate_table ar5416_11ng_ratetable = { |
| 46, |
| { |
| { TRUE_ALL, TRUE_ALL, WLAN_PHY_CCK, 1000, /* 1 Mb */ |
| 900, 0x1b, 0x00, 2, |
| 0, 0, 1, 0, 0, 0, 0, 0 }, |
| { TRUE_ALL, TRUE_ALL, WLAN_PHY_CCK, 2000, /* 2 Mb */ |
| 1900, 0x1a, 0x04, 4, |
| 1, 1, 1, 1, 1, 1, 1, 0 }, |
| { TRUE_ALL, TRUE_ALL, WLAN_PHY_CCK, 5500, /* 5.5 Mb */ |
| 4900, 0x19, 0x04, 11, |
| 2, 2, 2, 2, 2, 2, 2, 0 }, |
| { TRUE_ALL, TRUE_ALL, WLAN_PHY_CCK, 11000, /* 11 Mb */ |
| 8100, 0x18, 0x04, 22, |
| 3, 3, 2, 3, 3, 3, 3, 0 }, |
| { FALSE, FALSE, WLAN_PHY_OFDM, 6000, /* 6 Mb */ |
| 5400, 0x0b, 0x00, 12, |
| 4, 2, 1, 4, 4, 4, 4, 0 }, |
| { FALSE, FALSE, WLAN_PHY_OFDM, 9000, /* 9 Mb */ |
| 7800, 0x0f, 0x00, 18, |
| 4, 3, 1, 5, 5, 5, 5, 0 }, |
| { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 12 Mb */ |
| 10100, 0x0a, 0x00, 24, |
| 6, 4, 1, 6, 6, 6, 6, 0 }, |
| { TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 18 Mb */ |
| 14100, 0x0e, 0x00, 36, |
| 6, 6, 2, 7, 7, 7, 7, 0 }, |
| { TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 24 Mb */ |
| 17700, 0x09, 0x00, 48, |
| 8, 10, 3, 8, 8, 8, 8, 0 }, |
| { TRUE, TRUE, WLAN_PHY_OFDM, 36000, /* 36 Mb */ |
| 23700, 0x0d, 0x00, 72, |
| 8, 14, 3, 9, 9, 9, 9, 0 }, |
| { TRUE, TRUE, WLAN_PHY_OFDM, 48000, /* 48 Mb */ |
| 27400, 0x08, 0x00, 96, |
| 8, 20, 3, 10, 10, 10, 10, 0 }, |
| { TRUE, TRUE, WLAN_PHY_OFDM, 54000, /* 54 Mb */ |
| 30900, 0x0c, 0x00, 108, |
| 8, 23, 3, 11, 11, 11, 11, 0 }, |
| { FALSE, FALSE, WLAN_PHY_HT_20_SS, 6500, /* 6.5 Mb */ |
| 6400, 0x80, 0x00, 0, |
| 4, 2, 3, 12, 28, 12, 28, 3216 }, |
| { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 13000, /* 13 Mb */ |
| 12700, 0x81, 0x00, 1, |
| 6, 4, 3, 13, 29, 13, 29, 6434 }, |
| { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 19500, /* 19.5 Mb */ |
| 18800, 0x82, 0x00, 2, |
| 6, 6, 3, 14, 30, 14, 30, 9650 }, |
| { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 26000, /* 26 Mb */ |
| 25000, 0x83, 0x00, 3, |
| 8, 10, 3, 15, 31, 15, 31, 12868 }, |
| { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 39000, /* 39 Mb */ |
| 36700, 0x84, 0x00, 4, |
| 8, 14, 3, 16, 32, 16, 32, 19304 }, |
| { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 52000, /* 52 Mb */ |
| 48100, 0x85, 0x00, 5, |
| 8, 20, 3, 17, 33, 17, 33, 25740 }, |
| { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 58500, /* 58.5 Mb */ |
| 53500, 0x86, 0x00, 6, |
| 8, 23, 3, 18, 34, 18, 34, 28956 }, |
| { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 65000, /* 65 Mb */ |
| 59000, 0x87, 0x00, 7, |
| 8, 25, 3, 19, 35, 19, 36, 32180 }, |
| { FALSE, FALSE, WLAN_PHY_HT_20_DS, 13000, /* 13 Mb */ |
| 12700, 0x88, 0x00, 8, |
| 4, 2, 3, 20, 37, 20, 37, 6430 }, |
| { FALSE, FALSE, WLAN_PHY_HT_20_DS, 26000, /* 26 Mb */ |
| 24800, 0x89, 0x00, 9, |
| 6, 4, 3, 21, 38, 21, 38, 12860 }, |
| { FALSE, FALSE, WLAN_PHY_HT_20_DS, 39000, /* 39 Mb */ |
| 36600, 0x8a, 0x00, 10, |
| 6, 6, 3, 22, 39, 22, 39, 19300 }, |
| { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 52000, /* 52 Mb */ |
| 48100, 0x8b, 0x00, 11, |
| 8, 10, 3, 23, 40, 23, 40, 25736 }, |
| { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 78000, /* 78 Mb */ |
| 69500, 0x8c, 0x00, 12, |
| 8, 14, 3, 24, 41, 24, 41, 38600 }, |
| { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 104000, /* 104 Mb */ |
| 89500, 0x8d, 0x00, 13, |
| 8, 20, 3, 25, 42, 25, 42, 51472 }, |
| { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 117000, /* 117 Mb */ |
| 98900, 0x8e, 0x00, 14, |
| 8, 23, 3, 26, 43, 26, 44, 57890 }, |
| { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 130000, /* 130 Mb */ |
| 108300, 0x8f, 0x00, 15, |
| 8, 25, 3, 27, 44, 27, 45, 64320 }, |
| { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 13500, /* 13.5 Mb */ |
| 13200, 0x80, 0x00, 0, |
| 8, 2, 3, 12, 28, 28, 28, 6684 }, |
| { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 27500, /* 27.0 Mb */ |
| 25900, 0x81, 0x00, 1, |
| 8, 4, 3, 13, 29, 29, 29, 13368 }, |
| { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 40500, /* 40.5 Mb */ |
| 38600, 0x82, 0x00, 2, |
| 8, 6, 3, 14, 30, 30, 30, 20052 }, |
| { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 54000, /* 54 Mb */ |
| 49800, 0x83, 0x00, 3, |
| 8, 10, 3, 15, 31, 31, 31, 26738 }, |
| { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 81500, /* 81 Mb */ |
| 72200, 0x84, 0x00, 4, |
| 8, 14, 3, 16, 32, 32, 32, 40104 }, |
| { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 108000, /* 108 Mb */ |
| 92900, 0x85, 0x00, 5, |
| 8, 20, 3, 17, 33, 33, 33, 53476 }, |
| { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 121500, /* 121.5 Mb */ |
| 102700, 0x86, 0x00, 6, |
| 8, 23, 3, 18, 34, 34, 34, 60156 }, |
| { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 135000, /* 135 Mb */ |
| 112000, 0x87, 0x00, 7, |
| 8, 23, 3, 19, 35, 36, 36, 66840 }, |
| { FALSE, TRUE_40, WLAN_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */ |
| 122000, 0x87, 0x00, 7, |
| 8, 25, 3, 19, 35, 36, 36, 74200 }, |
| { FALSE, FALSE, WLAN_PHY_HT_40_DS, 27000, /* 27 Mb */ |
| 25800, 0x88, 0x00, 8, |
| 8, 2, 3, 20, 37, 37, 37, 13360 }, |
| { FALSE, FALSE, WLAN_PHY_HT_40_DS, 54000, /* 54 Mb */ |
| 49800, 0x89, 0x00, 9, |
| 8, 4, 3, 21, 38, 38, 38, 26720 }, |
| { FALSE, FALSE, WLAN_PHY_HT_40_DS, 81000, /* 81 Mb */ |
| 71900, 0x8a, 0x00, 10, |
| 8, 6, 3, 22, 39, 39, 39, 40080 }, |
| { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 108000, /* 108 Mb */ |
| 92500, 0x8b, 0x00, 11, |
| 8, 10, 3, 23, 40, 40, 40, 53440 }, |
| { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 162000, /* 162 Mb */ |
| 130300, 0x8c, 0x00, 12, |
| 8, 14, 3, 24, 41, 41, 41, 80160 }, |
| { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 216000, /* 216 Mb */ |
| 162800, 0x8d, 0x00, 13, |
| 8, 20, 3, 25, 42, 42, 42, 106880 }, |
| { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 243000, /* 243 Mb */ |
| 178200, 0x8e, 0x00, 14, |
| 8, 23, 3, 26, 43, 43, 43, 120240 }, |
| { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 270000, /* 270 Mb */ |
| 192100, 0x8f, 0x00, 15, |
| 8, 23, 3, 27, 44, 45, 45, 133600 }, |
| { TRUE_40, FALSE, WLAN_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */ |
| 207000, 0x8f, 0x00, 15, |
| 8, 25, 3, 27, 44, 45, 45, 148400 }, |
| }, |
| 50, /* probe interval */ |
| 50, /* rssi reduce interval */ |
| WLAN_RC_HT_FLAG, /* Phy rates allowed initially */ |
| }; |
| |
| static struct ath_rate_table ar5416_11a_ratetable = { |
| 8, |
| { |
| { TRUE, TRUE, WLAN_PHY_OFDM, 6000, /* 6 Mb */ |
| 5400, 0x0b, 0x00, (0x80|12), |
| 0, 2, 1, 0, 0 }, |
| { TRUE, TRUE, WLAN_PHY_OFDM, 9000, /* 9 Mb */ |
| 7800, 0x0f, 0x00, 18, |
| 0, 3, 1, 1, 0 }, |
| { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 12 Mb */ |
| 10000, 0x0a, 0x00, (0x80|24), |
| 2, 4, 2, 2, 0 }, |
| { TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 18 Mb */ |
| 13900, 0x0e, 0x00, 36, |
| 2, 6, 2, 3, 0 }, |
| { TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 24 Mb */ |
| 17300, 0x09, 0x00, (0x80|48), |
| 4, 10, 3, 4, 0 }, |
| { TRUE, TRUE, WLAN_PHY_OFDM, 36000, /* 36 Mb */ |
| 23000, 0x0d, 0x00, 72, |
| 4, 14, 3, 5, 0 }, |
| { TRUE, TRUE, WLAN_PHY_OFDM, 48000, /* 48 Mb */ |
| 27400, 0x08, 0x00, 96, |
| 4, 19, 3, 6, 0 }, |
| { TRUE, TRUE, WLAN_PHY_OFDM, 54000, /* 54 Mb */ |
| 29300, 0x0c, 0x00, 108, |
| 4, 23, 3, 7, 0 }, |
| }, |
| 50, /* probe interval */ |
| 50, /* rssi reduce interval */ |
| 0, /* Phy rates allowed initially */ |
| }; |
| |
| static struct ath_rate_table ar5416_11a_ratetable_Half = { |
| 8, |
| { |
| { TRUE, TRUE, WLAN_PHY_OFDM, 3000, /* 6 Mb */ |
| 2700, 0x0b, 0x00, (0x80|6), |
| 0, 2, 1, 0, 0}, |
| { TRUE, TRUE, WLAN_PHY_OFDM, 4500, /* 9 Mb */ |
| 3900, 0x0f, 0x00, 9, |
| 0, 3, 1, 1, 0 }, |
| { TRUE, TRUE, WLAN_PHY_OFDM, 6000, /* 12 Mb */ |
| 5000, 0x0a, 0x00, (0x80|12), |
| 2, 4, 2, 2, 0 }, |
| { TRUE, TRUE, WLAN_PHY_OFDM, 9000, /* 18 Mb */ |
| 6950, 0x0e, 0x00, 18, |
| 2, 6, 2, 3, 0 }, |
| { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 24 Mb */ |
| 8650, 0x09, 0x00, (0x80|24), |
| 4, 10, 3, 4, 0 }, |
| { TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 36 Mb */ |
| 11500, 0x0d, 0x00, 36, |
| 4, 14, 3, 5, 0 }, |
| { TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 48 Mb */ |
| 13700, 0x08, 0x00, 48, |
| 4, 19, 3, 6, 0 }, |
| { TRUE, TRUE, WLAN_PHY_OFDM, 27000, /* 54 Mb */ |
| 14650, 0x0c, 0x00, 54, |
| 4, 23, 3, 7, 0 }, |
| }, |
| 50, /* probe interval */ |
| 50, /* rssi reduce interval */ |
| 0, /* Phy rates allowed initially */ |
| }; |
| |
| static struct ath_rate_table ar5416_11a_ratetable_Quarter = { |
| 8, |
| { |
| { TRUE, TRUE, WLAN_PHY_OFDM, 1500, /* 6 Mb */ |
| 1350, 0x0b, 0x00, (0x80|3), |
| 0, 2, 1, 0, 0 }, |
| { TRUE, TRUE, WLAN_PHY_OFDM, 2250, /* 9 Mb */ |
| 1950, 0x0f, 0x00, 4, |
| 0, 3, 1, 1, 0 }, |
| { TRUE, TRUE, WLAN_PHY_OFDM, 3000, /* 12 Mb */ |
| 2500, 0x0a, 0x00, (0x80|6), |
| 2, 4, 2, 2, 0 }, |
| { TRUE, TRUE, WLAN_PHY_OFDM, 4500, /* 18 Mb */ |
| 3475, 0x0e, 0x00, 9, |
| 2, 6, 2, 3, 0 }, |
| { TRUE, TRUE, WLAN_PHY_OFDM, 6000, /* 25 Mb */ |
| 4325, 0x09, 0x00, (0x80|12), |
| 4, 10, 3, 4, 0 }, |
| { TRUE, TRUE, WLAN_PHY_OFDM, 9000, /* 36 Mb */ |
| 5750, 0x0d, 0x00, 18, |
| 4, 14, 3, 5, 0 }, |
| { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 48 Mb */ |
| 6850, 0x08, 0x00, 24, |
| 4, 19, 3, 6, 0 }, |
| { TRUE, TRUE, WLAN_PHY_OFDM, 13500, /* 54 Mb */ |
| 7325, 0x0c, 0x00, 27, |
| 4, 23, 3, 7, 0 }, |
| }, |
| 50, /* probe interval */ |
| 50, /* rssi reduce interval */ |
| 0, /* Phy rates allowed initially */ |
| }; |
| |
| static struct ath_rate_table ar5416_11g_ratetable = { |
| 12, |
| { |
| { TRUE, TRUE, WLAN_PHY_CCK, 1000, /* 1 Mb */ |
| 900, 0x1b, 0x00, 2, |
| 0, 0, 1, 0, 0 }, |
| { TRUE, TRUE, WLAN_PHY_CCK, 2000, /* 2 Mb */ |
| 1900, 0x1a, 0x04, 4, |
| 1, 1, 1, 1, 0 }, |
| { TRUE, TRUE, WLAN_PHY_CCK, 5500, /* 5.5 Mb */ |
| 4900, 0x19, 0x04, 11, |
| 2, 2, 2, 2, 0 }, |
| { TRUE, TRUE, WLAN_PHY_CCK, 11000, /* 11 Mb */ |
| 8100, 0x18, 0x04, 22, |
| 3, 3, 2, 3, 0 }, |
| { FALSE, FALSE, WLAN_PHY_OFDM, 6000, /* 6 Mb */ |
| 5400, 0x0b, 0x00, 12, |
| 4, 2, 1, 4, 0 }, |
| { FALSE, FALSE, WLAN_PHY_OFDM, 9000, /* 9 Mb */ |
| 7800, 0x0f, 0x00, 18, |
| 4, 3, 1, 5, 0 }, |
| { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 12 Mb */ |
| 10000, 0x0a, 0x00, 24, |
| 6, 4, 1, 6, 0 }, |
| { TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 18 Mb */ |
| 13900, 0x0e, 0x00, 36, |
| 6, 6, 2, 7, 0 }, |
| { TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 24 Mb */ |
| 17300, 0x09, 0x00, 48, |
| 8, 10, 3, 8, 0 }, |
| { TRUE, TRUE, WLAN_PHY_OFDM, 36000, /* 36 Mb */ |
| 23000, 0x0d, 0x00, 72, |
| 8, 14, 3, 9, 0 }, |
| { TRUE, TRUE, WLAN_PHY_OFDM, 48000, /* 48 Mb */ |
| 27400, 0x08, 0x00, 96, |
| 8, 19, 3, 10, 0 }, |
| { TRUE, TRUE, WLAN_PHY_OFDM, 54000, /* 54 Mb */ |
| 29300, 0x0c, 0x00, 108, |
| 8, 23, 3, 11, 0 }, |
| }, |
| 50, /* probe interval */ |
| 50, /* rssi reduce interval */ |
| 0, /* Phy rates allowed initially */ |
| }; |
| |
| static struct ath_rate_table ar5416_11b_ratetable = { |
| 4, |
| { |
| { TRUE, TRUE, WLAN_PHY_CCK, 1000, /* 1 Mb */ |
| 900, 0x1b, 0x00, (0x80|2), |
| 0, 0, 1, 0, 0 }, |
| { TRUE, TRUE, WLAN_PHY_CCK, 2000, /* 2 Mb */ |
| 1800, 0x1a, 0x04, (0x80|4), |
| 1, 1, 1, 1, 0 }, |
| { TRUE, TRUE, WLAN_PHY_CCK, 5500, /* 5.5 Mb */ |
| 4300, 0x19, 0x04, (0x80|11), |
| 1, 2, 2, 2, 0 }, |
| { TRUE, TRUE, WLAN_PHY_CCK, 11000, /* 11 Mb */ |
| 7100, 0x18, 0x04, (0x80|22), |
| 1, 4, 100, 3, 0 }, |
| }, |
| 100, /* probe interval */ |
| 100, /* rssi reduce interval */ |
| 0, /* Phy rates allowed initially */ |
| }; |
| |
| static void ar5416_attach_ratetables(struct ath_rate_softc *sc) |
| { |
| /* |
| * Attach rate tables. |
| */ |
| sc->hw_rate_table[ATH9K_MODE_11B] = &ar5416_11b_ratetable; |
| sc->hw_rate_table[ATH9K_MODE_11A] = &ar5416_11a_ratetable; |
| sc->hw_rate_table[ATH9K_MODE_11G] = &ar5416_11g_ratetable; |
| |
| sc->hw_rate_table[ATH9K_MODE_11NA_HT20] = &ar5416_11na_ratetable; |
| sc->hw_rate_table[ATH9K_MODE_11NG_HT20] = &ar5416_11ng_ratetable; |
| sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS] = |
| &ar5416_11na_ratetable; |
| sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS] = |
| &ar5416_11na_ratetable; |
| sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS] = |
| &ar5416_11ng_ratetable; |
| sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS] = |
| &ar5416_11ng_ratetable; |
| } |
| |
| static void ar5416_setquarter_ratetable(struct ath_rate_softc *sc) |
| { |
| sc->hw_rate_table[ATH9K_MODE_11A] = &ar5416_11a_ratetable_Quarter; |
| return; |
| } |
| |
| static void ar5416_sethalf_ratetable(struct ath_rate_softc *sc) |
| { |
| sc->hw_rate_table[ATH9K_MODE_11A] = &ar5416_11a_ratetable_Half; |
| return; |
| } |
| |
| static void ar5416_setfull_ratetable(struct ath_rate_softc *sc) |
| { |
| sc->hw_rate_table[ATH9K_MODE_11A] = &ar5416_11a_ratetable; |
| return; |
| } |
| |
| /* |
| * Return the median of three numbers |
| */ |
| static inline int8_t median(int8_t a, int8_t b, int8_t c) |
| { |
| if (a >= b) { |
| if (b >= c) |
| return b; |
| else if (a > c) |
| return c; |
| else |
| return a; |
| } else { |
| if (a >= c) |
| return a; |
| else if (b >= c) |
| return c; |
| else |
| return b; |
| } |
| } |
| |
| static void ath_rc_sort_validrates(const struct ath_rate_table *rate_table, |
| struct ath_tx_ratectrl *rate_ctrl) |
| { |
| u8 i, j, idx, idx_next; |
| |
| for (i = rate_ctrl->max_valid_rate - 1; i > 0; i--) { |
| for (j = 0; j <= i-1; j++) { |
| idx = rate_ctrl->valid_rate_index[j]; |
| idx_next = rate_ctrl->valid_rate_index[j+1]; |
| |
| if (rate_table->info[idx].ratekbps > |
| rate_table->info[idx_next].ratekbps) { |
| rate_ctrl->valid_rate_index[j] = idx_next; |
| rate_ctrl->valid_rate_index[j+1] = idx; |
| } |
| } |
| } |
| } |
| |
| /* Access functions for valid_txrate_mask */ |
| |
| static void ath_rc_init_valid_txmask(struct ath_tx_ratectrl *rate_ctrl) |
| { |
| u8 i; |
| |
| for (i = 0; i < rate_ctrl->rate_table_size; i++) |
| rate_ctrl->valid_rate_index[i] = FALSE; |
| } |
| |
| static inline void ath_rc_set_valid_txmask(struct ath_tx_ratectrl *rate_ctrl, |
| u8 index, int valid_tx_rate) |
| { |
| ASSERT(index <= rate_ctrl->rate_table_size); |
| rate_ctrl->valid_rate_index[index] = valid_tx_rate ? TRUE : FALSE; |
| } |
| |
| static inline int ath_rc_isvalid_txmask(struct ath_tx_ratectrl *rate_ctrl, |
| u8 index) |
| { |
| ASSERT(index <= rate_ctrl->rate_table_size); |
| return rate_ctrl->valid_rate_index[index]; |
| } |
| |
| /* Iterators for valid_txrate_mask */ |
| static inline int |
| ath_rc_get_nextvalid_txrate(const struct ath_rate_table *rate_table, |
| struct ath_tx_ratectrl *rate_ctrl, |
| u8 cur_valid_txrate, |
| u8 *next_idx) |
| { |
| u8 i; |
| |
| for (i = 0; i < rate_ctrl->max_valid_rate - 1; i++) { |
| if (rate_ctrl->valid_rate_index[i] == cur_valid_txrate) { |
| *next_idx = rate_ctrl->valid_rate_index[i+1]; |
| return TRUE; |
| } |
| } |
| |
| /* No more valid rates */ |
| *next_idx = 0; |
| return FALSE; |
| } |
| |
| /* Return true only for single stream */ |
| |
| static int ath_rc_valid_phyrate(u32 phy, u32 capflag, int ignore_cw) |
| { |
| if (WLAN_RC_PHY_HT(phy) & !(capflag & WLAN_RC_HT_FLAG)) |
| return FALSE; |
| if (WLAN_RC_PHY_DS(phy) && !(capflag & WLAN_RC_DS_FLAG)) |
| return FALSE; |
| if (WLAN_RC_PHY_SGI(phy) && !(capflag & WLAN_RC_SGI_FLAG)) |
| return FALSE; |
| if (!ignore_cw && WLAN_RC_PHY_HT(phy)) |
| if (WLAN_RC_PHY_40(phy) && !(capflag & WLAN_RC_40_FLAG)) |
| return FALSE; |
| if (!WLAN_RC_PHY_40(phy) && (capflag & WLAN_RC_40_FLAG)) |
| return FALSE; |
| return TRUE; |
| } |
| |
| static inline int |
| ath_rc_get_nextlowervalid_txrate(const struct ath_rate_table *rate_table, |
| struct ath_tx_ratectrl *rate_ctrl, |
| u8 cur_valid_txrate, u8 *next_idx) |
| { |
| int8_t i; |
| |
| for (i = 1; i < rate_ctrl->max_valid_rate ; i++) { |
| if (rate_ctrl->valid_rate_index[i] == cur_valid_txrate) { |
| *next_idx = rate_ctrl->valid_rate_index[i-1]; |
| return TRUE; |
| } |
| } |
| return FALSE; |
| } |
| |
| /* |
| * Initialize the Valid Rate Index from valid entries in Rate Table |
| */ |
| static u8 |
| ath_rc_sib_init_validrates(struct ath_rate_node *ath_rc_priv, |
| const struct ath_rate_table *rate_table, |
| u32 capflag) |
| { |
| struct ath_tx_ratectrl *rate_ctrl; |
| u8 i, hi = 0; |
| u32 valid; |
| |
| rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv); |
| for (i = 0; i < rate_table->rate_cnt; i++) { |
| valid = (ath_rc_priv->single_stream ? |
| rate_table->info[i].valid_single_stream : |
| rate_table->info[i].valid); |
| if (valid == TRUE) { |
| u32 phy = rate_table->info[i].phy; |
| u8 valid_rate_count = 0; |
| |
| if (!ath_rc_valid_phyrate(phy, capflag, FALSE)) |
| continue; |
| |
| valid_rate_count = rate_ctrl->valid_phy_ratecnt[phy]; |
| |
| rate_ctrl->valid_phy_rateidx[phy][valid_rate_count] = i; |
| rate_ctrl->valid_phy_ratecnt[phy] += 1; |
| ath_rc_set_valid_txmask(rate_ctrl, i, TRUE); |
| hi = A_MAX(hi, i); |
| } |
| } |
| return hi; |
| } |
| |
| /* |
| * Initialize the Valid Rate Index from Rate Set |
| */ |
| static u8 |
| ath_rc_sib_setvalid_rates(struct ath_rate_node *ath_rc_priv, |
| const struct ath_rate_table *rate_table, |
| struct ath_rateset *rateset, |
| u32 capflag) |
| { |
| /* XXX: Clean me up and make identation friendly */ |
| u8 i, j, hi = 0; |
| struct ath_tx_ratectrl *rate_ctrl = |
| (struct ath_tx_ratectrl *)(ath_rc_priv); |
| |
| /* Use intersection of working rates and valid rates */ |
| for (i = 0; i < rateset->rs_nrates; i++) { |
| for (j = 0; j < rate_table->rate_cnt; j++) { |
| u32 phy = rate_table->info[j].phy; |
| u32 valid = (ath_rc_priv->single_stream ? |
| rate_table->info[j].valid_single_stream : |
| rate_table->info[j].valid); |
| |
| /* We allow a rate only if its valid and the |
| * capflag matches one of the validity |
| * (TRUE/TRUE_20/TRUE_40) flags */ |
| |
| /* XXX: catch the negative of this branch |
| * first and then continue */ |
| if (((rateset->rs_rates[i] & 0x7F) == |
| (rate_table->info[j].dot11rate & 0x7F)) && |
| ((valid & WLAN_RC_CAP_MODE(capflag)) == |
| WLAN_RC_CAP_MODE(capflag)) && |
| !WLAN_RC_PHY_HT(phy)) { |
| |
| u8 valid_rate_count = 0; |
| |
| if (!ath_rc_valid_phyrate(phy, capflag, FALSE)) |
| continue; |
| |
| valid_rate_count = |
| rate_ctrl->valid_phy_ratecnt[phy]; |
| |
| rate_ctrl->valid_phy_rateidx[phy] |
| [valid_rate_count] = j; |
| rate_ctrl->valid_phy_ratecnt[phy] += 1; |
| ath_rc_set_valid_txmask(rate_ctrl, j, TRUE); |
| hi = A_MAX(hi, j); |
| } |
| } |
| } |
| return hi; |
| } |
| |
| static u8 |
| ath_rc_sib_setvalid_htrates(struct ath_rate_node *ath_rc_priv, |
| const struct ath_rate_table *rate_table, |
| u8 *mcs_set, u32 capflag) |
| { |
| u8 i, j, hi = 0; |
| struct ath_tx_ratectrl *rate_ctrl = |
| (struct ath_tx_ratectrl *)(ath_rc_priv); |
| |
| /* Use intersection of working rates and valid rates */ |
| for (i = 0; i < ((struct ath_rateset *)mcs_set)->rs_nrates; i++) { |
| for (j = 0; j < rate_table->rate_cnt; j++) { |
| u32 phy = rate_table->info[j].phy; |
| u32 valid = (ath_rc_priv->single_stream ? |
| rate_table->info[j].valid_single_stream : |
| rate_table->info[j].valid); |
| |
| if (((((struct ath_rateset *) |
| mcs_set)->rs_rates[i] & 0x7F) != |
| (rate_table->info[j].dot11rate & 0x7F)) || |
| !WLAN_RC_PHY_HT(phy) || |
| !WLAN_RC_PHY_HT_VALID(valid, capflag)) |
| continue; |
| |
| if (!ath_rc_valid_phyrate(phy, capflag, FALSE)) |
| continue; |
| |
| rate_ctrl->valid_phy_rateidx[phy] |
| [rate_ctrl->valid_phy_ratecnt[phy]] = j; |
| rate_ctrl->valid_phy_ratecnt[phy] += 1; |
| ath_rc_set_valid_txmask(rate_ctrl, j, TRUE); |
| hi = A_MAX(hi, j); |
| } |
| } |
| return hi; |
| } |
| |
| /* |
| * Attach to a device instance. Setup the public definition |
| * of how much per-node space we need and setup the private |
| * phy tables that have rate control parameters. |
| */ |
| struct ath_rate_softc *ath_rate_attach(struct ath_hal *ah) |
| { |
| struct ath_rate_softc *asc; |
| |
| /* we are only in user context so we can sleep for memory */ |
| asc = kzalloc(sizeof(struct ath_rate_softc), GFP_KERNEL); |
| if (asc == NULL) |
| return NULL; |
| |
| ar5416_attach_ratetables(asc); |
| |
| /* Save Maximum TX Trigger Level (used for 11n) */ |
| tx_triglevel_max = ah->ah_caps.tx_triglevel_max; |
| /* return alias for ath_rate_softc * */ |
| return asc; |
| } |
| |
| static struct ath_rate_node *ath_rate_node_alloc(struct ath_vap *avp, |
| struct ath_rate_softc *rsc, |
| gfp_t gfp) |
| { |
| struct ath_rate_node *anode; |
| |
| anode = kzalloc(sizeof(struct ath_rate_node), gfp); |
| if (anode == NULL) |
| return NULL; |
| |
| anode->avp = avp; |
| anode->asc = rsc; |
| avp->rc_node = anode; |
| |
| return anode; |
| } |
| |
| static void ath_rate_node_free(struct ath_rate_node *anode) |
| { |
| if (anode != NULL) |
| kfree(anode); |
| } |
| |
| void ath_rate_detach(struct ath_rate_softc *asc) |
| { |
| if (asc != NULL) |
| kfree(asc); |
| } |
| |
| u8 ath_rate_findrateix(struct ath_softc *sc, |
| u8 dot11rate) |
| { |
| const struct ath_rate_table *ratetable; |
| struct ath_rate_softc *rsc = sc->sc_rc; |
| int i; |
| |
| ratetable = rsc->hw_rate_table[sc->sc_curmode]; |
| |
| if (WARN_ON(!ratetable)) |
| return 0; |
| |
| for (i = 0; i < ratetable->rate_cnt; i++) { |
| if ((ratetable->info[i].dot11rate & 0x7f) == (dot11rate & 0x7f)) |
| return i; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Update rate-control state on a device state change. When |
| * operating as a station this includes associate/reassociate |
| * with an AP. Otherwise this gets called, for example, when |
| * the we transition to run state when operating as an AP. |
| */ |
| void ath_rate_newstate(struct ath_softc *sc, struct ath_vap *avp) |
| { |
| struct ath_rate_softc *asc = sc->sc_rc; |
| |
| /* For half and quarter rate channles use different |
| * rate tables |
| */ |
| if (sc->sc_ah->ah_curchan->channelFlags & CHANNEL_HALF) |
| ar5416_sethalf_ratetable(asc); |
| else if (sc->sc_ah->ah_curchan->channelFlags & CHANNEL_QUARTER) |
| ar5416_setquarter_ratetable(asc); |
| else /* full rate */ |
| ar5416_setfull_ratetable(asc); |
| |
| if (avp->av_config.av_fixed_rateset != IEEE80211_FIXED_RATE_NONE) { |
| asc->fixedrix = |
| sc->sc_rixmap[avp->av_config.av_fixed_rateset & 0xff]; |
| /* NB: check the fixed rate exists */ |
| if (asc->fixedrix == 0xff) |
| asc->fixedrix = IEEE80211_FIXED_RATE_NONE; |
| } else { |
| asc->fixedrix = IEEE80211_FIXED_RATE_NONE; |
| } |
| } |
| |
| static u8 ath_rc_ratefind_ht(struct ath_softc *sc, |
| struct ath_rate_node *ath_rc_priv, |
| const struct ath_rate_table *rate_table, |
| int probe_allowed, int *is_probing, |
| int is_retry) |
| { |
| u32 dt, best_thruput, this_thruput, now_msec; |
| u8 rate, next_rate, best_rate, maxindex, minindex; |
| int8_t rssi_last, rssi_reduce = 0, index = 0; |
| struct ath_tx_ratectrl *rate_ctrl = NULL; |
| |
| rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv ? |
| (ath_rc_priv) : NULL); |
| |
| *is_probing = FALSE; |
| |
| rssi_last = median(rate_ctrl->rssi_last, |
| rate_ctrl->rssi_last_prev, |
| rate_ctrl->rssi_last_prev2); |
| |
| /* |
| * Age (reduce) last ack rssi based on how old it is. |
| * The bizarre numbers are so the delta is 160msec, |
| * meaning we divide by 16. |
| * 0msec <= dt <= 25msec: don't derate |
| * 25msec <= dt <= 185msec: derate linearly from 0 to 10dB |
| * 185msec <= dt: derate by 10dB |
| */ |
| |
| now_msec = jiffies_to_msecs(jiffies); |
| dt = now_msec - rate_ctrl->rssi_time; |
| |
| if (dt >= 185) |
| rssi_reduce = 10; |
| else if (dt >= 25) |
| rssi_reduce = (u8)((dt - 25) >> 4); |
| |
| /* Now reduce rssi_last by rssi_reduce */ |
| if (rssi_last < rssi_reduce) |
| rssi_last = 0; |
| else |
| rssi_last -= rssi_reduce; |
| |
| /* |
| * Now look up the rate in the rssi table and return it. |
| * If no rates match then we return 0 (lowest rate) |
| */ |
| |
| best_thruput = 0; |
| maxindex = rate_ctrl->max_valid_rate-1; |
| |
| minindex = 0; |
| best_rate = minindex; |
| |
| /* |
| * Try the higher rate first. It will reduce memory moving time |
| * if we have very good channel characteristics. |
| */ |
| for (index = maxindex; index >= minindex ; index--) { |
| u8 per_thres; |
| |
| rate = rate_ctrl->valid_rate_index[index]; |
| if (rate > rate_ctrl->rate_max_phy) |
| continue; |
| |
| /* |
| * For TCP the average collision rate is around 11%, |
| * so we ignore PERs less than this. This is to |
| * prevent the rate we are currently using (whose |
| * PER might be in the 10-15 range because of TCP |
| * collisions) looking worse than the next lower |
| * rate whose PER has decayed close to 0. If we |
| * used to next lower rate, its PER would grow to |
| * 10-15 and we would be worse off then staying |
| * at the current rate. |
| */ |
| per_thres = rate_ctrl->state[rate].per; |
| if (per_thres < 12) |
| per_thres = 12; |
| |
| this_thruput = rate_table->info[rate].user_ratekbps * |
| (100 - per_thres); |
| |
| if (best_thruput <= this_thruput) { |
| best_thruput = this_thruput; |
| best_rate = rate; |
| } |
| } |
| |
| rate = best_rate; |
| |
| /* if we are retrying for more than half the number |
| * of max retries, use the min rate for the next retry |
| */ |
| if (is_retry) |
| rate = rate_ctrl->valid_rate_index[minindex]; |
| |
| rate_ctrl->rssi_last_lookup = rssi_last; |
| |
| /* |
| * Must check the actual rate (ratekbps) to account for |
| * non-monoticity of 11g's rate table |
| */ |
| |
| if (rate >= rate_ctrl->rate_max_phy && probe_allowed) { |
| rate = rate_ctrl->rate_max_phy; |
| |
| /* Probe the next allowed phy state */ |
| /* FIXME:XXXX Check to make sure ratMax is checked properly */ |
| if (ath_rc_get_nextvalid_txrate(rate_table, |
| rate_ctrl, rate, &next_rate) && |
| (now_msec - rate_ctrl->probe_time > |
| rate_table->probe_interval) && |
| (rate_ctrl->hw_maxretry_pktcnt >= 1)) { |
| rate = next_rate; |
| rate_ctrl->probe_rate = rate; |
| rate_ctrl->probe_time = now_msec; |
| rate_ctrl->hw_maxretry_pktcnt = 0; |
| *is_probing = TRUE; |
| } |
| } |
| |
| /* |
| * Make sure rate is not higher than the allowed maximum. |
| * We should also enforce the min, but I suspect the min is |
| * normally 1 rather than 0 because of the rate 9 vs 6 issue |
| * in the old code. |
| */ |
| if (rate > (rate_ctrl->rate_table_size - 1)) |
| rate = rate_ctrl->rate_table_size - 1; |
| |
| ASSERT((rate_table->info[rate].valid && !ath_rc_priv->single_stream) || |
| (rate_table->info[rate].valid_single_stream && |
| ath_rc_priv->single_stream)); |
| |
| return rate; |
| } |
| |
| static void ath_rc_rate_set_series(const struct ath_rate_table *rate_table , |
| struct ath_rc_series *series, |
| u8 tries, |
| u8 rix, |
| int rtsctsenable) |
| { |
| series->tries = tries; |
| series->flags = (rtsctsenable ? ATH_RC_RTSCTS_FLAG : 0) | |
| (WLAN_RC_PHY_DS(rate_table->info[rix].phy) ? |
| ATH_RC_DS_FLAG : 0) | |
| (WLAN_RC_PHY_40(rate_table->info[rix].phy) ? |
| ATH_RC_CW40_FLAG : 0) | |
| (WLAN_RC_PHY_SGI(rate_table->info[rix].phy) ? |
| ATH_RC_SGI_FLAG : 0); |
| |
| series->rix = rate_table->info[rix].base_index; |
| series->max_4ms_framelen = rate_table->info[rix].max_4ms_framelen; |
| } |
| |
| static u8 ath_rc_rate_getidx(struct ath_softc *sc, |
| struct ath_rate_node *ath_rc_priv, |
| const struct ath_rate_table *rate_table, |
| u8 rix, u16 stepdown, |
| u16 min_rate) |
| { |
| u32 j; |
| u8 nextindex; |
| struct ath_tx_ratectrl *rate_ctrl = |
| (struct ath_tx_ratectrl *)(ath_rc_priv); |
| |
| if (min_rate) { |
| for (j = RATE_TABLE_SIZE; j > 0; j--) { |
| if (ath_rc_get_nextlowervalid_txrate(rate_table, |
| rate_ctrl, rix, &nextindex)) |
| rix = nextindex; |
| else |
| break; |
| } |
| } else { |
| for (j = stepdown; j > 0; j--) { |
| if (ath_rc_get_nextlowervalid_txrate(rate_table, |
| rate_ctrl, rix, &nextindex)) |
| rix = nextindex; |
| else |
| break; |
| } |
| } |
| return rix; |
| } |
| |
| static void ath_rc_ratefind(struct ath_softc *sc, |
| struct ath_rate_node *ath_rc_priv, |
| int num_tries, int num_rates, unsigned int rcflag, |
| struct ath_rc_series series[], int *is_probe, |
| int is_retry) |
| { |
| u8 try_per_rate = 0, i = 0, rix, nrix; |
| struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc; |
| struct ath_rate_table *rate_table; |
| |
| rate_table = |
| (struct ath_rate_table *)asc->hw_rate_table[sc->sc_curmode]; |
| rix = ath_rc_ratefind_ht(sc, ath_rc_priv, rate_table, |
| (rcflag & ATH_RC_PROBE_ALLOWED) ? 1 : 0, |
| is_probe, is_retry); |
| nrix = rix; |
| |
| if ((rcflag & ATH_RC_PROBE_ALLOWED) && (*is_probe)) { |
| /* set one try for probe rates. For the |
| * probes don't enable rts */ |
| ath_rc_rate_set_series(rate_table, |
| &series[i++], 1, nrix, FALSE); |
| |
| try_per_rate = (num_tries/num_rates); |
| /* Get the next tried/allowed rate. No RTS for the next series |
| * after the probe rate |
| */ |
| nrix = ath_rc_rate_getidx(sc, |
| ath_rc_priv, rate_table, nrix, 1, FALSE); |
| ath_rc_rate_set_series(rate_table, |
| &series[i++], try_per_rate, nrix, 0); |
| } else { |
| try_per_rate = (num_tries/num_rates); |
| /* Set the choosen rate. No RTS for first series entry. */ |
| ath_rc_rate_set_series(rate_table, |
| &series[i++], try_per_rate, nrix, FALSE); |
| } |
| |
| /* Fill in the other rates for multirate retry */ |
| for ( ; i < num_rates; i++) { |
| u8 try_num; |
| u8 min_rate; |
| |
| try_num = ((i + 1) == num_rates) ? |
| num_tries - (try_per_rate * i) : try_per_rate ; |
| min_rate = (((i + 1) == num_rates) && |
| (rcflag & ATH_RC_MINRATE_LASTRATE)) ? 1 : 0; |
| |
| nrix = ath_rc_rate_getidx(sc, ath_rc_priv, |
| rate_table, nrix, 1, min_rate); |
| /* All other rates in the series have RTS enabled */ |
| ath_rc_rate_set_series(rate_table, |
| &series[i], try_num, nrix, TRUE); |
| } |
| |
| /* |
| * NB:Change rate series to enable aggregation when operating |
| * at lower MCS rates. When first rate in series is MCS2 |
| * in HT40 @ 2.4GHz, series should look like: |
| * |
| * {MCS2, MCS1, MCS0, MCS0}. |
| * |
| * When first rate in series is MCS3 in HT20 @ 2.4GHz, series should |
| * look like: |
| * |
| * {MCS3, MCS2, MCS1, MCS1} |
| * |
| * So, set fourth rate in series to be same as third one for |
| * above conditions. |
| */ |
| if ((sc->sc_curmode == ATH9K_MODE_11NG_HT20) || |
| (sc->sc_curmode == ATH9K_MODE_11NG_HT40PLUS) || |
| (sc->sc_curmode == ATH9K_MODE_11NG_HT40MINUS)) { |
| u8 dot11rate = rate_table->info[rix].dot11rate; |
| u8 phy = rate_table->info[rix].phy; |
| if (i == 4 && |
| ((dot11rate == 2 && phy == WLAN_RC_PHY_HT_40_SS) || |
| (dot11rate == 3 && phy == WLAN_RC_PHY_HT_20_SS))) { |
| series[3].rix = series[2].rix; |
| series[3].flags = series[2].flags; |
| series[3].max_4ms_framelen = series[2].max_4ms_framelen; |
| } |
| } |
| } |
| |
| /* |
| * Return the Tx rate series. |
| */ |
| static void ath_rate_findrate(struct ath_softc *sc, |
| struct ath_rate_node *ath_rc_priv, |
| int num_tries, |
| int num_rates, |
| unsigned int rcflag, |
| struct ath_rc_series series[], |
| int *is_probe, |
| int is_retry) |
| { |
| struct ath_vap *avp = ath_rc_priv->avp; |
| |
| DPRINTF(sc, ATH_DBG_RATE, "%s\n", __func__); |
| |
| if (!num_rates || !num_tries) |
| return; |
| |
| if (avp->av_config.av_fixed_rateset == IEEE80211_FIXED_RATE_NONE) { |
| ath_rc_ratefind(sc, ath_rc_priv, num_tries, num_rates, |
| rcflag, series, is_probe, is_retry); |
| } else { |
| /* Fixed rate */ |
| int idx; |
| u8 flags; |
| u32 rix; |
| struct ath_rate_softc *asc = ath_rc_priv->asc; |
| struct ath_rate_table *rate_table; |
| |
| rate_table = (struct ath_rate_table *) |
| asc->hw_rate_table[sc->sc_curmode]; |
| |
| for (idx = 0; idx < 4; idx++) { |
| unsigned int mcs; |
| u8 series_rix = 0; |
| |
| series[idx].tries = IEEE80211_RATE_IDX_ENTRY( |
| avp->av_config.av_fixed_retryset, idx); |
| |
| mcs = IEEE80211_RATE_IDX_ENTRY( |
| avp->av_config.av_fixed_rateset, idx); |
| |
| if (idx == 3 && (mcs & 0xf0) == 0x70) |
| mcs = (mcs & ~0xf0)|0x80; |
| |
| if (!(mcs & 0x80)) |
| flags = 0; |
| else |
| flags = ((ath_rc_priv->ht_cap & |
| WLAN_RC_DS_FLAG) ? |
| ATH_RC_DS_FLAG : 0) | |
| ((ath_rc_priv->ht_cap & |
| WLAN_RC_40_FLAG) ? |
| ATH_RC_CW40_FLAG : 0) | |
| ((ath_rc_priv->ht_cap & |
| WLAN_RC_SGI_FLAG) ? |
| ((ath_rc_priv->ht_cap & |
| WLAN_RC_40_FLAG) ? |
| ATH_RC_SGI_FLAG : 0) : 0); |
| |
| series[idx].rix = sc->sc_rixmap[mcs]; |
| series_rix = series[idx].rix; |
| |
| /* XXX: Give me some cleanup love */ |
| if ((flags & ATH_RC_CW40_FLAG) && |
| (flags & ATH_RC_SGI_FLAG)) |
| rix = rate_table->info[series_rix].ht_index; |
| else if (flags & ATH_RC_SGI_FLAG) |
| rix = rate_table->info[series_rix].sgi_index; |
| else if (flags & ATH_RC_CW40_FLAG) |
| rix = rate_table->info[series_rix].cw40index; |
| else |
| rix = rate_table->info[series_rix].base_index; |
| series[idx].max_4ms_framelen = |
| rate_table->info[rix].max_4ms_framelen; |
| series[idx].flags = flags; |
| } |
| } |
| } |
| |
| static void ath_rc_update_ht(struct ath_softc *sc, |
| struct ath_rate_node *ath_rc_priv, |
| struct ath_tx_info_priv *info_priv, |
| int tx_rate, int xretries, int retries) |
| { |
| struct ath_tx_ratectrl *rate_ctrl; |
| u32 now_msec = jiffies_to_msecs(jiffies); |
| int state_change = FALSE, rate, count; |
| u8 last_per; |
| struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc; |
| struct ath_rate_table *rate_table = |
| (struct ath_rate_table *)asc->hw_rate_table[sc->sc_curmode]; |
| |
| static u32 nretry_to_per_lookup[10] = { |
| 100 * 0 / 1, |
| 100 * 1 / 4, |
| 100 * 1 / 2, |
| 100 * 3 / 4, |
| 100 * 4 / 5, |
| 100 * 5 / 6, |
| 100 * 6 / 7, |
| 100 * 7 / 8, |
| 100 * 8 / 9, |
| 100 * 9 / 10 |
| }; |
| |
| if (!ath_rc_priv) |
| return; |
| |
| rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv); |
| |
| ASSERT(tx_rate >= 0); |
| if (tx_rate < 0) |
| return; |
| |
| /* To compensate for some imbalance between ctrl and ext. channel */ |
| |
| if (WLAN_RC_PHY_40(rate_table->info[tx_rate].phy)) |
| info_priv->tx.ts_rssi = |
| info_priv->tx.ts_rssi < 3 ? 0 : |
| info_priv->tx.ts_rssi - 3; |
| |
| last_per = rate_ctrl->state[tx_rate].per; |
| |
| if (xretries) { |
| /* Update the PER. */ |
| if (xretries == 1) { |
| rate_ctrl->state[tx_rate].per += 30; |
| if (rate_ctrl->state[tx_rate].per > 100) |
| rate_ctrl->state[tx_rate].per = 100; |
| } else { |
| /* xretries == 2 */ |
| count = sizeof(nretry_to_per_lookup) / |
| sizeof(nretry_to_per_lookup[0]); |
| if (retries >= count) |
| retries = count - 1; |
| /* new_PER = 7/8*old_PER + 1/8*(currentPER) */ |
| rate_ctrl->state[tx_rate].per = |
| (u8)(rate_ctrl->state[tx_rate].per - |
| (rate_ctrl->state[tx_rate].per >> 3) + |
| ((100) >> 3)); |
| } |
| |
| /* xretries == 1 or 2 */ |
| |
| if (rate_ctrl->probe_rate == tx_rate) |
| rate_ctrl->probe_rate = 0; |
| |
| } else { /* xretries == 0 */ |
| /* Update the PER. */ |
| /* Make sure it doesn't index out of array's bounds. */ |
| count = sizeof(nretry_to_per_lookup) / |
| sizeof(nretry_to_per_lookup[0]); |
| if (retries >= count) |
| retries = count - 1; |
| if (info_priv->n_bad_frames) { |
| /* new_PER = 7/8*old_PER + 1/8*(currentPER) |
| * Assuming that n_frames is not 0. The current PER |
| * from the retries is 100 * retries / (retries+1), |
| * since the first retries attempts failed, and the |
| * next one worked. For the one that worked, |
| * n_bad_frames subframes out of n_frames wored, |
| * so the PER for that part is |
| * 100 * n_bad_frames / n_frames, and it contributes |
| * 100 * n_bad_frames / (n_frames * (retries+1)) to |
| * the above PER. The expression below is a |
| * simplified version of the sum of these two terms. |
| */ |
| if (info_priv->n_frames > 0) |
| rate_ctrl->state[tx_rate].per |
| = (u8) |
| (rate_ctrl->state[tx_rate].per - |
| (rate_ctrl->state[tx_rate].per >> 3) + |
| ((100*(retries*info_priv->n_frames + |
| info_priv->n_bad_frames) / |
| (info_priv->n_frames * |
| (retries+1))) >> 3)); |
| } else { |
| /* new_PER = 7/8*old_PER + 1/8*(currentPER) */ |
| |
| rate_ctrl->state[tx_rate].per = (u8) |
| (rate_ctrl->state[tx_rate].per - |
| (rate_ctrl->state[tx_rate].per >> 3) + |
| (nretry_to_per_lookup[retries] >> 3)); |
| } |
| |
| rate_ctrl->rssi_last_prev2 = rate_ctrl->rssi_last_prev; |
| rate_ctrl->rssi_last_prev = rate_ctrl->rssi_last; |
| rate_ctrl->rssi_last = info_priv->tx.ts_rssi; |
| rate_ctrl->rssi_time = now_msec; |
| |
| /* |
| * If we got at most one retry then increase the max rate if |
| * this was a probe. Otherwise, ignore the probe. |
| */ |
| |
| if (rate_ctrl->probe_rate && rate_ctrl->probe_rate == tx_rate) { |
| if (retries > 0 || 2 * info_priv->n_bad_frames > |
| info_priv->n_frames) { |
| /* |
| * Since we probed with just a single attempt, |
| * any retries means the probe failed. Also, |
| * if the attempt worked, but more than half |
| * the subframes were bad then also consider |
| * the probe a failure. |
| */ |
| rate_ctrl->probe_rate = 0; |
| } else { |
| u8 probe_rate = 0; |
| |
| rate_ctrl->rate_max_phy = rate_ctrl->probe_rate; |
| probe_rate = rate_ctrl->probe_rate; |
| |
| if (rate_ctrl->state[probe_rate].per > 30) |
| rate_ctrl->state[probe_rate].per = 20; |
| |
| rate_ctrl->probe_rate = 0; |
| |
| /* |
| * Since this probe succeeded, we allow the next |
| * probe twice as soon. This allows the maxRate |
| * to move up faster if the probes are |
| * succesful. |
| */ |
| rate_ctrl->probe_time = now_msec - |
| rate_table->probe_interval / 2; |
| } |
| } |
| |
| if (retries > 0) { |
| /* |
| * Don't update anything. We don't know if |
| * this was because of collisions or poor signal. |
| * |
| * Later: if rssi_ack is close to |
| * rate_ctrl->state[txRate].rssi_thres and we see lots |
| * of retries, then we could increase |
| * rate_ctrl->state[txRate].rssi_thres. |
| */ |
| rate_ctrl->hw_maxretry_pktcnt = 0; |
| } else { |
| /* |
| * It worked with no retries. First ignore bogus (small) |
| * rssi_ack values. |
| */ |
| if (tx_rate == rate_ctrl->rate_max_phy && |
| rate_ctrl->hw_maxretry_pktcnt < 255) { |
| rate_ctrl->hw_maxretry_pktcnt++; |
| } |
| |
| if (info_priv->tx.ts_rssi >= |
| rate_table->info[tx_rate].rssi_ack_validmin) { |
| /* Average the rssi */ |
| if (tx_rate != rate_ctrl->rssi_sum_rate) { |
| rate_ctrl->rssi_sum_rate = tx_rate; |
| rate_ctrl->rssi_sum = |
| rate_ctrl->rssi_sum_cnt = 0; |
| } |
| |
| rate_ctrl->rssi_sum += info_priv->tx.ts_rssi; |
| rate_ctrl->rssi_sum_cnt++; |
| |
| if (rate_ctrl->rssi_sum_cnt > 4) { |
| int32_t rssi_ackAvg = |
| (rate_ctrl->rssi_sum + 2) / 4; |
| int8_t rssi_thres = |
| rate_ctrl->state[tx_rate]. |
| rssi_thres; |
| int8_t rssi_ack_vmin = |
| rate_table->info[tx_rate]. |
| rssi_ack_validmin; |
| |
| rate_ctrl->rssi_sum = |
| rate_ctrl->rssi_sum_cnt = 0; |
| |
| /* Now reduce the current |
| * rssi threshold. */ |
| if ((rssi_ackAvg < rssi_thres + 2) && |
| (rssi_thres > rssi_ack_vmin)) { |
| rate_ctrl->state[tx_rate]. |
| rssi_thres--; |
| } |
| |
| state_change = TRUE; |
| } |
| } |
| } |
| } |
| |
| /* For all cases */ |
| |
| /* |
| * If this rate looks bad (high PER) then stop using it for |
| * a while (except if we are probing). |
| */ |
| if (rate_ctrl->state[tx_rate].per >= 55 && tx_rate > 0 && |
| rate_table->info[tx_rate].ratekbps <= |
| rate_table->info[rate_ctrl->rate_max_phy].ratekbps) { |
| ath_rc_get_nextlowervalid_txrate(rate_table, rate_ctrl, |
| (u8) tx_rate, &rate_ctrl->rate_max_phy); |
| |
| /* Don't probe for a little while. */ |
| rate_ctrl->probe_time = now_msec; |
| } |
| |
| if (state_change) { |
| /* |
| * Make sure the rates above this have higher rssi thresholds. |
| * (Note: Monotonicity is kept within the OFDM rates and |
| * within the CCK rates. However, no adjustment is |
| * made to keep the rssi thresholds monotonically |
| * increasing between the CCK and OFDM rates.) |
| */ |
| for (rate = tx_rate; rate < |
| rate_ctrl->rate_table_size - 1; rate++) { |
| if (rate_table->info[rate+1].phy != |
| rate_table->info[tx_rate].phy) |
| break; |
| |
| if (rate_ctrl->state[rate].rssi_thres + |
| rate_table->info[rate].rssi_ack_deltamin > |
| rate_ctrl->state[rate+1].rssi_thres) { |
| rate_ctrl->state[rate+1].rssi_thres = |
| rate_ctrl->state[rate]. |
| rssi_thres + |
| rate_table->info[rate]. |
| rssi_ack_deltamin; |
| } |
| } |
| |
| /* Make sure the rates below this have lower rssi thresholds. */ |
| for (rate = tx_rate - 1; rate >= 0; rate--) { |
| if (rate_table->info[rate].phy != |
| rate_table->info[tx_rate].phy) |
| break; |
| |
| if (rate_ctrl->state[rate].rssi_thres + |
| rate_table->info[rate].rssi_ack_deltamin > |
| rate_ctrl->state[rate+1].rssi_thres) { |
| if (rate_ctrl->state[rate+1].rssi_thres < |
| rate_table->info[rate]. |
| rssi_ack_deltamin) |
| rate_ctrl->state[rate].rssi_thres = 0; |
| else { |
| rate_ctrl->state[rate].rssi_thres = |
| rate_ctrl->state[rate+1]. |
| rssi_thres - |
| rate_table->info[rate]. |
| rssi_ack_deltamin; |
| } |
| |
| if (rate_ctrl->state[rate].rssi_thres < |
| rate_table->info[rate]. |
| rssi_ack_validmin) { |
| rate_ctrl->state[rate].rssi_thres = |
| rate_table->info[rate]. |
| rssi_ack_validmin; |
| } |
| } |
| } |
| } |
| |
| /* Make sure the rates below this have lower PER */ |
| /* Monotonicity is kept only for rates below the current rate. */ |
| if (rate_ctrl->state[tx_rate].per < last_per) { |
| for (rate = tx_rate - 1; rate >= 0; rate--) { |
| if (rate_table->info[rate].phy != |
| rate_table->info[tx_rate].phy) |
| break; |
| |
| if (rate_ctrl->state[rate].per > |
| rate_ctrl->state[rate+1].per) { |
| rate_ctrl->state[rate].per = |
| rate_ctrl->state[rate+1].per; |
| } |
| } |
| } |
| |
| /* Maintain monotonicity for rates above the current rate */ |
| for (rate = tx_rate; rate < rate_ctrl->rate_table_size - 1; rate++) { |
| if (rate_ctrl->state[rate+1].per < rate_ctrl->state[rate].per) |
| rate_ctrl->state[rate+1].per = |
| rate_ctrl->state[rate].per; |
| } |
| |
| /* Every so often, we reduce the thresholds and |
| * PER (different for CCK and OFDM). */ |
| if (now_msec - rate_ctrl->rssi_down_time >= |
| rate_table->rssi_reduce_interval) { |
| |
| for (rate = 0; rate < rate_ctrl->rate_table_size; rate++) { |
| if (rate_ctrl->state[rate].rssi_thres > |
| rate_table->info[rate].rssi_ack_validmin) |
| rate_ctrl->state[rate].rssi_thres -= 1; |
| } |
| rate_ctrl->rssi_down_time = now_msec; |
| } |
| |
| /* Every so often, we reduce the thresholds |
| * and PER (different for CCK and OFDM). */ |
| if (now_msec - rate_ctrl->per_down_time >= |
| rate_table->rssi_reduce_interval) { |
| for (rate = 0; rate < rate_ctrl->rate_table_size; rate++) { |
| rate_ctrl->state[rate].per = |
| 7 * rate_ctrl->state[rate].per / 8; |
| } |
| |
| rate_ctrl->per_down_time = now_msec; |
| } |
| } |
| |
| /* |
| * This routine is called in rate control callback tx_status() to give |
| * the status of previous frames. |
| */ |
| static void ath_rc_update(struct ath_softc *sc, |
| struct ath_rate_node *ath_rc_priv, |
| struct ath_tx_info_priv *info_priv, int final_ts_idx, |
| int xretries, int long_retry) |
| { |
| struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc; |
| struct ath_rate_table *rate_table; |
| struct ath_tx_ratectrl *rate_ctrl; |
| struct ath_rc_series rcs[4]; |
| u8 flags; |
| u32 series = 0, rix; |
| |
| memcpy(rcs, info_priv->rcs, 4 * sizeof(rcs[0])); |
| rate_table = (struct ath_rate_table *) |
| asc->hw_rate_table[sc->sc_curmode]; |
| rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv); |
| ASSERT(rcs[0].tries != 0); |
| |
| /* |
| * If the first rate is not the final index, there |
| * are intermediate rate failures to be processed. |
| */ |
| if (final_ts_idx != 0) { |
| /* Process intermediate rates that failed.*/ |
| for (series = 0; series < final_ts_idx ; series++) { |
| if (rcs[series].tries != 0) { |
| flags = rcs[series].flags; |
| /* If HT40 and we have switched mode from |
| * 40 to 20 => don't update */ |
| if ((flags & ATH_RC_CW40_FLAG) && |
| (rate_ctrl->rc_phy_mode != |
| (flags & ATH_RC_CW40_FLAG))) |
| return; |
| if ((flags & ATH_RC_CW40_FLAG) && |
| (flags & ATH_RC_SGI_FLAG)) |
| rix = rate_table->info[ |
| rcs[series].rix].ht_index; |
| else if (flags & ATH_RC_SGI_FLAG) |
| rix = rate_table->info[ |
| rcs[series].rix].sgi_index; |
| else if (flags & ATH_RC_CW40_FLAG) |
| rix = rate_table->info[ |
| rcs[series].rix].cw40index; |
| else |
| rix = rate_table->info[ |
| rcs[series].rix].base_index; |
| ath_rc_update_ht(sc, ath_rc_priv, |
| info_priv, rix, |
| xretries ? 1 : 2, |
| rcs[series].tries); |
| } |
| } |
| } else { |
| /* |
| * Handle the special case of MIMO PS burst, where the second |
| * aggregate is sent out with only one rate and one try. |
| * Treating it as an excessive retry penalizes the rate |
| * inordinately. |
| */ |
| if (rcs[0].tries == 1 && xretries == 1) |
| xretries = 2; |
| } |
| |
| flags = rcs[series].flags; |
| /* If HT40 and we have switched mode from 40 to 20 => don't update */ |
| if ((flags & ATH_RC_CW40_FLAG) && |
| (rate_ctrl->rc_phy_mode != (flags & ATH_RC_CW40_FLAG))) |
| return; |
| |
| if ((flags & ATH_RC_CW40_FLAG) && (flags & ATH_RC_SGI_FLAG)) |
| rix = rate_table->info[rcs[series].rix].ht_index; |
| else if (flags & ATH_RC_SGI_FLAG) |
| rix = rate_table->info[rcs[series].rix].sgi_index; |
| else if (flags & ATH_RC_CW40_FLAG) |
| rix = rate_table->info[rcs[series].rix].cw40index; |
| else |
| rix = rate_table->info[rcs[series].rix].base_index; |
| |
| ath_rc_update_ht(sc, ath_rc_priv, info_priv, rix, |
| xretries, long_retry); |
| } |
| |
| /* |
| * Process a tx descriptor for a completed transmit (success or failure). |
| */ |
| static void ath_rate_tx_complete(struct ath_softc *sc, |
| struct ath_node *an, |
| struct ath_rate_node *rc_priv, |
| struct ath_tx_info_priv *info_priv) |
| { |
| int final_ts_idx = info_priv->tx.ts_rateindex; |
| int tx_status = 0, is_underrun = 0; |
| struct ath_vap *avp; |
| |
| avp = rc_priv->avp; |
| if ((avp->av_config.av_fixed_rateset != IEEE80211_FIXED_RATE_NONE) || |
| (info_priv->tx.ts_status & ATH9K_TXERR_FILT)) |
| return; |
| |
| if (info_priv->tx.ts_rssi > 0) { |
| ATH_RSSI_LPF(an->an_chainmask_sel.tx_avgrssi, |
| info_priv->tx.ts_rssi); |
| } |
| |
| /* |
| * If underrun error is seen assume it as an excessive retry only |
| * if prefetch trigger level have reached the max (0x3f for 5416) |
| * Adjust the long retry as if the frame was tried ATH_11N_TXMAXTRY |
| * times. This affects how ratectrl updates PER for the failed rate. |
| */ |
| if (info_priv->tx.ts_flags & |
| (ATH9K_TX_DATA_UNDERRUN | ATH9K_TX_DELIM_UNDERRUN) && |
| ((sc->sc_ah->ah_txTrigLevel) >= tx_triglevel_max)) { |
| tx_status = 1; |
| is_underrun = 1; |
| } |
| |
| if ((info_priv->tx.ts_status & ATH9K_TXERR_XRETRY) || |
| (info_priv->tx.ts_status & ATH9K_TXERR_FIFO)) |
| tx_status = 1; |
| |
| ath_rc_update(sc, rc_priv, info_priv, final_ts_idx, tx_status, |
| (is_underrun) ? ATH_11N_TXMAXTRY : |
| info_priv->tx.ts_longretry); |
| } |
| |
| /* |
| * Update the SIB's rate control information |
| * |
| * This should be called when the supported rates change |
| * (e.g. SME operation, wireless mode change) |
| * |
| * It will determine which rates are valid for use. |
| */ |
| static void ath_rc_sib_update(struct ath_softc *sc, |
| struct ath_rate_node *ath_rc_priv, |
| u32 capflag, int keep_state, |
| struct ath_rateset *negotiated_rates, |
| struct ath_rateset *negotiated_htrates) |
| { |
| struct ath_rate_table *rate_table = NULL; |
| struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc; |
| struct ath_rateset *rateset = negotiated_rates; |
| u8 *ht_mcs = (u8 *)negotiated_htrates; |
| struct ath_tx_ratectrl *rate_ctrl = |
| (struct ath_tx_ratectrl *)ath_rc_priv; |
| u8 i, j, k, hi = 0, hthi = 0; |
| |
| rate_table = (struct ath_rate_table *) |
| asc->hw_rate_table[sc->sc_curmode]; |
| |
| /* Initial rate table size. Will change depending |
| * on the working rate set */ |
| rate_ctrl->rate_table_size = MAX_TX_RATE_TBL; |
| |
| /* Initialize thresholds according to the global rate table */ |
| for (i = 0 ; (i < rate_ctrl->rate_table_size) && (!keep_state); i++) { |
| rate_ctrl->state[i].rssi_thres = |
| rate_table->info[i].rssi_ack_validmin; |
| rate_ctrl->state[i].per = 0; |
| } |
| |
| /* Determine the valid rates */ |
| ath_rc_init_valid_txmask(rate_ctrl); |
| |
| for (i = 0; i < WLAN_RC_PHY_MAX; i++) { |
| for (j = 0; j < MAX_TX_RATE_PHY; j++) |
| rate_ctrl->valid_phy_rateidx[i][j] = 0; |
| rate_ctrl->valid_phy_ratecnt[i] = 0; |
| } |
| rate_ctrl->rc_phy_mode = (capflag & WLAN_RC_40_FLAG); |
| |
| /* Set stream capability */ |
| ath_rc_priv->single_stream = (capflag & WLAN_RC_DS_FLAG) ? 0 : 1; |
| |
| if (!rateset->rs_nrates) { |
| /* No working rate, just initialize valid rates */ |
| hi = ath_rc_sib_init_validrates(ath_rc_priv, rate_table, |
| capflag); |
| } else { |
| /* Use intersection of working rates and valid rates */ |
| hi = ath_rc_sib_setvalid_rates(ath_rc_priv, rate_table, |
| rateset, capflag); |
| if (capflag & WLAN_RC_HT_FLAG) { |
| hthi = ath_rc_sib_setvalid_htrates(ath_rc_priv, |
| rate_table, |
| ht_mcs, |
| capflag); |
| } |
| hi = A_MAX(hi, hthi); |
| } |
| |
| rate_ctrl->rate_table_size = hi + 1; |
| rate_ctrl->rate_max_phy = 0; |
| ASSERT(rate_ctrl->rate_table_size <= MAX_TX_RATE_TBL); |
| |
| for (i = 0, k = 0; i < WLAN_RC_PHY_MAX; i++) { |
| for (j = 0; j < rate_ctrl->valid_phy_ratecnt[i]; j++) { |
| rate_ctrl->valid_rate_index[k++] = |
| rate_ctrl->valid_phy_rateidx[i][j]; |
| } |
| |
| if (!ath_rc_valid_phyrate(i, rate_table->initial_ratemax, TRUE) |
| || !rate_ctrl->valid_phy_ratecnt[i]) |
| continue; |
| |
| rate_ctrl->rate_max_phy = rate_ctrl->valid_phy_rateidx[i][j-1]; |
| } |
| ASSERT(rate_ctrl->rate_table_size <= MAX_TX_RATE_TBL); |
| ASSERT(k <= MAX_TX_RATE_TBL); |
| |
| rate_ctrl->max_valid_rate = k; |
| /* |
| * Some third party vendors don't send the supported rate series in |
| * order. So sorting to make sure its in order, otherwise our RateFind |
| * Algo will select wrong rates |
| */ |
| ath_rc_sort_validrates(rate_table, rate_ctrl); |
| rate_ctrl->rate_max_phy = rate_ctrl->valid_rate_index[k-4]; |
| } |
| |
| /* |
| * Update rate-control state on station associate/reassociate. |
| */ |
| static int ath_rate_newassoc(struct ath_softc *sc, |
| struct ath_rate_node *ath_rc_priv, |
| unsigned int capflag, |
| struct ath_rateset *negotiated_rates, |
| struct ath_rateset *negotiated_htrates) |
| { |
| |
| |
| ath_rc_priv->ht_cap = |
| ((capflag & ATH_RC_DS_FLAG) ? WLAN_RC_DS_FLAG : 0) | |
| ((capflag & ATH_RC_SGI_FLAG) ? WLAN_RC_SGI_FLAG : 0) | |
| ((capflag & ATH_RC_HT_FLAG) ? WLAN_RC_HT_FLAG : 0) | |
| ((capflag & ATH_RC_CW40_FLAG) ? WLAN_RC_40_FLAG : 0); |
| |
| ath_rc_sib_update(sc, ath_rc_priv, ath_rc_priv->ht_cap, 0, |
| negotiated_rates, negotiated_htrates); |
| |
| return 0; |
| } |
| |
| /* |
| * This routine is called to initialize the rate control parameters |
| * in the SIB. It is called initially during system initialization |
| * or when a station is associated with the AP. |
| */ |
| static void ath_rc_sib_init(struct ath_rate_node *ath_rc_priv) |
| { |
| struct ath_tx_ratectrl *rate_ctrl; |
| |
| rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv); |
| rate_ctrl->rssi_down_time = jiffies_to_msecs(jiffies); |
| } |
| |
| |
| static void ath_setup_rates(struct ath_softc *sc, |
| struct ieee80211_supported_band *sband, |
| struct ieee80211_sta *sta, |
| struct ath_rate_node *rc_priv) |
| |
| { |
| int i, j = 0; |
| |
| DPRINTF(sc, ATH_DBG_RATE, "%s\n", __func__); |
| |
| for (i = 0; i < sband->n_bitrates; i++) { |
| if (sta->supp_rates[sband->band] & BIT(i)) { |
| rc_priv->neg_rates.rs_rates[j] |
| = (sband->bitrates[i].bitrate * 2) / 10; |
| j++; |
| } |
| } |
| rc_priv->neg_rates.rs_nrates = j; |
| } |
| |
| void ath_rc_node_update(struct ieee80211_hw *hw, struct ath_rate_node *rc_priv) |
| { |
| struct ath_softc *sc = hw->priv; |
| u32 capflag = 0; |
| |
| if (hw->conf.ht_cap.ht_supported) { |
| capflag |= ATH_RC_HT_FLAG | ATH_RC_DS_FLAG; |
| if (sc->sc_ht_info.tx_chan_width == ATH9K_HT_MACMODE_2040) |
| capflag |= ATH_RC_CW40_FLAG; |
| } |
| |
| ath_rate_newassoc(sc, rc_priv, capflag, |
| &rc_priv->neg_rates, |
| &rc_priv->neg_ht_rates); |
| |
| } |
| |
| /* Rate Control callbacks */ |
| static void ath_tx_status(void *priv, struct ieee80211_supported_band *sband, |
| struct ieee80211_sta *sta, void *priv_sta, |
| struct sk_buff *skb) |
| { |
| struct ath_softc *sc = priv; |
| struct ath_tx_info_priv *tx_info_priv; |
| struct ath_node *an; |
| struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); |
| struct ieee80211_hdr *hdr; |
| __le16 fc; |
| |
| hdr = (struct ieee80211_hdr *)skb->data; |
| fc = hdr->frame_control; |
| tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0]; |
| |
| spin_lock_bh(&sc->node_lock); |
| an = ath_node_find(sc, hdr->addr1); |
| spin_unlock_bh(&sc->node_lock); |
| |
| if (!an || !priv_sta || !ieee80211_is_data(fc)) { |
| if (tx_info->driver_data[0] != NULL) { |
| kfree(tx_info->driver_data[0]); |
| tx_info->driver_data[0] = NULL; |
| } |
| return; |
| } |
| if (tx_info->driver_data[0] != NULL) { |
| ath_rate_tx_complete(sc, an, priv_sta, tx_info_priv); |
| kfree(tx_info->driver_data[0]); |
| tx_info->driver_data[0] = NULL; |
| } |
| } |
| |
| static void ath_tx_aggr_resp(struct ath_softc *sc, |
| struct ieee80211_supported_band *sband, |
| struct ieee80211_sta *sta, |
| struct ath_node *an, |
| u8 tidno) |
| { |
| struct ath_atx_tid *txtid; |
| u16 buffersize = 0; |
| int state; |
| struct sta_info *si; |
| |
| if (!(sc->sc_flags & SC_OP_TXAGGR)) |
| return; |
| |
| txtid = ATH_AN_2_TID(an, tidno); |
| if (!txtid->paused) |
| return; |
| |
| /* |
| * XXX: This is entirely busted, we aren't supposed to |
| * access the sta from here because it's internal |
| * to mac80211, and looking at the state without |
| * locking is wrong too. |
| */ |
| si = container_of(sta, struct sta_info, sta); |
| buffersize = IEEE80211_MIN_AMPDU_BUF << |
| sband->ht_cap.ampdu_factor; /* FIXME */ |
| state = si->ampdu_mlme.tid_state_tx[tidno]; |
| |
| if (state & HT_ADDBA_RECEIVED_MSK) { |
| txtid->addba_exchangecomplete = 1; |
| txtid->addba_exchangeinprogress = 0; |
| txtid->baw_size = buffersize; |
| |
| DPRINTF(sc, ATH_DBG_AGGR, |
| "%s: Resuming tid, buffersize: %d\n", |
| __func__, |
| buffersize); |
| |
| ath_tx_resume_tid(sc, txtid); |
| } |
| } |
| |
| static void ath_get_rate(void *priv, struct ieee80211_supported_band *sband, |
| struct ieee80211_sta *sta, void *priv_sta, |
| struct sk_buff *skb, struct rate_selection *sel) |
| { |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; |
| struct ath_softc *sc = priv; |
| struct ieee80211_hw *hw = sc->hw; |
| struct ath_tx_info_priv *tx_info_priv; |
| struct ath_rate_node *ath_rc_priv = priv_sta; |
| struct ath_node *an; |
| struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); |
| int is_probe = FALSE, chk, ret; |
| s8 lowest_idx; |
| __le16 fc = hdr->frame_control; |
| u8 *qc, tid; |
| |
| DPRINTF(sc, ATH_DBG_RATE, "%s\n", __func__); |
| |
| /* allocate driver private area of tx_info */ |
| tx_info->driver_data[0] = kzalloc(sizeof(*tx_info_priv), GFP_ATOMIC); |
| ASSERT(tx_info->driver_data[0] != NULL); |
| tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0]; |
| |
| lowest_idx = rate_lowest_index(sband, sta); |
| tx_info_priv->min_rate = (sband->bitrates[lowest_idx].bitrate * 2) / 10; |
| /* lowest rate for management and multicast/broadcast frames */ |
| if (!ieee80211_is_data(fc) || |
| is_multicast_ether_addr(hdr->addr1) || !sta) { |
| sel->rate_idx = lowest_idx; |
| return; |
| } |
| |
| /* Find tx rate for unicast frames */ |
| ath_rate_findrate(sc, ath_rc_priv, |
| ATH_11N_TXMAXTRY, 4, |
| ATH_RC_PROBE_ALLOWED, |
| tx_info_priv->rcs, |
| &is_probe, |
| false); |
| if (is_probe) |
| sel->probe_idx = ath_rc_priv->tx_ratectrl.probe_rate; |
| |
| /* Ratecontrol sometimes returns invalid rate index */ |
| if (tx_info_priv->rcs[0].rix != 0xff) |
| ath_rc_priv->prev_data_rix = tx_info_priv->rcs[0].rix; |
| else |
| tx_info_priv->rcs[0].rix = ath_rc_priv->prev_data_rix; |
| |
| sel->rate_idx = tx_info_priv->rcs[0].rix; |
| |
| /* Check if aggregation has to be enabled for this tid */ |
| |
| if (hw->conf.ht_cap.ht_supported) { |
| if (ieee80211_is_data_qos(fc)) { |
| qc = ieee80211_get_qos_ctl(hdr); |
| tid = qc[0] & 0xf; |
| |
| spin_lock_bh(&sc->node_lock); |
| an = ath_node_find(sc, hdr->addr1); |
| spin_unlock_bh(&sc->node_lock); |
| |
| if (!an) { |
| DPRINTF(sc, ATH_DBG_AGGR, |
| "%s: Node not found to " |
| "init/chk TX aggr\n", __func__); |
| return; |
| } |
| |
| chk = ath_tx_aggr_check(sc, an, tid); |
| if (chk == AGGR_REQUIRED) { |
| ret = ieee80211_start_tx_ba_session(hw, |
| hdr->addr1, tid); |
| if (ret) |
| DPRINTF(sc, ATH_DBG_AGGR, |
| "%s: Unable to start tx " |
| "aggr for: %pM\n", |
| __func__, |
| hdr->addr1); |
| else |
| DPRINTF(sc, ATH_DBG_AGGR, |
| "%s: Started tx aggr for: %pM\n", |
| __func__, |
| hdr->addr1); |
| } else if (chk == AGGR_EXCHANGE_PROGRESS) |
| ath_tx_aggr_resp(sc, sband, sta, an, tid); |
| } |
| } |
| } |
| |
| static void ath_rate_init(void *priv, struct ieee80211_supported_band *sband, |
| struct ieee80211_sta *sta, void *priv_sta) |
| { |
| struct ath_softc *sc = priv; |
| struct ath_rate_node *ath_rc_priv = priv_sta; |
| int i, j = 0; |
| |
| DPRINTF(sc, ATH_DBG_RATE, "%s\n", __func__); |
| |
| ath_setup_rates(sc, sband, sta, ath_rc_priv); |
| if (sc->hw->conf.flags & IEEE80211_CONF_SUPPORT_HT_MODE) { |
| for (i = 0; i < 77; i++) { |
| if (sc->hw->conf.ht_cap.mcs.rx_mask[i/8] & (1<<(i%8))) |
| ath_rc_priv->neg_ht_rates.rs_rates[j++] = i; |
| if (j == ATH_RATE_MAX) |
| break; |
| } |
| ath_rc_priv->neg_ht_rates.rs_nrates = j; |
| } |
| ath_rc_node_update(sc->hw, priv_sta); |
| } |
| |
| static void ath_rate_clear(void *priv) |
| { |
| return; |
| } |
| |
| static void *ath_rate_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir) |
| { |
| struct ath_softc *sc = hw->priv; |
| |
| DPRINTF(sc, ATH_DBG_RATE, "%s\n", __func__); |
| return hw->priv; |
| } |
| |
| static void ath_rate_free(void *priv) |
| { |
| return; |
| } |
| |
| static void *ath_rate_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp) |
| { |
| struct ath_softc *sc = priv; |
| struct ath_vap *avp = sc->sc_vaps[0]; |
| struct ath_rate_node *rate_priv; |
| |
| DPRINTF(sc, ATH_DBG_RATE, "%s\n", __func__); |
| |
| rate_priv = ath_rate_node_alloc(avp, sc->sc_rc, gfp); |
| if (!rate_priv) { |
| DPRINTF(sc, ATH_DBG_FATAL, |
| "%s: Unable to allocate private rc structure\n", |
| __func__); |
| return NULL; |
| } |
| ath_rc_sib_init(rate_priv); |
| |
| return rate_priv; |
| } |
| |
| static void ath_rate_free_sta(void *priv, struct ieee80211_sta *sta, |
| void *priv_sta) |
| { |
| struct ath_rate_node *rate_priv = priv_sta; |
| struct ath_softc *sc = priv; |
| |
| DPRINTF(sc, ATH_DBG_RATE, "%s", __func__); |
| ath_rate_node_free(rate_priv); |
| } |
| |
| static struct rate_control_ops ath_rate_ops = { |
| .module = NULL, |
| .name = "ath9k_rate_control", |
| .tx_status = ath_tx_status, |
| .get_rate = ath_get_rate, |
| .rate_init = ath_rate_init, |
| .clear = ath_rate_clear, |
| .alloc = ath_rate_alloc, |
| .free = ath_rate_free, |
| .alloc_sta = ath_rate_alloc_sta, |
| .free_sta = ath_rate_free_sta, |
| }; |
| |
| int ath_rate_control_register(void) |
| { |
| return ieee80211_rate_control_register(&ath_rate_ops); |
| } |
| |
| void ath_rate_control_unregister(void) |
| { |
| ieee80211_rate_control_unregister(&ath_rate_ops); |
| } |
| |