| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Cell Broadband Engine OProfile Support |
| * |
| * (C) Copyright IBM Corporation 2006 |
| * |
| * Author: David Erb (djerb@us.ibm.com) |
| * Modifications: |
| * Carl Love <carll@us.ibm.com> |
| * Maynard Johnson <maynardj@us.ibm.com> |
| */ |
| |
| #include <linux/cpufreq.h> |
| #include <linux/delay.h> |
| #include <linux/jiffies.h> |
| #include <linux/kthread.h> |
| #include <linux/oprofile.h> |
| #include <linux/percpu.h> |
| #include <linux/smp.h> |
| #include <linux/spinlock.h> |
| #include <linux/timer.h> |
| #include <asm/cell-pmu.h> |
| #include <asm/cputable.h> |
| #include <asm/firmware.h> |
| #include <asm/io.h> |
| #include <asm/oprofile_impl.h> |
| #include <asm/processor.h> |
| #include <asm/prom.h> |
| #include <asm/ptrace.h> |
| #include <asm/reg.h> |
| #include <asm/rtas.h> |
| #include <asm/cell-regs.h> |
| |
| #include "../platforms/cell/interrupt.h" |
| #include "cell/pr_util.h" |
| |
| #define PPU_PROFILING 0 |
| #define SPU_PROFILING_CYCLES 1 |
| #define SPU_PROFILING_EVENTS 2 |
| |
| #define SPU_EVENT_NUM_START 4100 |
| #define SPU_EVENT_NUM_STOP 4399 |
| #define SPU_PROFILE_EVENT_ADDR 4363 /* spu, address trace, decimal */ |
| #define SPU_PROFILE_EVENT_ADDR_MASK_A 0x146 /* sub unit set to zero */ |
| #define SPU_PROFILE_EVENT_ADDR_MASK_B 0x186 /* sub unit set to zero */ |
| |
| #define NUM_SPUS_PER_NODE 8 |
| #define SPU_CYCLES_EVENT_NUM 2 /* event number for SPU_CYCLES */ |
| |
| #define PPU_CYCLES_EVENT_NUM 1 /* event number for CYCLES */ |
| #define PPU_CYCLES_GRP_NUM 1 /* special group number for identifying |
| * PPU_CYCLES event |
| */ |
| #define CBE_COUNT_ALL_CYCLES 0x42800000 /* PPU cycle event specifier */ |
| |
| #define NUM_THREADS 2 /* number of physical threads in |
| * physical processor |
| */ |
| #define NUM_DEBUG_BUS_WORDS 4 |
| #define NUM_INPUT_BUS_WORDS 2 |
| |
| #define MAX_SPU_COUNT 0xFFFFFF /* maximum 24 bit LFSR value */ |
| |
| /* Minimum HW interval timer setting to send value to trace buffer is 10 cycle. |
| * To configure counter to send value every N cycles set counter to |
| * 2^32 - 1 - N. |
| */ |
| #define NUM_INTERVAL_CYC 0xFFFFFFFF - 10 |
| |
| /* |
| * spu_cycle_reset is the number of cycles between samples. |
| * This variable is used for SPU profiling and should ONLY be set |
| * at the beginning of cell_reg_setup; otherwise, it's read-only. |
| */ |
| static unsigned int spu_cycle_reset; |
| static unsigned int profiling_mode; |
| static int spu_evnt_phys_spu_indx; |
| |
| struct pmc_cntrl_data { |
| unsigned long vcntr; |
| unsigned long evnts; |
| unsigned long masks; |
| unsigned long enabled; |
| }; |
| |
| /* |
| * ibm,cbe-perftools rtas parameters |
| */ |
| struct pm_signal { |
| u16 cpu; /* Processor to modify */ |
| u16 sub_unit; /* hw subunit this applies to (if applicable)*/ |
| short int signal_group; /* Signal Group to Enable/Disable */ |
| u8 bus_word; /* Enable/Disable on this Trace/Trigger/Event |
| * Bus Word(s) (bitmask) |
| */ |
| u8 bit; /* Trigger/Event bit (if applicable) */ |
| }; |
| |
| /* |
| * rtas call arguments |
| */ |
| enum { |
| SUBFUNC_RESET = 1, |
| SUBFUNC_ACTIVATE = 2, |
| SUBFUNC_DEACTIVATE = 3, |
| |
| PASSTHRU_IGNORE = 0, |
| PASSTHRU_ENABLE = 1, |
| PASSTHRU_DISABLE = 2, |
| }; |
| |
| struct pm_cntrl { |
| u16 enable; |
| u16 stop_at_max; |
| u16 trace_mode; |
| u16 freeze; |
| u16 count_mode; |
| u16 spu_addr_trace; |
| u8 trace_buf_ovflw; |
| }; |
| |
| static struct { |
| u32 group_control; |
| u32 debug_bus_control; |
| struct pm_cntrl pm_cntrl; |
| u32 pm07_cntrl[NR_PHYS_CTRS]; |
| } pm_regs; |
| |
| #define GET_SUB_UNIT(x) ((x & 0x0000f000) >> 12) |
| #define GET_BUS_WORD(x) ((x & 0x000000f0) >> 4) |
| #define GET_BUS_TYPE(x) ((x & 0x00000300) >> 8) |
| #define GET_POLARITY(x) ((x & 0x00000002) >> 1) |
| #define GET_COUNT_CYCLES(x) (x & 0x00000001) |
| #define GET_INPUT_CONTROL(x) ((x & 0x00000004) >> 2) |
| |
| static DEFINE_PER_CPU(unsigned long[NR_PHYS_CTRS], pmc_values); |
| static unsigned long spu_pm_cnt[MAX_NUMNODES * NUM_SPUS_PER_NODE]; |
| static struct pmc_cntrl_data pmc_cntrl[NUM_THREADS][NR_PHYS_CTRS]; |
| |
| /* |
| * The CELL profiling code makes rtas calls to setup the debug bus to |
| * route the performance signals. Additionally, SPU profiling requires |
| * a second rtas call to setup the hardware to capture the SPU PCs. |
| * The EIO error value is returned if the token lookups or the rtas |
| * call fail. The EIO error number is the best choice of the existing |
| * error numbers. The probability of rtas related error is very low. But |
| * by returning EIO and printing additional information to dmsg the user |
| * will know that OProfile did not start and dmesg will tell them why. |
| * OProfile does not support returning errors on Stop. Not a huge issue |
| * since failure to reset the debug bus or stop the SPU PC collection is |
| * not a fatel issue. Chances are if the Stop failed, Start doesn't work |
| * either. |
| */ |
| |
| /* |
| * Interpetation of hdw_thread: |
| * 0 - even virtual cpus 0, 2, 4,... |
| * 1 - odd virtual cpus 1, 3, 5, ... |
| * |
| * FIXME: this is strictly wrong, we need to clean this up in a number |
| * of places. It works for now. -arnd |
| */ |
| static u32 hdw_thread; |
| |
| static u32 virt_cntr_inter_mask; |
| static struct timer_list timer_virt_cntr; |
| static struct timer_list timer_spu_event_swap; |
| |
| /* |
| * pm_signal needs to be global since it is initialized in |
| * cell_reg_setup at the time when the necessary information |
| * is available. |
| */ |
| static struct pm_signal pm_signal[NR_PHYS_CTRS]; |
| static int pm_rtas_token; /* token for debug bus setup call */ |
| static int spu_rtas_token; /* token for SPU cycle profiling */ |
| |
| static u32 reset_value[NR_PHYS_CTRS]; |
| static int num_counters; |
| static int oprofile_running; |
| static DEFINE_SPINLOCK(cntr_lock); |
| |
| static u32 ctr_enabled; |
| |
| static unsigned char input_bus[NUM_INPUT_BUS_WORDS]; |
| |
| /* |
| * Firmware interface functions |
| */ |
| static int |
| rtas_ibm_cbe_perftools(int subfunc, int passthru, |
| void *address, unsigned long length) |
| { |
| u64 paddr = __pa(address); |
| |
| return rtas_call(pm_rtas_token, 5, 1, NULL, subfunc, |
| passthru, paddr >> 32, paddr & 0xffffffff, length); |
| } |
| |
| static void pm_rtas_reset_signals(u32 node) |
| { |
| int ret; |
| struct pm_signal pm_signal_local; |
| |
| /* |
| * The debug bus is being set to the passthru disable state. |
| * However, the FW still expects at least one legal signal routing |
| * entry or it will return an error on the arguments. If we don't |
| * supply a valid entry, we must ignore all return values. Ignoring |
| * all return values means we might miss an error we should be |
| * concerned about. |
| */ |
| |
| /* fw expects physical cpu #. */ |
| pm_signal_local.cpu = node; |
| pm_signal_local.signal_group = 21; |
| pm_signal_local.bus_word = 1; |
| pm_signal_local.sub_unit = 0; |
| pm_signal_local.bit = 0; |
| |
| ret = rtas_ibm_cbe_perftools(SUBFUNC_RESET, PASSTHRU_DISABLE, |
| &pm_signal_local, |
| sizeof(struct pm_signal)); |
| |
| if (unlikely(ret)) |
| /* |
| * Not a fatal error. For Oprofile stop, the oprofile |
| * functions do not support returning an error for |
| * failure to stop OProfile. |
| */ |
| printk(KERN_WARNING "%s: rtas returned: %d\n", |
| __func__, ret); |
| } |
| |
| static int pm_rtas_activate_signals(u32 node, u32 count) |
| { |
| int ret; |
| int i, j; |
| struct pm_signal pm_signal_local[NR_PHYS_CTRS]; |
| |
| /* |
| * There is no debug setup required for the cycles event. |
| * Note that only events in the same group can be used. |
| * Otherwise, there will be conflicts in correctly routing |
| * the signals on the debug bus. It is the responsibility |
| * of the OProfile user tool to check the events are in |
| * the same group. |
| */ |
| i = 0; |
| for (j = 0; j < count; j++) { |
| if (pm_signal[j].signal_group != PPU_CYCLES_GRP_NUM) { |
| |
| /* fw expects physical cpu # */ |
| pm_signal_local[i].cpu = node; |
| pm_signal_local[i].signal_group |
| = pm_signal[j].signal_group; |
| pm_signal_local[i].bus_word = pm_signal[j].bus_word; |
| pm_signal_local[i].sub_unit = pm_signal[j].sub_unit; |
| pm_signal_local[i].bit = pm_signal[j].bit; |
| i++; |
| } |
| } |
| |
| if (i != 0) { |
| ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE, PASSTHRU_ENABLE, |
| pm_signal_local, |
| i * sizeof(struct pm_signal)); |
| |
| if (unlikely(ret)) { |
| printk(KERN_WARNING "%s: rtas returned: %d\n", |
| __func__, ret); |
| return -EIO; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * PM Signal functions |
| */ |
| static void set_pm_event(u32 ctr, int event, u32 unit_mask) |
| { |
| struct pm_signal *p; |
| u32 signal_bit; |
| u32 bus_word, bus_type, count_cycles, polarity, input_control; |
| int j, i; |
| |
| if (event == PPU_CYCLES_EVENT_NUM) { |
| /* Special Event: Count all cpu cycles */ |
| pm_regs.pm07_cntrl[ctr] = CBE_COUNT_ALL_CYCLES; |
| p = &(pm_signal[ctr]); |
| p->signal_group = PPU_CYCLES_GRP_NUM; |
| p->bus_word = 1; |
| p->sub_unit = 0; |
| p->bit = 0; |
| goto out; |
| } else { |
| pm_regs.pm07_cntrl[ctr] = 0; |
| } |
| |
| bus_word = GET_BUS_WORD(unit_mask); |
| bus_type = GET_BUS_TYPE(unit_mask); |
| count_cycles = GET_COUNT_CYCLES(unit_mask); |
| polarity = GET_POLARITY(unit_mask); |
| input_control = GET_INPUT_CONTROL(unit_mask); |
| signal_bit = (event % 100); |
| |
| p = &(pm_signal[ctr]); |
| |
| p->signal_group = event / 100; |
| p->bus_word = bus_word; |
| p->sub_unit = GET_SUB_UNIT(unit_mask); |
| |
| pm_regs.pm07_cntrl[ctr] = 0; |
| pm_regs.pm07_cntrl[ctr] |= PM07_CTR_COUNT_CYCLES(count_cycles); |
| pm_regs.pm07_cntrl[ctr] |= PM07_CTR_POLARITY(polarity); |
| pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_CONTROL(input_control); |
| |
| /* |
| * Some of the islands signal selection is based on 64 bit words. |
| * The debug bus words are 32 bits, the input words to the performance |
| * counters are defined as 32 bits. Need to convert the 64 bit island |
| * specification to the appropriate 32 input bit and bus word for the |
| * performance counter event selection. See the CELL Performance |
| * monitoring signals manual and the Perf cntr hardware descriptions |
| * for the details. |
| */ |
| if (input_control == 0) { |
| if (signal_bit > 31) { |
| signal_bit -= 32; |
| if (bus_word == 0x3) |
| bus_word = 0x2; |
| else if (bus_word == 0xc) |
| bus_word = 0x8; |
| } |
| |
| if ((bus_type == 0) && p->signal_group >= 60) |
| bus_type = 2; |
| if ((bus_type == 1) && p->signal_group >= 50) |
| bus_type = 0; |
| |
| pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_MUX(signal_bit); |
| } else { |
| pm_regs.pm07_cntrl[ctr] = 0; |
| p->bit = signal_bit; |
| } |
| |
| for (i = 0; i < NUM_DEBUG_BUS_WORDS; i++) { |
| if (bus_word & (1 << i)) { |
| pm_regs.debug_bus_control |= |
| (bus_type << (30 - (2 * i))); |
| |
| for (j = 0; j < NUM_INPUT_BUS_WORDS; j++) { |
| if (input_bus[j] == 0xff) { |
| input_bus[j] = i; |
| pm_regs.group_control |= |
| (i << (30 - (2 * j))); |
| |
| break; |
| } |
| } |
| } |
| } |
| out: |
| ; |
| } |
| |
| static void write_pm_cntrl(int cpu) |
| { |
| /* |
| * Oprofile will use 32 bit counters, set bits 7:10 to 0 |
| * pmregs.pm_cntrl is a global |
| */ |
| |
| u32 val = 0; |
| if (pm_regs.pm_cntrl.enable == 1) |
| val |= CBE_PM_ENABLE_PERF_MON; |
| |
| if (pm_regs.pm_cntrl.stop_at_max == 1) |
| val |= CBE_PM_STOP_AT_MAX; |
| |
| if (pm_regs.pm_cntrl.trace_mode != 0) |
| val |= CBE_PM_TRACE_MODE_SET(pm_regs.pm_cntrl.trace_mode); |
| |
| if (pm_regs.pm_cntrl.trace_buf_ovflw == 1) |
| val |= CBE_PM_TRACE_BUF_OVFLW(pm_regs.pm_cntrl.trace_buf_ovflw); |
| if (pm_regs.pm_cntrl.freeze == 1) |
| val |= CBE_PM_FREEZE_ALL_CTRS; |
| |
| val |= CBE_PM_SPU_ADDR_TRACE_SET(pm_regs.pm_cntrl.spu_addr_trace); |
| |
| /* |
| * Routine set_count_mode must be called previously to set |
| * the count mode based on the user selection of user and kernel. |
| */ |
| val |= CBE_PM_COUNT_MODE_SET(pm_regs.pm_cntrl.count_mode); |
| cbe_write_pm(cpu, pm_control, val); |
| } |
| |
| static inline void |
| set_count_mode(u32 kernel, u32 user) |
| { |
| /* |
| * The user must specify user and kernel if they want them. If |
| * neither is specified, OProfile will count in hypervisor mode. |
| * pm_regs.pm_cntrl is a global |
| */ |
| if (kernel) { |
| if (user) |
| pm_regs.pm_cntrl.count_mode = CBE_COUNT_ALL_MODES; |
| else |
| pm_regs.pm_cntrl.count_mode = |
| CBE_COUNT_SUPERVISOR_MODE; |
| } else { |
| if (user) |
| pm_regs.pm_cntrl.count_mode = CBE_COUNT_PROBLEM_MODE; |
| else |
| pm_regs.pm_cntrl.count_mode = |
| CBE_COUNT_HYPERVISOR_MODE; |
| } |
| } |
| |
| static inline void enable_ctr(u32 cpu, u32 ctr, u32 *pm07_cntrl) |
| { |
| |
| pm07_cntrl[ctr] |= CBE_PM_CTR_ENABLE; |
| cbe_write_pm07_control(cpu, ctr, pm07_cntrl[ctr]); |
| } |
| |
| /* |
| * Oprofile is expected to collect data on all CPUs simultaneously. |
| * However, there is one set of performance counters per node. There are |
| * two hardware threads or virtual CPUs on each node. Hence, OProfile must |
| * multiplex in time the performance counter collection on the two virtual |
| * CPUs. The multiplexing of the performance counters is done by this |
| * virtual counter routine. |
| * |
| * The pmc_values used below is defined as 'per-cpu' but its use is |
| * more akin to 'per-node'. We need to store two sets of counter |
| * values per node -- one for the previous run and one for the next. |
| * The per-cpu[NR_PHYS_CTRS] gives us the storage we need. Each odd/even |
| * pair of per-cpu arrays is used for storing the previous and next |
| * pmc values for a given node. |
| * NOTE: We use the per-cpu variable to improve cache performance. |
| * |
| * This routine will alternate loading the virtual counters for |
| * virtual CPUs |
| */ |
| static void cell_virtual_cntr(struct timer_list *unused) |
| { |
| int i, prev_hdw_thread, next_hdw_thread; |
| u32 cpu; |
| unsigned long flags; |
| |
| /* |
| * Make sure that the interrupt_hander and the virt counter are |
| * not both playing with the counters on the same node. |
| */ |
| |
| spin_lock_irqsave(&cntr_lock, flags); |
| |
| prev_hdw_thread = hdw_thread; |
| |
| /* switch the cpu handling the interrupts */ |
| hdw_thread = 1 ^ hdw_thread; |
| next_hdw_thread = hdw_thread; |
| |
| pm_regs.group_control = 0; |
| pm_regs.debug_bus_control = 0; |
| |
| for (i = 0; i < NUM_INPUT_BUS_WORDS; i++) |
| input_bus[i] = 0xff; |
| |
| /* |
| * There are some per thread events. Must do the |
| * set event, for the thread that is being started |
| */ |
| for (i = 0; i < num_counters; i++) |
| set_pm_event(i, |
| pmc_cntrl[next_hdw_thread][i].evnts, |
| pmc_cntrl[next_hdw_thread][i].masks); |
| |
| /* |
| * The following is done only once per each node, but |
| * we need cpu #, not node #, to pass to the cbe_xxx functions. |
| */ |
| for_each_online_cpu(cpu) { |
| if (cbe_get_hw_thread_id(cpu)) |
| continue; |
| |
| /* |
| * stop counters, save counter values, restore counts |
| * for previous thread |
| */ |
| cbe_disable_pm(cpu); |
| cbe_disable_pm_interrupts(cpu); |
| for (i = 0; i < num_counters; i++) { |
| per_cpu(pmc_values, cpu + prev_hdw_thread)[i] |
| = cbe_read_ctr(cpu, i); |
| |
| if (per_cpu(pmc_values, cpu + next_hdw_thread)[i] |
| == 0xFFFFFFFF) |
| /* If the cntr value is 0xffffffff, we must |
| * reset that to 0xfffffff0 when the current |
| * thread is restarted. This will generate a |
| * new interrupt and make sure that we never |
| * restore the counters to the max value. If |
| * the counters were restored to the max value, |
| * they do not increment and no interrupts are |
| * generated. Hence no more samples will be |
| * collected on that cpu. |
| */ |
| cbe_write_ctr(cpu, i, 0xFFFFFFF0); |
| else |
| cbe_write_ctr(cpu, i, |
| per_cpu(pmc_values, |
| cpu + |
| next_hdw_thread)[i]); |
| } |
| |
| /* |
| * Switch to the other thread. Change the interrupt |
| * and control regs to be scheduled on the CPU |
| * corresponding to the thread to execute. |
| */ |
| for (i = 0; i < num_counters; i++) { |
| if (pmc_cntrl[next_hdw_thread][i].enabled) { |
| /* |
| * There are some per thread events. |
| * Must do the set event, enable_cntr |
| * for each cpu. |
| */ |
| enable_ctr(cpu, i, |
| pm_regs.pm07_cntrl); |
| } else { |
| cbe_write_pm07_control(cpu, i, 0); |
| } |
| } |
| |
| /* Enable interrupts on the CPU thread that is starting */ |
| cbe_enable_pm_interrupts(cpu, next_hdw_thread, |
| virt_cntr_inter_mask); |
| cbe_enable_pm(cpu); |
| } |
| |
| spin_unlock_irqrestore(&cntr_lock, flags); |
| |
| mod_timer(&timer_virt_cntr, jiffies + HZ / 10); |
| } |
| |
| static void start_virt_cntrs(void) |
| { |
| timer_setup(&timer_virt_cntr, cell_virtual_cntr, 0); |
| timer_virt_cntr.expires = jiffies + HZ / 10; |
| add_timer(&timer_virt_cntr); |
| } |
| |
| static int cell_reg_setup_spu_cycles(struct op_counter_config *ctr, |
| struct op_system_config *sys, int num_ctrs) |
| { |
| spu_cycle_reset = ctr[0].count; |
| |
| /* |
| * Each node will need to make the rtas call to start |
| * and stop SPU profiling. Get the token once and store it. |
| */ |
| spu_rtas_token = rtas_token("ibm,cbe-spu-perftools"); |
| |
| if (unlikely(spu_rtas_token == RTAS_UNKNOWN_SERVICE)) { |
| printk(KERN_ERR |
| "%s: rtas token ibm,cbe-spu-perftools unknown\n", |
| __func__); |
| return -EIO; |
| } |
| return 0; |
| } |
| |
| /* Unfortunately, the hardware will only support event profiling |
| * on one SPU per node at a time. Therefore, we must time slice |
| * the profiling across all SPUs in the node. Note, we do this |
| * in parallel for each node. The following routine is called |
| * periodically based on kernel timer to switch which SPU is |
| * being monitored in a round robbin fashion. |
| */ |
| static void spu_evnt_swap(struct timer_list *unused) |
| { |
| int node; |
| int cur_phys_spu, nxt_phys_spu, cur_spu_evnt_phys_spu_indx; |
| unsigned long flags; |
| int cpu; |
| int ret; |
| u32 interrupt_mask; |
| |
| |
| /* enable interrupts on cntr 0 */ |
| interrupt_mask = CBE_PM_CTR_OVERFLOW_INTR(0); |
| |
| hdw_thread = 0; |
| |
| /* Make sure spu event interrupt handler and spu event swap |
| * don't access the counters simultaneously. |
| */ |
| spin_lock_irqsave(&cntr_lock, flags); |
| |
| cur_spu_evnt_phys_spu_indx = spu_evnt_phys_spu_indx; |
| |
| if (++(spu_evnt_phys_spu_indx) == NUM_SPUS_PER_NODE) |
| spu_evnt_phys_spu_indx = 0; |
| |
| pm_signal[0].sub_unit = spu_evnt_phys_spu_indx; |
| pm_signal[1].sub_unit = spu_evnt_phys_spu_indx; |
| pm_signal[2].sub_unit = spu_evnt_phys_spu_indx; |
| |
| /* switch the SPU being profiled on each node */ |
| for_each_online_cpu(cpu) { |
| if (cbe_get_hw_thread_id(cpu)) |
| continue; |
| |
| node = cbe_cpu_to_node(cpu); |
| cur_phys_spu = (node * NUM_SPUS_PER_NODE) |
| + cur_spu_evnt_phys_spu_indx; |
| nxt_phys_spu = (node * NUM_SPUS_PER_NODE) |
| + spu_evnt_phys_spu_indx; |
| |
| /* |
| * stop counters, save counter values, restore counts |
| * for previous physical SPU |
| */ |
| cbe_disable_pm(cpu); |
| cbe_disable_pm_interrupts(cpu); |
| |
| spu_pm_cnt[cur_phys_spu] |
| = cbe_read_ctr(cpu, 0); |
| |
| /* restore previous count for the next spu to sample */ |
| /* NOTE, hardware issue, counter will not start if the |
| * counter value is at max (0xFFFFFFFF). |
| */ |
| if (spu_pm_cnt[nxt_phys_spu] >= 0xFFFFFFFF) |
| cbe_write_ctr(cpu, 0, 0xFFFFFFF0); |
| else |
| cbe_write_ctr(cpu, 0, spu_pm_cnt[nxt_phys_spu]); |
| |
| pm_rtas_reset_signals(cbe_cpu_to_node(cpu)); |
| |
| /* setup the debug bus measure the one event and |
| * the two events to route the next SPU's PC on |
| * the debug bus |
| */ |
| ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu), 3); |
| if (ret) |
| printk(KERN_ERR "%s: pm_rtas_activate_signals failed, " |
| "SPU event swap\n", __func__); |
| |
| /* clear the trace buffer, don't want to take PC for |
| * previous SPU*/ |
| cbe_write_pm(cpu, trace_address, 0); |
| |
| enable_ctr(cpu, 0, pm_regs.pm07_cntrl); |
| |
| /* Enable interrupts on the CPU thread that is starting */ |
| cbe_enable_pm_interrupts(cpu, hdw_thread, |
| interrupt_mask); |
| cbe_enable_pm(cpu); |
| } |
| |
| spin_unlock_irqrestore(&cntr_lock, flags); |
| |
| /* swap approximately every 0.1 seconds */ |
| mod_timer(&timer_spu_event_swap, jiffies + HZ / 25); |
| } |
| |
| static void start_spu_event_swap(void) |
| { |
| timer_setup(&timer_spu_event_swap, spu_evnt_swap, 0); |
| timer_spu_event_swap.expires = jiffies + HZ / 25; |
| add_timer(&timer_spu_event_swap); |
| } |
| |
| static int cell_reg_setup_spu_events(struct op_counter_config *ctr, |
| struct op_system_config *sys, int num_ctrs) |
| { |
| int i; |
| |
| /* routine is called once for all nodes */ |
| |
| spu_evnt_phys_spu_indx = 0; |
| /* |
| * For all events except PPU CYCLEs, each node will need to make |
| * the rtas cbe-perftools call to setup and reset the debug bus. |
| * Make the token lookup call once and store it in the global |
| * variable pm_rtas_token. |
| */ |
| pm_rtas_token = rtas_token("ibm,cbe-perftools"); |
| |
| if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) { |
| printk(KERN_ERR |
| "%s: rtas token ibm,cbe-perftools unknown\n", |
| __func__); |
| return -EIO; |
| } |
| |
| /* setup the pm_control register settings, |
| * settings will be written per node by the |
| * cell_cpu_setup() function. |
| */ |
| pm_regs.pm_cntrl.trace_buf_ovflw = 1; |
| |
| /* Use the occurrence trace mode to have SPU PC saved |
| * to the trace buffer. Occurrence data in trace buffer |
| * is not used. Bit 2 must be set to store SPU addresses. |
| */ |
| pm_regs.pm_cntrl.trace_mode = 2; |
| |
| pm_regs.pm_cntrl.spu_addr_trace = 0x1; /* using debug bus |
| event 2 & 3 */ |
| |
| /* setup the debug bus event array with the SPU PC routing events. |
| * Note, pm_signal[0] will be filled in by set_pm_event() call below. |
| */ |
| pm_signal[1].signal_group = SPU_PROFILE_EVENT_ADDR / 100; |
| pm_signal[1].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_A); |
| pm_signal[1].bit = SPU_PROFILE_EVENT_ADDR % 100; |
| pm_signal[1].sub_unit = spu_evnt_phys_spu_indx; |
| |
| pm_signal[2].signal_group = SPU_PROFILE_EVENT_ADDR / 100; |
| pm_signal[2].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_B); |
| pm_signal[2].bit = SPU_PROFILE_EVENT_ADDR % 100; |
| pm_signal[2].sub_unit = spu_evnt_phys_spu_indx; |
| |
| /* Set the user selected spu event to profile on, |
| * note, only one SPU profiling event is supported |
| */ |
| num_counters = 1; /* Only support one SPU event at a time */ |
| set_pm_event(0, ctr[0].event, ctr[0].unit_mask); |
| |
| reset_value[0] = 0xFFFFFFFF - ctr[0].count; |
| |
| /* global, used by cell_cpu_setup */ |
| ctr_enabled |= 1; |
| |
| /* Initialize the count for each SPU to the reset value */ |
| for (i=0; i < MAX_NUMNODES * NUM_SPUS_PER_NODE; i++) |
| spu_pm_cnt[i] = reset_value[0]; |
| |
| return 0; |
| } |
| |
| static int cell_reg_setup_ppu(struct op_counter_config *ctr, |
| struct op_system_config *sys, int num_ctrs) |
| { |
| /* routine is called once for all nodes */ |
| int i, j, cpu; |
| |
| num_counters = num_ctrs; |
| |
| if (unlikely(num_ctrs > NR_PHYS_CTRS)) { |
| printk(KERN_ERR |
| "%s: Oprofile, number of specified events " \ |
| "exceeds number of physical counters\n", |
| __func__); |
| return -EIO; |
| } |
| |
| set_count_mode(sys->enable_kernel, sys->enable_user); |
| |
| /* Setup the thread 0 events */ |
| for (i = 0; i < num_ctrs; ++i) { |
| |
| pmc_cntrl[0][i].evnts = ctr[i].event; |
| pmc_cntrl[0][i].masks = ctr[i].unit_mask; |
| pmc_cntrl[0][i].enabled = ctr[i].enabled; |
| pmc_cntrl[0][i].vcntr = i; |
| |
| for_each_possible_cpu(j) |
| per_cpu(pmc_values, j)[i] = 0; |
| } |
| |
| /* |
| * Setup the thread 1 events, map the thread 0 event to the |
| * equivalent thread 1 event. |
| */ |
| for (i = 0; i < num_ctrs; ++i) { |
| if ((ctr[i].event >= 2100) && (ctr[i].event <= 2111)) |
| pmc_cntrl[1][i].evnts = ctr[i].event + 19; |
| else if (ctr[i].event == 2203) |
| pmc_cntrl[1][i].evnts = ctr[i].event; |
| else if ((ctr[i].event >= 2200) && (ctr[i].event <= 2215)) |
| pmc_cntrl[1][i].evnts = ctr[i].event + 16; |
| else |
| pmc_cntrl[1][i].evnts = ctr[i].event; |
| |
| pmc_cntrl[1][i].masks = ctr[i].unit_mask; |
| pmc_cntrl[1][i].enabled = ctr[i].enabled; |
| pmc_cntrl[1][i].vcntr = i; |
| } |
| |
| for (i = 0; i < NUM_INPUT_BUS_WORDS; i++) |
| input_bus[i] = 0xff; |
| |
| /* |
| * Our counters count up, and "count" refers to |
| * how much before the next interrupt, and we interrupt |
| * on overflow. So we calculate the starting value |
| * which will give us "count" until overflow. |
| * Then we set the events on the enabled counters. |
| */ |
| for (i = 0; i < num_counters; ++i) { |
| /* start with virtual counter set 0 */ |
| if (pmc_cntrl[0][i].enabled) { |
| /* Using 32bit counters, reset max - count */ |
| reset_value[i] = 0xFFFFFFFF - ctr[i].count; |
| set_pm_event(i, |
| pmc_cntrl[0][i].evnts, |
| pmc_cntrl[0][i].masks); |
| |
| /* global, used by cell_cpu_setup */ |
| ctr_enabled |= (1 << i); |
| } |
| } |
| |
| /* initialize the previous counts for the virtual cntrs */ |
| for_each_online_cpu(cpu) |
| for (i = 0; i < num_counters; ++i) { |
| per_cpu(pmc_values, cpu)[i] = reset_value[i]; |
| } |
| |
| return 0; |
| } |
| |
| |
| /* This function is called once for all cpus combined */ |
| static int cell_reg_setup(struct op_counter_config *ctr, |
| struct op_system_config *sys, int num_ctrs) |
| { |
| int ret=0; |
| spu_cycle_reset = 0; |
| |
| /* initialize the spu_arr_trace value, will be reset if |
| * doing spu event profiling. |
| */ |
| pm_regs.group_control = 0; |
| pm_regs.debug_bus_control = 0; |
| pm_regs.pm_cntrl.stop_at_max = 1; |
| pm_regs.pm_cntrl.trace_mode = 0; |
| pm_regs.pm_cntrl.freeze = 1; |
| pm_regs.pm_cntrl.trace_buf_ovflw = 0; |
| pm_regs.pm_cntrl.spu_addr_trace = 0; |
| |
| /* |
| * For all events except PPU CYCLEs, each node will need to make |
| * the rtas cbe-perftools call to setup and reset the debug bus. |
| * Make the token lookup call once and store it in the global |
| * variable pm_rtas_token. |
| */ |
| pm_rtas_token = rtas_token("ibm,cbe-perftools"); |
| |
| if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) { |
| printk(KERN_ERR |
| "%s: rtas token ibm,cbe-perftools unknown\n", |
| __func__); |
| return -EIO; |
| } |
| |
| if (ctr[0].event == SPU_CYCLES_EVENT_NUM) { |
| profiling_mode = SPU_PROFILING_CYCLES; |
| ret = cell_reg_setup_spu_cycles(ctr, sys, num_ctrs); |
| } else if ((ctr[0].event >= SPU_EVENT_NUM_START) && |
| (ctr[0].event <= SPU_EVENT_NUM_STOP)) { |
| profiling_mode = SPU_PROFILING_EVENTS; |
| spu_cycle_reset = ctr[0].count; |
| |
| /* for SPU event profiling, need to setup the |
| * pm_signal array with the events to route the |
| * SPU PC before making the FW call. Note, only |
| * one SPU event for profiling can be specified |
| * at a time. |
| */ |
| cell_reg_setup_spu_events(ctr, sys, num_ctrs); |
| } else { |
| profiling_mode = PPU_PROFILING; |
| ret = cell_reg_setup_ppu(ctr, sys, num_ctrs); |
| } |
| |
| return ret; |
| } |
| |
| |
| |
| /* This function is called once for each cpu */ |
| static int cell_cpu_setup(struct op_counter_config *cntr) |
| { |
| u32 cpu = smp_processor_id(); |
| u32 num_enabled = 0; |
| int i; |
| int ret; |
| |
| /* Cycle based SPU profiling does not use the performance |
| * counters. The trace array is configured to collect |
| * the data. |
| */ |
| if (profiling_mode == SPU_PROFILING_CYCLES) |
| return 0; |
| |
| /* There is one performance monitor per processor chip (i.e. node), |
| * so we only need to perform this function once per node. |
| */ |
| if (cbe_get_hw_thread_id(cpu)) |
| return 0; |
| |
| /* Stop all counters */ |
| cbe_disable_pm(cpu); |
| cbe_disable_pm_interrupts(cpu); |
| |
| cbe_write_pm(cpu, pm_start_stop, 0); |
| cbe_write_pm(cpu, group_control, pm_regs.group_control); |
| cbe_write_pm(cpu, debug_bus_control, pm_regs.debug_bus_control); |
| write_pm_cntrl(cpu); |
| |
| for (i = 0; i < num_counters; ++i) { |
| if (ctr_enabled & (1 << i)) { |
| pm_signal[num_enabled].cpu = cbe_cpu_to_node(cpu); |
| num_enabled++; |
| } |
| } |
| |
| /* |
| * The pm_rtas_activate_signals will return -EIO if the FW |
| * call failed. |
| */ |
| if (profiling_mode == SPU_PROFILING_EVENTS) { |
| /* For SPU event profiling also need to setup the |
| * pm interval timer |
| */ |
| ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu), |
| num_enabled+2); |
| /* store PC from debug bus to Trace buffer as often |
| * as possible (every 10 cycles) |
| */ |
| cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC); |
| return ret; |
| } else |
| return pm_rtas_activate_signals(cbe_cpu_to_node(cpu), |
| num_enabled); |
| } |
| |
| #define ENTRIES 303 |
| #define MAXLFSR 0xFFFFFF |
| |
| /* precomputed table of 24 bit LFSR values */ |
| static int initial_lfsr[] = { |
| 8221349, 12579195, 5379618, 10097839, 7512963, 7519310, 3955098, 10753424, |
| 15507573, 7458917, 285419, 2641121, 9780088, 3915503, 6668768, 1548716, |
| 4885000, 8774424, 9650099, 2044357, 2304411, 9326253, 10332526, 4421547, |
| 3440748, 10179459, 13332843, 10375561, 1313462, 8375100, 5198480, 6071392, |
| 9341783, 1526887, 3985002, 1439429, 13923762, 7010104, 11969769, 4547026, |
| 2040072, 4025602, 3437678, 7939992, 11444177, 4496094, 9803157, 10745556, |
| 3671780, 4257846, 5662259, 13196905, 3237343, 12077182, 16222879, 7587769, |
| 14706824, 2184640, 12591135, 10420257, 7406075, 3648978, 11042541, 15906893, |
| 11914928, 4732944, 10695697, 12928164, 11980531, 4430912, 11939291, 2917017, |
| 6119256, 4172004, 9373765, 8410071, 14788383, 5047459, 5474428, 1737756, |
| 15967514, 13351758, 6691285, 8034329, 2856544, 14394753, 11310160, 12149558, |
| 7487528, 7542781, 15668898, 12525138, 12790975, 3707933, 9106617, 1965401, |
| 16219109, 12801644, 2443203, 4909502, 8762329, 3120803, 6360315, 9309720, |
| 15164599, 10844842, 4456529, 6667610, 14924259, 884312, 6234963, 3326042, |
| 15973422, 13919464, 5272099, 6414643, 3909029, 2764324, 5237926, 4774955, |
| 10445906, 4955302, 5203726, 10798229, 11443419, 2303395, 333836, 9646934, |
| 3464726, 4159182, 568492, 995747, 10318756, 13299332, 4836017, 8237783, |
| 3878992, 2581665, 11394667, 5672745, 14412947, 3159169, 9094251, 16467278, |
| 8671392, 15230076, 4843545, 7009238, 15504095, 1494895, 9627886, 14485051, |
| 8304291, 252817, 12421642, 16085736, 4774072, 2456177, 4160695, 15409741, |
| 4902868, 5793091, 13162925, 16039714, 782255, 11347835, 14884586, 366972, |
| 16308990, 11913488, 13390465, 2958444, 10340278, 1177858, 1319431, 10426302, |
| 2868597, 126119, 5784857, 5245324, 10903900, 16436004, 3389013, 1742384, |
| 14674502, 10279218, 8536112, 10364279, 6877778, 14051163, 1025130, 6072469, |
| 1988305, 8354440, 8216060, 16342977, 13112639, 3976679, 5913576, 8816697, |
| 6879995, 14043764, 3339515, 9364420, 15808858, 12261651, 2141560, 5636398, |
| 10345425, 10414756, 781725, 6155650, 4746914, 5078683, 7469001, 6799140, |
| 10156444, 9667150, 10116470, 4133858, 2121972, 1124204, 1003577, 1611214, |
| 14304602, 16221850, 13878465, 13577744, 3629235, 8772583, 10881308, 2410386, |
| 7300044, 5378855, 9301235, 12755149, 4977682, 8083074, 10327581, 6395087, |
| 9155434, 15501696, 7514362, 14520507, 15808945, 3244584, 4741962, 9658130, |
| 14336147, 8654727, 7969093, 15759799, 14029445, 5038459, 9894848, 8659300, |
| 13699287, 8834306, 10712885, 14753895, 10410465, 3373251, 309501, 9561475, |
| 5526688, 14647426, 14209836, 5339224, 207299, 14069911, 8722990, 2290950, |
| 3258216, 12505185, 6007317, 9218111, 14661019, 10537428, 11731949, 9027003, |
| 6641507, 9490160, 200241, 9720425, 16277895, 10816638, 1554761, 10431375, |
| 7467528, 6790302, 3429078, 14633753, 14428997, 11463204, 3576212, 2003426, |
| 6123687, 820520, 9992513, 15784513, 5778891, 6428165, 8388607 |
| }; |
| |
| /* |
| * The hardware uses an LFSR counting sequence to determine when to capture |
| * the SPU PCs. An LFSR sequence is like a puesdo random number sequence |
| * where each number occurs once in the sequence but the sequence is not in |
| * numerical order. The SPU PC capture is done when the LFSR sequence reaches |
| * the last value in the sequence. Hence the user specified value N |
| * corresponds to the LFSR number that is N from the end of the sequence. |
| * |
| * To avoid the time to compute the LFSR, a lookup table is used. The 24 bit |
| * LFSR sequence is broken into four ranges. The spacing of the precomputed |
| * values is adjusted in each range so the error between the user specified |
| * number (N) of events between samples and the actual number of events based |
| * on the precomputed value will be les then about 6.2%. Note, if the user |
| * specifies N < 2^16, the LFSR value that is 2^16 from the end will be used. |
| * This is to prevent the loss of samples because the trace buffer is full. |
| * |
| * User specified N Step between Index in |
| * precomputed values precomputed |
| * table |
| * 0 to 2^16-1 ---- 0 |
| * 2^16 to 2^16+2^19-1 2^12 1 to 128 |
| * 2^16+2^19 to 2^16+2^19+2^22-1 2^15 129 to 256 |
| * 2^16+2^19+2^22 to 2^24-1 2^18 257 to 302 |
| * |
| * |
| * For example, the LFSR values in the second range are computed for 2^16, |
| * 2^16+2^12, ... , 2^19-2^16, 2^19 and stored in the table at indicies |
| * 1, 2,..., 127, 128. |
| * |
| * The 24 bit LFSR value for the nth number in the sequence can be |
| * calculated using the following code: |
| * |
| * #define size 24 |
| * int calculate_lfsr(int n) |
| * { |
| * int i; |
| * unsigned int newlfsr0; |
| * unsigned int lfsr = 0xFFFFFF; |
| * unsigned int howmany = n; |
| * |
| * for (i = 2; i < howmany + 2; i++) { |
| * newlfsr0 = (((lfsr >> (size - 1 - 0)) & 1) ^ |
| * ((lfsr >> (size - 1 - 1)) & 1) ^ |
| * (((lfsr >> (size - 1 - 6)) & 1) ^ |
| * ((lfsr >> (size - 1 - 23)) & 1))); |
| * |
| * lfsr >>= 1; |
| * lfsr = lfsr | (newlfsr0 << (size - 1)); |
| * } |
| * return lfsr; |
| * } |
| */ |
| |
| #define V2_16 (0x1 << 16) |
| #define V2_19 (0x1 << 19) |
| #define V2_22 (0x1 << 22) |
| |
| static int calculate_lfsr(int n) |
| { |
| /* |
| * The ranges and steps are in powers of 2 so the calculations |
| * can be done using shifts rather then divide. |
| */ |
| int index; |
| |
| if ((n >> 16) == 0) |
| index = 0; |
| else if (((n - V2_16) >> 19) == 0) |
| index = ((n - V2_16) >> 12) + 1; |
| else if (((n - V2_16 - V2_19) >> 22) == 0) |
| index = ((n - V2_16 - V2_19) >> 15 ) + 1 + 128; |
| else if (((n - V2_16 - V2_19 - V2_22) >> 24) == 0) |
| index = ((n - V2_16 - V2_19 - V2_22) >> 18 ) + 1 + 256; |
| else |
| index = ENTRIES-1; |
| |
| /* make sure index is valid */ |
| if ((index >= ENTRIES) || (index < 0)) |
| index = ENTRIES-1; |
| |
| return initial_lfsr[index]; |
| } |
| |
| static int pm_rtas_activate_spu_profiling(u32 node) |
| { |
| int ret, i; |
| struct pm_signal pm_signal_local[NUM_SPUS_PER_NODE]; |
| |
| /* |
| * Set up the rtas call to configure the debug bus to |
| * route the SPU PCs. Setup the pm_signal for each SPU |
| */ |
| for (i = 0; i < ARRAY_SIZE(pm_signal_local); i++) { |
| pm_signal_local[i].cpu = node; |
| pm_signal_local[i].signal_group = 41; |
| /* spu i on word (i/2) */ |
| pm_signal_local[i].bus_word = 1 << i / 2; |
| /* spu i */ |
| pm_signal_local[i].sub_unit = i; |
| pm_signal_local[i].bit = 63; |
| } |
| |
| ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE, |
| PASSTHRU_ENABLE, pm_signal_local, |
| (ARRAY_SIZE(pm_signal_local) |
| * sizeof(struct pm_signal))); |
| |
| if (unlikely(ret)) { |
| printk(KERN_WARNING "%s: rtas returned: %d\n", |
| __func__, ret); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_CPU_FREQ |
| static int |
| oprof_cpufreq_notify(struct notifier_block *nb, unsigned long val, void *data) |
| { |
| int ret = 0; |
| struct cpufreq_freqs *frq = data; |
| if ((val == CPUFREQ_PRECHANGE && frq->old < frq->new) || |
| (val == CPUFREQ_POSTCHANGE && frq->old > frq->new)) |
| set_spu_profiling_frequency(frq->new, spu_cycle_reset); |
| return ret; |
| } |
| |
| static struct notifier_block cpu_freq_notifier_block = { |
| .notifier_call = oprof_cpufreq_notify |
| }; |
| #endif |
| |
| /* |
| * Note the generic OProfile stop calls do not support returning |
| * an error on stop. Hence, will not return an error if the FW |
| * calls fail on stop. Failure to reset the debug bus is not an issue. |
| * Failure to disable the SPU profiling is not an issue. The FW calls |
| * to enable the performance counters and debug bus will work even if |
| * the hardware was not cleanly reset. |
| */ |
| static void cell_global_stop_spu_cycles(void) |
| { |
| int subfunc, rtn_value; |
| unsigned int lfsr_value; |
| int cpu; |
| |
| oprofile_running = 0; |
| smp_wmb(); |
| |
| #ifdef CONFIG_CPU_FREQ |
| cpufreq_unregister_notifier(&cpu_freq_notifier_block, |
| CPUFREQ_TRANSITION_NOTIFIER); |
| #endif |
| |
| for_each_online_cpu(cpu) { |
| if (cbe_get_hw_thread_id(cpu)) |
| continue; |
| |
| subfunc = 3; /* |
| * 2 - activate SPU tracing, |
| * 3 - deactivate |
| */ |
| lfsr_value = 0x8f100000; |
| |
| rtn_value = rtas_call(spu_rtas_token, 3, 1, NULL, |
| subfunc, cbe_cpu_to_node(cpu), |
| lfsr_value); |
| |
| if (unlikely(rtn_value != 0)) { |
| printk(KERN_ERR |
| "%s: rtas call ibm,cbe-spu-perftools " \ |
| "failed, return = %d\n", |
| __func__, rtn_value); |
| } |
| |
| /* Deactivate the signals */ |
| pm_rtas_reset_signals(cbe_cpu_to_node(cpu)); |
| } |
| |
| stop_spu_profiling_cycles(); |
| } |
| |
| static void cell_global_stop_spu_events(void) |
| { |
| int cpu; |
| oprofile_running = 0; |
| |
| stop_spu_profiling_events(); |
| smp_wmb(); |
| |
| for_each_online_cpu(cpu) { |
| if (cbe_get_hw_thread_id(cpu)) |
| continue; |
| |
| cbe_sync_irq(cbe_cpu_to_node(cpu)); |
| /* Stop the counters */ |
| cbe_disable_pm(cpu); |
| cbe_write_pm07_control(cpu, 0, 0); |
| |
| /* Deactivate the signals */ |
| pm_rtas_reset_signals(cbe_cpu_to_node(cpu)); |
| |
| /* Deactivate interrupts */ |
| cbe_disable_pm_interrupts(cpu); |
| } |
| del_timer_sync(&timer_spu_event_swap); |
| } |
| |
| static void cell_global_stop_ppu(void) |
| { |
| int cpu; |
| |
| /* |
| * This routine will be called once for the system. |
| * There is one performance monitor per node, so we |
| * only need to perform this function once per node. |
| */ |
| del_timer_sync(&timer_virt_cntr); |
| oprofile_running = 0; |
| smp_wmb(); |
| |
| for_each_online_cpu(cpu) { |
| if (cbe_get_hw_thread_id(cpu)) |
| continue; |
| |
| cbe_sync_irq(cbe_cpu_to_node(cpu)); |
| /* Stop the counters */ |
| cbe_disable_pm(cpu); |
| |
| /* Deactivate the signals */ |
| pm_rtas_reset_signals(cbe_cpu_to_node(cpu)); |
| |
| /* Deactivate interrupts */ |
| cbe_disable_pm_interrupts(cpu); |
| } |
| } |
| |
| static void cell_global_stop(void) |
| { |
| if (profiling_mode == PPU_PROFILING) |
| cell_global_stop_ppu(); |
| else if (profiling_mode == SPU_PROFILING_EVENTS) |
| cell_global_stop_spu_events(); |
| else |
| cell_global_stop_spu_cycles(); |
| } |
| |
| static int cell_global_start_spu_cycles(struct op_counter_config *ctr) |
| { |
| int subfunc; |
| unsigned int lfsr_value; |
| int cpu; |
| int ret; |
| int rtas_error; |
| unsigned int cpu_khzfreq = 0; |
| |
| /* The SPU profiling uses time-based profiling based on |
| * cpu frequency, so if configured with the CPU_FREQ |
| * option, we should detect frequency changes and react |
| * accordingly. |
| */ |
| #ifdef CONFIG_CPU_FREQ |
| ret = cpufreq_register_notifier(&cpu_freq_notifier_block, |
| CPUFREQ_TRANSITION_NOTIFIER); |
| if (ret < 0) |
| /* this is not a fatal error */ |
| printk(KERN_ERR "CPU freq change registration failed: %d\n", |
| ret); |
| |
| else |
| cpu_khzfreq = cpufreq_quick_get(smp_processor_id()); |
| #endif |
| |
| set_spu_profiling_frequency(cpu_khzfreq, spu_cycle_reset); |
| |
| for_each_online_cpu(cpu) { |
| if (cbe_get_hw_thread_id(cpu)) |
| continue; |
| |
| /* |
| * Setup SPU cycle-based profiling. |
| * Set perf_mon_control bit 0 to a zero before |
| * enabling spu collection hardware. |
| */ |
| cbe_write_pm(cpu, pm_control, 0); |
| |
| if (spu_cycle_reset > MAX_SPU_COUNT) |
| /* use largest possible value */ |
| lfsr_value = calculate_lfsr(MAX_SPU_COUNT-1); |
| else |
| lfsr_value = calculate_lfsr(spu_cycle_reset); |
| |
| /* must use a non zero value. Zero disables data collection. */ |
| if (lfsr_value == 0) |
| lfsr_value = calculate_lfsr(1); |
| |
| lfsr_value = lfsr_value << 8; /* shift lfsr to correct |
| * register location |
| */ |
| |
| /* debug bus setup */ |
| ret = pm_rtas_activate_spu_profiling(cbe_cpu_to_node(cpu)); |
| |
| if (unlikely(ret)) { |
| rtas_error = ret; |
| goto out; |
| } |
| |
| |
| subfunc = 2; /* 2 - activate SPU tracing, 3 - deactivate */ |
| |
| /* start profiling */ |
| ret = rtas_call(spu_rtas_token, 3, 1, NULL, subfunc, |
| cbe_cpu_to_node(cpu), lfsr_value); |
| |
| if (unlikely(ret != 0)) { |
| printk(KERN_ERR |
| "%s: rtas call ibm,cbe-spu-perftools failed, " \ |
| "return = %d\n", __func__, ret); |
| rtas_error = -EIO; |
| goto out; |
| } |
| } |
| |
| rtas_error = start_spu_profiling_cycles(spu_cycle_reset); |
| if (rtas_error) |
| goto out_stop; |
| |
| oprofile_running = 1; |
| return 0; |
| |
| out_stop: |
| cell_global_stop_spu_cycles(); /* clean up the PMU/debug bus */ |
| out: |
| return rtas_error; |
| } |
| |
| static int cell_global_start_spu_events(struct op_counter_config *ctr) |
| { |
| int cpu; |
| u32 interrupt_mask = 0; |
| int rtn = 0; |
| |
| hdw_thread = 0; |
| |
| /* spu event profiling, uses the performance counters to generate |
| * an interrupt. The hardware is setup to store the SPU program |
| * counter into the trace array. The occurrence mode is used to |
| * enable storing data to the trace buffer. The bits are set |
| * to send/store the SPU address in the trace buffer. The debug |
| * bus must be setup to route the SPU program counter onto the |
| * debug bus. The occurrence data in the trace buffer is not used. |
| */ |
| |
| /* This routine gets called once for the system. |
| * There is one performance monitor per node, so we |
| * only need to perform this function once per node. |
| */ |
| |
| for_each_online_cpu(cpu) { |
| if (cbe_get_hw_thread_id(cpu)) |
| continue; |
| |
| /* |
| * Setup SPU event-based profiling. |
| * Set perf_mon_control bit 0 to a zero before |
| * enabling spu collection hardware. |
| * |
| * Only support one SPU event on one SPU per node. |
| */ |
| if (ctr_enabled & 1) { |
| cbe_write_ctr(cpu, 0, reset_value[0]); |
| enable_ctr(cpu, 0, pm_regs.pm07_cntrl); |
| interrupt_mask |= |
| CBE_PM_CTR_OVERFLOW_INTR(0); |
| } else { |
| /* Disable counter */ |
| cbe_write_pm07_control(cpu, 0, 0); |
| } |
| |
| cbe_get_and_clear_pm_interrupts(cpu); |
| cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask); |
| cbe_enable_pm(cpu); |
| |
| /* clear the trace buffer */ |
| cbe_write_pm(cpu, trace_address, 0); |
| } |
| |
| /* Start the timer to time slice collecting the event profile |
| * on each of the SPUs. Note, can collect profile on one SPU |
| * per node at a time. |
| */ |
| start_spu_event_swap(); |
| start_spu_profiling_events(); |
| oprofile_running = 1; |
| smp_wmb(); |
| |
| return rtn; |
| } |
| |
| static int cell_global_start_ppu(struct op_counter_config *ctr) |
| { |
| u32 cpu, i; |
| u32 interrupt_mask = 0; |
| |
| /* This routine gets called once for the system. |
| * There is one performance monitor per node, so we |
| * only need to perform this function once per node. |
| */ |
| for_each_online_cpu(cpu) { |
| if (cbe_get_hw_thread_id(cpu)) |
| continue; |
| |
| interrupt_mask = 0; |
| |
| for (i = 0; i < num_counters; ++i) { |
| if (ctr_enabled & (1 << i)) { |
| cbe_write_ctr(cpu, i, reset_value[i]); |
| enable_ctr(cpu, i, pm_regs.pm07_cntrl); |
| interrupt_mask |= CBE_PM_CTR_OVERFLOW_INTR(i); |
| } else { |
| /* Disable counter */ |
| cbe_write_pm07_control(cpu, i, 0); |
| } |
| } |
| |
| cbe_get_and_clear_pm_interrupts(cpu); |
| cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask); |
| cbe_enable_pm(cpu); |
| } |
| |
| virt_cntr_inter_mask = interrupt_mask; |
| oprofile_running = 1; |
| smp_wmb(); |
| |
| /* |
| * NOTE: start_virt_cntrs will result in cell_virtual_cntr() being |
| * executed which manipulates the PMU. We start the "virtual counter" |
| * here so that we do not need to synchronize access to the PMU in |
| * the above for-loop. |
| */ |
| start_virt_cntrs(); |
| |
| return 0; |
| } |
| |
| static int cell_global_start(struct op_counter_config *ctr) |
| { |
| if (profiling_mode == SPU_PROFILING_CYCLES) |
| return cell_global_start_spu_cycles(ctr); |
| else if (profiling_mode == SPU_PROFILING_EVENTS) |
| return cell_global_start_spu_events(ctr); |
| else |
| return cell_global_start_ppu(ctr); |
| } |
| |
| |
| /* The SPU interrupt handler |
| * |
| * SPU event profiling works as follows: |
| * The pm_signal[0] holds the one SPU event to be measured. It is routed on |
| * the debug bus using word 0 or 1. The value of pm_signal[1] and |
| * pm_signal[2] contain the necessary events to route the SPU program |
| * counter for the selected SPU onto the debug bus using words 2 and 3. |
| * The pm_interval register is setup to write the SPU PC value into the |
| * trace buffer at the maximum rate possible. The trace buffer is configured |
| * to store the PCs, wrapping when it is full. The performance counter is |
| * initialized to the max hardware count minus the number of events, N, between |
| * samples. Once the N events have occurred, a HW counter overflow occurs |
| * causing the generation of a HW counter interrupt which also stops the |
| * writing of the SPU PC values to the trace buffer. Hence the last PC |
| * written to the trace buffer is the SPU PC that we want. Unfortunately, |
| * we have to read from the beginning of the trace buffer to get to the |
| * last value written. We just hope the PPU has nothing better to do then |
| * service this interrupt. The PC for the specific SPU being profiled is |
| * extracted from the trace buffer processed and stored. The trace buffer |
| * is cleared, interrupts are cleared, the counter is reset to max - N. |
| * A kernel timer is used to periodically call the routine spu_evnt_swap() |
| * to switch to the next physical SPU in the node to profile in round robbin |
| * order. This way data is collected for all SPUs on the node. It does mean |
| * that we need to use a relatively small value of N to ensure enough samples |
| * on each SPU are collected each SPU is being profiled 1/8 of the time. |
| * It may also be necessary to use a longer sample collection period. |
| */ |
| static void cell_handle_interrupt_spu(struct pt_regs *regs, |
| struct op_counter_config *ctr) |
| { |
| u32 cpu, cpu_tmp; |
| u64 trace_entry; |
| u32 interrupt_mask; |
| u64 trace_buffer[2]; |
| u64 last_trace_buffer; |
| u32 sample; |
| u32 trace_addr; |
| unsigned long sample_array_lock_flags; |
| int spu_num; |
| unsigned long flags; |
| |
| /* Make sure spu event interrupt handler and spu event swap |
| * don't access the counters simultaneously. |
| */ |
| cpu = smp_processor_id(); |
| spin_lock_irqsave(&cntr_lock, flags); |
| |
| cpu_tmp = cpu; |
| cbe_disable_pm(cpu); |
| |
| interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu); |
| |
| sample = 0xABCDEF; |
| trace_entry = 0xfedcba; |
| last_trace_buffer = 0xdeadbeaf; |
| |
| if ((oprofile_running == 1) && (interrupt_mask != 0)) { |
| /* disable writes to trace buff */ |
| cbe_write_pm(cpu, pm_interval, 0); |
| |
| /* only have one perf cntr being used, cntr 0 */ |
| if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(0)) |
| && ctr[0].enabled) |
| /* The SPU PC values will be read |
| * from the trace buffer, reset counter |
| */ |
| |
| cbe_write_ctr(cpu, 0, reset_value[0]); |
| |
| trace_addr = cbe_read_pm(cpu, trace_address); |
| |
| while (!(trace_addr & CBE_PM_TRACE_BUF_EMPTY)) { |
| /* There is data in the trace buffer to process |
| * Read the buffer until you get to the last |
| * entry. This is the value we want. |
| */ |
| |
| cbe_read_trace_buffer(cpu, trace_buffer); |
| trace_addr = cbe_read_pm(cpu, trace_address); |
| } |
| |
| /* SPU Address 16 bit count format for 128 bit |
| * HW trace buffer is used for the SPU PC storage |
| * HDR bits 0:15 |
| * SPU Addr 0 bits 16:31 |
| * SPU Addr 1 bits 32:47 |
| * unused bits 48:127 |
| * |
| * HDR: bit4 = 1 SPU Address 0 valid |
| * HDR: bit5 = 1 SPU Address 1 valid |
| * - unfortunately, the valid bits don't seem to work |
| * |
| * Note trace_buffer[0] holds bits 0:63 of the HW |
| * trace buffer, trace_buffer[1] holds bits 64:127 |
| */ |
| |
| trace_entry = trace_buffer[0] |
| & 0x00000000FFFF0000; |
| |
| /* only top 16 of the 18 bit SPU PC address |
| * is stored in trace buffer, hence shift right |
| * by 16 -2 bits */ |
| sample = trace_entry >> 14; |
| last_trace_buffer = trace_buffer[0]; |
| |
| spu_num = spu_evnt_phys_spu_indx |
| + (cbe_cpu_to_node(cpu) * NUM_SPUS_PER_NODE); |
| |
| /* make sure only one process at a time is calling |
| * spu_sync_buffer() |
| */ |
| spin_lock_irqsave(&oprof_spu_smpl_arry_lck, |
| sample_array_lock_flags); |
| spu_sync_buffer(spu_num, &sample, 1); |
| spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck, |
| sample_array_lock_flags); |
| |
| smp_wmb(); /* insure spu event buffer updates are written |
| * don't want events intermingled... */ |
| |
| /* The counters were frozen by the interrupt. |
| * Reenable the interrupt and restart the counters. |
| */ |
| cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC); |
| cbe_enable_pm_interrupts(cpu, hdw_thread, |
| virt_cntr_inter_mask); |
| |
| /* clear the trace buffer, re-enable writes to trace buff */ |
| cbe_write_pm(cpu, trace_address, 0); |
| cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC); |
| |
| /* The writes to the various performance counters only writes |
| * to a latch. The new values (interrupt setting bits, reset |
| * counter value etc.) are not copied to the actual registers |
| * until the performance monitor is enabled. In order to get |
| * this to work as desired, the performance monitor needs to |
| * be disabled while writing to the latches. This is a |
| * HW design issue. |
| */ |
| write_pm_cntrl(cpu); |
| cbe_enable_pm(cpu); |
| } |
| spin_unlock_irqrestore(&cntr_lock, flags); |
| } |
| |
| static void cell_handle_interrupt_ppu(struct pt_regs *regs, |
| struct op_counter_config *ctr) |
| { |
| u32 cpu; |
| u64 pc; |
| int is_kernel; |
| unsigned long flags = 0; |
| u32 interrupt_mask; |
| int i; |
| |
| cpu = smp_processor_id(); |
| |
| /* |
| * Need to make sure the interrupt handler and the virt counter |
| * routine are not running at the same time. See the |
| * cell_virtual_cntr() routine for additional comments. |
| */ |
| spin_lock_irqsave(&cntr_lock, flags); |
| |
| /* |
| * Need to disable and reenable the performance counters |
| * to get the desired behavior from the hardware. This |
| * is hardware specific. |
| */ |
| |
| cbe_disable_pm(cpu); |
| |
| interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu); |
| |
| /* |
| * If the interrupt mask has been cleared, then the virt cntr |
| * has cleared the interrupt. When the thread that generated |
| * the interrupt is restored, the data count will be restored to |
| * 0xffffff0 to cause the interrupt to be regenerated. |
| */ |
| |
| if ((oprofile_running == 1) && (interrupt_mask != 0)) { |
| pc = regs->nip; |
| is_kernel = is_kernel_addr(pc); |
| |
| for (i = 0; i < num_counters; ++i) { |
| if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(i)) |
| && ctr[i].enabled) { |
| oprofile_add_ext_sample(pc, regs, i, is_kernel); |
| cbe_write_ctr(cpu, i, reset_value[i]); |
| } |
| } |
| |
| /* |
| * The counters were frozen by the interrupt. |
| * Reenable the interrupt and restart the counters. |
| * If there was a race between the interrupt handler and |
| * the virtual counter routine. The virtual counter |
| * routine may have cleared the interrupts. Hence must |
| * use the virt_cntr_inter_mask to re-enable the interrupts. |
| */ |
| cbe_enable_pm_interrupts(cpu, hdw_thread, |
| virt_cntr_inter_mask); |
| |
| /* |
| * The writes to the various performance counters only writes |
| * to a latch. The new values (interrupt setting bits, reset |
| * counter value etc.) are not copied to the actual registers |
| * until the performance monitor is enabled. In order to get |
| * this to work as desired, the performance monitor needs to |
| * be disabled while writing to the latches. This is a |
| * HW design issue. |
| */ |
| cbe_enable_pm(cpu); |
| } |
| spin_unlock_irqrestore(&cntr_lock, flags); |
| } |
| |
| static void cell_handle_interrupt(struct pt_regs *regs, |
| struct op_counter_config *ctr) |
| { |
| if (profiling_mode == PPU_PROFILING) |
| cell_handle_interrupt_ppu(regs, ctr); |
| else |
| cell_handle_interrupt_spu(regs, ctr); |
| } |
| |
| /* |
| * This function is called from the generic OProfile |
| * driver. When profiling PPUs, we need to do the |
| * generic sync start; otherwise, do spu_sync_start. |
| */ |
| static int cell_sync_start(void) |
| { |
| if ((profiling_mode == SPU_PROFILING_CYCLES) || |
| (profiling_mode == SPU_PROFILING_EVENTS)) |
| return spu_sync_start(); |
| else |
| return DO_GENERIC_SYNC; |
| } |
| |
| static int cell_sync_stop(void) |
| { |
| if ((profiling_mode == SPU_PROFILING_CYCLES) || |
| (profiling_mode == SPU_PROFILING_EVENTS)) |
| return spu_sync_stop(); |
| else |
| return 1; |
| } |
| |
| struct op_powerpc_model op_model_cell = { |
| .reg_setup = cell_reg_setup, |
| .cpu_setup = cell_cpu_setup, |
| .global_start = cell_global_start, |
| .global_stop = cell_global_stop, |
| .sync_start = cell_sync_start, |
| .sync_stop = cell_sync_stop, |
| .handle_interrupt = cell_handle_interrupt, |
| }; |