| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Performance event support - Freescale Embedded Performance Monitor |
| * |
| * Copyright 2008-2009 Paul Mackerras, IBM Corporation. |
| * Copyright 2010 Freescale Semiconductor, Inc. |
| */ |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/perf_event.h> |
| #include <linux/percpu.h> |
| #include <linux/hardirq.h> |
| #include <asm/reg_fsl_emb.h> |
| #include <asm/pmc.h> |
| #include <asm/machdep.h> |
| #include <asm/firmware.h> |
| #include <asm/ptrace.h> |
| |
| struct cpu_hw_events { |
| int n_events; |
| int disabled; |
| u8 pmcs_enabled; |
| struct perf_event *event[MAX_HWEVENTS]; |
| }; |
| static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events); |
| |
| static struct fsl_emb_pmu *ppmu; |
| |
| /* Number of perf_events counting hardware events */ |
| static atomic_t num_events; |
| /* Used to avoid races in calling reserve/release_pmc_hardware */ |
| static DEFINE_MUTEX(pmc_reserve_mutex); |
| |
| /* |
| * If interrupts were soft-disabled when a PMU interrupt occurs, treat |
| * it as an NMI. |
| */ |
| static inline int perf_intr_is_nmi(struct pt_regs *regs) |
| { |
| #ifdef __powerpc64__ |
| return (regs->softe & IRQS_DISABLED); |
| #else |
| return 0; |
| #endif |
| } |
| |
| static void perf_event_interrupt(struct pt_regs *regs); |
| |
| /* |
| * Read one performance monitor counter (PMC). |
| */ |
| static unsigned long read_pmc(int idx) |
| { |
| unsigned long val; |
| |
| switch (idx) { |
| case 0: |
| val = mfpmr(PMRN_PMC0); |
| break; |
| case 1: |
| val = mfpmr(PMRN_PMC1); |
| break; |
| case 2: |
| val = mfpmr(PMRN_PMC2); |
| break; |
| case 3: |
| val = mfpmr(PMRN_PMC3); |
| break; |
| case 4: |
| val = mfpmr(PMRN_PMC4); |
| break; |
| case 5: |
| val = mfpmr(PMRN_PMC5); |
| break; |
| default: |
| printk(KERN_ERR "oops trying to read PMC%d\n", idx); |
| val = 0; |
| } |
| return val; |
| } |
| |
| /* |
| * Write one PMC. |
| */ |
| static void write_pmc(int idx, unsigned long val) |
| { |
| switch (idx) { |
| case 0: |
| mtpmr(PMRN_PMC0, val); |
| break; |
| case 1: |
| mtpmr(PMRN_PMC1, val); |
| break; |
| case 2: |
| mtpmr(PMRN_PMC2, val); |
| break; |
| case 3: |
| mtpmr(PMRN_PMC3, val); |
| break; |
| case 4: |
| mtpmr(PMRN_PMC4, val); |
| break; |
| case 5: |
| mtpmr(PMRN_PMC5, val); |
| break; |
| default: |
| printk(KERN_ERR "oops trying to write PMC%d\n", idx); |
| } |
| |
| isync(); |
| } |
| |
| /* |
| * Write one local control A register |
| */ |
| static void write_pmlca(int idx, unsigned long val) |
| { |
| switch (idx) { |
| case 0: |
| mtpmr(PMRN_PMLCA0, val); |
| break; |
| case 1: |
| mtpmr(PMRN_PMLCA1, val); |
| break; |
| case 2: |
| mtpmr(PMRN_PMLCA2, val); |
| break; |
| case 3: |
| mtpmr(PMRN_PMLCA3, val); |
| break; |
| case 4: |
| mtpmr(PMRN_PMLCA4, val); |
| break; |
| case 5: |
| mtpmr(PMRN_PMLCA5, val); |
| break; |
| default: |
| printk(KERN_ERR "oops trying to write PMLCA%d\n", idx); |
| } |
| |
| isync(); |
| } |
| |
| /* |
| * Write one local control B register |
| */ |
| static void write_pmlcb(int idx, unsigned long val) |
| { |
| switch (idx) { |
| case 0: |
| mtpmr(PMRN_PMLCB0, val); |
| break; |
| case 1: |
| mtpmr(PMRN_PMLCB1, val); |
| break; |
| case 2: |
| mtpmr(PMRN_PMLCB2, val); |
| break; |
| case 3: |
| mtpmr(PMRN_PMLCB3, val); |
| break; |
| case 4: |
| mtpmr(PMRN_PMLCB4, val); |
| break; |
| case 5: |
| mtpmr(PMRN_PMLCB5, val); |
| break; |
| default: |
| printk(KERN_ERR "oops trying to write PMLCB%d\n", idx); |
| } |
| |
| isync(); |
| } |
| |
| static void fsl_emb_pmu_read(struct perf_event *event) |
| { |
| s64 val, delta, prev; |
| |
| if (event->hw.state & PERF_HES_STOPPED) |
| return; |
| |
| /* |
| * Performance monitor interrupts come even when interrupts |
| * are soft-disabled, as long as interrupts are hard-enabled. |
| * Therefore we treat them like NMIs. |
| */ |
| do { |
| prev = local64_read(&event->hw.prev_count); |
| barrier(); |
| val = read_pmc(event->hw.idx); |
| } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev); |
| |
| /* The counters are only 32 bits wide */ |
| delta = (val - prev) & 0xfffffffful; |
| local64_add(delta, &event->count); |
| local64_sub(delta, &event->hw.period_left); |
| } |
| |
| /* |
| * Disable all events to prevent PMU interrupts and to allow |
| * events to be added or removed. |
| */ |
| static void fsl_emb_pmu_disable(struct pmu *pmu) |
| { |
| struct cpu_hw_events *cpuhw; |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| cpuhw = this_cpu_ptr(&cpu_hw_events); |
| |
| if (!cpuhw->disabled) { |
| cpuhw->disabled = 1; |
| |
| /* |
| * Check if we ever enabled the PMU on this cpu. |
| */ |
| if (!cpuhw->pmcs_enabled) { |
| ppc_enable_pmcs(); |
| cpuhw->pmcs_enabled = 1; |
| } |
| |
| if (atomic_read(&num_events)) { |
| /* |
| * Set the 'freeze all counters' bit, and disable |
| * interrupts. The barrier is to make sure the |
| * mtpmr has been executed and the PMU has frozen |
| * the events before we return. |
| */ |
| |
| mtpmr(PMRN_PMGC0, PMGC0_FAC); |
| isync(); |
| } |
| } |
| local_irq_restore(flags); |
| } |
| |
| /* |
| * Re-enable all events if disable == 0. |
| * If we were previously disabled and events were added, then |
| * put the new config on the PMU. |
| */ |
| static void fsl_emb_pmu_enable(struct pmu *pmu) |
| { |
| struct cpu_hw_events *cpuhw; |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| cpuhw = this_cpu_ptr(&cpu_hw_events); |
| if (!cpuhw->disabled) |
| goto out; |
| |
| cpuhw->disabled = 0; |
| ppc_set_pmu_inuse(cpuhw->n_events != 0); |
| |
| if (cpuhw->n_events > 0) { |
| mtpmr(PMRN_PMGC0, PMGC0_PMIE | PMGC0_FCECE); |
| isync(); |
| } |
| |
| out: |
| local_irq_restore(flags); |
| } |
| |
| static int collect_events(struct perf_event *group, int max_count, |
| struct perf_event *ctrs[]) |
| { |
| int n = 0; |
| struct perf_event *event; |
| |
| if (!is_software_event(group)) { |
| if (n >= max_count) |
| return -1; |
| ctrs[n] = group; |
| n++; |
| } |
| for_each_sibling_event(event, group) { |
| if (!is_software_event(event) && |
| event->state != PERF_EVENT_STATE_OFF) { |
| if (n >= max_count) |
| return -1; |
| ctrs[n] = event; |
| n++; |
| } |
| } |
| return n; |
| } |
| |
| /* context locked on entry */ |
| static int fsl_emb_pmu_add(struct perf_event *event, int flags) |
| { |
| struct cpu_hw_events *cpuhw; |
| int ret = -EAGAIN; |
| int num_counters = ppmu->n_counter; |
| u64 val; |
| int i; |
| |
| perf_pmu_disable(event->pmu); |
| cpuhw = &get_cpu_var(cpu_hw_events); |
| |
| if (event->hw.config & FSL_EMB_EVENT_RESTRICTED) |
| num_counters = ppmu->n_restricted; |
| |
| /* |
| * Allocate counters from top-down, so that restricted-capable |
| * counters are kept free as long as possible. |
| */ |
| for (i = num_counters - 1; i >= 0; i--) { |
| if (cpuhw->event[i]) |
| continue; |
| |
| break; |
| } |
| |
| if (i < 0) |
| goto out; |
| |
| event->hw.idx = i; |
| cpuhw->event[i] = event; |
| ++cpuhw->n_events; |
| |
| val = 0; |
| if (event->hw.sample_period) { |
| s64 left = local64_read(&event->hw.period_left); |
| if (left < 0x80000000L) |
| val = 0x80000000L - left; |
| } |
| local64_set(&event->hw.prev_count, val); |
| |
| if (unlikely(!(flags & PERF_EF_START))) { |
| event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE; |
| val = 0; |
| } else { |
| event->hw.state &= ~(PERF_HES_STOPPED | PERF_HES_UPTODATE); |
| } |
| |
| write_pmc(i, val); |
| perf_event_update_userpage(event); |
| |
| write_pmlcb(i, event->hw.config >> 32); |
| write_pmlca(i, event->hw.config_base); |
| |
| ret = 0; |
| out: |
| put_cpu_var(cpu_hw_events); |
| perf_pmu_enable(event->pmu); |
| return ret; |
| } |
| |
| /* context locked on entry */ |
| static void fsl_emb_pmu_del(struct perf_event *event, int flags) |
| { |
| struct cpu_hw_events *cpuhw; |
| int i = event->hw.idx; |
| |
| perf_pmu_disable(event->pmu); |
| if (i < 0) |
| goto out; |
| |
| fsl_emb_pmu_read(event); |
| |
| cpuhw = &get_cpu_var(cpu_hw_events); |
| |
| WARN_ON(event != cpuhw->event[event->hw.idx]); |
| |
| write_pmlca(i, 0); |
| write_pmlcb(i, 0); |
| write_pmc(i, 0); |
| |
| cpuhw->event[i] = NULL; |
| event->hw.idx = -1; |
| |
| /* |
| * TODO: if at least one restricted event exists, and we |
| * just freed up a non-restricted-capable counter, and |
| * there is a restricted-capable counter occupied by |
| * a non-restricted event, migrate that event to the |
| * vacated counter. |
| */ |
| |
| cpuhw->n_events--; |
| |
| out: |
| perf_pmu_enable(event->pmu); |
| put_cpu_var(cpu_hw_events); |
| } |
| |
| static void fsl_emb_pmu_start(struct perf_event *event, int ef_flags) |
| { |
| unsigned long flags; |
| unsigned long val; |
| s64 left; |
| |
| if (event->hw.idx < 0 || !event->hw.sample_period) |
| return; |
| |
| if (!(event->hw.state & PERF_HES_STOPPED)) |
| return; |
| |
| if (ef_flags & PERF_EF_RELOAD) |
| WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); |
| |
| local_irq_save(flags); |
| perf_pmu_disable(event->pmu); |
| |
| event->hw.state = 0; |
| left = local64_read(&event->hw.period_left); |
| val = 0; |
| if (left < 0x80000000L) |
| val = 0x80000000L - left; |
| write_pmc(event->hw.idx, val); |
| |
| perf_event_update_userpage(event); |
| perf_pmu_enable(event->pmu); |
| local_irq_restore(flags); |
| } |
| |
| static void fsl_emb_pmu_stop(struct perf_event *event, int ef_flags) |
| { |
| unsigned long flags; |
| |
| if (event->hw.idx < 0 || !event->hw.sample_period) |
| return; |
| |
| if (event->hw.state & PERF_HES_STOPPED) |
| return; |
| |
| local_irq_save(flags); |
| perf_pmu_disable(event->pmu); |
| |
| fsl_emb_pmu_read(event); |
| event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; |
| write_pmc(event->hw.idx, 0); |
| |
| perf_event_update_userpage(event); |
| perf_pmu_enable(event->pmu); |
| local_irq_restore(flags); |
| } |
| |
| /* |
| * Release the PMU if this is the last perf_event. |
| */ |
| static void hw_perf_event_destroy(struct perf_event *event) |
| { |
| if (!atomic_add_unless(&num_events, -1, 1)) { |
| mutex_lock(&pmc_reserve_mutex); |
| if (atomic_dec_return(&num_events) == 0) |
| release_pmc_hardware(); |
| mutex_unlock(&pmc_reserve_mutex); |
| } |
| } |
| |
| /* |
| * Translate a generic cache event_id config to a raw event_id code. |
| */ |
| static int hw_perf_cache_event(u64 config, u64 *eventp) |
| { |
| unsigned long type, op, result; |
| int ev; |
| |
| if (!ppmu->cache_events) |
| return -EINVAL; |
| |
| /* unpack config */ |
| type = config & 0xff; |
| op = (config >> 8) & 0xff; |
| result = (config >> 16) & 0xff; |
| |
| if (type >= PERF_COUNT_HW_CACHE_MAX || |
| op >= PERF_COUNT_HW_CACHE_OP_MAX || |
| result >= PERF_COUNT_HW_CACHE_RESULT_MAX) |
| return -EINVAL; |
| |
| ev = (*ppmu->cache_events)[type][op][result]; |
| if (ev == 0) |
| return -EOPNOTSUPP; |
| if (ev == -1) |
| return -EINVAL; |
| *eventp = ev; |
| return 0; |
| } |
| |
| static int fsl_emb_pmu_event_init(struct perf_event *event) |
| { |
| u64 ev; |
| struct perf_event *events[MAX_HWEVENTS]; |
| int n; |
| int err; |
| int num_restricted; |
| int i; |
| |
| if (ppmu->n_counter > MAX_HWEVENTS) { |
| WARN(1, "No. of perf counters (%d) is higher than max array size(%d)\n", |
| ppmu->n_counter, MAX_HWEVENTS); |
| ppmu->n_counter = MAX_HWEVENTS; |
| } |
| |
| switch (event->attr.type) { |
| case PERF_TYPE_HARDWARE: |
| ev = event->attr.config; |
| if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0) |
| return -EOPNOTSUPP; |
| ev = ppmu->generic_events[ev]; |
| break; |
| |
| case PERF_TYPE_HW_CACHE: |
| err = hw_perf_cache_event(event->attr.config, &ev); |
| if (err) |
| return err; |
| break; |
| |
| case PERF_TYPE_RAW: |
| ev = event->attr.config; |
| break; |
| |
| default: |
| return -ENOENT; |
| } |
| |
| event->hw.config = ppmu->xlate_event(ev); |
| if (!(event->hw.config & FSL_EMB_EVENT_VALID)) |
| return -EINVAL; |
| |
| /* |
| * If this is in a group, check if it can go on with all the |
| * other hardware events in the group. We assume the event |
| * hasn't been linked into its leader's sibling list at this point. |
| */ |
| n = 0; |
| if (event->group_leader != event) { |
| n = collect_events(event->group_leader, |
| ppmu->n_counter - 1, events); |
| if (n < 0) |
| return -EINVAL; |
| } |
| |
| if (event->hw.config & FSL_EMB_EVENT_RESTRICTED) { |
| num_restricted = 0; |
| for (i = 0; i < n; i++) { |
| if (events[i]->hw.config & FSL_EMB_EVENT_RESTRICTED) |
| num_restricted++; |
| } |
| |
| if (num_restricted >= ppmu->n_restricted) |
| return -EINVAL; |
| } |
| |
| event->hw.idx = -1; |
| |
| event->hw.config_base = PMLCA_CE | PMLCA_FCM1 | |
| (u32)((ev << 16) & PMLCA_EVENT_MASK); |
| |
| if (event->attr.exclude_user) |
| event->hw.config_base |= PMLCA_FCU; |
| if (event->attr.exclude_kernel) |
| event->hw.config_base |= PMLCA_FCS; |
| if (event->attr.exclude_idle) |
| return -ENOTSUPP; |
| |
| event->hw.last_period = event->hw.sample_period; |
| local64_set(&event->hw.period_left, event->hw.last_period); |
| |
| /* |
| * See if we need to reserve the PMU. |
| * If no events are currently in use, then we have to take a |
| * mutex to ensure that we don't race with another task doing |
| * reserve_pmc_hardware or release_pmc_hardware. |
| */ |
| err = 0; |
| if (!atomic_inc_not_zero(&num_events)) { |
| mutex_lock(&pmc_reserve_mutex); |
| if (atomic_read(&num_events) == 0 && |
| reserve_pmc_hardware(perf_event_interrupt)) |
| err = -EBUSY; |
| else |
| atomic_inc(&num_events); |
| mutex_unlock(&pmc_reserve_mutex); |
| |
| mtpmr(PMRN_PMGC0, PMGC0_FAC); |
| isync(); |
| } |
| event->destroy = hw_perf_event_destroy; |
| |
| return err; |
| } |
| |
| static struct pmu fsl_emb_pmu = { |
| .pmu_enable = fsl_emb_pmu_enable, |
| .pmu_disable = fsl_emb_pmu_disable, |
| .event_init = fsl_emb_pmu_event_init, |
| .add = fsl_emb_pmu_add, |
| .del = fsl_emb_pmu_del, |
| .start = fsl_emb_pmu_start, |
| .stop = fsl_emb_pmu_stop, |
| .read = fsl_emb_pmu_read, |
| }; |
| |
| /* |
| * A counter has overflowed; update its count and record |
| * things if requested. Note that interrupts are hard-disabled |
| * here so there is no possibility of being interrupted. |
| */ |
| static void record_and_restart(struct perf_event *event, unsigned long val, |
| struct pt_regs *regs) |
| { |
| u64 period = event->hw.sample_period; |
| s64 prev, delta, left; |
| int record = 0; |
| |
| if (event->hw.state & PERF_HES_STOPPED) { |
| write_pmc(event->hw.idx, 0); |
| return; |
| } |
| |
| /* we don't have to worry about interrupts here */ |
| prev = local64_read(&event->hw.prev_count); |
| delta = (val - prev) & 0xfffffffful; |
| local64_add(delta, &event->count); |
| |
| /* |
| * See if the total period for this event has expired, |
| * and update for the next period. |
| */ |
| val = 0; |
| left = local64_read(&event->hw.period_left) - delta; |
| if (period) { |
| if (left <= 0) { |
| left += period; |
| if (left <= 0) |
| left = period; |
| record = 1; |
| event->hw.last_period = event->hw.sample_period; |
| } |
| if (left < 0x80000000LL) |
| val = 0x80000000LL - left; |
| } |
| |
| write_pmc(event->hw.idx, val); |
| local64_set(&event->hw.prev_count, val); |
| local64_set(&event->hw.period_left, left); |
| perf_event_update_userpage(event); |
| |
| /* |
| * Finally record data if requested. |
| */ |
| if (record) { |
| struct perf_sample_data data; |
| |
| perf_sample_data_init(&data, 0, event->hw.last_period); |
| |
| if (perf_event_overflow(event, &data, regs)) |
| fsl_emb_pmu_stop(event, 0); |
| } |
| } |
| |
| static void perf_event_interrupt(struct pt_regs *regs) |
| { |
| int i; |
| struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); |
| struct perf_event *event; |
| unsigned long val; |
| int found = 0; |
| int nmi; |
| |
| nmi = perf_intr_is_nmi(regs); |
| if (nmi) |
| nmi_enter(); |
| else |
| irq_enter(); |
| |
| for (i = 0; i < ppmu->n_counter; ++i) { |
| event = cpuhw->event[i]; |
| |
| val = read_pmc(i); |
| if ((int)val < 0) { |
| if (event) { |
| /* event has overflowed */ |
| found = 1; |
| record_and_restart(event, val, regs); |
| } else { |
| /* |
| * Disabled counter is negative, |
| * reset it just in case. |
| */ |
| write_pmc(i, 0); |
| } |
| } |
| } |
| |
| /* PMM will keep counters frozen until we return from the interrupt. */ |
| mtmsr(mfmsr() | MSR_PMM); |
| mtpmr(PMRN_PMGC0, PMGC0_PMIE | PMGC0_FCECE); |
| isync(); |
| |
| if (nmi) |
| nmi_exit(); |
| else |
| irq_exit(); |
| } |
| |
| void hw_perf_event_setup(int cpu) |
| { |
| struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu); |
| |
| memset(cpuhw, 0, sizeof(*cpuhw)); |
| } |
| |
| int register_fsl_emb_pmu(struct fsl_emb_pmu *pmu) |
| { |
| if (ppmu) |
| return -EBUSY; /* something's already registered */ |
| |
| ppmu = pmu; |
| pr_info("%s performance monitor hardware support registered\n", |
| pmu->name); |
| |
| perf_pmu_register(&fsl_emb_pmu, "cpu", PERF_TYPE_RAW); |
| |
| return 0; |
| } |