| /* |
| * Copyright (c) 2013, Kenneth MacKay |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| #ifndef _CRYPTO_ECC_H |
| #define _CRYPTO_ECC_H |
| |
| /* One digit is u64 qword. */ |
| #define ECC_CURVE_NIST_P192_DIGITS 3 |
| #define ECC_CURVE_NIST_P256_DIGITS 4 |
| #define ECC_MAX_DIGITS (512 / 64) |
| |
| #define ECC_DIGITS_TO_BYTES_SHIFT 3 |
| |
| /** |
| * struct ecc_point - elliptic curve point in affine coordinates |
| * |
| * @x: X coordinate in vli form. |
| * @y: Y coordinate in vli form. |
| * @ndigits: Length of vlis in u64 qwords. |
| */ |
| struct ecc_point { |
| u64 *x; |
| u64 *y; |
| u8 ndigits; |
| }; |
| |
| #define ECC_POINT_INIT(x, y, ndigits) (struct ecc_point) { x, y, ndigits } |
| |
| /** |
| * struct ecc_curve - definition of elliptic curve |
| * |
| * @name: Short name of the curve. |
| * @g: Generator point of the curve. |
| * @p: Prime number, if Barrett's reduction is used for this curve |
| * pre-calculated value 'mu' is appended to the @p after ndigits. |
| * Use of Barrett's reduction is heuristically determined in |
| * vli_mmod_fast(). |
| * @n: Order of the curve group. |
| * @a: Curve parameter a. |
| * @b: Curve parameter b. |
| */ |
| struct ecc_curve { |
| char *name; |
| struct ecc_point g; |
| u64 *p; |
| u64 *n; |
| u64 *a; |
| u64 *b; |
| }; |
| |
| /** |
| * ecc_is_key_valid() - Validate a given ECDH private key |
| * |
| * @curve_id: id representing the curve to use |
| * @ndigits: curve's number of digits |
| * @private_key: private key to be used for the given curve |
| * @private_key_len: private key length |
| * |
| * Returns 0 if the key is acceptable, a negative value otherwise |
| */ |
| int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits, |
| const u64 *private_key, unsigned int private_key_len); |
| |
| /** |
| * ecc_gen_privkey() - Generates an ECC private key. |
| * The private key is a random integer in the range 0 < random < n, where n is a |
| * prime that is the order of the cyclic subgroup generated by the distinguished |
| * point G. |
| * @curve_id: id representing the curve to use |
| * @ndigits: curve number of digits |
| * @private_key: buffer for storing the generated private key |
| * |
| * Returns 0 if the private key was generated successfully, a negative value |
| * if an error occurred. |
| */ |
| int ecc_gen_privkey(unsigned int curve_id, unsigned int ndigits, u64 *privkey); |
| |
| /** |
| * ecc_make_pub_key() - Compute an ECC public key |
| * |
| * @curve_id: id representing the curve to use |
| * @ndigits: curve's number of digits |
| * @private_key: pregenerated private key for the given curve |
| * @public_key: buffer for storing the generated public key |
| * |
| * Returns 0 if the public key was generated successfully, a negative value |
| * if an error occurred. |
| */ |
| int ecc_make_pub_key(const unsigned int curve_id, unsigned int ndigits, |
| const u64 *private_key, u64 *public_key); |
| |
| /** |
| * crypto_ecdh_shared_secret() - Compute a shared secret |
| * |
| * @curve_id: id representing the curve to use |
| * @ndigits: curve's number of digits |
| * @private_key: private key of part A |
| * @public_key: public key of counterpart B |
| * @secret: buffer for storing the calculated shared secret |
| * |
| * Note: It is recommended that you hash the result of crypto_ecdh_shared_secret |
| * before using it for symmetric encryption or HMAC. |
| * |
| * Returns 0 if the shared secret was generated successfully, a negative value |
| * if an error occurred. |
| */ |
| int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits, |
| const u64 *private_key, const u64 *public_key, |
| u64 *secret); |
| |
| /** |
| * ecc_is_pubkey_valid_partial() - Partial public key validation |
| * |
| * @curve: elliptic curve domain parameters |
| * @pk: public key as a point |
| * |
| * Valdiate public key according to SP800-56A section 5.6.2.3.4 ECC Partial |
| * Public-Key Validation Routine. |
| * |
| * Note: There is no check that the public key is in the correct elliptic curve |
| * subgroup. |
| * |
| * Return: 0 if validation is successful, -EINVAL if validation is failed. |
| */ |
| int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve, |
| struct ecc_point *pk); |
| |
| /** |
| * ecc_is_pubkey_valid_full() - Full public key validation |
| * |
| * @curve: elliptic curve domain parameters |
| * @pk: public key as a point |
| * |
| * Valdiate public key according to SP800-56A section 5.6.2.3.3 ECC Full |
| * Public-Key Validation Routine. |
| * |
| * Return: 0 if validation is successful, -EINVAL if validation is failed. |
| */ |
| int ecc_is_pubkey_valid_full(const struct ecc_curve *curve, |
| struct ecc_point *pk); |
| |
| /** |
| * vli_is_zero() - Determine is vli is zero |
| * |
| * @vli: vli to check. |
| * @ndigits: length of the @vli |
| */ |
| bool vli_is_zero(const u64 *vli, unsigned int ndigits); |
| |
| /** |
| * vli_cmp() - compare left and right vlis |
| * |
| * @left: vli |
| * @right: vli |
| * @ndigits: length of both vlis |
| * |
| * Returns sign of @left - @right, i.e. -1 if @left < @right, |
| * 0 if @left == @right, 1 if @left > @right. |
| */ |
| int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits); |
| |
| /** |
| * vli_sub() - Subtracts right from left |
| * |
| * @result: where to write result |
| * @left: vli |
| * @right vli |
| * @ndigits: length of all vlis |
| * |
| * Note: can modify in-place. |
| * |
| * Return: carry bit. |
| */ |
| u64 vli_sub(u64 *result, const u64 *left, const u64 *right, |
| unsigned int ndigits); |
| |
| /** |
| * vli_from_be64() - Load vli from big-endian u64 array |
| * |
| * @dest: destination vli |
| * @src: source array of u64 BE values |
| * @ndigits: length of both vli and array |
| */ |
| void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits); |
| |
| /** |
| * vli_from_le64() - Load vli from little-endian u64 array |
| * |
| * @dest: destination vli |
| * @src: source array of u64 LE values |
| * @ndigits: length of both vli and array |
| */ |
| void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits); |
| |
| /** |
| * vli_mod_inv() - Modular inversion |
| * |
| * @result: where to write vli number |
| * @input: vli value to operate on |
| * @mod: modulus |
| * @ndigits: length of all vlis |
| */ |
| void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod, |
| unsigned int ndigits); |
| |
| /** |
| * vli_mod_mult_slow() - Modular multiplication |
| * |
| * @result: where to write result value |
| * @left: vli number to multiply with @right |
| * @right: vli number to multiply with @left |
| * @mod: modulus |
| * @ndigits: length of all vlis |
| * |
| * Note: Assumes that mod is big enough curve order. |
| */ |
| void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right, |
| const u64 *mod, unsigned int ndigits); |
| |
| /** |
| * ecc_point_mult_shamir() - Add two points multiplied by scalars |
| * |
| * @result: resulting point |
| * @x: scalar to multiply with @p |
| * @p: point to multiply with @x |
| * @y: scalar to multiply with @q |
| * @q: point to multiply with @y |
| * @curve: curve |
| * |
| * Returns result = x * p + x * q over the curve. |
| * This works faster than two multiplications and addition. |
| */ |
| void ecc_point_mult_shamir(const struct ecc_point *result, |
| const u64 *x, const struct ecc_point *p, |
| const u64 *y, const struct ecc_point *q, |
| const struct ecc_curve *curve); |
| #endif |