| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Core IIO driver for Bosch BMA400 triaxial acceleration sensor. |
| * |
| * Copyright 2019 Dan Robertson <dan@dlrobertson.com> |
| * |
| * TODO: |
| * - Support for power management |
| * - Support events and interrupts |
| * - Create channel for step count |
| * - Create channel for sensor time |
| */ |
| |
| #include <linux/bitops.h> |
| #include <linux/device.h> |
| #include <linux/iio/iio.h> |
| #include <linux/iio/sysfs.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/mutex.h> |
| #include <linux/regmap.h> |
| #include <linux/regulator/consumer.h> |
| |
| #include "bma400.h" |
| |
| /* |
| * The G-range selection may be one of 2g, 4g, 8, or 16g. The scale may |
| * be selected with the acc_range bits of the ACC_CONFIG1 register. |
| * NB: This buffer is populated in the device init. |
| */ |
| static int bma400_scales[8]; |
| |
| /* |
| * See the ACC_CONFIG1 section of the datasheet. |
| * NB: This buffer is populated in the device init. |
| */ |
| static int bma400_sample_freqs[14]; |
| |
| static const int bma400_osr_range[] = { 0, 1, 3 }; |
| |
| /* See the ACC_CONFIG0 section of the datasheet */ |
| enum bma400_power_mode { |
| POWER_MODE_SLEEP = 0x00, |
| POWER_MODE_LOW = 0x01, |
| POWER_MODE_NORMAL = 0x02, |
| POWER_MODE_INVALID = 0x03, |
| }; |
| |
| struct bma400_sample_freq { |
| int hz; |
| int uhz; |
| }; |
| |
| struct bma400_data { |
| struct device *dev; |
| struct regmap *regmap; |
| struct regulator_bulk_data regulators[BMA400_NUM_REGULATORS]; |
| struct mutex mutex; /* data register lock */ |
| struct iio_mount_matrix orientation; |
| enum bma400_power_mode power_mode; |
| struct bma400_sample_freq sample_freq; |
| int oversampling_ratio; |
| int scale; |
| }; |
| |
| static bool bma400_is_writable_reg(struct device *dev, unsigned int reg) |
| { |
| switch (reg) { |
| case BMA400_CHIP_ID_REG: |
| case BMA400_ERR_REG: |
| case BMA400_STATUS_REG: |
| case BMA400_X_AXIS_LSB_REG: |
| case BMA400_X_AXIS_MSB_REG: |
| case BMA400_Y_AXIS_LSB_REG: |
| case BMA400_Y_AXIS_MSB_REG: |
| case BMA400_Z_AXIS_LSB_REG: |
| case BMA400_Z_AXIS_MSB_REG: |
| case BMA400_SENSOR_TIME0: |
| case BMA400_SENSOR_TIME1: |
| case BMA400_SENSOR_TIME2: |
| case BMA400_EVENT_REG: |
| case BMA400_INT_STAT0_REG: |
| case BMA400_INT_STAT1_REG: |
| case BMA400_INT_STAT2_REG: |
| case BMA400_TEMP_DATA_REG: |
| case BMA400_FIFO_LENGTH0_REG: |
| case BMA400_FIFO_LENGTH1_REG: |
| case BMA400_FIFO_DATA_REG: |
| case BMA400_STEP_CNT0_REG: |
| case BMA400_STEP_CNT1_REG: |
| case BMA400_STEP_CNT3_REG: |
| case BMA400_STEP_STAT_REG: |
| return false; |
| default: |
| return true; |
| } |
| } |
| |
| static bool bma400_is_volatile_reg(struct device *dev, unsigned int reg) |
| { |
| switch (reg) { |
| case BMA400_ERR_REG: |
| case BMA400_STATUS_REG: |
| case BMA400_X_AXIS_LSB_REG: |
| case BMA400_X_AXIS_MSB_REG: |
| case BMA400_Y_AXIS_LSB_REG: |
| case BMA400_Y_AXIS_MSB_REG: |
| case BMA400_Z_AXIS_LSB_REG: |
| case BMA400_Z_AXIS_MSB_REG: |
| case BMA400_SENSOR_TIME0: |
| case BMA400_SENSOR_TIME1: |
| case BMA400_SENSOR_TIME2: |
| case BMA400_EVENT_REG: |
| case BMA400_INT_STAT0_REG: |
| case BMA400_INT_STAT1_REG: |
| case BMA400_INT_STAT2_REG: |
| case BMA400_TEMP_DATA_REG: |
| case BMA400_FIFO_LENGTH0_REG: |
| case BMA400_FIFO_LENGTH1_REG: |
| case BMA400_FIFO_DATA_REG: |
| case BMA400_STEP_CNT0_REG: |
| case BMA400_STEP_CNT1_REG: |
| case BMA400_STEP_CNT3_REG: |
| case BMA400_STEP_STAT_REG: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| const struct regmap_config bma400_regmap_config = { |
| .reg_bits = 8, |
| .val_bits = 8, |
| .max_register = BMA400_CMD_REG, |
| .cache_type = REGCACHE_RBTREE, |
| .writeable_reg = bma400_is_writable_reg, |
| .volatile_reg = bma400_is_volatile_reg, |
| }; |
| EXPORT_SYMBOL(bma400_regmap_config); |
| |
| static const struct iio_mount_matrix * |
| bma400_accel_get_mount_matrix(const struct iio_dev *indio_dev, |
| const struct iio_chan_spec *chan) |
| { |
| struct bma400_data *data = iio_priv(indio_dev); |
| |
| return &data->orientation; |
| } |
| |
| static const struct iio_chan_spec_ext_info bma400_ext_info[] = { |
| IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bma400_accel_get_mount_matrix), |
| { } |
| }; |
| |
| #define BMA400_ACC_CHANNEL(_axis) { \ |
| .type = IIO_ACCEL, \ |
| .modified = 1, \ |
| .channel2 = IIO_MOD_##_axis, \ |
| .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ |
| .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \ |
| BIT(IIO_CHAN_INFO_SCALE) | \ |
| BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \ |
| .info_mask_shared_by_type_available = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \ |
| BIT(IIO_CHAN_INFO_SCALE) | \ |
| BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \ |
| .ext_info = bma400_ext_info, \ |
| } |
| |
| static const struct iio_chan_spec bma400_channels[] = { |
| BMA400_ACC_CHANNEL(X), |
| BMA400_ACC_CHANNEL(Y), |
| BMA400_ACC_CHANNEL(Z), |
| { |
| .type = IIO_TEMP, |
| .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), |
| .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ), |
| }, |
| }; |
| |
| static int bma400_get_temp_reg(struct bma400_data *data, int *val, int *val2) |
| { |
| unsigned int raw_temp; |
| int host_temp; |
| int ret; |
| |
| if (data->power_mode == POWER_MODE_SLEEP) |
| return -EBUSY; |
| |
| ret = regmap_read(data->regmap, BMA400_TEMP_DATA_REG, &raw_temp); |
| if (ret) |
| return ret; |
| |
| host_temp = sign_extend32(raw_temp, 7); |
| /* |
| * The formula for the TEMP_DATA register in the datasheet |
| * is: x * 0.5 + 23 |
| */ |
| *val = (host_temp >> 1) + 23; |
| *val2 = (host_temp & 0x1) * 500000; |
| return IIO_VAL_INT_PLUS_MICRO; |
| } |
| |
| static int bma400_get_accel_reg(struct bma400_data *data, |
| const struct iio_chan_spec *chan, |
| int *val) |
| { |
| __le16 raw_accel; |
| int lsb_reg; |
| int ret; |
| |
| if (data->power_mode == POWER_MODE_SLEEP) |
| return -EBUSY; |
| |
| switch (chan->channel2) { |
| case IIO_MOD_X: |
| lsb_reg = BMA400_X_AXIS_LSB_REG; |
| break; |
| case IIO_MOD_Y: |
| lsb_reg = BMA400_Y_AXIS_LSB_REG; |
| break; |
| case IIO_MOD_Z: |
| lsb_reg = BMA400_Z_AXIS_LSB_REG; |
| break; |
| default: |
| dev_err(data->dev, "invalid axis channel modifier\n"); |
| return -EINVAL; |
| } |
| |
| /* bulk read two registers, with the base being the LSB register */ |
| ret = regmap_bulk_read(data->regmap, lsb_reg, &raw_accel, |
| sizeof(raw_accel)); |
| if (ret) |
| return ret; |
| |
| *val = sign_extend32(le16_to_cpu(raw_accel), 11); |
| return IIO_VAL_INT; |
| } |
| |
| static void bma400_output_data_rate_from_raw(int raw, unsigned int *val, |
| unsigned int *val2) |
| { |
| *val = BMA400_ACC_ODR_MAX_HZ >> (BMA400_ACC_ODR_MAX_RAW - raw); |
| if (raw > BMA400_ACC_ODR_MIN_RAW) |
| *val2 = 0; |
| else |
| *val2 = 500000; |
| } |
| |
| static int bma400_get_accel_output_data_rate(struct bma400_data *data) |
| { |
| unsigned int val; |
| unsigned int odr; |
| int ret; |
| |
| switch (data->power_mode) { |
| case POWER_MODE_LOW: |
| /* |
| * Runs at a fixed rate in low-power mode. See section 4.3 |
| * in the datasheet. |
| */ |
| bma400_output_data_rate_from_raw(BMA400_ACC_ODR_LP_RAW, |
| &data->sample_freq.hz, |
| &data->sample_freq.uhz); |
| return 0; |
| case POWER_MODE_NORMAL: |
| /* |
| * In normal mode the ODR can be found in the ACC_CONFIG1 |
| * register. |
| */ |
| ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &val); |
| if (ret) |
| goto error; |
| |
| odr = val & BMA400_ACC_ODR_MASK; |
| if (odr < BMA400_ACC_ODR_MIN_RAW || |
| odr > BMA400_ACC_ODR_MAX_RAW) { |
| ret = -EINVAL; |
| goto error; |
| } |
| |
| bma400_output_data_rate_from_raw(odr, &data->sample_freq.hz, |
| &data->sample_freq.uhz); |
| return 0; |
| case POWER_MODE_SLEEP: |
| data->sample_freq.hz = 0; |
| data->sample_freq.uhz = 0; |
| return 0; |
| default: |
| ret = 0; |
| goto error; |
| } |
| error: |
| data->sample_freq.hz = -1; |
| data->sample_freq.uhz = -1; |
| return ret; |
| } |
| |
| static int bma400_set_accel_output_data_rate(struct bma400_data *data, |
| int hz, int uhz) |
| { |
| unsigned int idx; |
| unsigned int odr; |
| unsigned int val; |
| int ret; |
| |
| if (hz >= BMA400_ACC_ODR_MIN_WHOLE_HZ) { |
| if (uhz || hz > BMA400_ACC_ODR_MAX_HZ) |
| return -EINVAL; |
| |
| /* Note this works because MIN_WHOLE_HZ is odd */ |
| idx = __ffs(hz); |
| |
| if (hz >> idx != BMA400_ACC_ODR_MIN_WHOLE_HZ) |
| return -EINVAL; |
| |
| idx += BMA400_ACC_ODR_MIN_RAW + 1; |
| } else if (hz == BMA400_ACC_ODR_MIN_HZ && uhz == 500000) { |
| idx = BMA400_ACC_ODR_MIN_RAW; |
| } else { |
| return -EINVAL; |
| } |
| |
| ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &val); |
| if (ret) |
| return ret; |
| |
| /* preserve the range and normal mode osr */ |
| odr = (~BMA400_ACC_ODR_MASK & val) | idx; |
| |
| ret = regmap_write(data->regmap, BMA400_ACC_CONFIG1_REG, odr); |
| if (ret) |
| return ret; |
| |
| bma400_output_data_rate_from_raw(idx, &data->sample_freq.hz, |
| &data->sample_freq.uhz); |
| return 0; |
| } |
| |
| static int bma400_get_accel_oversampling_ratio(struct bma400_data *data) |
| { |
| unsigned int val; |
| unsigned int osr; |
| int ret; |
| |
| /* |
| * The oversampling ratio is stored in a different register |
| * based on the power-mode. In normal mode the OSR is stored |
| * in ACC_CONFIG1. In low-power mode it is stored in |
| * ACC_CONFIG0. |
| */ |
| switch (data->power_mode) { |
| case POWER_MODE_LOW: |
| ret = regmap_read(data->regmap, BMA400_ACC_CONFIG0_REG, &val); |
| if (ret) { |
| data->oversampling_ratio = -1; |
| return ret; |
| } |
| |
| osr = (val & BMA400_LP_OSR_MASK) >> BMA400_LP_OSR_SHIFT; |
| |
| data->oversampling_ratio = osr; |
| return 0; |
| case POWER_MODE_NORMAL: |
| ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &val); |
| if (ret) { |
| data->oversampling_ratio = -1; |
| return ret; |
| } |
| |
| osr = (val & BMA400_NP_OSR_MASK) >> BMA400_NP_OSR_SHIFT; |
| |
| data->oversampling_ratio = osr; |
| return 0; |
| case POWER_MODE_SLEEP: |
| data->oversampling_ratio = 0; |
| return 0; |
| default: |
| data->oversampling_ratio = -1; |
| return -EINVAL; |
| } |
| } |
| |
| static int bma400_set_accel_oversampling_ratio(struct bma400_data *data, |
| int val) |
| { |
| unsigned int acc_config; |
| int ret; |
| |
| if (val & ~BMA400_TWO_BITS_MASK) |
| return -EINVAL; |
| |
| /* |
| * The oversampling ratio is stored in a different register |
| * based on the power-mode. |
| */ |
| switch (data->power_mode) { |
| case POWER_MODE_LOW: |
| ret = regmap_read(data->regmap, BMA400_ACC_CONFIG0_REG, |
| &acc_config); |
| if (ret) |
| return ret; |
| |
| ret = regmap_write(data->regmap, BMA400_ACC_CONFIG0_REG, |
| (acc_config & ~BMA400_LP_OSR_MASK) | |
| (val << BMA400_LP_OSR_SHIFT)); |
| if (ret) { |
| dev_err(data->dev, "Failed to write out OSR\n"); |
| return ret; |
| } |
| |
| data->oversampling_ratio = val; |
| return 0; |
| case POWER_MODE_NORMAL: |
| ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, |
| &acc_config); |
| if (ret) |
| return ret; |
| |
| ret = regmap_write(data->regmap, BMA400_ACC_CONFIG1_REG, |
| (acc_config & ~BMA400_NP_OSR_MASK) | |
| (val << BMA400_NP_OSR_SHIFT)); |
| if (ret) { |
| dev_err(data->dev, "Failed to write out OSR\n"); |
| return ret; |
| } |
| |
| data->oversampling_ratio = val; |
| return 0; |
| default: |
| return -EINVAL; |
| } |
| return ret; |
| } |
| |
| static int bma400_accel_scale_to_raw(struct bma400_data *data, |
| unsigned int val) |
| { |
| int raw; |
| |
| if (val == 0) |
| return -EINVAL; |
| |
| /* Note this works because BMA400_SCALE_MIN is odd */ |
| raw = __ffs(val); |
| |
| if (val >> raw != BMA400_SCALE_MIN) |
| return -EINVAL; |
| |
| return raw; |
| } |
| |
| static int bma400_get_accel_scale(struct bma400_data *data) |
| { |
| unsigned int raw_scale; |
| unsigned int val; |
| int ret; |
| |
| ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &val); |
| if (ret) |
| return ret; |
| |
| raw_scale = (val & BMA400_ACC_SCALE_MASK) >> BMA400_SCALE_SHIFT; |
| if (raw_scale > BMA400_TWO_BITS_MASK) |
| return -EINVAL; |
| |
| data->scale = BMA400_SCALE_MIN << raw_scale; |
| |
| return 0; |
| } |
| |
| static int bma400_set_accel_scale(struct bma400_data *data, unsigned int val) |
| { |
| unsigned int acc_config; |
| int raw; |
| int ret; |
| |
| ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &acc_config); |
| if (ret) |
| return ret; |
| |
| raw = bma400_accel_scale_to_raw(data, val); |
| if (raw < 0) |
| return raw; |
| |
| ret = regmap_write(data->regmap, BMA400_ACC_CONFIG1_REG, |
| (acc_config & ~BMA400_ACC_SCALE_MASK) | |
| (raw << BMA400_SCALE_SHIFT)); |
| if (ret) |
| return ret; |
| |
| data->scale = val; |
| return 0; |
| } |
| |
| static int bma400_get_power_mode(struct bma400_data *data) |
| { |
| unsigned int val; |
| int ret; |
| |
| ret = regmap_read(data->regmap, BMA400_STATUS_REG, &val); |
| if (ret) { |
| dev_err(data->dev, "Failed to read status register\n"); |
| return ret; |
| } |
| |
| data->power_mode = (val >> 1) & BMA400_TWO_BITS_MASK; |
| return 0; |
| } |
| |
| static int bma400_set_power_mode(struct bma400_data *data, |
| enum bma400_power_mode mode) |
| { |
| unsigned int val; |
| int ret; |
| |
| ret = regmap_read(data->regmap, BMA400_ACC_CONFIG0_REG, &val); |
| if (ret) |
| return ret; |
| |
| if (data->power_mode == mode) |
| return 0; |
| |
| if (mode == POWER_MODE_INVALID) |
| return -EINVAL; |
| |
| /* Preserve the low-power oversample ratio etc */ |
| ret = regmap_write(data->regmap, BMA400_ACC_CONFIG0_REG, |
| mode | (val & ~BMA400_TWO_BITS_MASK)); |
| if (ret) { |
| dev_err(data->dev, "Failed to write to power-mode\n"); |
| return ret; |
| } |
| |
| data->power_mode = mode; |
| |
| /* |
| * Update our cached osr and odr based on the new |
| * power-mode. |
| */ |
| bma400_get_accel_output_data_rate(data); |
| bma400_get_accel_oversampling_ratio(data); |
| return 0; |
| } |
| |
| static void bma400_init_tables(void) |
| { |
| int raw; |
| int i; |
| |
| for (i = 0; i + 1 < ARRAY_SIZE(bma400_sample_freqs); i += 2) { |
| raw = (i / 2) + 5; |
| bma400_output_data_rate_from_raw(raw, &bma400_sample_freqs[i], |
| &bma400_sample_freqs[i + 1]); |
| } |
| |
| for (i = 0; i + 1 < ARRAY_SIZE(bma400_scales); i += 2) { |
| raw = i / 2; |
| bma400_scales[i] = 0; |
| bma400_scales[i + 1] = BMA400_SCALE_MIN << raw; |
| } |
| } |
| |
| static int bma400_init(struct bma400_data *data) |
| { |
| unsigned int val; |
| int ret; |
| |
| /* Try to read chip_id register. It must return 0x90. */ |
| ret = regmap_read(data->regmap, BMA400_CHIP_ID_REG, &val); |
| if (ret) { |
| dev_err(data->dev, "Failed to read chip id register\n"); |
| goto out; |
| } |
| |
| if (val != BMA400_ID_REG_VAL) { |
| dev_err(data->dev, "Chip ID mismatch\n"); |
| ret = -ENODEV; |
| goto out; |
| } |
| |
| data->regulators[BMA400_VDD_REGULATOR].supply = "vdd"; |
| data->regulators[BMA400_VDDIO_REGULATOR].supply = "vddio"; |
| ret = devm_regulator_bulk_get(data->dev, |
| ARRAY_SIZE(data->regulators), |
| data->regulators); |
| if (ret) { |
| if (ret != -EPROBE_DEFER) |
| dev_err(data->dev, |
| "Failed to get regulators: %d\n", |
| ret); |
| |
| goto out; |
| } |
| ret = regulator_bulk_enable(ARRAY_SIZE(data->regulators), |
| data->regulators); |
| if (ret) { |
| dev_err(data->dev, "Failed to enable regulators: %d\n", |
| ret); |
| goto out; |
| } |
| |
| ret = bma400_get_power_mode(data); |
| if (ret) { |
| dev_err(data->dev, "Failed to get the initial power-mode\n"); |
| goto err_reg_disable; |
| } |
| |
| if (data->power_mode != POWER_MODE_NORMAL) { |
| ret = bma400_set_power_mode(data, POWER_MODE_NORMAL); |
| if (ret) { |
| dev_err(data->dev, "Failed to wake up the device\n"); |
| goto err_reg_disable; |
| } |
| /* |
| * TODO: The datasheet waits 1500us here in the example, but |
| * lists 2/ODR as the wakeup time. |
| */ |
| usleep_range(1500, 2000); |
| } |
| |
| bma400_init_tables(); |
| |
| ret = bma400_get_accel_output_data_rate(data); |
| if (ret) |
| goto err_reg_disable; |
| |
| ret = bma400_get_accel_oversampling_ratio(data); |
| if (ret) |
| goto err_reg_disable; |
| |
| ret = bma400_get_accel_scale(data); |
| if (ret) |
| goto err_reg_disable; |
| |
| /* |
| * Once the interrupt engine is supported we might use the |
| * data_src_reg, but for now ensure this is set to the |
| * variable ODR filter selectable by the sample frequency |
| * channel. |
| */ |
| return regmap_write(data->regmap, BMA400_ACC_CONFIG2_REG, 0x00); |
| |
| err_reg_disable: |
| regulator_bulk_disable(ARRAY_SIZE(data->regulators), |
| data->regulators); |
| out: |
| return ret; |
| } |
| |
| static int bma400_read_raw(struct iio_dev *indio_dev, |
| struct iio_chan_spec const *chan, int *val, |
| int *val2, long mask) |
| { |
| struct bma400_data *data = iio_priv(indio_dev); |
| int ret; |
| |
| switch (mask) { |
| case IIO_CHAN_INFO_PROCESSED: |
| mutex_lock(&data->mutex); |
| ret = bma400_get_temp_reg(data, val, val2); |
| mutex_unlock(&data->mutex); |
| return ret; |
| case IIO_CHAN_INFO_RAW: |
| mutex_lock(&data->mutex); |
| ret = bma400_get_accel_reg(data, chan, val); |
| mutex_unlock(&data->mutex); |
| return ret; |
| case IIO_CHAN_INFO_SAMP_FREQ: |
| switch (chan->type) { |
| case IIO_ACCEL: |
| if (data->sample_freq.hz < 0) |
| return -EINVAL; |
| |
| *val = data->sample_freq.hz; |
| *val2 = data->sample_freq.uhz; |
| return IIO_VAL_INT_PLUS_MICRO; |
| case IIO_TEMP: |
| /* |
| * Runs at a fixed sampling frequency. See Section 4.4 |
| * of the datasheet. |
| */ |
| *val = 6; |
| *val2 = 250000; |
| return IIO_VAL_INT_PLUS_MICRO; |
| default: |
| return -EINVAL; |
| } |
| case IIO_CHAN_INFO_SCALE: |
| *val = 0; |
| *val2 = data->scale; |
| return IIO_VAL_INT_PLUS_MICRO; |
| case IIO_CHAN_INFO_OVERSAMPLING_RATIO: |
| /* |
| * TODO: We could avoid this logic and returning -EINVAL here if |
| * we set both the low-power and normal mode OSR registers when |
| * we configure the device. |
| */ |
| if (data->oversampling_ratio < 0) |
| return -EINVAL; |
| |
| *val = data->oversampling_ratio; |
| return IIO_VAL_INT; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static int bma400_read_avail(struct iio_dev *indio_dev, |
| struct iio_chan_spec const *chan, |
| const int **vals, int *type, int *length, |
| long mask) |
| { |
| switch (mask) { |
| case IIO_CHAN_INFO_SCALE: |
| *type = IIO_VAL_INT_PLUS_MICRO; |
| *vals = bma400_scales; |
| *length = ARRAY_SIZE(bma400_scales); |
| return IIO_AVAIL_LIST; |
| case IIO_CHAN_INFO_OVERSAMPLING_RATIO: |
| *type = IIO_VAL_INT; |
| *vals = bma400_osr_range; |
| *length = ARRAY_SIZE(bma400_osr_range); |
| return IIO_AVAIL_RANGE; |
| case IIO_CHAN_INFO_SAMP_FREQ: |
| *type = IIO_VAL_INT_PLUS_MICRO; |
| *vals = bma400_sample_freqs; |
| *length = ARRAY_SIZE(bma400_sample_freqs); |
| return IIO_AVAIL_LIST; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static int bma400_write_raw(struct iio_dev *indio_dev, |
| struct iio_chan_spec const *chan, int val, int val2, |
| long mask) |
| { |
| struct bma400_data *data = iio_priv(indio_dev); |
| int ret; |
| |
| switch (mask) { |
| case IIO_CHAN_INFO_SAMP_FREQ: |
| /* |
| * The sample frequency is readonly for the temperature |
| * register and a fixed value in low-power mode. |
| */ |
| if (chan->type != IIO_ACCEL) |
| return -EINVAL; |
| |
| mutex_lock(&data->mutex); |
| ret = bma400_set_accel_output_data_rate(data, val, val2); |
| mutex_unlock(&data->mutex); |
| return ret; |
| case IIO_CHAN_INFO_SCALE: |
| if (val != 0 || |
| val2 < BMA400_SCALE_MIN || val2 > BMA400_SCALE_MAX) |
| return -EINVAL; |
| |
| mutex_lock(&data->mutex); |
| ret = bma400_set_accel_scale(data, val2); |
| mutex_unlock(&data->mutex); |
| return ret; |
| case IIO_CHAN_INFO_OVERSAMPLING_RATIO: |
| mutex_lock(&data->mutex); |
| ret = bma400_set_accel_oversampling_ratio(data, val); |
| mutex_unlock(&data->mutex); |
| return ret; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static int bma400_write_raw_get_fmt(struct iio_dev *indio_dev, |
| struct iio_chan_spec const *chan, |
| long mask) |
| { |
| switch (mask) { |
| case IIO_CHAN_INFO_SAMP_FREQ: |
| return IIO_VAL_INT_PLUS_MICRO; |
| case IIO_CHAN_INFO_SCALE: |
| return IIO_VAL_INT_PLUS_MICRO; |
| case IIO_CHAN_INFO_OVERSAMPLING_RATIO: |
| return IIO_VAL_INT; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static const struct iio_info bma400_info = { |
| .read_raw = bma400_read_raw, |
| .read_avail = bma400_read_avail, |
| .write_raw = bma400_write_raw, |
| .write_raw_get_fmt = bma400_write_raw_get_fmt, |
| }; |
| |
| int bma400_probe(struct device *dev, struct regmap *regmap, const char *name) |
| { |
| struct iio_dev *indio_dev; |
| struct bma400_data *data; |
| int ret; |
| |
| indio_dev = devm_iio_device_alloc(dev, sizeof(*data)); |
| if (!indio_dev) |
| return -ENOMEM; |
| |
| data = iio_priv(indio_dev); |
| data->regmap = regmap; |
| data->dev = dev; |
| |
| ret = bma400_init(data); |
| if (ret) |
| return ret; |
| |
| ret = iio_read_mount_matrix(dev, "mount-matrix", &data->orientation); |
| if (ret) |
| return ret; |
| |
| mutex_init(&data->mutex); |
| indio_dev->name = name; |
| indio_dev->info = &bma400_info; |
| indio_dev->channels = bma400_channels; |
| indio_dev->num_channels = ARRAY_SIZE(bma400_channels); |
| indio_dev->modes = INDIO_DIRECT_MODE; |
| |
| dev_set_drvdata(dev, indio_dev); |
| |
| return iio_device_register(indio_dev); |
| } |
| EXPORT_SYMBOL(bma400_probe); |
| |
| int bma400_remove(struct device *dev) |
| { |
| struct iio_dev *indio_dev = dev_get_drvdata(dev); |
| struct bma400_data *data = iio_priv(indio_dev); |
| int ret; |
| |
| mutex_lock(&data->mutex); |
| ret = bma400_set_power_mode(data, POWER_MODE_SLEEP); |
| mutex_unlock(&data->mutex); |
| |
| regulator_bulk_disable(ARRAY_SIZE(data->regulators), |
| data->regulators); |
| |
| iio_device_unregister(indio_dev); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(bma400_remove); |
| |
| MODULE_AUTHOR("Dan Robertson <dan@dlrobertson.com>"); |
| MODULE_DESCRIPTION("Bosch BMA400 triaxial acceleration sensor core"); |
| MODULE_LICENSE("GPL"); |