| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Released under the GPLv2 only. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/string.h> |
| #include <linux/bitops.h> |
| #include <linux/slab.h> |
| #include <linux/log2.h> |
| #include <linux/usb.h> |
| #include <linux/wait.h> |
| #include <linux/usb/hcd.h> |
| #include <linux/scatterlist.h> |
| |
| #define to_urb(d) container_of(d, struct urb, kref) |
| |
| |
| static void urb_destroy(struct kref *kref) |
| { |
| struct urb *urb = to_urb(kref); |
| |
| if (urb->transfer_flags & URB_FREE_BUFFER) |
| kfree(urb->transfer_buffer); |
| |
| kfree(urb); |
| } |
| |
| /** |
| * usb_init_urb - initializes a urb so that it can be used by a USB driver |
| * @urb: pointer to the urb to initialize |
| * |
| * Initializes a urb so that the USB subsystem can use it properly. |
| * |
| * If a urb is created with a call to usb_alloc_urb() it is not |
| * necessary to call this function. Only use this if you allocate the |
| * space for a struct urb on your own. If you call this function, be |
| * careful when freeing the memory for your urb that it is no longer in |
| * use by the USB core. |
| * |
| * Only use this function if you _really_ understand what you are doing. |
| */ |
| void usb_init_urb(struct urb *urb) |
| { |
| if (urb) { |
| memset(urb, 0, sizeof(*urb)); |
| kref_init(&urb->kref); |
| INIT_LIST_HEAD(&urb->urb_list); |
| INIT_LIST_HEAD(&urb->anchor_list); |
| } |
| } |
| EXPORT_SYMBOL_GPL(usb_init_urb); |
| |
| /** |
| * usb_alloc_urb - creates a new urb for a USB driver to use |
| * @iso_packets: number of iso packets for this urb |
| * @mem_flags: the type of memory to allocate, see kmalloc() for a list of |
| * valid options for this. |
| * |
| * Creates an urb for the USB driver to use, initializes a few internal |
| * structures, increments the usage counter, and returns a pointer to it. |
| * |
| * If the driver want to use this urb for interrupt, control, or bulk |
| * endpoints, pass '0' as the number of iso packets. |
| * |
| * The driver must call usb_free_urb() when it is finished with the urb. |
| * |
| * Return: A pointer to the new urb, or %NULL if no memory is available. |
| */ |
| struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags) |
| { |
| struct urb *urb; |
| |
| urb = kmalloc(struct_size(urb, iso_frame_desc, iso_packets), |
| mem_flags); |
| if (!urb) |
| return NULL; |
| usb_init_urb(urb); |
| return urb; |
| } |
| EXPORT_SYMBOL_GPL(usb_alloc_urb); |
| |
| /** |
| * usb_free_urb - frees the memory used by a urb when all users of it are finished |
| * @urb: pointer to the urb to free, may be NULL |
| * |
| * Must be called when a user of a urb is finished with it. When the last user |
| * of the urb calls this function, the memory of the urb is freed. |
| * |
| * Note: The transfer buffer associated with the urb is not freed unless the |
| * URB_FREE_BUFFER transfer flag is set. |
| */ |
| void usb_free_urb(struct urb *urb) |
| { |
| if (urb) |
| kref_put(&urb->kref, urb_destroy); |
| } |
| EXPORT_SYMBOL_GPL(usb_free_urb); |
| |
| /** |
| * usb_get_urb - increments the reference count of the urb |
| * @urb: pointer to the urb to modify, may be NULL |
| * |
| * This must be called whenever a urb is transferred from a device driver to a |
| * host controller driver. This allows proper reference counting to happen |
| * for urbs. |
| * |
| * Return: A pointer to the urb with the incremented reference counter. |
| */ |
| struct urb *usb_get_urb(struct urb *urb) |
| { |
| if (urb) |
| kref_get(&urb->kref); |
| return urb; |
| } |
| EXPORT_SYMBOL_GPL(usb_get_urb); |
| |
| /** |
| * usb_anchor_urb - anchors an URB while it is processed |
| * @urb: pointer to the urb to anchor |
| * @anchor: pointer to the anchor |
| * |
| * This can be called to have access to URBs which are to be executed |
| * without bothering to track them |
| */ |
| void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&anchor->lock, flags); |
| usb_get_urb(urb); |
| list_add_tail(&urb->anchor_list, &anchor->urb_list); |
| urb->anchor = anchor; |
| |
| if (unlikely(anchor->poisoned)) |
| atomic_inc(&urb->reject); |
| |
| spin_unlock_irqrestore(&anchor->lock, flags); |
| } |
| EXPORT_SYMBOL_GPL(usb_anchor_urb); |
| |
| static int usb_anchor_check_wakeup(struct usb_anchor *anchor) |
| { |
| return atomic_read(&anchor->suspend_wakeups) == 0 && |
| list_empty(&anchor->urb_list); |
| } |
| |
| /* Callers must hold anchor->lock */ |
| static void __usb_unanchor_urb(struct urb *urb, struct usb_anchor *anchor) |
| { |
| urb->anchor = NULL; |
| list_del(&urb->anchor_list); |
| usb_put_urb(urb); |
| if (usb_anchor_check_wakeup(anchor)) |
| wake_up(&anchor->wait); |
| } |
| |
| /** |
| * usb_unanchor_urb - unanchors an URB |
| * @urb: pointer to the urb to anchor |
| * |
| * Call this to stop the system keeping track of this URB |
| */ |
| void usb_unanchor_urb(struct urb *urb) |
| { |
| unsigned long flags; |
| struct usb_anchor *anchor; |
| |
| if (!urb) |
| return; |
| |
| anchor = urb->anchor; |
| if (!anchor) |
| return; |
| |
| spin_lock_irqsave(&anchor->lock, flags); |
| /* |
| * At this point, we could be competing with another thread which |
| * has the same intention. To protect the urb from being unanchored |
| * twice, only the winner of the race gets the job. |
| */ |
| if (likely(anchor == urb->anchor)) |
| __usb_unanchor_urb(urb, anchor); |
| spin_unlock_irqrestore(&anchor->lock, flags); |
| } |
| EXPORT_SYMBOL_GPL(usb_unanchor_urb); |
| |
| /*-------------------------------------------------------------------*/ |
| |
| static const int pipetypes[4] = { |
| PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT |
| }; |
| |
| /** |
| * usb_pipe_type_check - sanity check of a specific pipe for a usb device |
| * @dev: struct usb_device to be checked |
| * @pipe: pipe to check |
| * |
| * This performs a light-weight sanity check for the endpoint in the |
| * given usb device. It returns 0 if the pipe is valid for the specific usb |
| * device, otherwise a negative error code. |
| */ |
| int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe) |
| { |
| const struct usb_host_endpoint *ep; |
| |
| ep = usb_pipe_endpoint(dev, pipe); |
| if (!ep) |
| return -EINVAL; |
| if (usb_pipetype(pipe) != pipetypes[usb_endpoint_type(&ep->desc)]) |
| return -EINVAL; |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(usb_pipe_type_check); |
| |
| /** |
| * usb_urb_ep_type_check - sanity check of endpoint in the given urb |
| * @urb: urb to be checked |
| * |
| * This performs a light-weight sanity check for the endpoint in the |
| * given urb. It returns 0 if the urb contains a valid endpoint, otherwise |
| * a negative error code. |
| */ |
| int usb_urb_ep_type_check(const struct urb *urb) |
| { |
| return usb_pipe_type_check(urb->dev, urb->pipe); |
| } |
| EXPORT_SYMBOL_GPL(usb_urb_ep_type_check); |
| |
| /** |
| * usb_submit_urb - issue an asynchronous transfer request for an endpoint |
| * @urb: pointer to the urb describing the request |
| * @mem_flags: the type of memory to allocate, see kmalloc() for a list |
| * of valid options for this. |
| * |
| * This submits a transfer request, and transfers control of the URB |
| * describing that request to the USB subsystem. Request completion will |
| * be indicated later, asynchronously, by calling the completion handler. |
| * The three types of completion are success, error, and unlink |
| * (a software-induced fault, also called "request cancellation"). |
| * |
| * URBs may be submitted in interrupt context. |
| * |
| * The caller must have correctly initialized the URB before submitting |
| * it. Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are |
| * available to ensure that most fields are correctly initialized, for |
| * the particular kind of transfer, although they will not initialize |
| * any transfer flags. |
| * |
| * If the submission is successful, the complete() callback from the URB |
| * will be called exactly once, when the USB core and Host Controller Driver |
| * (HCD) are finished with the URB. When the completion function is called, |
| * control of the URB is returned to the device driver which issued the |
| * request. The completion handler may then immediately free or reuse that |
| * URB. |
| * |
| * With few exceptions, USB device drivers should never access URB fields |
| * provided by usbcore or the HCD until its complete() is called. |
| * The exceptions relate to periodic transfer scheduling. For both |
| * interrupt and isochronous urbs, as part of successful URB submission |
| * urb->interval is modified to reflect the actual transfer period used |
| * (normally some power of two units). And for isochronous urbs, |
| * urb->start_frame is modified to reflect when the URB's transfers were |
| * scheduled to start. |
| * |
| * Not all isochronous transfer scheduling policies will work, but most |
| * host controller drivers should easily handle ISO queues going from now |
| * until 10-200 msec into the future. Drivers should try to keep at |
| * least one or two msec of data in the queue; many controllers require |
| * that new transfers start at least 1 msec in the future when they are |
| * added. If the driver is unable to keep up and the queue empties out, |
| * the behavior for new submissions is governed by the URB_ISO_ASAP flag. |
| * If the flag is set, or if the queue is idle, then the URB is always |
| * assigned to the first available (and not yet expired) slot in the |
| * endpoint's schedule. If the flag is not set and the queue is active |
| * then the URB is always assigned to the next slot in the schedule |
| * following the end of the endpoint's previous URB, even if that slot is |
| * in the past. When a packet is assigned in this way to a slot that has |
| * already expired, the packet is not transmitted and the corresponding |
| * usb_iso_packet_descriptor's status field will return -EXDEV. If this |
| * would happen to all the packets in the URB, submission fails with a |
| * -EXDEV error code. |
| * |
| * For control endpoints, the synchronous usb_control_msg() call is |
| * often used (in non-interrupt context) instead of this call. |
| * That is often used through convenience wrappers, for the requests |
| * that are standardized in the USB 2.0 specification. For bulk |
| * endpoints, a synchronous usb_bulk_msg() call is available. |
| * |
| * Return: |
| * 0 on successful submissions. A negative error number otherwise. |
| * |
| * Request Queuing: |
| * |
| * URBs may be submitted to endpoints before previous ones complete, to |
| * minimize the impact of interrupt latencies and system overhead on data |
| * throughput. With that queuing policy, an endpoint's queue would never |
| * be empty. This is required for continuous isochronous data streams, |
| * and may also be required for some kinds of interrupt transfers. Such |
| * queuing also maximizes bandwidth utilization by letting USB controllers |
| * start work on later requests before driver software has finished the |
| * completion processing for earlier (successful) requests. |
| * |
| * As of Linux 2.6, all USB endpoint transfer queues support depths greater |
| * than one. This was previously a HCD-specific behavior, except for ISO |
| * transfers. Non-isochronous endpoint queues are inactive during cleanup |
| * after faults (transfer errors or cancellation). |
| * |
| * Reserved Bandwidth Transfers: |
| * |
| * Periodic transfers (interrupt or isochronous) are performed repeatedly, |
| * using the interval specified in the urb. Submitting the first urb to |
| * the endpoint reserves the bandwidth necessary to make those transfers. |
| * If the USB subsystem can't allocate sufficient bandwidth to perform |
| * the periodic request, submitting such a periodic request should fail. |
| * |
| * For devices under xHCI, the bandwidth is reserved at configuration time, or |
| * when the alt setting is selected. If there is not enough bus bandwidth, the |
| * configuration/alt setting request will fail. Therefore, submissions to |
| * periodic endpoints on devices under xHCI should never fail due to bandwidth |
| * constraints. |
| * |
| * Device drivers must explicitly request that repetition, by ensuring that |
| * some URB is always on the endpoint's queue (except possibly for short |
| * periods during completion callbacks). When there is no longer an urb |
| * queued, the endpoint's bandwidth reservation is canceled. This means |
| * drivers can use their completion handlers to ensure they keep bandwidth |
| * they need, by reinitializing and resubmitting the just-completed urb |
| * until the driver longer needs that periodic bandwidth. |
| * |
| * Memory Flags: |
| * |
| * The general rules for how to decide which mem_flags to use |
| * are the same as for kmalloc. There are four |
| * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and |
| * GFP_ATOMIC. |
| * |
| * GFP_NOFS is not ever used, as it has not been implemented yet. |
| * |
| * GFP_ATOMIC is used when |
| * (a) you are inside a completion handler, an interrupt, bottom half, |
| * tasklet or timer, or |
| * (b) you are holding a spinlock or rwlock (does not apply to |
| * semaphores), or |
| * (c) current->state != TASK_RUNNING, this is the case only after |
| * you've changed it. |
| * |
| * GFP_NOIO is used in the block io path and error handling of storage |
| * devices. |
| * |
| * All other situations use GFP_KERNEL. |
| * |
| * Some more specific rules for mem_flags can be inferred, such as |
| * (1) start_xmit, timeout, and receive methods of network drivers must |
| * use GFP_ATOMIC (they are called with a spinlock held); |
| * (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also |
| * called with a spinlock held); |
| * (3) If you use a kernel thread with a network driver you must use |
| * GFP_NOIO, unless (b) or (c) apply; |
| * (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c) |
| * apply or your are in a storage driver's block io path; |
| * (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and |
| * (6) changing firmware on a running storage or net device uses |
| * GFP_NOIO, unless b) or c) apply |
| * |
| */ |
| int usb_submit_urb(struct urb *urb, gfp_t mem_flags) |
| { |
| int xfertype, max; |
| struct usb_device *dev; |
| struct usb_host_endpoint *ep; |
| int is_out; |
| unsigned int allowed; |
| |
| if (!urb || !urb->complete) |
| return -EINVAL; |
| if (urb->hcpriv) { |
| WARN_ONCE(1, "URB %pK submitted while active\n", urb); |
| return -EBUSY; |
| } |
| |
| dev = urb->dev; |
| if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED)) |
| return -ENODEV; |
| |
| /* For now, get the endpoint from the pipe. Eventually drivers |
| * will be required to set urb->ep directly and we will eliminate |
| * urb->pipe. |
| */ |
| ep = usb_pipe_endpoint(dev, urb->pipe); |
| if (!ep) |
| return -ENOENT; |
| |
| urb->ep = ep; |
| urb->status = -EINPROGRESS; |
| urb->actual_length = 0; |
| |
| /* Lots of sanity checks, so HCDs can rely on clean data |
| * and don't need to duplicate tests |
| */ |
| xfertype = usb_endpoint_type(&ep->desc); |
| if (xfertype == USB_ENDPOINT_XFER_CONTROL) { |
| struct usb_ctrlrequest *setup = |
| (struct usb_ctrlrequest *) urb->setup_packet; |
| |
| if (!setup) |
| return -ENOEXEC; |
| is_out = !(setup->bRequestType & USB_DIR_IN) || |
| !setup->wLength; |
| } else { |
| is_out = usb_endpoint_dir_out(&ep->desc); |
| } |
| |
| /* Clear the internal flags and cache the direction for later use */ |
| urb->transfer_flags &= ~(URB_DIR_MASK | URB_DMA_MAP_SINGLE | |
| URB_DMA_MAP_PAGE | URB_DMA_MAP_SG | URB_MAP_LOCAL | |
| URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL | |
| URB_DMA_SG_COMBINED); |
| urb->transfer_flags |= (is_out ? URB_DIR_OUT : URB_DIR_IN); |
| |
| if (xfertype != USB_ENDPOINT_XFER_CONTROL && |
| dev->state < USB_STATE_CONFIGURED) |
| return -ENODEV; |
| |
| max = usb_endpoint_maxp(&ep->desc); |
| if (max <= 0) { |
| dev_dbg(&dev->dev, |
| "bogus endpoint ep%d%s in %s (bad maxpacket %d)\n", |
| usb_endpoint_num(&ep->desc), is_out ? "out" : "in", |
| __func__, max); |
| return -EMSGSIZE; |
| } |
| |
| /* periodic transfers limit size per frame/uframe, |
| * but drivers only control those sizes for ISO. |
| * while we're checking, initialize return status. |
| */ |
| if (xfertype == USB_ENDPOINT_XFER_ISOC) { |
| int n, len; |
| |
| /* SuperSpeed isoc endpoints have up to 16 bursts of up to |
| * 3 packets each |
| */ |
| if (dev->speed >= USB_SPEED_SUPER) { |
| int burst = 1 + ep->ss_ep_comp.bMaxBurst; |
| int mult = USB_SS_MULT(ep->ss_ep_comp.bmAttributes); |
| max *= burst; |
| max *= mult; |
| } |
| |
| if (dev->speed == USB_SPEED_SUPER_PLUS && |
| USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes)) { |
| struct usb_ssp_isoc_ep_comp_descriptor *isoc_ep_comp; |
| |
| isoc_ep_comp = &ep->ssp_isoc_ep_comp; |
| max = le32_to_cpu(isoc_ep_comp->dwBytesPerInterval); |
| } |
| |
| /* "high bandwidth" mode, 1-3 packets/uframe? */ |
| if (dev->speed == USB_SPEED_HIGH) |
| max *= usb_endpoint_maxp_mult(&ep->desc); |
| |
| if (urb->number_of_packets <= 0) |
| return -EINVAL; |
| for (n = 0; n < urb->number_of_packets; n++) { |
| len = urb->iso_frame_desc[n].length; |
| if (len < 0 || len > max) |
| return -EMSGSIZE; |
| urb->iso_frame_desc[n].status = -EXDEV; |
| urb->iso_frame_desc[n].actual_length = 0; |
| } |
| } else if (urb->num_sgs && !urb->dev->bus->no_sg_constraint && |
| dev->speed != USB_SPEED_WIRELESS) { |
| struct scatterlist *sg; |
| int i; |
| |
| for_each_sg(urb->sg, sg, urb->num_sgs - 1, i) |
| if (sg->length % max) |
| return -EINVAL; |
| } |
| |
| /* the I/O buffer must be mapped/unmapped, except when length=0 */ |
| if (urb->transfer_buffer_length > INT_MAX) |
| return -EMSGSIZE; |
| |
| /* |
| * stuff that drivers shouldn't do, but which shouldn't |
| * cause problems in HCDs if they get it wrong. |
| */ |
| |
| /* Check that the pipe's type matches the endpoint's type */ |
| if (usb_pipe_type_check(urb->dev, urb->pipe)) |
| dev_WARN(&dev->dev, "BOGUS urb xfer, pipe %x != type %x\n", |
| usb_pipetype(urb->pipe), pipetypes[xfertype]); |
| |
| /* Check against a simple/standard policy */ |
| allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT | URB_DIR_MASK | |
| URB_FREE_BUFFER); |
| switch (xfertype) { |
| case USB_ENDPOINT_XFER_BULK: |
| case USB_ENDPOINT_XFER_INT: |
| if (is_out) |
| allowed |= URB_ZERO_PACKET; |
| fallthrough; |
| default: /* all non-iso endpoints */ |
| if (!is_out) |
| allowed |= URB_SHORT_NOT_OK; |
| break; |
| case USB_ENDPOINT_XFER_ISOC: |
| allowed |= URB_ISO_ASAP; |
| break; |
| } |
| allowed &= urb->transfer_flags; |
| |
| /* warn if submitter gave bogus flags */ |
| if (allowed != urb->transfer_flags) |
| dev_WARN(&dev->dev, "BOGUS urb flags, %x --> %x\n", |
| urb->transfer_flags, allowed); |
| |
| /* |
| * Force periodic transfer intervals to be legal values that are |
| * a power of two (so HCDs don't need to). |
| * |
| * FIXME want bus->{intr,iso}_sched_horizon values here. Each HC |
| * supports different values... this uses EHCI/UHCI defaults (and |
| * EHCI can use smaller non-default values). |
| */ |
| switch (xfertype) { |
| case USB_ENDPOINT_XFER_ISOC: |
| case USB_ENDPOINT_XFER_INT: |
| /* too small? */ |
| switch (dev->speed) { |
| case USB_SPEED_WIRELESS: |
| if ((urb->interval < 6) |
| && (xfertype == USB_ENDPOINT_XFER_INT)) |
| return -EINVAL; |
| fallthrough; |
| default: |
| if (urb->interval <= 0) |
| return -EINVAL; |
| break; |
| } |
| /* too big? */ |
| switch (dev->speed) { |
| case USB_SPEED_SUPER_PLUS: |
| case USB_SPEED_SUPER: /* units are 125us */ |
| /* Handle up to 2^(16-1) microframes */ |
| if (urb->interval > (1 << 15)) |
| return -EINVAL; |
| max = 1 << 15; |
| break; |
| case USB_SPEED_WIRELESS: |
| if (urb->interval > 16) |
| return -EINVAL; |
| break; |
| case USB_SPEED_HIGH: /* units are microframes */ |
| /* NOTE usb handles 2^15 */ |
| if (urb->interval > (1024 * 8)) |
| urb->interval = 1024 * 8; |
| max = 1024 * 8; |
| break; |
| case USB_SPEED_FULL: /* units are frames/msec */ |
| case USB_SPEED_LOW: |
| if (xfertype == USB_ENDPOINT_XFER_INT) { |
| if (urb->interval > 255) |
| return -EINVAL; |
| /* NOTE ohci only handles up to 32 */ |
| max = 128; |
| } else { |
| if (urb->interval > 1024) |
| urb->interval = 1024; |
| /* NOTE usb and ohci handle up to 2^15 */ |
| max = 1024; |
| } |
| break; |
| default: |
| return -EINVAL; |
| } |
| if (dev->speed != USB_SPEED_WIRELESS) { |
| /* Round down to a power of 2, no more than max */ |
| urb->interval = min(max, 1 << ilog2(urb->interval)); |
| } |
| } |
| |
| return usb_hcd_submit_urb(urb, mem_flags); |
| } |
| EXPORT_SYMBOL_GPL(usb_submit_urb); |
| |
| /*-------------------------------------------------------------------*/ |
| |
| /** |
| * usb_unlink_urb - abort/cancel a transfer request for an endpoint |
| * @urb: pointer to urb describing a previously submitted request, |
| * may be NULL |
| * |
| * This routine cancels an in-progress request. URBs complete only once |
| * per submission, and may be canceled only once per submission. |
| * Successful cancellation means termination of @urb will be expedited |
| * and the completion handler will be called with a status code |
| * indicating that the request has been canceled (rather than any other |
| * code). |
| * |
| * Drivers should not call this routine or related routines, such as |
| * usb_kill_urb() or usb_unlink_anchored_urbs(), after their disconnect |
| * method has returned. The disconnect function should synchronize with |
| * a driver's I/O routines to insure that all URB-related activity has |
| * completed before it returns. |
| * |
| * This request is asynchronous, however the HCD might call the ->complete() |
| * callback during unlink. Therefore when drivers call usb_unlink_urb(), they |
| * must not hold any locks that may be taken by the completion function. |
| * Success is indicated by returning -EINPROGRESS, at which time the URB will |
| * probably not yet have been given back to the device driver. When it is |
| * eventually called, the completion function will see @urb->status == |
| * -ECONNRESET. |
| * Failure is indicated by usb_unlink_urb() returning any other value. |
| * Unlinking will fail when @urb is not currently "linked" (i.e., it was |
| * never submitted, or it was unlinked before, or the hardware is already |
| * finished with it), even if the completion handler has not yet run. |
| * |
| * The URB must not be deallocated while this routine is running. In |
| * particular, when a driver calls this routine, it must insure that the |
| * completion handler cannot deallocate the URB. |
| * |
| * Return: -EINPROGRESS on success. See description for other values on |
| * failure. |
| * |
| * Unlinking and Endpoint Queues: |
| * |
| * [The behaviors and guarantees described below do not apply to virtual |
| * root hubs but only to endpoint queues for physical USB devices.] |
| * |
| * Host Controller Drivers (HCDs) place all the URBs for a particular |
| * endpoint in a queue. Normally the queue advances as the controller |
| * hardware processes each request. But when an URB terminates with an |
| * error its queue generally stops (see below), at least until that URB's |
| * completion routine returns. It is guaranteed that a stopped queue |
| * will not restart until all its unlinked URBs have been fully retired, |
| * with their completion routines run, even if that's not until some time |
| * after the original completion handler returns. The same behavior and |
| * guarantee apply when an URB terminates because it was unlinked. |
| * |
| * Bulk and interrupt endpoint queues are guaranteed to stop whenever an |
| * URB terminates with any sort of error, including -ECONNRESET, -ENOENT, |
| * and -EREMOTEIO. Control endpoint queues behave the same way except |
| * that they are not guaranteed to stop for -EREMOTEIO errors. Queues |
| * for isochronous endpoints are treated differently, because they must |
| * advance at fixed rates. Such queues do not stop when an URB |
| * encounters an error or is unlinked. An unlinked isochronous URB may |
| * leave a gap in the stream of packets; it is undefined whether such |
| * gaps can be filled in. |
| * |
| * Note that early termination of an URB because a short packet was |
| * received will generate a -EREMOTEIO error if and only if the |
| * URB_SHORT_NOT_OK flag is set. By setting this flag, USB device |
| * drivers can build deep queues for large or complex bulk transfers |
| * and clean them up reliably after any sort of aborted transfer by |
| * unlinking all pending URBs at the first fault. |
| * |
| * When a control URB terminates with an error other than -EREMOTEIO, it |
| * is quite likely that the status stage of the transfer will not take |
| * place. |
| */ |
| int usb_unlink_urb(struct urb *urb) |
| { |
| if (!urb) |
| return -EINVAL; |
| if (!urb->dev) |
| return -ENODEV; |
| if (!urb->ep) |
| return -EIDRM; |
| return usb_hcd_unlink_urb(urb, -ECONNRESET); |
| } |
| EXPORT_SYMBOL_GPL(usb_unlink_urb); |
| |
| /** |
| * usb_kill_urb - cancel a transfer request and wait for it to finish |
| * @urb: pointer to URB describing a previously submitted request, |
| * may be NULL |
| * |
| * This routine cancels an in-progress request. It is guaranteed that |
| * upon return all completion handlers will have finished and the URB |
| * will be totally idle and available for reuse. These features make |
| * this an ideal way to stop I/O in a disconnect() callback or close() |
| * function. If the request has not already finished or been unlinked |
| * the completion handler will see urb->status == -ENOENT. |
| * |
| * While the routine is running, attempts to resubmit the URB will fail |
| * with error -EPERM. Thus even if the URB's completion handler always |
| * tries to resubmit, it will not succeed and the URB will become idle. |
| * |
| * The URB must not be deallocated while this routine is running. In |
| * particular, when a driver calls this routine, it must insure that the |
| * completion handler cannot deallocate the URB. |
| * |
| * This routine may not be used in an interrupt context (such as a bottom |
| * half or a completion handler), or when holding a spinlock, or in other |
| * situations where the caller can't schedule(). |
| * |
| * This routine should not be called by a driver after its disconnect |
| * method has returned. |
| */ |
| void usb_kill_urb(struct urb *urb) |
| { |
| might_sleep(); |
| if (!(urb && urb->dev && urb->ep)) |
| return; |
| atomic_inc(&urb->reject); |
| |
| usb_hcd_unlink_urb(urb, -ENOENT); |
| wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0); |
| |
| atomic_dec(&urb->reject); |
| } |
| EXPORT_SYMBOL_GPL(usb_kill_urb); |
| |
| /** |
| * usb_poison_urb - reliably kill a transfer and prevent further use of an URB |
| * @urb: pointer to URB describing a previously submitted request, |
| * may be NULL |
| * |
| * This routine cancels an in-progress request. It is guaranteed that |
| * upon return all completion handlers will have finished and the URB |
| * will be totally idle and cannot be reused. These features make |
| * this an ideal way to stop I/O in a disconnect() callback. |
| * If the request has not already finished or been unlinked |
| * the completion handler will see urb->status == -ENOENT. |
| * |
| * After and while the routine runs, attempts to resubmit the URB will fail |
| * with error -EPERM. Thus even if the URB's completion handler always |
| * tries to resubmit, it will not succeed and the URB will become idle. |
| * |
| * The URB must not be deallocated while this routine is running. In |
| * particular, when a driver calls this routine, it must insure that the |
| * completion handler cannot deallocate the URB. |
| * |
| * This routine may not be used in an interrupt context (such as a bottom |
| * half or a completion handler), or when holding a spinlock, or in other |
| * situations where the caller can't schedule(). |
| * |
| * This routine should not be called by a driver after its disconnect |
| * method has returned. |
| */ |
| void usb_poison_urb(struct urb *urb) |
| { |
| might_sleep(); |
| if (!urb) |
| return; |
| atomic_inc(&urb->reject); |
| |
| if (!urb->dev || !urb->ep) |
| return; |
| |
| usb_hcd_unlink_urb(urb, -ENOENT); |
| wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0); |
| } |
| EXPORT_SYMBOL_GPL(usb_poison_urb); |
| |
| void usb_unpoison_urb(struct urb *urb) |
| { |
| if (!urb) |
| return; |
| |
| atomic_dec(&urb->reject); |
| } |
| EXPORT_SYMBOL_GPL(usb_unpoison_urb); |
| |
| /** |
| * usb_block_urb - reliably prevent further use of an URB |
| * @urb: pointer to URB to be blocked, may be NULL |
| * |
| * After the routine has run, attempts to resubmit the URB will fail |
| * with error -EPERM. Thus even if the URB's completion handler always |
| * tries to resubmit, it will not succeed and the URB will become idle. |
| * |
| * The URB must not be deallocated while this routine is running. In |
| * particular, when a driver calls this routine, it must insure that the |
| * completion handler cannot deallocate the URB. |
| */ |
| void usb_block_urb(struct urb *urb) |
| { |
| if (!urb) |
| return; |
| |
| atomic_inc(&urb->reject); |
| } |
| EXPORT_SYMBOL_GPL(usb_block_urb); |
| |
| /** |
| * usb_kill_anchored_urbs - kill all URBs associated with an anchor |
| * @anchor: anchor the requests are bound to |
| * |
| * This kills all outstanding URBs starting from the back of the queue, |
| * with guarantee that no completer callbacks will take place from the |
| * anchor after this function returns. |
| * |
| * This routine should not be called by a driver after its disconnect |
| * method has returned. |
| */ |
| void usb_kill_anchored_urbs(struct usb_anchor *anchor) |
| { |
| struct urb *victim; |
| int surely_empty; |
| |
| do { |
| spin_lock_irq(&anchor->lock); |
| while (!list_empty(&anchor->urb_list)) { |
| victim = list_entry(anchor->urb_list.prev, |
| struct urb, anchor_list); |
| /* make sure the URB isn't freed before we kill it */ |
| usb_get_urb(victim); |
| spin_unlock_irq(&anchor->lock); |
| /* this will unanchor the URB */ |
| usb_kill_urb(victim); |
| usb_put_urb(victim); |
| spin_lock_irq(&anchor->lock); |
| } |
| surely_empty = usb_anchor_check_wakeup(anchor); |
| |
| spin_unlock_irq(&anchor->lock); |
| cpu_relax(); |
| } while (!surely_empty); |
| } |
| EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs); |
| |
| |
| /** |
| * usb_poison_anchored_urbs - cease all traffic from an anchor |
| * @anchor: anchor the requests are bound to |
| * |
| * this allows all outstanding URBs to be poisoned starting |
| * from the back of the queue. Newly added URBs will also be |
| * poisoned |
| * |
| * This routine should not be called by a driver after its disconnect |
| * method has returned. |
| */ |
| void usb_poison_anchored_urbs(struct usb_anchor *anchor) |
| { |
| struct urb *victim; |
| int surely_empty; |
| |
| do { |
| spin_lock_irq(&anchor->lock); |
| anchor->poisoned = 1; |
| while (!list_empty(&anchor->urb_list)) { |
| victim = list_entry(anchor->urb_list.prev, |
| struct urb, anchor_list); |
| /* make sure the URB isn't freed before we kill it */ |
| usb_get_urb(victim); |
| spin_unlock_irq(&anchor->lock); |
| /* this will unanchor the URB */ |
| usb_poison_urb(victim); |
| usb_put_urb(victim); |
| spin_lock_irq(&anchor->lock); |
| } |
| surely_empty = usb_anchor_check_wakeup(anchor); |
| |
| spin_unlock_irq(&anchor->lock); |
| cpu_relax(); |
| } while (!surely_empty); |
| } |
| EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs); |
| |
| /** |
| * usb_unpoison_anchored_urbs - let an anchor be used successfully again |
| * @anchor: anchor the requests are bound to |
| * |
| * Reverses the effect of usb_poison_anchored_urbs |
| * the anchor can be used normally after it returns |
| */ |
| void usb_unpoison_anchored_urbs(struct usb_anchor *anchor) |
| { |
| unsigned long flags; |
| struct urb *lazarus; |
| |
| spin_lock_irqsave(&anchor->lock, flags); |
| list_for_each_entry(lazarus, &anchor->urb_list, anchor_list) { |
| usb_unpoison_urb(lazarus); |
| } |
| anchor->poisoned = 0; |
| spin_unlock_irqrestore(&anchor->lock, flags); |
| } |
| EXPORT_SYMBOL_GPL(usb_unpoison_anchored_urbs); |
| /** |
| * usb_unlink_anchored_urbs - asynchronously cancel transfer requests en masse |
| * @anchor: anchor the requests are bound to |
| * |
| * this allows all outstanding URBs to be unlinked starting |
| * from the back of the queue. This function is asynchronous. |
| * The unlinking is just triggered. It may happen after this |
| * function has returned. |
| * |
| * This routine should not be called by a driver after its disconnect |
| * method has returned. |
| */ |
| void usb_unlink_anchored_urbs(struct usb_anchor *anchor) |
| { |
| struct urb *victim; |
| |
| while ((victim = usb_get_from_anchor(anchor)) != NULL) { |
| usb_unlink_urb(victim); |
| usb_put_urb(victim); |
| } |
| } |
| EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs); |
| |
| /** |
| * usb_anchor_suspend_wakeups |
| * @anchor: the anchor you want to suspend wakeups on |
| * |
| * Call this to stop the last urb being unanchored from waking up any |
| * usb_wait_anchor_empty_timeout waiters. This is used in the hcd urb give- |
| * back path to delay waking up until after the completion handler has run. |
| */ |
| void usb_anchor_suspend_wakeups(struct usb_anchor *anchor) |
| { |
| if (anchor) |
| atomic_inc(&anchor->suspend_wakeups); |
| } |
| EXPORT_SYMBOL_GPL(usb_anchor_suspend_wakeups); |
| |
| /** |
| * usb_anchor_resume_wakeups |
| * @anchor: the anchor you want to resume wakeups on |
| * |
| * Allow usb_wait_anchor_empty_timeout waiters to be woken up again, and |
| * wake up any current waiters if the anchor is empty. |
| */ |
| void usb_anchor_resume_wakeups(struct usb_anchor *anchor) |
| { |
| if (!anchor) |
| return; |
| |
| atomic_dec(&anchor->suspend_wakeups); |
| if (usb_anchor_check_wakeup(anchor)) |
| wake_up(&anchor->wait); |
| } |
| EXPORT_SYMBOL_GPL(usb_anchor_resume_wakeups); |
| |
| /** |
| * usb_wait_anchor_empty_timeout - wait for an anchor to be unused |
| * @anchor: the anchor you want to become unused |
| * @timeout: how long you are willing to wait in milliseconds |
| * |
| * Call this is you want to be sure all an anchor's |
| * URBs have finished |
| * |
| * Return: Non-zero if the anchor became unused. Zero on timeout. |
| */ |
| int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, |
| unsigned int timeout) |
| { |
| return wait_event_timeout(anchor->wait, |
| usb_anchor_check_wakeup(anchor), |
| msecs_to_jiffies(timeout)); |
| } |
| EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout); |
| |
| /** |
| * usb_get_from_anchor - get an anchor's oldest urb |
| * @anchor: the anchor whose urb you want |
| * |
| * This will take the oldest urb from an anchor, |
| * unanchor and return it |
| * |
| * Return: The oldest urb from @anchor, or %NULL if @anchor has no |
| * urbs associated with it. |
| */ |
| struct urb *usb_get_from_anchor(struct usb_anchor *anchor) |
| { |
| struct urb *victim; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&anchor->lock, flags); |
| if (!list_empty(&anchor->urb_list)) { |
| victim = list_entry(anchor->urb_list.next, struct urb, |
| anchor_list); |
| usb_get_urb(victim); |
| __usb_unanchor_urb(victim, anchor); |
| } else { |
| victim = NULL; |
| } |
| spin_unlock_irqrestore(&anchor->lock, flags); |
| |
| return victim; |
| } |
| |
| EXPORT_SYMBOL_GPL(usb_get_from_anchor); |
| |
| /** |
| * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs |
| * @anchor: the anchor whose urbs you want to unanchor |
| * |
| * use this to get rid of all an anchor's urbs |
| */ |
| void usb_scuttle_anchored_urbs(struct usb_anchor *anchor) |
| { |
| struct urb *victim; |
| unsigned long flags; |
| int surely_empty; |
| |
| do { |
| spin_lock_irqsave(&anchor->lock, flags); |
| while (!list_empty(&anchor->urb_list)) { |
| victim = list_entry(anchor->urb_list.prev, |
| struct urb, anchor_list); |
| __usb_unanchor_urb(victim, anchor); |
| } |
| surely_empty = usb_anchor_check_wakeup(anchor); |
| |
| spin_unlock_irqrestore(&anchor->lock, flags); |
| cpu_relax(); |
| } while (!surely_empty); |
| } |
| |
| EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs); |
| |
| /** |
| * usb_anchor_empty - is an anchor empty |
| * @anchor: the anchor you want to query |
| * |
| * Return: 1 if the anchor has no urbs associated with it. |
| */ |
| int usb_anchor_empty(struct usb_anchor *anchor) |
| { |
| return list_empty(&anchor->urb_list); |
| } |
| |
| EXPORT_SYMBOL_GPL(usb_anchor_empty); |
| |