| /* |
| * Copyright 2015 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| */ |
| |
| #include "fiji_smc.h" |
| #include "smu7_dyn_defaults.h" |
| |
| #include "smu7_hwmgr.h" |
| #include "hardwaremanager.h" |
| #include "ppatomctrl.h" |
| #include "pp_debug.h" |
| #include "cgs_common.h" |
| #include "atombios.h" |
| #include "fiji_smumgr.h" |
| #include "pppcielanes.h" |
| #include "smu7_ppsmc.h" |
| #include "smu73.h" |
| #include "smu/smu_7_1_3_d.h" |
| #include "smu/smu_7_1_3_sh_mask.h" |
| #include "gmc/gmc_8_1_d.h" |
| #include "gmc/gmc_8_1_sh_mask.h" |
| #include "bif/bif_5_0_d.h" |
| #include "bif/bif_5_0_sh_mask.h" |
| #include "dce/dce_10_0_d.h" |
| #include "dce/dce_10_0_sh_mask.h" |
| #include "smu7_smumgr.h" |
| |
| #define VOLTAGE_SCALE 4 |
| #define POWERTUNE_DEFAULT_SET_MAX 1 |
| #define VOLTAGE_VID_OFFSET_SCALE1 625 |
| #define VOLTAGE_VID_OFFSET_SCALE2 100 |
| #define VDDC_VDDCI_DELTA 300 |
| #define MC_CG_ARB_FREQ_F1 0x0b |
| |
| /* [2.5%,~2.5%] Clock stretched is multiple of 2.5% vs |
| * not and [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ] |
| */ |
| static const uint16_t fiji_clock_stretcher_lookup_table[2][4] = { |
| {600, 1050, 3, 0}, {600, 1050, 6, 1} }; |
| |
| /* [FF, SS] type, [] 4 voltage ranges, and |
| * [Floor Freq, Boundary Freq, VID min , VID max] |
| */ |
| static const uint32_t fiji_clock_stretcher_ddt_table[2][4][4] = { |
| { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} }, |
| { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } }; |
| |
| /* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%] |
| * (coming from PWR_CKS_CNTL.stretch_amount reg spec) |
| */ |
| static const uint8_t fiji_clock_stretch_amount_conversion[2][6] = { |
| {0, 1, 3, 2, 4, 5}, {0, 2, 4, 5, 6, 5} }; |
| |
| static const struct fiji_pt_defaults fiji_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = { |
| /*sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc */ |
| {1, 0xF, 0xFD, |
| /* TDC_MAWt, TdcWaterfallCtl, DTEAmbientTempBase */ |
| 0x19, 5, 45} |
| }; |
| |
| /* PPGen has the gain setting generated in x * 100 unit |
| * This function is to convert the unit to x * 4096(0x1000) unit. |
| * This is the unit expected by SMC firmware |
| */ |
| static int fiji_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr, |
| struct phm_ppt_v1_clock_voltage_dependency_table *dep_table, |
| uint32_t clock, uint32_t *voltage, uint32_t *mvdd) |
| { |
| uint32_t i; |
| uint16_t vddci; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| *voltage = *mvdd = 0; |
| |
| |
| /* clock - voltage dependency table is empty table */ |
| if (dep_table->count == 0) |
| return -EINVAL; |
| |
| for (i = 0; i < dep_table->count; i++) { |
| /* find first sclk bigger than request */ |
| if (dep_table->entries[i].clk >= clock) { |
| *voltage |= (dep_table->entries[i].vddc * |
| VOLTAGE_SCALE) << VDDC_SHIFT; |
| if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control) |
| *voltage |= (data->vbios_boot_state.vddci_bootup_value * |
| VOLTAGE_SCALE) << VDDCI_SHIFT; |
| else if (dep_table->entries[i].vddci) |
| *voltage |= (dep_table->entries[i].vddci * |
| VOLTAGE_SCALE) << VDDCI_SHIFT; |
| else { |
| vddci = phm_find_closest_vddci(&(data->vddci_voltage_table), |
| (dep_table->entries[i].vddc - |
| VDDC_VDDCI_DELTA)); |
| *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT; |
| } |
| |
| if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control) |
| *mvdd = data->vbios_boot_state.mvdd_bootup_value * |
| VOLTAGE_SCALE; |
| else if (dep_table->entries[i].mvdd) |
| *mvdd = (uint32_t) dep_table->entries[i].mvdd * |
| VOLTAGE_SCALE; |
| |
| *voltage |= 1 << PHASES_SHIFT; |
| return 0; |
| } |
| } |
| |
| /* sclk is bigger than max sclk in the dependence table */ |
| *voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT; |
| |
| if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control) |
| *voltage |= (data->vbios_boot_state.vddci_bootup_value * |
| VOLTAGE_SCALE) << VDDCI_SHIFT; |
| else if (dep_table->entries[i-1].vddci) { |
| vddci = phm_find_closest_vddci(&(data->vddci_voltage_table), |
| (dep_table->entries[i].vddc - |
| VDDC_VDDCI_DELTA)); |
| *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT; |
| } |
| |
| if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control) |
| *mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE; |
| else if (dep_table->entries[i].mvdd) |
| *mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE; |
| |
| return 0; |
| } |
| |
| |
| static uint16_t scale_fan_gain_settings(uint16_t raw_setting) |
| { |
| uint32_t tmp; |
| tmp = raw_setting * 4096 / 100; |
| return (uint16_t)tmp; |
| } |
| |
| static void get_scl_sda_value(uint8_t line, uint8_t *scl, uint8_t *sda) |
| { |
| switch (line) { |
| case SMU7_I2CLineID_DDC1: |
| *scl = SMU7_I2C_DDC1CLK; |
| *sda = SMU7_I2C_DDC1DATA; |
| break; |
| case SMU7_I2CLineID_DDC2: |
| *scl = SMU7_I2C_DDC2CLK; |
| *sda = SMU7_I2C_DDC2DATA; |
| break; |
| case SMU7_I2CLineID_DDC3: |
| *scl = SMU7_I2C_DDC3CLK; |
| *sda = SMU7_I2C_DDC3DATA; |
| break; |
| case SMU7_I2CLineID_DDC4: |
| *scl = SMU7_I2C_DDC4CLK; |
| *sda = SMU7_I2C_DDC4DATA; |
| break; |
| case SMU7_I2CLineID_DDC5: |
| *scl = SMU7_I2C_DDC5CLK; |
| *sda = SMU7_I2C_DDC5DATA; |
| break; |
| case SMU7_I2CLineID_DDC6: |
| *scl = SMU7_I2C_DDC6CLK; |
| *sda = SMU7_I2C_DDC6DATA; |
| break; |
| case SMU7_I2CLineID_SCLSDA: |
| *scl = SMU7_I2C_SCL; |
| *sda = SMU7_I2C_SDA; |
| break; |
| case SMU7_I2CLineID_DDCVGA: |
| *scl = SMU7_I2C_DDCVGACLK; |
| *sda = SMU7_I2C_DDCVGADATA; |
| break; |
| default: |
| *scl = 0; |
| *sda = 0; |
| break; |
| } |
| } |
| |
| static void fiji_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr) |
| { |
| struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| if (table_info && |
| table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX && |
| table_info->cac_dtp_table->usPowerTuneDataSetID) |
| smu_data->power_tune_defaults = |
| &fiji_power_tune_data_set_array |
| [table_info->cac_dtp_table->usPowerTuneDataSetID - 1]; |
| else |
| smu_data->power_tune_defaults = &fiji_power_tune_data_set_array[0]; |
| |
| } |
| |
| static int fiji_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr) |
| { |
| |
| struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend); |
| const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults; |
| |
| SMU73_Discrete_DpmTable *dpm_table = &(smu_data->smc_state_table); |
| |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table; |
| struct pp_advance_fan_control_parameters *fan_table = |
| &hwmgr->thermal_controller.advanceFanControlParameters; |
| uint8_t uc_scl, uc_sda; |
| |
| /* TDP number of fraction bits are changed from 8 to 7 for Fiji |
| * as requested by SMC team |
| */ |
| dpm_table->DefaultTdp = PP_HOST_TO_SMC_US( |
| (uint16_t)(cac_dtp_table->usTDP * 128)); |
| dpm_table->TargetTdp = PP_HOST_TO_SMC_US( |
| (uint16_t)(cac_dtp_table->usTDP * 128)); |
| |
| PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255, |
| "Target Operating Temp is out of Range!", |
| ); |
| |
| dpm_table->GpuTjMax = (uint8_t)(cac_dtp_table->usTargetOperatingTemp); |
| dpm_table->GpuTjHyst = 8; |
| |
| dpm_table->DTEAmbientTempBase = defaults->DTEAmbientTempBase; |
| |
| /* The following are for new Fiji Multi-input fan/thermal control */ |
| dpm_table->TemperatureLimitEdge = PP_HOST_TO_SMC_US( |
| cac_dtp_table->usTargetOperatingTemp * 256); |
| dpm_table->TemperatureLimitHotspot = PP_HOST_TO_SMC_US( |
| cac_dtp_table->usTemperatureLimitHotspot * 256); |
| dpm_table->TemperatureLimitLiquid1 = PP_HOST_TO_SMC_US( |
| cac_dtp_table->usTemperatureLimitLiquid1 * 256); |
| dpm_table->TemperatureLimitLiquid2 = PP_HOST_TO_SMC_US( |
| cac_dtp_table->usTemperatureLimitLiquid2 * 256); |
| dpm_table->TemperatureLimitVrVddc = PP_HOST_TO_SMC_US( |
| cac_dtp_table->usTemperatureLimitVrVddc * 256); |
| dpm_table->TemperatureLimitVrMvdd = PP_HOST_TO_SMC_US( |
| cac_dtp_table->usTemperatureLimitVrMvdd * 256); |
| dpm_table->TemperatureLimitPlx = PP_HOST_TO_SMC_US( |
| cac_dtp_table->usTemperatureLimitPlx * 256); |
| |
| dpm_table->FanGainEdge = PP_HOST_TO_SMC_US( |
| scale_fan_gain_settings(fan_table->usFanGainEdge)); |
| dpm_table->FanGainHotspot = PP_HOST_TO_SMC_US( |
| scale_fan_gain_settings(fan_table->usFanGainHotspot)); |
| dpm_table->FanGainLiquid = PP_HOST_TO_SMC_US( |
| scale_fan_gain_settings(fan_table->usFanGainLiquid)); |
| dpm_table->FanGainVrVddc = PP_HOST_TO_SMC_US( |
| scale_fan_gain_settings(fan_table->usFanGainVrVddc)); |
| dpm_table->FanGainVrMvdd = PP_HOST_TO_SMC_US( |
| scale_fan_gain_settings(fan_table->usFanGainVrMvdd)); |
| dpm_table->FanGainPlx = PP_HOST_TO_SMC_US( |
| scale_fan_gain_settings(fan_table->usFanGainPlx)); |
| dpm_table->FanGainHbm = PP_HOST_TO_SMC_US( |
| scale_fan_gain_settings(fan_table->usFanGainHbm)); |
| |
| dpm_table->Liquid1_I2C_address = cac_dtp_table->ucLiquid1_I2C_address; |
| dpm_table->Liquid2_I2C_address = cac_dtp_table->ucLiquid2_I2C_address; |
| dpm_table->Vr_I2C_address = cac_dtp_table->ucVr_I2C_address; |
| dpm_table->Plx_I2C_address = cac_dtp_table->ucPlx_I2C_address; |
| |
| get_scl_sda_value(cac_dtp_table->ucLiquid_I2C_Line, &uc_scl, &uc_sda); |
| dpm_table->Liquid_I2C_LineSCL = uc_scl; |
| dpm_table->Liquid_I2C_LineSDA = uc_sda; |
| |
| get_scl_sda_value(cac_dtp_table->ucVr_I2C_Line, &uc_scl, &uc_sda); |
| dpm_table->Vr_I2C_LineSCL = uc_scl; |
| dpm_table->Vr_I2C_LineSDA = uc_sda; |
| |
| get_scl_sda_value(cac_dtp_table->ucPlx_I2C_Line, &uc_scl, &uc_sda); |
| dpm_table->Plx_I2C_LineSCL = uc_scl; |
| dpm_table->Plx_I2C_LineSDA = uc_sda; |
| |
| return 0; |
| } |
| |
| |
| static int fiji_populate_svi_load_line(struct pp_hwmgr *hwmgr) |
| { |
| struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend); |
| const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults; |
| |
| smu_data->power_tune_table.SviLoadLineEn = defaults->SviLoadLineEn; |
| smu_data->power_tune_table.SviLoadLineVddC = defaults->SviLoadLineVddC; |
| smu_data->power_tune_table.SviLoadLineTrimVddC = 3; |
| smu_data->power_tune_table.SviLoadLineOffsetVddC = 0; |
| |
| return 0; |
| } |
| |
| |
| static int fiji_populate_tdc_limit(struct pp_hwmgr *hwmgr) |
| { |
| uint16_t tdc_limit; |
| struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults; |
| |
| /* TDC number of fraction bits are changed from 8 to 7 |
| * for Fiji as requested by SMC team |
| */ |
| tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 128); |
| smu_data->power_tune_table.TDC_VDDC_PkgLimit = |
| CONVERT_FROM_HOST_TO_SMC_US(tdc_limit); |
| smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc = |
| defaults->TDC_VDDC_ThrottleReleaseLimitPerc; |
| smu_data->power_tune_table.TDC_MAWt = defaults->TDC_MAWt; |
| |
| return 0; |
| } |
| |
| static int fiji_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset) |
| { |
| struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend); |
| const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults; |
| uint32_t temp; |
| |
| if (smu7_read_smc_sram_dword(hwmgr->smumgr, |
| fuse_table_offset + |
| offsetof(SMU73_Discrete_PmFuses, TdcWaterfallCtl), |
| (uint32_t *)&temp, SMC_RAM_END)) |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!", |
| return -EINVAL); |
| else { |
| smu_data->power_tune_table.TdcWaterfallCtl = defaults->TdcWaterfallCtl; |
| smu_data->power_tune_table.LPMLTemperatureMin = |
| (uint8_t)((temp >> 16) & 0xff); |
| smu_data->power_tune_table.LPMLTemperatureMax = |
| (uint8_t)((temp >> 8) & 0xff); |
| smu_data->power_tune_table.Reserved = (uint8_t)(temp & 0xff); |
| } |
| return 0; |
| } |
| |
| static int fiji_populate_temperature_scaler(struct pp_hwmgr *hwmgr) |
| { |
| int i; |
| struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend); |
| |
| /* Currently not used. Set all to zero. */ |
| for (i = 0; i < 16; i++) |
| smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0; |
| |
| return 0; |
| } |
| |
| static int fiji_populate_fuzzy_fan(struct pp_hwmgr *hwmgr) |
| { |
| struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend); |
| |
| if ((hwmgr->thermal_controller.advanceFanControlParameters. |
| usFanOutputSensitivity & (1 << 15)) || |
| 0 == hwmgr->thermal_controller.advanceFanControlParameters. |
| usFanOutputSensitivity) |
| hwmgr->thermal_controller.advanceFanControlParameters. |
| usFanOutputSensitivity = hwmgr->thermal_controller. |
| advanceFanControlParameters.usDefaultFanOutputSensitivity; |
| |
| smu_data->power_tune_table.FuzzyFan_PwmSetDelta = |
| PP_HOST_TO_SMC_US(hwmgr->thermal_controller. |
| advanceFanControlParameters.usFanOutputSensitivity); |
| return 0; |
| } |
| |
| static int fiji_populate_gnb_lpml(struct pp_hwmgr *hwmgr) |
| { |
| int i; |
| struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend); |
| |
| /* Currently not used. Set all to zero. */ |
| for (i = 0; i < 16; i++) |
| smu_data->power_tune_table.GnbLPML[i] = 0; |
| |
| return 0; |
| } |
| |
| static int fiji_min_max_vgnb_lpml_id_from_bapm_vddc(struct pp_hwmgr *hwmgr) |
| { |
| return 0; |
| } |
| |
| static int fiji_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr) |
| { |
| struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| uint16_t HiSidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd; |
| uint16_t LoSidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd; |
| struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table; |
| |
| HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256); |
| LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256); |
| |
| smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd = |
| CONVERT_FROM_HOST_TO_SMC_US(HiSidd); |
| smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd = |
| CONVERT_FROM_HOST_TO_SMC_US(LoSidd); |
| |
| return 0; |
| } |
| |
| static int fiji_populate_pm_fuses(struct pp_hwmgr *hwmgr) |
| { |
| uint32_t pm_fuse_table_offset; |
| struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend); |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_PowerContainment)) { |
| if (smu7_read_smc_sram_dword(hwmgr->smumgr, |
| SMU7_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU73_Firmware_Header, PmFuseTable), |
| &pm_fuse_table_offset, SMC_RAM_END)) |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to get pm_fuse_table_offset Failed!", |
| return -EINVAL); |
| |
| /* DW6 */ |
| if (fiji_populate_svi_load_line(hwmgr)) |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to populate SviLoadLine Failed!", |
| return -EINVAL); |
| /* DW7 */ |
| if (fiji_populate_tdc_limit(hwmgr)) |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to populate TDCLimit Failed!", return -EINVAL); |
| /* DW8 */ |
| if (fiji_populate_dw8(hwmgr, pm_fuse_table_offset)) |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to populate TdcWaterfallCtl, " |
| "LPMLTemperature Min and Max Failed!", |
| return -EINVAL); |
| |
| /* DW9-DW12 */ |
| if (0 != fiji_populate_temperature_scaler(hwmgr)) |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to populate LPMLTemperatureScaler Failed!", |
| return -EINVAL); |
| |
| /* DW13-DW14 */ |
| if (fiji_populate_fuzzy_fan(hwmgr)) |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to populate Fuzzy Fan Control parameters Failed!", |
| return -EINVAL); |
| |
| /* DW15-DW18 */ |
| if (fiji_populate_gnb_lpml(hwmgr)) |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to populate GnbLPML Failed!", |
| return -EINVAL); |
| |
| /* DW19 */ |
| if (fiji_min_max_vgnb_lpml_id_from_bapm_vddc(hwmgr)) |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to populate GnbLPML Min and Max Vid Failed!", |
| return -EINVAL); |
| |
| /* DW20 */ |
| if (fiji_populate_bapm_vddc_base_leakage_sidd(hwmgr)) |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to populate BapmVddCBaseLeakage Hi and Lo " |
| "Sidd Failed!", return -EINVAL); |
| |
| if (smu7_copy_bytes_to_smc(hwmgr->smumgr, pm_fuse_table_offset, |
| (uint8_t *)&smu_data->power_tune_table, |
| sizeof(struct SMU73_Discrete_PmFuses), SMC_RAM_END)) |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to download PmFuseTable Failed!", |
| return -EINVAL); |
| } |
| return 0; |
| } |
| |
| /** |
| * Preparation of vddc and vddgfx CAC tables for SMC. |
| * |
| * @param hwmgr the address of the hardware manager |
| * @param table the SMC DPM table structure to be populated |
| * @return always 0 |
| */ |
| static int fiji_populate_cac_table(struct pp_hwmgr *hwmgr, |
| struct SMU73_Discrete_DpmTable *table) |
| { |
| uint32_t count; |
| uint8_t index; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct phm_ppt_v1_voltage_lookup_table *lookup_table = |
| table_info->vddc_lookup_table; |
| /* tables is already swapped, so in order to use the value from it, |
| * we need to swap it back. |
| * We are populating vddc CAC data to BapmVddc table |
| * in split and merged mode |
| */ |
| |
| for (count = 0; count < lookup_table->count; count++) { |
| index = phm_get_voltage_index(lookup_table, |
| data->vddc_voltage_table.entries[count].value); |
| table->BapmVddcVidLoSidd[count] = |
| convert_to_vid(lookup_table->entries[index].us_cac_low); |
| table->BapmVddcVidHiSidd[count] = |
| convert_to_vid(lookup_table->entries[index].us_cac_high); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * Preparation of voltage tables for SMC. |
| * |
| * @param hwmgr the address of the hardware manager |
| * @param table the SMC DPM table structure to be populated |
| * @return always 0 |
| */ |
| |
| static int fiji_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr, |
| struct SMU73_Discrete_DpmTable *table) |
| { |
| int result; |
| |
| result = fiji_populate_cac_table(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "can not populate CAC voltage tables to SMC", |
| return -EINVAL); |
| |
| return 0; |
| } |
| |
| static int fiji_populate_ulv_level(struct pp_hwmgr *hwmgr, |
| struct SMU73_Discrete_Ulv *state) |
| { |
| int result = 0; |
| |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| state->CcPwrDynRm = 0; |
| state->CcPwrDynRm1 = 0; |
| |
| state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset; |
| state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset * |
| VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1); |
| |
| state->VddcPhase = 1; |
| |
| if (!result) { |
| CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm); |
| CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1); |
| CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset); |
| } |
| return result; |
| } |
| |
| static int fiji_populate_ulv_state(struct pp_hwmgr *hwmgr, |
| struct SMU73_Discrete_DpmTable *table) |
| { |
| return fiji_populate_ulv_level(hwmgr, &table->Ulv); |
| } |
| |
| static int fiji_populate_smc_link_level(struct pp_hwmgr *hwmgr, |
| struct SMU73_Discrete_DpmTable *table) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct smu7_dpm_table *dpm_table = &data->dpm_table; |
| struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend); |
| int i; |
| |
| /* Index (dpm_table->pcie_speed_table.count) |
| * is reserved for PCIE boot level. */ |
| for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) { |
| table->LinkLevel[i].PcieGenSpeed = |
| (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value; |
| table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width( |
| dpm_table->pcie_speed_table.dpm_levels[i].param1); |
| table->LinkLevel[i].EnabledForActivity = 1; |
| table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff); |
| table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5); |
| table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30); |
| } |
| |
| smu_data->smc_state_table.LinkLevelCount = |
| (uint8_t)dpm_table->pcie_speed_table.count; |
| data->dpm_level_enable_mask.pcie_dpm_enable_mask = |
| phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table); |
| |
| return 0; |
| } |
| |
| |
| /** |
| * Calculates the SCLK dividers using the provided engine clock |
| * |
| * @param hwmgr the address of the hardware manager |
| * @param clock the engine clock to use to populate the structure |
| * @param sclk the SMC SCLK structure to be populated |
| */ |
| static int fiji_calculate_sclk_params(struct pp_hwmgr *hwmgr, |
| uint32_t clock, struct SMU73_Discrete_GraphicsLevel *sclk) |
| { |
| const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct pp_atomctrl_clock_dividers_vi dividers; |
| uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; |
| uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; |
| uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; |
| uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; |
| uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; |
| uint32_t ref_clock; |
| uint32_t ref_divider; |
| uint32_t fbdiv; |
| int result; |
| |
| /* get the engine clock dividers for this clock value */ |
| result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock, ÷rs); |
| |
| PP_ASSERT_WITH_CODE(result == 0, |
| "Error retrieving Engine Clock dividers from VBIOS.", |
| return result); |
| |
| /* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */ |
| ref_clock = atomctrl_get_reference_clock(hwmgr); |
| ref_divider = 1 + dividers.uc_pll_ref_div; |
| |
| /* low 14 bits is fraction and high 12 bits is divider */ |
| fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF; |
| |
| /* SPLL_FUNC_CNTL setup */ |
| spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, |
| SPLL_REF_DIV, dividers.uc_pll_ref_div); |
| spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, |
| SPLL_PDIV_A, dividers.uc_pll_post_div); |
| |
| /* SPLL_FUNC_CNTL_3 setup*/ |
| spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3, |
| SPLL_FB_DIV, fbdiv); |
| |
| /* set to use fractional accumulation*/ |
| spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3, |
| SPLL_DITHEN, 1); |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_EngineSpreadSpectrumSupport)) { |
| struct pp_atomctrl_internal_ss_info ssInfo; |
| |
| uint32_t vco_freq = clock * dividers.uc_pll_post_div; |
| if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr, |
| vco_freq, &ssInfo)) { |
| /* |
| * ss_info.speed_spectrum_percentage -- in unit of 0.01% |
| * ss_info.speed_spectrum_rate -- in unit of khz |
| * |
| * clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 |
| */ |
| uint32_t clk_s = ref_clock * 5 / |
| (ref_divider * ssInfo.speed_spectrum_rate); |
| /* clkv = 2 * D * fbdiv / NS */ |
| uint32_t clk_v = 4 * ssInfo.speed_spectrum_percentage * |
| fbdiv / (clk_s * 10000); |
| |
| cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum, |
| CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s); |
| cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum, |
| CG_SPLL_SPREAD_SPECTRUM, SSEN, 1); |
| cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2, |
| CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v); |
| } |
| } |
| |
| sclk->SclkFrequency = clock; |
| sclk->CgSpllFuncCntl3 = spll_func_cntl_3; |
| sclk->CgSpllFuncCntl4 = spll_func_cntl_4; |
| sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum; |
| sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2; |
| sclk->SclkDid = (uint8_t)dividers.pll_post_divider; |
| |
| return 0; |
| } |
| |
| /** |
| * Populates single SMC SCLK structure using the provided engine clock |
| * |
| * @param hwmgr the address of the hardware manager |
| * @param clock the engine clock to use to populate the structure |
| * @param sclk the SMC SCLK structure to be populated |
| */ |
| |
| static int fiji_populate_single_graphic_level(struct pp_hwmgr *hwmgr, |
| uint32_t clock, uint16_t sclk_al_threshold, |
| struct SMU73_Discrete_GraphicsLevel *level) |
| { |
| int result; |
| /* PP_Clocks minClocks; */ |
| uint32_t threshold, mvdd; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| result = fiji_calculate_sclk_params(hwmgr, clock, level); |
| |
| /* populate graphics levels */ |
| result = fiji_get_dependency_volt_by_clk(hwmgr, |
| table_info->vdd_dep_on_sclk, clock, |
| (uint32_t *)(&level->MinVoltage), &mvdd); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "can not find VDDC voltage value for " |
| "VDDC engine clock dependency table", |
| return result); |
| |
| level->SclkFrequency = clock; |
| level->ActivityLevel = sclk_al_threshold; |
| level->CcPwrDynRm = 0; |
| level->CcPwrDynRm1 = 0; |
| level->EnabledForActivity = 0; |
| level->EnabledForThrottle = 1; |
| level->UpHyst = 10; |
| level->DownHyst = 0; |
| level->VoltageDownHyst = 0; |
| level->PowerThrottle = 0; |
| |
| threshold = clock * data->fast_watermark_threshold / 100; |
| |
| data->display_timing.min_clock_in_sr = hwmgr->display_config.min_core_set_clock_in_sr; |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) |
| level->DeepSleepDivId = smu7_get_sleep_divider_id_from_clock(clock, |
| hwmgr->display_config.min_core_set_clock_in_sr); |
| |
| |
| /* Default to slow, highest DPM level will be |
| * set to PPSMC_DISPLAY_WATERMARK_LOW later. |
| */ |
| level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage); |
| CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency); |
| CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel); |
| CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3); |
| CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4); |
| CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum); |
| CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2); |
| CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm); |
| CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1); |
| |
| return 0; |
| } |
| /** |
| * Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states |
| * |
| * @param hwmgr the address of the hardware manager |
| */ |
| int fiji_populate_all_graphic_levels(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend); |
| |
| struct smu7_dpm_table *dpm_table = &data->dpm_table; |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table; |
| uint8_t pcie_entry_cnt = (uint8_t) data->dpm_table.pcie_speed_table.count; |
| int result = 0; |
| uint32_t array = smu_data->smu7_data.dpm_table_start + |
| offsetof(SMU73_Discrete_DpmTable, GraphicsLevel); |
| uint32_t array_size = sizeof(struct SMU73_Discrete_GraphicsLevel) * |
| SMU73_MAX_LEVELS_GRAPHICS; |
| struct SMU73_Discrete_GraphicsLevel *levels = |
| smu_data->smc_state_table.GraphicsLevel; |
| uint32_t i, max_entry; |
| uint8_t hightest_pcie_level_enabled = 0, |
| lowest_pcie_level_enabled = 0, |
| mid_pcie_level_enabled = 0, |
| count = 0; |
| |
| for (i = 0; i < dpm_table->sclk_table.count; i++) { |
| result = fiji_populate_single_graphic_level(hwmgr, |
| dpm_table->sclk_table.dpm_levels[i].value, |
| (uint16_t)smu_data->activity_target[i], |
| &levels[i]); |
| if (result) |
| return result; |
| |
| /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */ |
| if (i > 1) |
| levels[i].DeepSleepDivId = 0; |
| } |
| |
| /* Only enable level 0 for now.*/ |
| levels[0].EnabledForActivity = 1; |
| |
| /* set highest level watermark to high */ |
| levels[dpm_table->sclk_table.count - 1].DisplayWatermark = |
| PPSMC_DISPLAY_WATERMARK_HIGH; |
| |
| smu_data->smc_state_table.GraphicsDpmLevelCount = |
| (uint8_t)dpm_table->sclk_table.count; |
| data->dpm_level_enable_mask.sclk_dpm_enable_mask = |
| phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table); |
| |
| if (pcie_table != NULL) { |
| PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt), |
| "There must be 1 or more PCIE levels defined in PPTable.", |
| return -EINVAL); |
| max_entry = pcie_entry_cnt - 1; |
| for (i = 0; i < dpm_table->sclk_table.count; i++) |
| levels[i].pcieDpmLevel = |
| (uint8_t) ((i < max_entry) ? i : max_entry); |
| } else { |
| while (data->dpm_level_enable_mask.pcie_dpm_enable_mask && |
| ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & |
| (1 << (hightest_pcie_level_enabled + 1))) != 0)) |
| hightest_pcie_level_enabled++; |
| |
| while (data->dpm_level_enable_mask.pcie_dpm_enable_mask && |
| ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & |
| (1 << lowest_pcie_level_enabled)) == 0)) |
| lowest_pcie_level_enabled++; |
| |
| while ((count < hightest_pcie_level_enabled) && |
| ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & |
| (1 << (lowest_pcie_level_enabled + 1 + count))) == 0)) |
| count++; |
| |
| mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1 + count) < |
| hightest_pcie_level_enabled ? |
| (lowest_pcie_level_enabled + 1 + count) : |
| hightest_pcie_level_enabled; |
| |
| /* set pcieDpmLevel to hightest_pcie_level_enabled */ |
| for (i = 2; i < dpm_table->sclk_table.count; i++) |
| levels[i].pcieDpmLevel = hightest_pcie_level_enabled; |
| |
| /* set pcieDpmLevel to lowest_pcie_level_enabled */ |
| levels[0].pcieDpmLevel = lowest_pcie_level_enabled; |
| |
| /* set pcieDpmLevel to mid_pcie_level_enabled */ |
| levels[1].pcieDpmLevel = mid_pcie_level_enabled; |
| } |
| /* level count will send to smc once at init smc table and never change */ |
| result = smu7_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels, |
| (uint32_t)array_size, SMC_RAM_END); |
| |
| return result; |
| } |
| |
| |
| /** |
| * MCLK Frequency Ratio |
| * SEQ_CG_RESP Bit[31:24] - 0x0 |
| * Bit[27:24] \96 DDR3 Frequency ratio |
| * 0x0 <= 100MHz, 450 < 0x8 <= 500MHz |
| * 100 < 0x1 <= 150MHz, 500 < 0x9 <= 550MHz |
| * 150 < 0x2 <= 200MHz, 550 < 0xA <= 600MHz |
| * 200 < 0x3 <= 250MHz, 600 < 0xB <= 650MHz |
| * 250 < 0x4 <= 300MHz, 650 < 0xC <= 700MHz |
| * 300 < 0x5 <= 350MHz, 700 < 0xD <= 750MHz |
| * 350 < 0x6 <= 400MHz, 750 < 0xE <= 800MHz |
| * 400 < 0x7 <= 450MHz, 800 < 0xF |
| */ |
| static uint8_t fiji_get_mclk_frequency_ratio(uint32_t mem_clock) |
| { |
| if (mem_clock <= 10000) |
| return 0x0; |
| if (mem_clock <= 15000) |
| return 0x1; |
| if (mem_clock <= 20000) |
| return 0x2; |
| if (mem_clock <= 25000) |
| return 0x3; |
| if (mem_clock <= 30000) |
| return 0x4; |
| if (mem_clock <= 35000) |
| return 0x5; |
| if (mem_clock <= 40000) |
| return 0x6; |
| if (mem_clock <= 45000) |
| return 0x7; |
| if (mem_clock <= 50000) |
| return 0x8; |
| if (mem_clock <= 55000) |
| return 0x9; |
| if (mem_clock <= 60000) |
| return 0xa; |
| if (mem_clock <= 65000) |
| return 0xb; |
| if (mem_clock <= 70000) |
| return 0xc; |
| if (mem_clock <= 75000) |
| return 0xd; |
| if (mem_clock <= 80000) |
| return 0xe; |
| /* mem_clock > 800MHz */ |
| return 0xf; |
| } |
| |
| /** |
| * Populates the SMC MCLK structure using the provided memory clock |
| * |
| * @param hwmgr the address of the hardware manager |
| * @param clock the memory clock to use to populate the structure |
| * @param sclk the SMC SCLK structure to be populated |
| */ |
| static int fiji_calculate_mclk_params(struct pp_hwmgr *hwmgr, |
| uint32_t clock, struct SMU73_Discrete_MemoryLevel *mclk) |
| { |
| struct pp_atomctrl_memory_clock_param mem_param; |
| int result; |
| |
| result = atomctrl_get_memory_pll_dividers_vi(hwmgr, clock, &mem_param); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Failed to get Memory PLL Dividers.", |
| ); |
| |
| /* Save the result data to outpupt memory level structure */ |
| mclk->MclkFrequency = clock; |
| mclk->MclkDivider = (uint8_t)mem_param.mpll_post_divider; |
| mclk->FreqRange = fiji_get_mclk_frequency_ratio(clock); |
| |
| return result; |
| } |
| |
| static int fiji_populate_single_memory_level(struct pp_hwmgr *hwmgr, |
| uint32_t clock, struct SMU73_Discrete_MemoryLevel *mem_level) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| int result = 0; |
| uint32_t mclk_stutter_mode_threshold = 60000; |
| |
| if (table_info->vdd_dep_on_mclk) { |
| result = fiji_get_dependency_volt_by_clk(hwmgr, |
| table_info->vdd_dep_on_mclk, clock, |
| (uint32_t *)(&mem_level->MinVoltage), &mem_level->MinMvdd); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "can not find MinVddc voltage value from memory " |
| "VDDC voltage dependency table", return result); |
| } |
| |
| mem_level->EnabledForThrottle = 1; |
| mem_level->EnabledForActivity = 0; |
| mem_level->UpHyst = 0; |
| mem_level->DownHyst = 100; |
| mem_level->VoltageDownHyst = 0; |
| mem_level->ActivityLevel = (uint16_t)data->mclk_activity_target; |
| mem_level->StutterEnable = false; |
| |
| mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; |
| |
| /* enable stutter mode if all the follow condition applied |
| * PECI_GetNumberOfActiveDisplays(hwmgr->pPECI, |
| * &(data->DisplayTiming.numExistingDisplays)); |
| */ |
| data->display_timing.num_existing_displays = 1; |
| |
| if (mclk_stutter_mode_threshold && |
| (clock <= mclk_stutter_mode_threshold) && |
| (!data->is_uvd_enabled) && |
| (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL, |
| STUTTER_ENABLE) & 0x1)) |
| mem_level->StutterEnable = true; |
| |
| result = fiji_calculate_mclk_params(hwmgr, clock, mem_level); |
| if (!result) { |
| CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd); |
| CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency); |
| CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel); |
| CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage); |
| } |
| return result; |
| } |
| |
| /** |
| * Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states |
| * |
| * @param hwmgr the address of the hardware manager |
| */ |
| int fiji_populate_all_memory_levels(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend); |
| struct smu7_dpm_table *dpm_table = &data->dpm_table; |
| int result; |
| /* populate MCLK dpm table to SMU7 */ |
| uint32_t array = smu_data->smu7_data.dpm_table_start + |
| offsetof(SMU73_Discrete_DpmTable, MemoryLevel); |
| uint32_t array_size = sizeof(SMU73_Discrete_MemoryLevel) * |
| SMU73_MAX_LEVELS_MEMORY; |
| struct SMU73_Discrete_MemoryLevel *levels = |
| smu_data->smc_state_table.MemoryLevel; |
| uint32_t i; |
| |
| for (i = 0; i < dpm_table->mclk_table.count; i++) { |
| PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value), |
| "can not populate memory level as memory clock is zero", |
| return -EINVAL); |
| result = fiji_populate_single_memory_level(hwmgr, |
| dpm_table->mclk_table.dpm_levels[i].value, |
| &levels[i]); |
| if (result) |
| return result; |
| } |
| |
| /* Only enable level 0 for now. */ |
| levels[0].EnabledForActivity = 1; |
| |
| /* in order to prevent MC activity from stutter mode to push DPM up. |
| * the UVD change complements this by putting the MCLK in |
| * a higher state by default such that we are not effected by |
| * up threshold or and MCLK DPM latency. |
| */ |
| levels[0].ActivityLevel = (uint16_t)data->mclk_dpm0_activity_target; |
| CONVERT_FROM_HOST_TO_SMC_US(levels[0].ActivityLevel); |
| |
| smu_data->smc_state_table.MemoryDpmLevelCount = |
| (uint8_t)dpm_table->mclk_table.count; |
| data->dpm_level_enable_mask.mclk_dpm_enable_mask = |
| phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table); |
| /* set highest level watermark to high */ |
| levels[dpm_table->mclk_table.count - 1].DisplayWatermark = |
| PPSMC_DISPLAY_WATERMARK_HIGH; |
| |
| /* level count will send to smc once at init smc table and never change */ |
| result = smu7_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels, |
| (uint32_t)array_size, SMC_RAM_END); |
| |
| return result; |
| } |
| |
| |
| /** |
| * Populates the SMC MVDD structure using the provided memory clock. |
| * |
| * @param hwmgr the address of the hardware manager |
| * @param mclk the MCLK value to be used in the decision if MVDD should be high or low. |
| * @param voltage the SMC VOLTAGE structure to be populated |
| */ |
| static int fiji_populate_mvdd_value(struct pp_hwmgr *hwmgr, |
| uint32_t mclk, SMIO_Pattern *smio_pat) |
| { |
| const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| uint32_t i = 0; |
| |
| if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) { |
| /* find mvdd value which clock is more than request */ |
| for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) { |
| if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) { |
| smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value; |
| break; |
| } |
| } |
| PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count, |
| "MVDD Voltage is outside the supported range.", |
| return -EINVAL); |
| } else |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int fiji_populate_smc_acpi_level(struct pp_hwmgr *hwmgr, |
| SMU73_Discrete_DpmTable *table) |
| { |
| int result = 0; |
| const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct pp_atomctrl_clock_dividers_vi dividers; |
| SMIO_Pattern vol_level; |
| uint32_t mvdd; |
| uint16_t us_mvdd; |
| uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; |
| uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2; |
| |
| table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC; |
| |
| if (!data->sclk_dpm_key_disabled) { |
| /* Get MinVoltage and Frequency from DPM0, |
| * already converted to SMC_UL */ |
| table->ACPILevel.SclkFrequency = |
| data->dpm_table.sclk_table.dpm_levels[0].value; |
| result = fiji_get_dependency_volt_by_clk(hwmgr, |
| table_info->vdd_dep_on_sclk, |
| table->ACPILevel.SclkFrequency, |
| (uint32_t *)(&table->ACPILevel.MinVoltage), &mvdd); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Cannot find ACPI VDDC voltage value " \ |
| "in Clock Dependency Table", |
| ); |
| } else { |
| table->ACPILevel.SclkFrequency = |
| data->vbios_boot_state.sclk_bootup_value; |
| table->ACPILevel.MinVoltage = |
| data->vbios_boot_state.vddc_bootup_value * VOLTAGE_SCALE; |
| } |
| |
| /* get the engine clock dividers for this clock value */ |
| result = atomctrl_get_engine_pll_dividers_vi(hwmgr, |
| table->ACPILevel.SclkFrequency, ÷rs); |
| PP_ASSERT_WITH_CODE(result == 0, |
| "Error retrieving Engine Clock dividers from VBIOS.", |
| return result); |
| |
| table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider; |
| table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; |
| table->ACPILevel.DeepSleepDivId = 0; |
| |
| spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, |
| SPLL_PWRON, 0); |
| spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, |
| SPLL_RESET, 1); |
| spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2, |
| SCLK_MUX_SEL, 4); |
| |
| table->ACPILevel.CgSpllFuncCntl = spll_func_cntl; |
| table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2; |
| table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; |
| table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; |
| table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; |
| table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; |
| table->ACPILevel.CcPwrDynRm = 0; |
| table->ACPILevel.CcPwrDynRm1 = 0; |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1); |
| |
| if (!data->mclk_dpm_key_disabled) { |
| /* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */ |
| table->MemoryACPILevel.MclkFrequency = |
| data->dpm_table.mclk_table.dpm_levels[0].value; |
| result = fiji_get_dependency_volt_by_clk(hwmgr, |
| table_info->vdd_dep_on_mclk, |
| table->MemoryACPILevel.MclkFrequency, |
| (uint32_t *)(&table->MemoryACPILevel.MinVoltage), &mvdd); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Cannot find ACPI VDDCI voltage value in Clock Dependency Table", |
| ); |
| } else { |
| table->MemoryACPILevel.MclkFrequency = |
| data->vbios_boot_state.mclk_bootup_value; |
| table->MemoryACPILevel.MinVoltage = |
| data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE; |
| } |
| |
| us_mvdd = 0; |
| if ((SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control) || |
| (data->mclk_dpm_key_disabled)) |
| us_mvdd = data->vbios_boot_state.mvdd_bootup_value; |
| else { |
| if (!fiji_populate_mvdd_value(hwmgr, |
| data->dpm_table.mclk_table.dpm_levels[0].value, |
| &vol_level)) |
| us_mvdd = vol_level.Voltage; |
| } |
| |
| table->MemoryACPILevel.MinMvdd = |
| PP_HOST_TO_SMC_UL(us_mvdd * VOLTAGE_SCALE); |
| |
| table->MemoryACPILevel.EnabledForThrottle = 0; |
| table->MemoryACPILevel.EnabledForActivity = 0; |
| table->MemoryACPILevel.UpHyst = 0; |
| table->MemoryACPILevel.DownHyst = 100; |
| table->MemoryACPILevel.VoltageDownHyst = 0; |
| table->MemoryACPILevel.ActivityLevel = |
| PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target); |
| |
| table->MemoryACPILevel.StutterEnable = false; |
| CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage); |
| |
| return result; |
| } |
| |
| static int fiji_populate_smc_vce_level(struct pp_hwmgr *hwmgr, |
| SMU73_Discrete_DpmTable *table) |
| { |
| int result = -EINVAL; |
| uint8_t count; |
| struct pp_atomctrl_clock_dividers_vi dividers; |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = |
| table_info->mm_dep_table; |
| |
| table->VceLevelCount = (uint8_t)(mm_table->count); |
| table->VceBootLevel = 0; |
| |
| for (count = 0; count < table->VceLevelCount; count++) { |
| table->VceLevel[count].Frequency = mm_table->entries[count].eclk; |
| table->VceLevel[count].MinVoltage = 0; |
| table->VceLevel[count].MinVoltage |= |
| (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT; |
| table->VceLevel[count].MinVoltage |= |
| ((mm_table->entries[count].vddc - VDDC_VDDCI_DELTA) * |
| VOLTAGE_SCALE) << VDDCI_SHIFT; |
| table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT; |
| |
| /*retrieve divider value for VBIOS */ |
| result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
| table->VceLevel[count].Frequency, ÷rs); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "can not find divide id for VCE engine clock", |
| return result); |
| |
| table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider; |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage); |
| } |
| return result; |
| } |
| |
| static int fiji_populate_smc_acp_level(struct pp_hwmgr *hwmgr, |
| SMU73_Discrete_DpmTable *table) |
| { |
| int result = -EINVAL; |
| uint8_t count; |
| struct pp_atomctrl_clock_dividers_vi dividers; |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = |
| table_info->mm_dep_table; |
| |
| table->AcpLevelCount = (uint8_t)(mm_table->count); |
| table->AcpBootLevel = 0; |
| |
| for (count = 0; count < table->AcpLevelCount; count++) { |
| table->AcpLevel[count].Frequency = mm_table->entries[count].aclk; |
| table->AcpLevel[count].MinVoltage |= (mm_table->entries[count].vddc * |
| VOLTAGE_SCALE) << VDDC_SHIFT; |
| table->AcpLevel[count].MinVoltage |= ((mm_table->entries[count].vddc - |
| VDDC_VDDCI_DELTA) * VOLTAGE_SCALE) << VDDCI_SHIFT; |
| table->AcpLevel[count].MinVoltage |= 1 << PHASES_SHIFT; |
| |
| /* retrieve divider value for VBIOS */ |
| result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
| table->AcpLevel[count].Frequency, ÷rs); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "can not find divide id for engine clock", return result); |
| |
| table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider; |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].MinVoltage); |
| } |
| return result; |
| } |
| |
| static int fiji_populate_smc_samu_level(struct pp_hwmgr *hwmgr, |
| SMU73_Discrete_DpmTable *table) |
| { |
| int result = -EINVAL; |
| uint8_t count; |
| struct pp_atomctrl_clock_dividers_vi dividers; |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = |
| table_info->mm_dep_table; |
| |
| table->SamuBootLevel = 0; |
| table->SamuLevelCount = (uint8_t)(mm_table->count); |
| |
| for (count = 0; count < table->SamuLevelCount; count++) { |
| /* not sure whether we need evclk or not */ |
| table->SamuLevel[count].MinVoltage = 0; |
| table->SamuLevel[count].Frequency = mm_table->entries[count].samclock; |
| table->SamuLevel[count].MinVoltage |= (mm_table->entries[count].vddc * |
| VOLTAGE_SCALE) << VDDC_SHIFT; |
| table->SamuLevel[count].MinVoltage |= ((mm_table->entries[count].vddc - |
| VDDC_VDDCI_DELTA) * VOLTAGE_SCALE) << VDDCI_SHIFT; |
| table->SamuLevel[count].MinVoltage |= 1 << PHASES_SHIFT; |
| |
| /* retrieve divider value for VBIOS */ |
| result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
| table->SamuLevel[count].Frequency, ÷rs); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "can not find divide id for samu clock", return result); |
| |
| table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider; |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].MinVoltage); |
| } |
| return result; |
| } |
| |
| static int fiji_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr, |
| int32_t eng_clock, int32_t mem_clock, |
| struct SMU73_Discrete_MCArbDramTimingTableEntry *arb_regs) |
| { |
| uint32_t dram_timing; |
| uint32_t dram_timing2; |
| uint32_t burstTime; |
| ULONG state, trrds, trrdl; |
| int result; |
| |
| result = atomctrl_set_engine_dram_timings_rv770(hwmgr, |
| eng_clock, mem_clock); |
| PP_ASSERT_WITH_CODE(result == 0, |
| "Error calling VBIOS to set DRAM_TIMING.", return result); |
| |
| dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING); |
| dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2); |
| burstTime = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME); |
| |
| state = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, STATE0); |
| trrds = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDS0); |
| trrdl = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDL0); |
| |
| arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dram_timing); |
| arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2); |
| arb_regs->McArbBurstTime = (uint8_t)burstTime; |
| arb_regs->TRRDS = (uint8_t)trrds; |
| arb_regs->TRRDL = (uint8_t)trrdl; |
| |
| return 0; |
| } |
| |
| static int fiji_program_memory_timing_parameters(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend); |
| struct SMU73_Discrete_MCArbDramTimingTable arb_regs; |
| uint32_t i, j; |
| int result = 0; |
| |
| for (i = 0; i < data->dpm_table.sclk_table.count; i++) { |
| for (j = 0; j < data->dpm_table.mclk_table.count; j++) { |
| result = fiji_populate_memory_timing_parameters(hwmgr, |
| data->dpm_table.sclk_table.dpm_levels[i].value, |
| data->dpm_table.mclk_table.dpm_levels[j].value, |
| &arb_regs.entries[i][j]); |
| if (result) |
| break; |
| } |
| } |
| |
| if (!result) |
| result = smu7_copy_bytes_to_smc( |
| hwmgr->smumgr, |
| smu_data->smu7_data.arb_table_start, |
| (uint8_t *)&arb_regs, |
| sizeof(SMU73_Discrete_MCArbDramTimingTable), |
| SMC_RAM_END); |
| return result; |
| } |
| |
| static int fiji_populate_smc_uvd_level(struct pp_hwmgr *hwmgr, |
| struct SMU73_Discrete_DpmTable *table) |
| { |
| int result = -EINVAL; |
| uint8_t count; |
| struct pp_atomctrl_clock_dividers_vi dividers; |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = |
| table_info->mm_dep_table; |
| |
| table->UvdLevelCount = (uint8_t)(mm_table->count); |
| table->UvdBootLevel = 0; |
| |
| for (count = 0; count < table->UvdLevelCount; count++) { |
| table->UvdLevel[count].MinVoltage = 0; |
| table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk; |
| table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk; |
| table->UvdLevel[count].MinVoltage |= (mm_table->entries[count].vddc * |
| VOLTAGE_SCALE) << VDDC_SHIFT; |
| table->UvdLevel[count].MinVoltage |= ((mm_table->entries[count].vddc - |
| VDDC_VDDCI_DELTA) * VOLTAGE_SCALE) << VDDCI_SHIFT; |
| table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT; |
| |
| /* retrieve divider value for VBIOS */ |
| result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
| table->UvdLevel[count].VclkFrequency, ÷rs); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "can not find divide id for Vclk clock", return result); |
| |
| table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider; |
| |
| result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
| table->UvdLevel[count].DclkFrequency, ÷rs); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "can not find divide id for Dclk clock", return result); |
| |
| table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider; |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage); |
| |
| } |
| return result; |
| } |
| |
| static int fiji_populate_smc_boot_level(struct pp_hwmgr *hwmgr, |
| struct SMU73_Discrete_DpmTable *table) |
| { |
| int result = 0; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| table->GraphicsBootLevel = 0; |
| table->MemoryBootLevel = 0; |
| |
| /* find boot level from dpm table */ |
| result = phm_find_boot_level(&(data->dpm_table.sclk_table), |
| data->vbios_boot_state.sclk_bootup_value, |
| (uint32_t *)&(table->GraphicsBootLevel)); |
| |
| result = phm_find_boot_level(&(data->dpm_table.mclk_table), |
| data->vbios_boot_state.mclk_bootup_value, |
| (uint32_t *)&(table->MemoryBootLevel)); |
| |
| table->BootVddc = data->vbios_boot_state.vddc_bootup_value * |
| VOLTAGE_SCALE; |
| table->BootVddci = data->vbios_boot_state.vddci_bootup_value * |
| VOLTAGE_SCALE; |
| table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value * |
| VOLTAGE_SCALE; |
| |
| CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc); |
| CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci); |
| CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd); |
| |
| return 0; |
| } |
| |
| static int fiji_populate_smc_initailial_state(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| uint8_t count, level; |
| |
| count = (uint8_t)(table_info->vdd_dep_on_sclk->count); |
| for (level = 0; level < count; level++) { |
| if (table_info->vdd_dep_on_sclk->entries[level].clk >= |
| data->vbios_boot_state.sclk_bootup_value) { |
| smu_data->smc_state_table.GraphicsBootLevel = level; |
| break; |
| } |
| } |
| |
| count = (uint8_t)(table_info->vdd_dep_on_mclk->count); |
| for (level = 0; level < count; level++) { |
| if (table_info->vdd_dep_on_mclk->entries[level].clk >= |
| data->vbios_boot_state.mclk_bootup_value) { |
| smu_data->smc_state_table.MemoryBootLevel = level; |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int fiji_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr) |
| { |
| uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks, |
| volt_with_cks, value; |
| uint16_t clock_freq_u16; |
| struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend); |
| uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2, |
| volt_offset = 0; |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = |
| table_info->vdd_dep_on_sclk; |
| |
| stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount; |
| |
| /* Read SMU_Eefuse to read and calculate RO and determine |
| * if the part is SS or FF. if RO >= 1660MHz, part is FF. |
| */ |
| efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixSMU_EFUSE_0 + (146 * 4)); |
| efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixSMU_EFUSE_0 + (148 * 4)); |
| efuse &= 0xFF000000; |
| efuse = efuse >> 24; |
| efuse2 &= 0xF; |
| |
| if (efuse2 == 1) |
| ro = (2300 - 1350) * efuse / 255 + 1350; |
| else |
| ro = (2500 - 1000) * efuse / 255 + 1000; |
| |
| if (ro >= 1660) |
| type = 0; |
| else |
| type = 1; |
| |
| /* Populate Stretch amount */ |
| smu_data->smc_state_table.ClockStretcherAmount = stretch_amount; |
| |
| /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */ |
| for (i = 0; i < sclk_table->count; i++) { |
| smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |= |
| sclk_table->entries[i].cks_enable << i; |
| volt_without_cks = (uint32_t)((14041 * |
| (sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 / |
| (4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000))); |
| volt_with_cks = (uint32_t)((13946 * |
| (sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 / |
| (3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000))); |
| if (volt_without_cks >= volt_with_cks) |
| volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks + |
| sclk_table->entries[i].cks_voffset) * 100 / 625) + 1); |
| smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset; |
| } |
| |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, |
| STRETCH_ENABLE, 0x0); |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, |
| masterReset, 0x1); |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, |
| staticEnable, 0x1); |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, |
| masterReset, 0x0); |
| |
| /* Populate CKS Lookup Table */ |
| if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5) |
| stretch_amount2 = 0; |
| else if (stretch_amount == 3 || stretch_amount == 4) |
| stretch_amount2 = 1; |
| else { |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ClockStretcher); |
| PP_ASSERT_WITH_CODE(false, |
| "Stretch Amount in PPTable not supported\n", |
| return -EINVAL); |
| } |
| |
| value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixPWR_CKS_CNTL); |
| value &= 0xFFC2FF87; |
| smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq = |
| fiji_clock_stretcher_lookup_table[stretch_amount2][0]; |
| smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq = |
| fiji_clock_stretcher_lookup_table[stretch_amount2][1]; |
| clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(smu_data->smc_state_table. |
| GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1]. |
| SclkFrequency) / 100); |
| if (fiji_clock_stretcher_lookup_table[stretch_amount2][0] < |
| clock_freq_u16 && |
| fiji_clock_stretcher_lookup_table[stretch_amount2][1] > |
| clock_freq_u16) { |
| /* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */ |
| value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 16; |
| /* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */ |
| value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][2]) << 18; |
| /* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */ |
| value |= (fiji_clock_stretch_amount_conversion |
| [fiji_clock_stretcher_lookup_table[stretch_amount2][3]] |
| [stretch_amount]) << 3; |
| } |
| CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable. |
| CKS_LOOKUPTableEntry[0].minFreq); |
| CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable. |
| CKS_LOOKUPTableEntry[0].maxFreq); |
| smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting = |
| fiji_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F; |
| smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |= |
| (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 7; |
| |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixPWR_CKS_CNTL, value); |
| |
| /* Populate DDT Lookup Table */ |
| for (i = 0; i < 4; i++) { |
| /* Assign the minimum and maximum VID stored |
| * in the last row of Clock Stretcher Voltage Table. |
| */ |
| smu_data->smc_state_table.ClockStretcherDataTable. |
| ClockStretcherDataTableEntry[i].minVID = |
| (uint8_t) fiji_clock_stretcher_ddt_table[type][i][2]; |
| smu_data->smc_state_table.ClockStretcherDataTable. |
| ClockStretcherDataTableEntry[i].maxVID = |
| (uint8_t) fiji_clock_stretcher_ddt_table[type][i][3]; |
| /* Loop through each SCLK and check the frequency |
| * to see if it lies within the frequency for clock stretcher. |
| */ |
| for (j = 0; j < smu_data->smc_state_table.GraphicsDpmLevelCount; j++) { |
| cks_setting = 0; |
| clock_freq = PP_SMC_TO_HOST_UL( |
| smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency); |
| /* Check the allowed frequency against the sclk level[j]. |
| * Sclk's endianness has already been converted, |
| * and it's in 10Khz unit, |
| * as opposed to Data table, which is in Mhz unit. |
| */ |
| if (clock_freq >= |
| (fiji_clock_stretcher_ddt_table[type][i][0]) * 100) { |
| cks_setting |= 0x2; |
| if (clock_freq < |
| (fiji_clock_stretcher_ddt_table[type][i][1]) * 100) |
| cks_setting |= 0x1; |
| } |
| smu_data->smc_state_table.ClockStretcherDataTable. |
| ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2); |
| } |
| CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table. |
| ClockStretcherDataTable. |
| ClockStretcherDataTableEntry[i].setting); |
| } |
| |
| value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL); |
| value &= 0xFFFFFFFE; |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value); |
| |
| return 0; |
| } |
| |
| /** |
| * Populates the SMC VRConfig field in DPM table. |
| * |
| * @param hwmgr the address of the hardware manager |
| * @param table the SMC DPM table structure to be populated |
| * @return always 0 |
| */ |
| static int fiji_populate_vr_config(struct pp_hwmgr *hwmgr, |
| struct SMU73_Discrete_DpmTable *table) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| uint16_t config; |
| |
| config = VR_MERGED_WITH_VDDC; |
| table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT); |
| |
| /* Set Vddc Voltage Controller */ |
| if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { |
| config = VR_SVI2_PLANE_1; |
| table->VRConfig |= config; |
| } else { |
| PP_ASSERT_WITH_CODE(false, |
| "VDDC should be on SVI2 control in merged mode!", |
| ); |
| } |
| /* Set Vddci Voltage Controller */ |
| if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) { |
| config = VR_SVI2_PLANE_2; /* only in merged mode */ |
| table->VRConfig |= (config << VRCONF_VDDCI_SHIFT); |
| } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) { |
| config = VR_SMIO_PATTERN_1; |
| table->VRConfig |= (config << VRCONF_VDDCI_SHIFT); |
| } else { |
| config = VR_STATIC_VOLTAGE; |
| table->VRConfig |= (config << VRCONF_VDDCI_SHIFT); |
| } |
| /* Set Mvdd Voltage Controller */ |
| if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) { |
| config = VR_SVI2_PLANE_2; |
| table->VRConfig |= (config << VRCONF_MVDD_SHIFT); |
| } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { |
| config = VR_SMIO_PATTERN_2; |
| table->VRConfig |= (config << VRCONF_MVDD_SHIFT); |
| } else { |
| config = VR_STATIC_VOLTAGE; |
| table->VRConfig |= (config << VRCONF_MVDD_SHIFT); |
| } |
| |
| return 0; |
| } |
| |
| static int fiji_init_arb_table_index(struct pp_smumgr *smumgr) |
| { |
| struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(smumgr->backend); |
| uint32_t tmp; |
| int result; |
| |
| /* This is a read-modify-write on the first byte of the ARB table. |
| * The first byte in the SMU73_Discrete_MCArbDramTimingTable structure |
| * is the field 'current'. |
| * This solution is ugly, but we never write the whole table only |
| * individual fields in it. |
| * In reality this field should not be in that structure |
| * but in a soft register. |
| */ |
| result = smu7_read_smc_sram_dword(smumgr, |
| smu_data->smu7_data.arb_table_start, &tmp, SMC_RAM_END); |
| |
| if (result) |
| return result; |
| |
| tmp &= 0x00FFFFFF; |
| tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24; |
| |
| return smu7_write_smc_sram_dword(smumgr, |
| smu_data->smu7_data.arb_table_start, tmp, SMC_RAM_END); |
| } |
| |
| /** |
| * Initializes the SMC table and uploads it |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @param pInput the pointer to input data (PowerState) |
| * @return always 0 |
| */ |
| int fiji_init_smc_table(struct pp_hwmgr *hwmgr) |
| { |
| int result; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct SMU73_Discrete_DpmTable *table = &(smu_data->smc_state_table); |
| uint8_t i; |
| struct pp_atomctrl_gpio_pin_assignment gpio_pin; |
| |
| fiji_initialize_power_tune_defaults(hwmgr); |
| |
| if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control) |
| fiji_populate_smc_voltage_tables(hwmgr, table); |
| |
| table->SystemFlags = 0; |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_AutomaticDCTransition)) |
| table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC; |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_StepVddc)) |
| table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC; |
| |
| if (data->is_memory_gddr5) |
| table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5; |
| |
| if (data->ulv_supported && table_info->us_ulv_voltage_offset) { |
| result = fiji_populate_ulv_state(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize ULV state!", return result); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_ULV_PARAMETER, 0x40035); |
| } |
| |
| result = fiji_populate_smc_link_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize Link Level!", return result); |
| |
| result = fiji_populate_all_graphic_levels(hwmgr); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize Graphics Level!", return result); |
| |
| result = fiji_populate_all_memory_levels(hwmgr); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize Memory Level!", return result); |
| |
| result = fiji_populate_smc_acpi_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize ACPI Level!", return result); |
| |
| result = fiji_populate_smc_vce_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize VCE Level!", return result); |
| |
| result = fiji_populate_smc_acp_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize ACP Level!", return result); |
| |
| result = fiji_populate_smc_samu_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize SAMU Level!", return result); |
| |
| /* Since only the initial state is completely set up at this point |
| * (the other states are just copies of the boot state) we only |
| * need to populate the ARB settings for the initial state. |
| */ |
| result = fiji_program_memory_timing_parameters(hwmgr); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to Write ARB settings for the initial state.", return result); |
| |
| result = fiji_populate_smc_uvd_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize UVD Level!", return result); |
| |
| result = fiji_populate_smc_boot_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize Boot Level!", return result); |
| |
| result = fiji_populate_smc_initailial_state(hwmgr); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to initialize Boot State!", return result); |
| |
| result = fiji_populate_bapm_parameters_in_dpm_table(hwmgr); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to populate BAPM Parameters!", return result); |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ClockStretcher)) { |
| result = fiji_populate_clock_stretcher_data_table(hwmgr); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to populate Clock Stretcher Data Table!", |
| return result); |
| } |
| |
| table->GraphicsVoltageChangeEnable = 1; |
| table->GraphicsThermThrottleEnable = 1; |
| table->GraphicsInterval = 1; |
| table->VoltageInterval = 1; |
| table->ThermalInterval = 1; |
| table->TemperatureLimitHigh = |
| table_info->cac_dtp_table->usTargetOperatingTemp * |
| SMU7_Q88_FORMAT_CONVERSION_UNIT; |
| table->TemperatureLimitLow = |
| (table_info->cac_dtp_table->usTargetOperatingTemp - 1) * |
| SMU7_Q88_FORMAT_CONVERSION_UNIT; |
| table->MemoryVoltageChangeEnable = 1; |
| table->MemoryInterval = 1; |
| table->VoltageResponseTime = 0; |
| table->PhaseResponseTime = 0; |
| table->MemoryThermThrottleEnable = 1; |
| table->PCIeBootLinkLevel = 0; /* 0:Gen1 1:Gen2 2:Gen3*/ |
| table->PCIeGenInterval = 1; |
| table->VRConfig = 0; |
| |
| result = fiji_populate_vr_config(hwmgr, table); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to populate VRConfig setting!", return result); |
| |
| table->ThermGpio = 17; |
| table->SclkStepSize = 0x4000; |
| |
| if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) { |
| table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift; |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_RegulatorHot); |
| } else { |
| table->VRHotGpio = SMU7_UNUSED_GPIO_PIN; |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_RegulatorHot); |
| } |
| |
| if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID, |
| &gpio_pin)) { |
| table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift; |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_AutomaticDCTransition); |
| } else { |
| table->AcDcGpio = SMU7_UNUSED_GPIO_PIN; |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_AutomaticDCTransition); |
| } |
| |
| /* Thermal Output GPIO */ |
| if (atomctrl_get_pp_assign_pin(hwmgr, THERMAL_INT_OUTPUT_GPIO_PINID, |
| &gpio_pin)) { |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ThermalOutGPIO); |
| |
| table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift; |
| |
| /* For porlarity read GPIOPAD_A with assigned Gpio pin |
| * since VBIOS will program this register to set 'inactive state', |
| * driver can then determine 'active state' from this and |
| * program SMU with correct polarity |
| */ |
| table->ThermOutPolarity = (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) & |
| (1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0; |
| table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY; |
| |
| /* if required, combine VRHot/PCC with thermal out GPIO */ |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_RegulatorHot) && |
| phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_CombinePCCWithThermalSignal)) |
| table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT; |
| } else { |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ThermalOutGPIO); |
| table->ThermOutGpio = 17; |
| table->ThermOutPolarity = 1; |
| table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE; |
| } |
| |
| for (i = 0; i < SMU73_MAX_ENTRIES_SMIO; i++) |
| table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]); |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize); |
| CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh); |
| CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow); |
| CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime); |
| CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime); |
| |
| /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */ |
| result = smu7_copy_bytes_to_smc(hwmgr->smumgr, |
| smu_data->smu7_data.dpm_table_start + |
| offsetof(SMU73_Discrete_DpmTable, SystemFlags), |
| (uint8_t *)&(table->SystemFlags), |
| sizeof(SMU73_Discrete_DpmTable) - 3 * sizeof(SMU73_PIDController), |
| SMC_RAM_END); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to upload dpm data to SMC memory!", return result); |
| |
| result = fiji_init_arb_table_index(hwmgr->smumgr); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to upload arb data to SMC memory!", return result); |
| |
| result = fiji_populate_pm_fuses(hwmgr); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to populate PM fuses to SMC memory!", return result); |
| return 0; |
| } |
| |
| /** |
| * Set up the fan table to control the fan using the SMC. |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @param pInput the pointer to input data |
| * @param pOutput the pointer to output data |
| * @param pStorage the pointer to temporary storage |
| * @param Result the last failure code |
| * @return result from set temperature range routine |
| */ |
| int fiji_thermal_setup_fan_table(struct pp_hwmgr *hwmgr) |
| { |
| struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend); |
| |
| SMU73_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE }; |
| uint32_t duty100; |
| uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2; |
| uint16_t fdo_min, slope1, slope2; |
| uint32_t reference_clock; |
| int res; |
| uint64_t tmp64; |
| |
| if (smu_data->smu7_data.fan_table_start == 0) { |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_MicrocodeFanControl); |
| return 0; |
| } |
| |
| duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| CG_FDO_CTRL1, FMAX_DUTY100); |
| |
| if (duty100 == 0) { |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_MicrocodeFanControl); |
| return 0; |
| } |
| |
| tmp64 = hwmgr->thermal_controller.advanceFanControlParameters. |
| usPWMMin * duty100; |
| do_div(tmp64, 10000); |
| fdo_min = (uint16_t)tmp64; |
| |
| t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - |
| hwmgr->thermal_controller.advanceFanControlParameters.usTMin; |
| t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - |
| hwmgr->thermal_controller.advanceFanControlParameters.usTMed; |
| |
| pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - |
| hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin; |
| pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - |
| hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed; |
| |
| slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100); |
| slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100); |
| |
| fan_table.TempMin = cpu_to_be16((50 + hwmgr-> |
| thermal_controller.advanceFanControlParameters.usTMin) / 100); |
| fan_table.TempMed = cpu_to_be16((50 + hwmgr-> |
| thermal_controller.advanceFanControlParameters.usTMed) / 100); |
| fan_table.TempMax = cpu_to_be16((50 + hwmgr-> |
| thermal_controller.advanceFanControlParameters.usTMax) / 100); |
| |
| fan_table.Slope1 = cpu_to_be16(slope1); |
| fan_table.Slope2 = cpu_to_be16(slope2); |
| |
| fan_table.FdoMin = cpu_to_be16(fdo_min); |
| |
| fan_table.HystDown = cpu_to_be16(hwmgr-> |
| thermal_controller.advanceFanControlParameters.ucTHyst); |
| |
| fan_table.HystUp = cpu_to_be16(1); |
| |
| fan_table.HystSlope = cpu_to_be16(1); |
| |
| fan_table.TempRespLim = cpu_to_be16(5); |
| |
| reference_clock = smu7_get_xclk(hwmgr); |
| |
| fan_table.RefreshPeriod = cpu_to_be32((hwmgr-> |
| thermal_controller.advanceFanControlParameters.ulCycleDelay * |
| reference_clock) / 1600); |
| |
| fan_table.FdoMax = cpu_to_be16((uint16_t)duty100); |
| |
| fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD( |
| hwmgr->device, CGS_IND_REG__SMC, |
| CG_MULT_THERMAL_CTRL, TEMP_SEL); |
| |
| res = smu7_copy_bytes_to_smc(hwmgr->smumgr, smu_data->smu7_data.fan_table_start, |
| (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table), |
| SMC_RAM_END); |
| |
| if (!res && hwmgr->thermal_controller. |
| advanceFanControlParameters.ucMinimumPWMLimit) |
| res = smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, |
| PPSMC_MSG_SetFanMinPwm, |
| hwmgr->thermal_controller. |
| advanceFanControlParameters.ucMinimumPWMLimit); |
| |
| if (!res && hwmgr->thermal_controller. |
| advanceFanControlParameters.ulMinFanSCLKAcousticLimit) |
| res = smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, |
| PPSMC_MSG_SetFanSclkTarget, |
| hwmgr->thermal_controller. |
| advanceFanControlParameters.ulMinFanSCLKAcousticLimit); |
| |
| if (res) |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_MicrocodeFanControl); |
| |
| return 0; |
| } |
| |
| int fiji_program_mem_timing_parameters(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| if (data->need_update_smu7_dpm_table & |
| (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK)) |
| return fiji_program_memory_timing_parameters(hwmgr); |
| |
| return 0; |
| } |
| |
| int fiji_update_sclk_threshold(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend); |
| |
| int result = 0; |
| uint32_t low_sclk_interrupt_threshold = 0; |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_SclkThrottleLowNotification) |
| && (hwmgr->gfx_arbiter.sclk_threshold != |
| data->low_sclk_interrupt_threshold)) { |
| data->low_sclk_interrupt_threshold = |
| hwmgr->gfx_arbiter.sclk_threshold; |
| low_sclk_interrupt_threshold = |
| data->low_sclk_interrupt_threshold; |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold); |
| |
| result = smu7_copy_bytes_to_smc( |
| hwmgr->smumgr, |
| smu_data->smu7_data.dpm_table_start + |
| offsetof(SMU73_Discrete_DpmTable, |
| LowSclkInterruptThreshold), |
| (uint8_t *)&low_sclk_interrupt_threshold, |
| sizeof(uint32_t), |
| SMC_RAM_END); |
| } |
| result = fiji_program_mem_timing_parameters(hwmgr); |
| PP_ASSERT_WITH_CODE((result == 0), |
| "Failed to program memory timing parameters!", |
| ); |
| return result; |
| } |
| |
| uint32_t fiji_get_offsetof(uint32_t type, uint32_t member) |
| { |
| switch (type) { |
| case SMU_SoftRegisters: |
| switch (member) { |
| case HandshakeDisables: |
| return offsetof(SMU73_SoftRegisters, HandshakeDisables); |
| case VoltageChangeTimeout: |
| return offsetof(SMU73_SoftRegisters, VoltageChangeTimeout); |
| case AverageGraphicsActivity: |
| return offsetof(SMU73_SoftRegisters, AverageGraphicsActivity); |
| case PreVBlankGap: |
| return offsetof(SMU73_SoftRegisters, PreVBlankGap); |
| case VBlankTimeout: |
| return offsetof(SMU73_SoftRegisters, VBlankTimeout); |
| case UcodeLoadStatus: |
| return offsetof(SMU73_SoftRegisters, UcodeLoadStatus); |
| } |
| case SMU_Discrete_DpmTable: |
| switch (member) { |
| case UvdBootLevel: |
| return offsetof(SMU73_Discrete_DpmTable, UvdBootLevel); |
| case VceBootLevel: |
| return offsetof(SMU73_Discrete_DpmTable, VceBootLevel); |
| case SamuBootLevel: |
| return offsetof(SMU73_Discrete_DpmTable, SamuBootLevel); |
| case LowSclkInterruptThreshold: |
| return offsetof(SMU73_Discrete_DpmTable, LowSclkInterruptThreshold); |
| } |
| } |
| printk("cant't get the offset of type %x member %x \n", type, member); |
| return 0; |
| } |
| |
| uint32_t fiji_get_mac_definition(uint32_t value) |
| { |
| switch (value) { |
| case SMU_MAX_LEVELS_GRAPHICS: |
| return SMU73_MAX_LEVELS_GRAPHICS; |
| case SMU_MAX_LEVELS_MEMORY: |
| return SMU73_MAX_LEVELS_MEMORY; |
| case SMU_MAX_LEVELS_LINK: |
| return SMU73_MAX_LEVELS_LINK; |
| case SMU_MAX_ENTRIES_SMIO: |
| return SMU73_MAX_ENTRIES_SMIO; |
| case SMU_MAX_LEVELS_VDDC: |
| return SMU73_MAX_LEVELS_VDDC; |
| case SMU_MAX_LEVELS_VDDGFX: |
| return SMU73_MAX_LEVELS_VDDGFX; |
| case SMU_MAX_LEVELS_VDDCI: |
| return SMU73_MAX_LEVELS_VDDCI; |
| case SMU_MAX_LEVELS_MVDD: |
| return SMU73_MAX_LEVELS_MVDD; |
| } |
| |
| printk("cant't get the mac of %x \n", value); |
| return 0; |
| } |
| |
| |
| static int fiji_update_uvd_smc_table(struct pp_hwmgr *hwmgr) |
| { |
| struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend); |
| uint32_t mm_boot_level_offset, mm_boot_level_value; |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| smu_data->smc_state_table.UvdBootLevel = 0; |
| if (table_info->mm_dep_table->count > 0) |
| smu_data->smc_state_table.UvdBootLevel = |
| (uint8_t) (table_info->mm_dep_table->count - 1); |
| mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + offsetof(SMU73_Discrete_DpmTable, |
| UvdBootLevel); |
| mm_boot_level_offset /= 4; |
| mm_boot_level_offset *= 4; |
| mm_boot_level_value = cgs_read_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, mm_boot_level_offset); |
| mm_boot_level_value &= 0x00FFFFFF; |
| mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24; |
| cgs_write_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value); |
| |
| if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_UVDDPM) || |
| phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_StablePState)) |
| smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, |
| PPSMC_MSG_UVDDPM_SetEnabledMask, |
| (uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel)); |
| return 0; |
| } |
| |
| static int fiji_update_vce_smc_table(struct pp_hwmgr *hwmgr) |
| { |
| struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend); |
| uint32_t mm_boot_level_offset, mm_boot_level_value; |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_StablePState)) |
| smu_data->smc_state_table.VceBootLevel = |
| (uint8_t) (table_info->mm_dep_table->count - 1); |
| else |
| smu_data->smc_state_table.VceBootLevel = 0; |
| |
| mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + |
| offsetof(SMU73_Discrete_DpmTable, VceBootLevel); |
| mm_boot_level_offset /= 4; |
| mm_boot_level_offset *= 4; |
| mm_boot_level_value = cgs_read_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, mm_boot_level_offset); |
| mm_boot_level_value &= 0xFF00FFFF; |
| mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16; |
| cgs_write_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value); |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) |
| smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, |
| PPSMC_MSG_VCEDPM_SetEnabledMask, |
| (uint32_t)1 << smu_data->smc_state_table.VceBootLevel); |
| return 0; |
| } |
| |
| static int fiji_update_samu_smc_table(struct pp_hwmgr *hwmgr) |
| { |
| struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend); |
| uint32_t mm_boot_level_offset, mm_boot_level_value; |
| |
| |
| smu_data->smc_state_table.SamuBootLevel = 0; |
| mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + |
| offsetof(SMU73_Discrete_DpmTable, SamuBootLevel); |
| |
| mm_boot_level_offset /= 4; |
| mm_boot_level_offset *= 4; |
| mm_boot_level_value = cgs_read_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, mm_boot_level_offset); |
| mm_boot_level_value &= 0xFFFFFF00; |
| mm_boot_level_value |= smu_data->smc_state_table.SamuBootLevel << 0; |
| cgs_write_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value); |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_StablePState)) |
| smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, |
| PPSMC_MSG_SAMUDPM_SetEnabledMask, |
| (uint32_t)(1 << smu_data->smc_state_table.SamuBootLevel)); |
| return 0; |
| } |
| |
| int fiji_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type) |
| { |
| switch (type) { |
| case SMU_UVD_TABLE: |
| fiji_update_uvd_smc_table(hwmgr); |
| break; |
| case SMU_VCE_TABLE: |
| fiji_update_vce_smc_table(hwmgr); |
| break; |
| case SMU_SAMU_TABLE: |
| fiji_update_samu_smc_table(hwmgr); |
| break; |
| default: |
| break; |
| } |
| return 0; |
| } |
| |
| |
| /** |
| * Get the location of various tables inside the FW image. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| int fiji_process_firmware_header(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend); |
| uint32_t tmp; |
| int result; |
| bool error = false; |
| |
| result = smu7_read_smc_sram_dword(hwmgr->smumgr, |
| SMU7_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU73_Firmware_Header, DpmTable), |
| &tmp, SMC_RAM_END); |
| |
| if (0 == result) |
| smu_data->smu7_data.dpm_table_start = tmp; |
| |
| error |= (0 != result); |
| |
| result = smu7_read_smc_sram_dword(hwmgr->smumgr, |
| SMU7_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU73_Firmware_Header, SoftRegisters), |
| &tmp, SMC_RAM_END); |
| |
| if (!result) { |
| data->soft_regs_start = tmp; |
| smu_data->smu7_data.soft_regs_start = tmp; |
| } |
| |
| error |= (0 != result); |
| |
| result = smu7_read_smc_sram_dword(hwmgr->smumgr, |
| SMU7_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU73_Firmware_Header, mcRegisterTable), |
| &tmp, SMC_RAM_END); |
| |
| if (!result) |
| smu_data->smu7_data.mc_reg_table_start = tmp; |
| |
| result = smu7_read_smc_sram_dword(hwmgr->smumgr, |
| SMU7_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU73_Firmware_Header, FanTable), |
| &tmp, SMC_RAM_END); |
| |
| if (!result) |
| smu_data->smu7_data.fan_table_start = tmp; |
| |
| error |= (0 != result); |
| |
| result = smu7_read_smc_sram_dword(hwmgr->smumgr, |
| SMU7_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU73_Firmware_Header, mcArbDramTimingTable), |
| &tmp, SMC_RAM_END); |
| |
| if (!result) |
| smu_data->smu7_data.arb_table_start = tmp; |
| |
| error |= (0 != result); |
| |
| result = smu7_read_smc_sram_dword(hwmgr->smumgr, |
| SMU7_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU73_Firmware_Header, Version), |
| &tmp, SMC_RAM_END); |
| |
| if (!result) |
| hwmgr->microcode_version_info.SMC = tmp; |
| |
| error |= (0 != result); |
| |
| return error ? -1 : 0; |
| } |
| |
| int fiji_initialize_mc_reg_table(struct pp_hwmgr *hwmgr) |
| { |
| |
| /* Program additional LP registers |
| * that are no longer programmed by VBIOS |
| */ |
| cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, |
| cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, |
| cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, |
| cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, |
| cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, |
| cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, |
| cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1)); |
| cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, |
| cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING)); |
| |
| return 0; |
| } |
| |
| bool fiji_is_dpm_running(struct pp_hwmgr *hwmgr) |
| { |
| return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device, |
| CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON)) |
| ? true : false; |
| } |