| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (c) 2000-2005 Silicon Graphics, Inc. |
| * Copyright (c) 2013 Red Hat, Inc. |
| * All Rights Reserved. |
| */ |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_shared.h" |
| #include "xfs_format.h" |
| #include "xfs_log_format.h" |
| #include "xfs_trans_resv.h" |
| #include "xfs_sb.h" |
| #include "xfs_mount.h" |
| #include "xfs_da_format.h" |
| #include "xfs_da_btree.h" |
| #include "xfs_inode.h" |
| #include "xfs_trans.h" |
| #include "xfs_bmap_btree.h" |
| #include "xfs_bmap.h" |
| #include "xfs_attr_sf.h" |
| #include "xfs_attr_remote.h" |
| #include "xfs_attr.h" |
| #include "xfs_attr_leaf.h" |
| #include "xfs_error.h" |
| #include "xfs_trace.h" |
| #include "xfs_buf_item.h" |
| #include "xfs_dir2.h" |
| #include "xfs_log.h" |
| |
| |
| /* |
| * xfs_attr_leaf.c |
| * |
| * Routines to implement leaf blocks of attributes as Btrees of hashed names. |
| */ |
| |
| /*======================================================================== |
| * Function prototypes for the kernel. |
| *========================================================================*/ |
| |
| /* |
| * Routines used for growing the Btree. |
| */ |
| STATIC int xfs_attr3_leaf_create(struct xfs_da_args *args, |
| xfs_dablk_t which_block, struct xfs_buf **bpp); |
| STATIC int xfs_attr3_leaf_add_work(struct xfs_buf *leaf_buffer, |
| struct xfs_attr3_icleaf_hdr *ichdr, |
| struct xfs_da_args *args, int freemap_index); |
| STATIC void xfs_attr3_leaf_compact(struct xfs_da_args *args, |
| struct xfs_attr3_icleaf_hdr *ichdr, |
| struct xfs_buf *leaf_buffer); |
| STATIC void xfs_attr3_leaf_rebalance(xfs_da_state_t *state, |
| xfs_da_state_blk_t *blk1, |
| xfs_da_state_blk_t *blk2); |
| STATIC int xfs_attr3_leaf_figure_balance(xfs_da_state_t *state, |
| xfs_da_state_blk_t *leaf_blk_1, |
| struct xfs_attr3_icleaf_hdr *ichdr1, |
| xfs_da_state_blk_t *leaf_blk_2, |
| struct xfs_attr3_icleaf_hdr *ichdr2, |
| int *number_entries_in_blk1, |
| int *number_usedbytes_in_blk1); |
| |
| /* |
| * Utility routines. |
| */ |
| STATIC void xfs_attr3_leaf_moveents(struct xfs_da_args *args, |
| struct xfs_attr_leafblock *src_leaf, |
| struct xfs_attr3_icleaf_hdr *src_ichdr, int src_start, |
| struct xfs_attr_leafblock *dst_leaf, |
| struct xfs_attr3_icleaf_hdr *dst_ichdr, int dst_start, |
| int move_count); |
| STATIC int xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index); |
| |
| /* |
| * attr3 block 'firstused' conversion helpers. |
| * |
| * firstused refers to the offset of the first used byte of the nameval region |
| * of an attr leaf block. The region starts at the tail of the block and expands |
| * backwards towards the middle. As such, firstused is initialized to the block |
| * size for an empty leaf block and is reduced from there. |
| * |
| * The attr3 block size is pegged to the fsb size and the maximum fsb is 64k. |
| * The in-core firstused field is 32-bit and thus supports the maximum fsb size. |
| * The on-disk field is only 16-bit, however, and overflows at 64k. Since this |
| * only occurs at exactly 64k, we use zero as a magic on-disk value to represent |
| * the attr block size. The following helpers manage the conversion between the |
| * in-core and on-disk formats. |
| */ |
| |
| static void |
| xfs_attr3_leaf_firstused_from_disk( |
| struct xfs_da_geometry *geo, |
| struct xfs_attr3_icleaf_hdr *to, |
| struct xfs_attr_leafblock *from) |
| { |
| struct xfs_attr3_leaf_hdr *hdr3; |
| |
| if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) { |
| hdr3 = (struct xfs_attr3_leaf_hdr *) from; |
| to->firstused = be16_to_cpu(hdr3->firstused); |
| } else { |
| to->firstused = be16_to_cpu(from->hdr.firstused); |
| } |
| |
| /* |
| * Convert from the magic fsb size value to actual blocksize. This |
| * should only occur for empty blocks when the block size overflows |
| * 16-bits. |
| */ |
| if (to->firstused == XFS_ATTR3_LEAF_NULLOFF) { |
| ASSERT(!to->count && !to->usedbytes); |
| ASSERT(geo->blksize > USHRT_MAX); |
| to->firstused = geo->blksize; |
| } |
| } |
| |
| static void |
| xfs_attr3_leaf_firstused_to_disk( |
| struct xfs_da_geometry *geo, |
| struct xfs_attr_leafblock *to, |
| struct xfs_attr3_icleaf_hdr *from) |
| { |
| struct xfs_attr3_leaf_hdr *hdr3; |
| uint32_t firstused; |
| |
| /* magic value should only be seen on disk */ |
| ASSERT(from->firstused != XFS_ATTR3_LEAF_NULLOFF); |
| |
| /* |
| * Scale down the 32-bit in-core firstused value to the 16-bit on-disk |
| * value. This only overflows at the max supported value of 64k. Use the |
| * magic on-disk value to represent block size in this case. |
| */ |
| firstused = from->firstused; |
| if (firstused > USHRT_MAX) { |
| ASSERT(from->firstused == geo->blksize); |
| firstused = XFS_ATTR3_LEAF_NULLOFF; |
| } |
| |
| if (from->magic == XFS_ATTR3_LEAF_MAGIC) { |
| hdr3 = (struct xfs_attr3_leaf_hdr *) to; |
| hdr3->firstused = cpu_to_be16(firstused); |
| } else { |
| to->hdr.firstused = cpu_to_be16(firstused); |
| } |
| } |
| |
| void |
| xfs_attr3_leaf_hdr_from_disk( |
| struct xfs_da_geometry *geo, |
| struct xfs_attr3_icleaf_hdr *to, |
| struct xfs_attr_leafblock *from) |
| { |
| int i; |
| |
| ASSERT(from->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) || |
| from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)); |
| |
| if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) { |
| struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)from; |
| |
| to->forw = be32_to_cpu(hdr3->info.hdr.forw); |
| to->back = be32_to_cpu(hdr3->info.hdr.back); |
| to->magic = be16_to_cpu(hdr3->info.hdr.magic); |
| to->count = be16_to_cpu(hdr3->count); |
| to->usedbytes = be16_to_cpu(hdr3->usedbytes); |
| xfs_attr3_leaf_firstused_from_disk(geo, to, from); |
| to->holes = hdr3->holes; |
| |
| for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { |
| to->freemap[i].base = be16_to_cpu(hdr3->freemap[i].base); |
| to->freemap[i].size = be16_to_cpu(hdr3->freemap[i].size); |
| } |
| return; |
| } |
| to->forw = be32_to_cpu(from->hdr.info.forw); |
| to->back = be32_to_cpu(from->hdr.info.back); |
| to->magic = be16_to_cpu(from->hdr.info.magic); |
| to->count = be16_to_cpu(from->hdr.count); |
| to->usedbytes = be16_to_cpu(from->hdr.usedbytes); |
| xfs_attr3_leaf_firstused_from_disk(geo, to, from); |
| to->holes = from->hdr.holes; |
| |
| for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { |
| to->freemap[i].base = be16_to_cpu(from->hdr.freemap[i].base); |
| to->freemap[i].size = be16_to_cpu(from->hdr.freemap[i].size); |
| } |
| } |
| |
| void |
| xfs_attr3_leaf_hdr_to_disk( |
| struct xfs_da_geometry *geo, |
| struct xfs_attr_leafblock *to, |
| struct xfs_attr3_icleaf_hdr *from) |
| { |
| int i; |
| |
| ASSERT(from->magic == XFS_ATTR_LEAF_MAGIC || |
| from->magic == XFS_ATTR3_LEAF_MAGIC); |
| |
| if (from->magic == XFS_ATTR3_LEAF_MAGIC) { |
| struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)to; |
| |
| hdr3->info.hdr.forw = cpu_to_be32(from->forw); |
| hdr3->info.hdr.back = cpu_to_be32(from->back); |
| hdr3->info.hdr.magic = cpu_to_be16(from->magic); |
| hdr3->count = cpu_to_be16(from->count); |
| hdr3->usedbytes = cpu_to_be16(from->usedbytes); |
| xfs_attr3_leaf_firstused_to_disk(geo, to, from); |
| hdr3->holes = from->holes; |
| hdr3->pad1 = 0; |
| |
| for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { |
| hdr3->freemap[i].base = cpu_to_be16(from->freemap[i].base); |
| hdr3->freemap[i].size = cpu_to_be16(from->freemap[i].size); |
| } |
| return; |
| } |
| to->hdr.info.forw = cpu_to_be32(from->forw); |
| to->hdr.info.back = cpu_to_be32(from->back); |
| to->hdr.info.magic = cpu_to_be16(from->magic); |
| to->hdr.count = cpu_to_be16(from->count); |
| to->hdr.usedbytes = cpu_to_be16(from->usedbytes); |
| xfs_attr3_leaf_firstused_to_disk(geo, to, from); |
| to->hdr.holes = from->holes; |
| to->hdr.pad1 = 0; |
| |
| for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { |
| to->hdr.freemap[i].base = cpu_to_be16(from->freemap[i].base); |
| to->hdr.freemap[i].size = cpu_to_be16(from->freemap[i].size); |
| } |
| } |
| |
| static xfs_failaddr_t |
| xfs_attr3_leaf_verify_entry( |
| struct xfs_mount *mp, |
| char *buf_end, |
| struct xfs_attr_leafblock *leaf, |
| struct xfs_attr3_icleaf_hdr *leafhdr, |
| struct xfs_attr_leaf_entry *ent, |
| int idx, |
| __u32 *last_hashval) |
| { |
| struct xfs_attr_leaf_name_local *lentry; |
| struct xfs_attr_leaf_name_remote *rentry; |
| char *name_end; |
| unsigned int nameidx; |
| unsigned int namesize; |
| __u32 hashval; |
| |
| /* hash order check */ |
| hashval = be32_to_cpu(ent->hashval); |
| if (hashval < *last_hashval) |
| return __this_address; |
| *last_hashval = hashval; |
| |
| nameidx = be16_to_cpu(ent->nameidx); |
| if (nameidx < leafhdr->firstused || nameidx >= mp->m_attr_geo->blksize) |
| return __this_address; |
| |
| /* |
| * Check the name information. The namelen fields are u8 so we can't |
| * possibly exceed the maximum name length of 255 bytes. |
| */ |
| if (ent->flags & XFS_ATTR_LOCAL) { |
| lentry = xfs_attr3_leaf_name_local(leaf, idx); |
| namesize = xfs_attr_leaf_entsize_local(lentry->namelen, |
| be16_to_cpu(lentry->valuelen)); |
| name_end = (char *)lentry + namesize; |
| if (lentry->namelen == 0) |
| return __this_address; |
| } else { |
| rentry = xfs_attr3_leaf_name_remote(leaf, idx); |
| namesize = xfs_attr_leaf_entsize_remote(rentry->namelen); |
| name_end = (char *)rentry + namesize; |
| if (rentry->namelen == 0) |
| return __this_address; |
| if (!(ent->flags & XFS_ATTR_INCOMPLETE) && |
| rentry->valueblk == 0) |
| return __this_address; |
| } |
| |
| if (name_end > buf_end) |
| return __this_address; |
| |
| return NULL; |
| } |
| |
| static xfs_failaddr_t |
| xfs_attr3_leaf_verify( |
| struct xfs_buf *bp) |
| { |
| struct xfs_attr3_icleaf_hdr ichdr; |
| struct xfs_mount *mp = bp->b_mount; |
| struct xfs_attr_leafblock *leaf = bp->b_addr; |
| struct xfs_attr_leaf_entry *entries; |
| struct xfs_attr_leaf_entry *ent; |
| char *buf_end; |
| uint32_t end; /* must be 32bit - see below */ |
| __u32 last_hashval = 0; |
| int i; |
| xfs_failaddr_t fa; |
| |
| xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, leaf); |
| |
| fa = xfs_da3_blkinfo_verify(bp, bp->b_addr); |
| if (fa) |
| return fa; |
| |
| /* |
| * firstused is the block offset of the first name info structure. |
| * Make sure it doesn't go off the block or crash into the header. |
| */ |
| if (ichdr.firstused > mp->m_attr_geo->blksize) |
| return __this_address; |
| if (ichdr.firstused < xfs_attr3_leaf_hdr_size(leaf)) |
| return __this_address; |
| |
| /* Make sure the entries array doesn't crash into the name info. */ |
| entries = xfs_attr3_leaf_entryp(bp->b_addr); |
| if ((char *)&entries[ichdr.count] > |
| (char *)bp->b_addr + ichdr.firstused) |
| return __this_address; |
| |
| /* |
| * NOTE: This verifier historically failed empty leaf buffers because |
| * we expect the fork to be in another format. Empty attr fork format |
| * conversions are possible during xattr set, however, and format |
| * conversion is not atomic with the xattr set that triggers it. We |
| * cannot assume leaf blocks are non-empty until that is addressed. |
| */ |
| buf_end = (char *)bp->b_addr + mp->m_attr_geo->blksize; |
| for (i = 0, ent = entries; i < ichdr.count; ent++, i++) { |
| fa = xfs_attr3_leaf_verify_entry(mp, buf_end, leaf, &ichdr, |
| ent, i, &last_hashval); |
| if (fa) |
| return fa; |
| } |
| |
| /* |
| * Quickly check the freemap information. Attribute data has to be |
| * aligned to 4-byte boundaries, and likewise for the free space. |
| * |
| * Note that for 64k block size filesystems, the freemap entries cannot |
| * overflow as they are only be16 fields. However, when checking end |
| * pointer of the freemap, we have to be careful to detect overflows and |
| * so use uint32_t for those checks. |
| */ |
| for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { |
| if (ichdr.freemap[i].base > mp->m_attr_geo->blksize) |
| return __this_address; |
| if (ichdr.freemap[i].base & 0x3) |
| return __this_address; |
| if (ichdr.freemap[i].size > mp->m_attr_geo->blksize) |
| return __this_address; |
| if (ichdr.freemap[i].size & 0x3) |
| return __this_address; |
| |
| /* be care of 16 bit overflows here */ |
| end = (uint32_t)ichdr.freemap[i].base + ichdr.freemap[i].size; |
| if (end < ichdr.freemap[i].base) |
| return __this_address; |
| if (end > mp->m_attr_geo->blksize) |
| return __this_address; |
| } |
| |
| return NULL; |
| } |
| |
| static void |
| xfs_attr3_leaf_write_verify( |
| struct xfs_buf *bp) |
| { |
| struct xfs_mount *mp = bp->b_mount; |
| struct xfs_buf_log_item *bip = bp->b_log_item; |
| struct xfs_attr3_leaf_hdr *hdr3 = bp->b_addr; |
| xfs_failaddr_t fa; |
| |
| fa = xfs_attr3_leaf_verify(bp); |
| if (fa) { |
| xfs_verifier_error(bp, -EFSCORRUPTED, fa); |
| return; |
| } |
| |
| if (!xfs_sb_version_hascrc(&mp->m_sb)) |
| return; |
| |
| if (bip) |
| hdr3->info.lsn = cpu_to_be64(bip->bli_item.li_lsn); |
| |
| xfs_buf_update_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF); |
| } |
| |
| /* |
| * leaf/node format detection on trees is sketchy, so a node read can be done on |
| * leaf level blocks when detection identifies the tree as a node format tree |
| * incorrectly. In this case, we need to swap the verifier to match the correct |
| * format of the block being read. |
| */ |
| static void |
| xfs_attr3_leaf_read_verify( |
| struct xfs_buf *bp) |
| { |
| struct xfs_mount *mp = bp->b_mount; |
| xfs_failaddr_t fa; |
| |
| if (xfs_sb_version_hascrc(&mp->m_sb) && |
| !xfs_buf_verify_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF)) |
| xfs_verifier_error(bp, -EFSBADCRC, __this_address); |
| else { |
| fa = xfs_attr3_leaf_verify(bp); |
| if (fa) |
| xfs_verifier_error(bp, -EFSCORRUPTED, fa); |
| } |
| } |
| |
| const struct xfs_buf_ops xfs_attr3_leaf_buf_ops = { |
| .name = "xfs_attr3_leaf", |
| .magic16 = { cpu_to_be16(XFS_ATTR_LEAF_MAGIC), |
| cpu_to_be16(XFS_ATTR3_LEAF_MAGIC) }, |
| .verify_read = xfs_attr3_leaf_read_verify, |
| .verify_write = xfs_attr3_leaf_write_verify, |
| .verify_struct = xfs_attr3_leaf_verify, |
| }; |
| |
| int |
| xfs_attr3_leaf_read( |
| struct xfs_trans *tp, |
| struct xfs_inode *dp, |
| xfs_dablk_t bno, |
| struct xfs_buf **bpp) |
| { |
| int err; |
| |
| err = xfs_da_read_buf(tp, dp, bno, 0, bpp, XFS_ATTR_FORK, |
| &xfs_attr3_leaf_buf_ops); |
| if (!err && tp && *bpp) |
| xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_ATTR_LEAF_BUF); |
| return err; |
| } |
| |
| /*======================================================================== |
| * Namespace helper routines |
| *========================================================================*/ |
| |
| static bool |
| xfs_attr_match( |
| struct xfs_da_args *args, |
| uint8_t namelen, |
| unsigned char *name, |
| int flags) |
| { |
| if (args->namelen != namelen) |
| return false; |
| if (memcmp(args->name, name, namelen) != 0) |
| return false; |
| /* |
| * If we are looking for incomplete entries, show only those, else only |
| * show complete entries. |
| */ |
| if (args->attr_filter != |
| (flags & (XFS_ATTR_NSP_ONDISK_MASK | XFS_ATTR_INCOMPLETE))) |
| return false; |
| return true; |
| } |
| |
| static int |
| xfs_attr_copy_value( |
| struct xfs_da_args *args, |
| unsigned char *value, |
| int valuelen) |
| { |
| /* |
| * No copy if all we have to do is get the length |
| */ |
| if (!args->valuelen) { |
| args->valuelen = valuelen; |
| return 0; |
| } |
| |
| /* |
| * No copy if the length of the existing buffer is too small |
| */ |
| if (args->valuelen < valuelen) { |
| args->valuelen = valuelen; |
| return -ERANGE; |
| } |
| |
| if (!args->value) { |
| args->value = kmem_alloc_large(valuelen, 0); |
| if (!args->value) |
| return -ENOMEM; |
| } |
| args->valuelen = valuelen; |
| |
| /* remote block xattr requires IO for copy-in */ |
| if (args->rmtblkno) |
| return xfs_attr_rmtval_get(args); |
| |
| /* |
| * This is to prevent a GCC warning because the remote xattr case |
| * doesn't have a value to pass in. In that case, we never reach here, |
| * but GCC can't work that out and so throws a "passing NULL to |
| * memcpy" warning. |
| */ |
| if (!value) |
| return -EINVAL; |
| memcpy(args->value, value, valuelen); |
| return 0; |
| } |
| |
| /*======================================================================== |
| * External routines when attribute fork size < XFS_LITINO(mp). |
| *========================================================================*/ |
| |
| /* |
| * Query whether the requested number of additional bytes of extended |
| * attribute space will be able to fit inline. |
| * |
| * Returns zero if not, else the di_forkoff fork offset to be used in the |
| * literal area for attribute data once the new bytes have been added. |
| * |
| * di_forkoff must be 8 byte aligned, hence is stored as a >>3 value; |
| * special case for dev/uuid inodes, they have fixed size data forks. |
| */ |
| int |
| xfs_attr_shortform_bytesfit( |
| struct xfs_inode *dp, |
| int bytes) |
| { |
| struct xfs_mount *mp = dp->i_mount; |
| int64_t dsize; |
| int minforkoff; |
| int maxforkoff; |
| int offset; |
| |
| /* rounded down */ |
| offset = (XFS_LITINO(mp) - bytes) >> 3; |
| |
| if (dp->i_d.di_format == XFS_DINODE_FMT_DEV) { |
| minforkoff = roundup(sizeof(xfs_dev_t), 8) >> 3; |
| return (offset >= minforkoff) ? minforkoff : 0; |
| } |
| |
| /* |
| * If the requested numbers of bytes is smaller or equal to the |
| * current attribute fork size we can always proceed. |
| * |
| * Note that if_bytes in the data fork might actually be larger than |
| * the current data fork size is due to delalloc extents. In that |
| * case either the extent count will go down when they are converted |
| * to real extents, or the delalloc conversion will take care of the |
| * literal area rebalancing. |
| */ |
| if (bytes <= XFS_IFORK_ASIZE(dp)) |
| return dp->i_d.di_forkoff; |
| |
| /* |
| * For attr2 we can try to move the forkoff if there is space in the |
| * literal area, but for the old format we are done if there is no |
| * space in the fixed attribute fork. |
| */ |
| if (!(mp->m_flags & XFS_MOUNT_ATTR2)) |
| return 0; |
| |
| dsize = dp->i_df.if_bytes; |
| |
| switch (dp->i_d.di_format) { |
| case XFS_DINODE_FMT_EXTENTS: |
| /* |
| * If there is no attr fork and the data fork is extents, |
| * determine if creating the default attr fork will result |
| * in the extents form migrating to btree. If so, the |
| * minimum offset only needs to be the space required for |
| * the btree root. |
| */ |
| if (!dp->i_d.di_forkoff && dp->i_df.if_bytes > |
| xfs_default_attroffset(dp)) |
| dsize = XFS_BMDR_SPACE_CALC(MINDBTPTRS); |
| break; |
| case XFS_DINODE_FMT_BTREE: |
| /* |
| * If we have a data btree then keep forkoff if we have one, |
| * otherwise we are adding a new attr, so then we set |
| * minforkoff to where the btree root can finish so we have |
| * plenty of room for attrs |
| */ |
| if (dp->i_d.di_forkoff) { |
| if (offset < dp->i_d.di_forkoff) |
| return 0; |
| return dp->i_d.di_forkoff; |
| } |
| dsize = XFS_BMAP_BROOT_SPACE(mp, dp->i_df.if_broot); |
| break; |
| } |
| |
| /* |
| * A data fork btree root must have space for at least |
| * MINDBTPTRS key/ptr pairs if the data fork is small or empty. |
| */ |
| minforkoff = max_t(int64_t, dsize, XFS_BMDR_SPACE_CALC(MINDBTPTRS)); |
| minforkoff = roundup(minforkoff, 8) >> 3; |
| |
| /* attr fork btree root can have at least this many key/ptr pairs */ |
| maxforkoff = XFS_LITINO(mp) - XFS_BMDR_SPACE_CALC(MINABTPTRS); |
| maxforkoff = maxforkoff >> 3; /* rounded down */ |
| |
| if (offset >= maxforkoff) |
| return maxforkoff; |
| if (offset >= minforkoff) |
| return offset; |
| return 0; |
| } |
| |
| /* |
| * Switch on the ATTR2 superblock bit (implies also FEATURES2) |
| */ |
| STATIC void |
| xfs_sbversion_add_attr2(xfs_mount_t *mp, xfs_trans_t *tp) |
| { |
| if ((mp->m_flags & XFS_MOUNT_ATTR2) && |
| !(xfs_sb_version_hasattr2(&mp->m_sb))) { |
| spin_lock(&mp->m_sb_lock); |
| if (!xfs_sb_version_hasattr2(&mp->m_sb)) { |
| xfs_sb_version_addattr2(&mp->m_sb); |
| spin_unlock(&mp->m_sb_lock); |
| xfs_log_sb(tp); |
| } else |
| spin_unlock(&mp->m_sb_lock); |
| } |
| } |
| |
| /* |
| * Create the initial contents of a shortform attribute list. |
| */ |
| void |
| xfs_attr_shortform_create(xfs_da_args_t *args) |
| { |
| xfs_attr_sf_hdr_t *hdr; |
| xfs_inode_t *dp; |
| struct xfs_ifork *ifp; |
| |
| trace_xfs_attr_sf_create(args); |
| |
| dp = args->dp; |
| ASSERT(dp != NULL); |
| ifp = dp->i_afp; |
| ASSERT(ifp != NULL); |
| ASSERT(ifp->if_bytes == 0); |
| if (dp->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS) { |
| ifp->if_flags &= ~XFS_IFEXTENTS; /* just in case */ |
| dp->i_d.di_aformat = XFS_DINODE_FMT_LOCAL; |
| ifp->if_flags |= XFS_IFINLINE; |
| } else { |
| ASSERT(ifp->if_flags & XFS_IFINLINE); |
| } |
| xfs_idata_realloc(dp, sizeof(*hdr), XFS_ATTR_FORK); |
| hdr = (xfs_attr_sf_hdr_t *)ifp->if_u1.if_data; |
| hdr->count = 0; |
| hdr->totsize = cpu_to_be16(sizeof(*hdr)); |
| xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA); |
| } |
| |
| /* |
| * Add a name/value pair to the shortform attribute list. |
| * Overflow from the inode has already been checked for. |
| */ |
| void |
| xfs_attr_shortform_add(xfs_da_args_t *args, int forkoff) |
| { |
| xfs_attr_shortform_t *sf; |
| xfs_attr_sf_entry_t *sfe; |
| int i, offset, size; |
| xfs_mount_t *mp; |
| xfs_inode_t *dp; |
| struct xfs_ifork *ifp; |
| |
| trace_xfs_attr_sf_add(args); |
| |
| dp = args->dp; |
| mp = dp->i_mount; |
| dp->i_d.di_forkoff = forkoff; |
| |
| ifp = dp->i_afp; |
| ASSERT(ifp->if_flags & XFS_IFINLINE); |
| sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data; |
| sfe = &sf->list[0]; |
| for (i = 0; i < sf->hdr.count; sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) { |
| ASSERT(!xfs_attr_match(args, sfe->namelen, sfe->nameval, |
| sfe->flags)); |
| } |
| |
| offset = (char *)sfe - (char *)sf; |
| size = XFS_ATTR_SF_ENTSIZE_BYNAME(args->namelen, args->valuelen); |
| xfs_idata_realloc(dp, size, XFS_ATTR_FORK); |
| sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data; |
| sfe = (xfs_attr_sf_entry_t *)((char *)sf + offset); |
| |
| sfe->namelen = args->namelen; |
| sfe->valuelen = args->valuelen; |
| sfe->flags = args->attr_filter; |
| memcpy(sfe->nameval, args->name, args->namelen); |
| memcpy(&sfe->nameval[args->namelen], args->value, args->valuelen); |
| sf->hdr.count++; |
| be16_add_cpu(&sf->hdr.totsize, size); |
| xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA); |
| |
| xfs_sbversion_add_attr2(mp, args->trans); |
| } |
| |
| /* |
| * After the last attribute is removed revert to original inode format, |
| * making all literal area available to the data fork once more. |
| */ |
| void |
| xfs_attr_fork_remove( |
| struct xfs_inode *ip, |
| struct xfs_trans *tp) |
| { |
| ASSERT(ip->i_afp->if_nextents == 0); |
| |
| xfs_idestroy_fork(ip, XFS_ATTR_FORK); |
| ip->i_d.di_forkoff = 0; |
| ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; |
| |
| ASSERT(ip->i_afp == NULL); |
| |
| xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); |
| } |
| |
| /* |
| * Remove an attribute from the shortform attribute list structure. |
| */ |
| int |
| xfs_attr_shortform_remove(xfs_da_args_t *args) |
| { |
| xfs_attr_shortform_t *sf; |
| xfs_attr_sf_entry_t *sfe; |
| int base, size=0, end, totsize, i; |
| xfs_mount_t *mp; |
| xfs_inode_t *dp; |
| |
| trace_xfs_attr_sf_remove(args); |
| |
| dp = args->dp; |
| mp = dp->i_mount; |
| base = sizeof(xfs_attr_sf_hdr_t); |
| sf = (xfs_attr_shortform_t *)dp->i_afp->if_u1.if_data; |
| sfe = &sf->list[0]; |
| end = sf->hdr.count; |
| for (i = 0; i < end; sfe = XFS_ATTR_SF_NEXTENTRY(sfe), |
| base += size, i++) { |
| size = XFS_ATTR_SF_ENTSIZE(sfe); |
| if (xfs_attr_match(args, sfe->namelen, sfe->nameval, |
| sfe->flags)) |
| break; |
| } |
| if (i == end) |
| return -ENOATTR; |
| |
| /* |
| * Fix up the attribute fork data, covering the hole |
| */ |
| end = base + size; |
| totsize = be16_to_cpu(sf->hdr.totsize); |
| if (end != totsize) |
| memmove(&((char *)sf)[base], &((char *)sf)[end], totsize - end); |
| sf->hdr.count--; |
| be16_add_cpu(&sf->hdr.totsize, -size); |
| |
| /* |
| * Fix up the start offset of the attribute fork |
| */ |
| totsize -= size; |
| if (totsize == sizeof(xfs_attr_sf_hdr_t) && |
| (mp->m_flags & XFS_MOUNT_ATTR2) && |
| (dp->i_d.di_format != XFS_DINODE_FMT_BTREE) && |
| !(args->op_flags & XFS_DA_OP_ADDNAME)) { |
| xfs_attr_fork_remove(dp, args->trans); |
| } else { |
| xfs_idata_realloc(dp, -size, XFS_ATTR_FORK); |
| dp->i_d.di_forkoff = xfs_attr_shortform_bytesfit(dp, totsize); |
| ASSERT(dp->i_d.di_forkoff); |
| ASSERT(totsize > sizeof(xfs_attr_sf_hdr_t) || |
| (args->op_flags & XFS_DA_OP_ADDNAME) || |
| !(mp->m_flags & XFS_MOUNT_ATTR2) || |
| dp->i_d.di_format == XFS_DINODE_FMT_BTREE); |
| xfs_trans_log_inode(args->trans, dp, |
| XFS_ILOG_CORE | XFS_ILOG_ADATA); |
| } |
| |
| xfs_sbversion_add_attr2(mp, args->trans); |
| |
| return 0; |
| } |
| |
| /* |
| * Look up a name in a shortform attribute list structure. |
| */ |
| /*ARGSUSED*/ |
| int |
| xfs_attr_shortform_lookup(xfs_da_args_t *args) |
| { |
| xfs_attr_shortform_t *sf; |
| xfs_attr_sf_entry_t *sfe; |
| int i; |
| struct xfs_ifork *ifp; |
| |
| trace_xfs_attr_sf_lookup(args); |
| |
| ifp = args->dp->i_afp; |
| ASSERT(ifp->if_flags & XFS_IFINLINE); |
| sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data; |
| sfe = &sf->list[0]; |
| for (i = 0; i < sf->hdr.count; |
| sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) { |
| if (xfs_attr_match(args, sfe->namelen, sfe->nameval, |
| sfe->flags)) |
| return -EEXIST; |
| } |
| return -ENOATTR; |
| } |
| |
| /* |
| * Retrieve the attribute value and length. |
| * |
| * If args->valuelen is zero, only the length needs to be returned. Unlike a |
| * lookup, we only return an error if the attribute does not exist or we can't |
| * retrieve the value. |
| */ |
| int |
| xfs_attr_shortform_getvalue( |
| struct xfs_da_args *args) |
| { |
| struct xfs_attr_shortform *sf; |
| struct xfs_attr_sf_entry *sfe; |
| int i; |
| |
| ASSERT(args->dp->i_afp->if_flags == XFS_IFINLINE); |
| sf = (xfs_attr_shortform_t *)args->dp->i_afp->if_u1.if_data; |
| sfe = &sf->list[0]; |
| for (i = 0; i < sf->hdr.count; |
| sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) { |
| if (xfs_attr_match(args, sfe->namelen, sfe->nameval, |
| sfe->flags)) |
| return xfs_attr_copy_value(args, |
| &sfe->nameval[args->namelen], sfe->valuelen); |
| } |
| return -ENOATTR; |
| } |
| |
| /* |
| * Convert from using the shortform to the leaf. On success, return the |
| * buffer so that we can keep it locked until we're totally done with it. |
| */ |
| int |
| xfs_attr_shortform_to_leaf( |
| struct xfs_da_args *args, |
| struct xfs_buf **leaf_bp) |
| { |
| struct xfs_inode *dp; |
| struct xfs_attr_shortform *sf; |
| struct xfs_attr_sf_entry *sfe; |
| struct xfs_da_args nargs; |
| char *tmpbuffer; |
| int error, i, size; |
| xfs_dablk_t blkno; |
| struct xfs_buf *bp; |
| struct xfs_ifork *ifp; |
| |
| trace_xfs_attr_sf_to_leaf(args); |
| |
| dp = args->dp; |
| ifp = dp->i_afp; |
| sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data; |
| size = be16_to_cpu(sf->hdr.totsize); |
| tmpbuffer = kmem_alloc(size, 0); |
| ASSERT(tmpbuffer != NULL); |
| memcpy(tmpbuffer, ifp->if_u1.if_data, size); |
| sf = (xfs_attr_shortform_t *)tmpbuffer; |
| |
| xfs_idata_realloc(dp, -size, XFS_ATTR_FORK); |
| xfs_bmap_local_to_extents_empty(args->trans, dp, XFS_ATTR_FORK); |
| |
| bp = NULL; |
| error = xfs_da_grow_inode(args, &blkno); |
| if (error) |
| goto out; |
| |
| ASSERT(blkno == 0); |
| error = xfs_attr3_leaf_create(args, blkno, &bp); |
| if (error) |
| goto out; |
| |
| memset((char *)&nargs, 0, sizeof(nargs)); |
| nargs.dp = dp; |
| nargs.geo = args->geo; |
| nargs.total = args->total; |
| nargs.whichfork = XFS_ATTR_FORK; |
| nargs.trans = args->trans; |
| nargs.op_flags = XFS_DA_OP_OKNOENT; |
| |
| sfe = &sf->list[0]; |
| for (i = 0; i < sf->hdr.count; i++) { |
| nargs.name = sfe->nameval; |
| nargs.namelen = sfe->namelen; |
| nargs.value = &sfe->nameval[nargs.namelen]; |
| nargs.valuelen = sfe->valuelen; |
| nargs.hashval = xfs_da_hashname(sfe->nameval, |
| sfe->namelen); |
| nargs.attr_filter = sfe->flags & XFS_ATTR_NSP_ONDISK_MASK; |
| error = xfs_attr3_leaf_lookup_int(bp, &nargs); /* set a->index */ |
| ASSERT(error == -ENOATTR); |
| error = xfs_attr3_leaf_add(bp, &nargs); |
| ASSERT(error != -ENOSPC); |
| if (error) |
| goto out; |
| sfe = XFS_ATTR_SF_NEXTENTRY(sfe); |
| } |
| error = 0; |
| *leaf_bp = bp; |
| out: |
| kmem_free(tmpbuffer); |
| return error; |
| } |
| |
| /* |
| * Check a leaf attribute block to see if all the entries would fit into |
| * a shortform attribute list. |
| */ |
| int |
| xfs_attr_shortform_allfit( |
| struct xfs_buf *bp, |
| struct xfs_inode *dp) |
| { |
| struct xfs_attr_leafblock *leaf; |
| struct xfs_attr_leaf_entry *entry; |
| xfs_attr_leaf_name_local_t *name_loc; |
| struct xfs_attr3_icleaf_hdr leafhdr; |
| int bytes; |
| int i; |
| struct xfs_mount *mp = bp->b_mount; |
| |
| leaf = bp->b_addr; |
| xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &leafhdr, leaf); |
| entry = xfs_attr3_leaf_entryp(leaf); |
| |
| bytes = sizeof(struct xfs_attr_sf_hdr); |
| for (i = 0; i < leafhdr.count; entry++, i++) { |
| if (entry->flags & XFS_ATTR_INCOMPLETE) |
| continue; /* don't copy partial entries */ |
| if (!(entry->flags & XFS_ATTR_LOCAL)) |
| return 0; |
| name_loc = xfs_attr3_leaf_name_local(leaf, i); |
| if (name_loc->namelen >= XFS_ATTR_SF_ENTSIZE_MAX) |
| return 0; |
| if (be16_to_cpu(name_loc->valuelen) >= XFS_ATTR_SF_ENTSIZE_MAX) |
| return 0; |
| bytes += sizeof(struct xfs_attr_sf_entry) - 1 |
| + name_loc->namelen |
| + be16_to_cpu(name_loc->valuelen); |
| } |
| if ((dp->i_mount->m_flags & XFS_MOUNT_ATTR2) && |
| (dp->i_d.di_format != XFS_DINODE_FMT_BTREE) && |
| (bytes == sizeof(struct xfs_attr_sf_hdr))) |
| return -1; |
| return xfs_attr_shortform_bytesfit(dp, bytes); |
| } |
| |
| /* Verify the consistency of an inline attribute fork. */ |
| xfs_failaddr_t |
| xfs_attr_shortform_verify( |
| struct xfs_inode *ip) |
| { |
| struct xfs_attr_shortform *sfp; |
| struct xfs_attr_sf_entry *sfep; |
| struct xfs_attr_sf_entry *next_sfep; |
| char *endp; |
| struct xfs_ifork *ifp; |
| int i; |
| int64_t size; |
| |
| ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_LOCAL); |
| ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK); |
| sfp = (struct xfs_attr_shortform *)ifp->if_u1.if_data; |
| size = ifp->if_bytes; |
| |
| /* |
| * Give up if the attribute is way too short. |
| */ |
| if (size < sizeof(struct xfs_attr_sf_hdr)) |
| return __this_address; |
| |
| endp = (char *)sfp + size; |
| |
| /* Check all reported entries */ |
| sfep = &sfp->list[0]; |
| for (i = 0; i < sfp->hdr.count; i++) { |
| /* |
| * struct xfs_attr_sf_entry has a variable length. |
| * Check the fixed-offset parts of the structure are |
| * within the data buffer. |
| */ |
| if (((char *)sfep + sizeof(*sfep)) >= endp) |
| return __this_address; |
| |
| /* Don't allow names with known bad length. */ |
| if (sfep->namelen == 0) |
| return __this_address; |
| |
| /* |
| * Check that the variable-length part of the structure is |
| * within the data buffer. The next entry starts after the |
| * name component, so nextentry is an acceptable test. |
| */ |
| next_sfep = XFS_ATTR_SF_NEXTENTRY(sfep); |
| if ((char *)next_sfep > endp) |
| return __this_address; |
| |
| /* |
| * Check for unknown flags. Short form doesn't support |
| * the incomplete or local bits, so we can use the namespace |
| * mask here. |
| */ |
| if (sfep->flags & ~XFS_ATTR_NSP_ONDISK_MASK) |
| return __this_address; |
| |
| /* |
| * Check for invalid namespace combinations. We only allow |
| * one namespace flag per xattr, so we can just count the |
| * bits (i.e. hweight) here. |
| */ |
| if (hweight8(sfep->flags & XFS_ATTR_NSP_ONDISK_MASK) > 1) |
| return __this_address; |
| |
| sfep = next_sfep; |
| } |
| if ((void *)sfep != (void *)endp) |
| return __this_address; |
| |
| return NULL; |
| } |
| |
| /* |
| * Convert a leaf attribute list to shortform attribute list |
| */ |
| int |
| xfs_attr3_leaf_to_shortform( |
| struct xfs_buf *bp, |
| struct xfs_da_args *args, |
| int forkoff) |
| { |
| struct xfs_attr_leafblock *leaf; |
| struct xfs_attr3_icleaf_hdr ichdr; |
| struct xfs_attr_leaf_entry *entry; |
| struct xfs_attr_leaf_name_local *name_loc; |
| struct xfs_da_args nargs; |
| struct xfs_inode *dp = args->dp; |
| char *tmpbuffer; |
| int error; |
| int i; |
| |
| trace_xfs_attr_leaf_to_sf(args); |
| |
| tmpbuffer = kmem_alloc(args->geo->blksize, 0); |
| if (!tmpbuffer) |
| return -ENOMEM; |
| |
| memcpy(tmpbuffer, bp->b_addr, args->geo->blksize); |
| |
| leaf = (xfs_attr_leafblock_t *)tmpbuffer; |
| xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); |
| entry = xfs_attr3_leaf_entryp(leaf); |
| |
| /* XXX (dgc): buffer is about to be marked stale - why zero it? */ |
| memset(bp->b_addr, 0, args->geo->blksize); |
| |
| /* |
| * Clean out the prior contents of the attribute list. |
| */ |
| error = xfs_da_shrink_inode(args, 0, bp); |
| if (error) |
| goto out; |
| |
| if (forkoff == -1) { |
| ASSERT(dp->i_mount->m_flags & XFS_MOUNT_ATTR2); |
| ASSERT(dp->i_d.di_format != XFS_DINODE_FMT_BTREE); |
| xfs_attr_fork_remove(dp, args->trans); |
| goto out; |
| } |
| |
| xfs_attr_shortform_create(args); |
| |
| /* |
| * Copy the attributes |
| */ |
| memset((char *)&nargs, 0, sizeof(nargs)); |
| nargs.geo = args->geo; |
| nargs.dp = dp; |
| nargs.total = args->total; |
| nargs.whichfork = XFS_ATTR_FORK; |
| nargs.trans = args->trans; |
| nargs.op_flags = XFS_DA_OP_OKNOENT; |
| |
| for (i = 0; i < ichdr.count; entry++, i++) { |
| if (entry->flags & XFS_ATTR_INCOMPLETE) |
| continue; /* don't copy partial entries */ |
| if (!entry->nameidx) |
| continue; |
| ASSERT(entry->flags & XFS_ATTR_LOCAL); |
| name_loc = xfs_attr3_leaf_name_local(leaf, i); |
| nargs.name = name_loc->nameval; |
| nargs.namelen = name_loc->namelen; |
| nargs.value = &name_loc->nameval[nargs.namelen]; |
| nargs.valuelen = be16_to_cpu(name_loc->valuelen); |
| nargs.hashval = be32_to_cpu(entry->hashval); |
| nargs.attr_filter = entry->flags & XFS_ATTR_NSP_ONDISK_MASK; |
| xfs_attr_shortform_add(&nargs, forkoff); |
| } |
| error = 0; |
| |
| out: |
| kmem_free(tmpbuffer); |
| return error; |
| } |
| |
| /* |
| * Convert from using a single leaf to a root node and a leaf. |
| */ |
| int |
| xfs_attr3_leaf_to_node( |
| struct xfs_da_args *args) |
| { |
| struct xfs_attr_leafblock *leaf; |
| struct xfs_attr3_icleaf_hdr icleafhdr; |
| struct xfs_attr_leaf_entry *entries; |
| struct xfs_da3_icnode_hdr icnodehdr; |
| struct xfs_da_intnode *node; |
| struct xfs_inode *dp = args->dp; |
| struct xfs_mount *mp = dp->i_mount; |
| struct xfs_buf *bp1 = NULL; |
| struct xfs_buf *bp2 = NULL; |
| xfs_dablk_t blkno; |
| int error; |
| |
| trace_xfs_attr_leaf_to_node(args); |
| |
| error = xfs_da_grow_inode(args, &blkno); |
| if (error) |
| goto out; |
| error = xfs_attr3_leaf_read(args->trans, dp, 0, &bp1); |
| if (error) |
| goto out; |
| |
| error = xfs_da_get_buf(args->trans, dp, blkno, &bp2, XFS_ATTR_FORK); |
| if (error) |
| goto out; |
| |
| /* copy leaf to new buffer, update identifiers */ |
| xfs_trans_buf_set_type(args->trans, bp2, XFS_BLFT_ATTR_LEAF_BUF); |
| bp2->b_ops = bp1->b_ops; |
| memcpy(bp2->b_addr, bp1->b_addr, args->geo->blksize); |
| if (xfs_sb_version_hascrc(&mp->m_sb)) { |
| struct xfs_da3_blkinfo *hdr3 = bp2->b_addr; |
| hdr3->blkno = cpu_to_be64(bp2->b_bn); |
| } |
| xfs_trans_log_buf(args->trans, bp2, 0, args->geo->blksize - 1); |
| |
| /* |
| * Set up the new root node. |
| */ |
| error = xfs_da3_node_create(args, 0, 1, &bp1, XFS_ATTR_FORK); |
| if (error) |
| goto out; |
| node = bp1->b_addr; |
| xfs_da3_node_hdr_from_disk(mp, &icnodehdr, node); |
| |
| leaf = bp2->b_addr; |
| xfs_attr3_leaf_hdr_from_disk(args->geo, &icleafhdr, leaf); |
| entries = xfs_attr3_leaf_entryp(leaf); |
| |
| /* both on-disk, don't endian-flip twice */ |
| icnodehdr.btree[0].hashval = entries[icleafhdr.count - 1].hashval; |
| icnodehdr.btree[0].before = cpu_to_be32(blkno); |
| icnodehdr.count = 1; |
| xfs_da3_node_hdr_to_disk(dp->i_mount, node, &icnodehdr); |
| xfs_trans_log_buf(args->trans, bp1, 0, args->geo->blksize - 1); |
| error = 0; |
| out: |
| return error; |
| } |
| |
| /*======================================================================== |
| * Routines used for growing the Btree. |
| *========================================================================*/ |
| |
| /* |
| * Create the initial contents of a leaf attribute list |
| * or a leaf in a node attribute list. |
| */ |
| STATIC int |
| xfs_attr3_leaf_create( |
| struct xfs_da_args *args, |
| xfs_dablk_t blkno, |
| struct xfs_buf **bpp) |
| { |
| struct xfs_attr_leafblock *leaf; |
| struct xfs_attr3_icleaf_hdr ichdr; |
| struct xfs_inode *dp = args->dp; |
| struct xfs_mount *mp = dp->i_mount; |
| struct xfs_buf *bp; |
| int error; |
| |
| trace_xfs_attr_leaf_create(args); |
| |
| error = xfs_da_get_buf(args->trans, args->dp, blkno, &bp, |
| XFS_ATTR_FORK); |
| if (error) |
| return error; |
| bp->b_ops = &xfs_attr3_leaf_buf_ops; |
| xfs_trans_buf_set_type(args->trans, bp, XFS_BLFT_ATTR_LEAF_BUF); |
| leaf = bp->b_addr; |
| memset(leaf, 0, args->geo->blksize); |
| |
| memset(&ichdr, 0, sizeof(ichdr)); |
| ichdr.firstused = args->geo->blksize; |
| |
| if (xfs_sb_version_hascrc(&mp->m_sb)) { |
| struct xfs_da3_blkinfo *hdr3 = bp->b_addr; |
| |
| ichdr.magic = XFS_ATTR3_LEAF_MAGIC; |
| |
| hdr3->blkno = cpu_to_be64(bp->b_bn); |
| hdr3->owner = cpu_to_be64(dp->i_ino); |
| uuid_copy(&hdr3->uuid, &mp->m_sb.sb_meta_uuid); |
| |
| ichdr.freemap[0].base = sizeof(struct xfs_attr3_leaf_hdr); |
| } else { |
| ichdr.magic = XFS_ATTR_LEAF_MAGIC; |
| ichdr.freemap[0].base = sizeof(struct xfs_attr_leaf_hdr); |
| } |
| ichdr.freemap[0].size = ichdr.firstused - ichdr.freemap[0].base; |
| |
| xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr); |
| xfs_trans_log_buf(args->trans, bp, 0, args->geo->blksize - 1); |
| |
| *bpp = bp; |
| return 0; |
| } |
| |
| /* |
| * Split the leaf node, rebalance, then add the new entry. |
| */ |
| int |
| xfs_attr3_leaf_split( |
| struct xfs_da_state *state, |
| struct xfs_da_state_blk *oldblk, |
| struct xfs_da_state_blk *newblk) |
| { |
| xfs_dablk_t blkno; |
| int error; |
| |
| trace_xfs_attr_leaf_split(state->args); |
| |
| /* |
| * Allocate space for a new leaf node. |
| */ |
| ASSERT(oldblk->magic == XFS_ATTR_LEAF_MAGIC); |
| error = xfs_da_grow_inode(state->args, &blkno); |
| if (error) |
| return error; |
| error = xfs_attr3_leaf_create(state->args, blkno, &newblk->bp); |
| if (error) |
| return error; |
| newblk->blkno = blkno; |
| newblk->magic = XFS_ATTR_LEAF_MAGIC; |
| |
| /* |
| * Rebalance the entries across the two leaves. |
| * NOTE: rebalance() currently depends on the 2nd block being empty. |
| */ |
| xfs_attr3_leaf_rebalance(state, oldblk, newblk); |
| error = xfs_da3_blk_link(state, oldblk, newblk); |
| if (error) |
| return error; |
| |
| /* |
| * Save info on "old" attribute for "atomic rename" ops, leaf_add() |
| * modifies the index/blkno/rmtblk/rmtblkcnt fields to show the |
| * "new" attrs info. Will need the "old" info to remove it later. |
| * |
| * Insert the "new" entry in the correct block. |
| */ |
| if (state->inleaf) { |
| trace_xfs_attr_leaf_add_old(state->args); |
| error = xfs_attr3_leaf_add(oldblk->bp, state->args); |
| } else { |
| trace_xfs_attr_leaf_add_new(state->args); |
| error = xfs_attr3_leaf_add(newblk->bp, state->args); |
| } |
| |
| /* |
| * Update last hashval in each block since we added the name. |
| */ |
| oldblk->hashval = xfs_attr_leaf_lasthash(oldblk->bp, NULL); |
| newblk->hashval = xfs_attr_leaf_lasthash(newblk->bp, NULL); |
| return error; |
| } |
| |
| /* |
| * Add a name to the leaf attribute list structure. |
| */ |
| int |
| xfs_attr3_leaf_add( |
| struct xfs_buf *bp, |
| struct xfs_da_args *args) |
| { |
| struct xfs_attr_leafblock *leaf; |
| struct xfs_attr3_icleaf_hdr ichdr; |
| int tablesize; |
| int entsize; |
| int sum; |
| int tmp; |
| int i; |
| |
| trace_xfs_attr_leaf_add(args); |
| |
| leaf = bp->b_addr; |
| xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); |
| ASSERT(args->index >= 0 && args->index <= ichdr.count); |
| entsize = xfs_attr_leaf_newentsize(args, NULL); |
| |
| /* |
| * Search through freemap for first-fit on new name length. |
| * (may need to figure in size of entry struct too) |
| */ |
| tablesize = (ichdr.count + 1) * sizeof(xfs_attr_leaf_entry_t) |
| + xfs_attr3_leaf_hdr_size(leaf); |
| for (sum = 0, i = XFS_ATTR_LEAF_MAPSIZE - 1; i >= 0; i--) { |
| if (tablesize > ichdr.firstused) { |
| sum += ichdr.freemap[i].size; |
| continue; |
| } |
| if (!ichdr.freemap[i].size) |
| continue; /* no space in this map */ |
| tmp = entsize; |
| if (ichdr.freemap[i].base < ichdr.firstused) |
| tmp += sizeof(xfs_attr_leaf_entry_t); |
| if (ichdr.freemap[i].size >= tmp) { |
| tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, i); |
| goto out_log_hdr; |
| } |
| sum += ichdr.freemap[i].size; |
| } |
| |
| /* |
| * If there are no holes in the address space of the block, |
| * and we don't have enough freespace, then compaction will do us |
| * no good and we should just give up. |
| */ |
| if (!ichdr.holes && sum < entsize) |
| return -ENOSPC; |
| |
| /* |
| * Compact the entries to coalesce free space. |
| * This may change the hdr->count via dropping INCOMPLETE entries. |
| */ |
| xfs_attr3_leaf_compact(args, &ichdr, bp); |
| |
| /* |
| * After compaction, the block is guaranteed to have only one |
| * free region, in freemap[0]. If it is not big enough, give up. |
| */ |
| if (ichdr.freemap[0].size < (entsize + sizeof(xfs_attr_leaf_entry_t))) { |
| tmp = -ENOSPC; |
| goto out_log_hdr; |
| } |
| |
| tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, 0); |
| |
| out_log_hdr: |
| xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr); |
| xfs_trans_log_buf(args->trans, bp, |
| XFS_DA_LOGRANGE(leaf, &leaf->hdr, |
| xfs_attr3_leaf_hdr_size(leaf))); |
| return tmp; |
| } |
| |
| /* |
| * Add a name to a leaf attribute list structure. |
| */ |
| STATIC int |
| xfs_attr3_leaf_add_work( |
| struct xfs_buf *bp, |
| struct xfs_attr3_icleaf_hdr *ichdr, |
| struct xfs_da_args *args, |
| int mapindex) |
| { |
| struct xfs_attr_leafblock *leaf; |
| struct xfs_attr_leaf_entry *entry; |
| struct xfs_attr_leaf_name_local *name_loc; |
| struct xfs_attr_leaf_name_remote *name_rmt; |
| struct xfs_mount *mp; |
| int tmp; |
| int i; |
| |
| trace_xfs_attr_leaf_add_work(args); |
| |
| leaf = bp->b_addr; |
| ASSERT(mapindex >= 0 && mapindex < XFS_ATTR_LEAF_MAPSIZE); |
| ASSERT(args->index >= 0 && args->index <= ichdr->count); |
| |
| /* |
| * Force open some space in the entry array and fill it in. |
| */ |
| entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; |
| if (args->index < ichdr->count) { |
| tmp = ichdr->count - args->index; |
| tmp *= sizeof(xfs_attr_leaf_entry_t); |
| memmove(entry + 1, entry, tmp); |
| xfs_trans_log_buf(args->trans, bp, |
| XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(*entry))); |
| } |
| ichdr->count++; |
| |
| /* |
| * Allocate space for the new string (at the end of the run). |
| */ |
| mp = args->trans->t_mountp; |
| ASSERT(ichdr->freemap[mapindex].base < args->geo->blksize); |
| ASSERT((ichdr->freemap[mapindex].base & 0x3) == 0); |
| ASSERT(ichdr->freemap[mapindex].size >= |
| xfs_attr_leaf_newentsize(args, NULL)); |
| ASSERT(ichdr->freemap[mapindex].size < args->geo->blksize); |
| ASSERT((ichdr->freemap[mapindex].size & 0x3) == 0); |
| |
| ichdr->freemap[mapindex].size -= xfs_attr_leaf_newentsize(args, &tmp); |
| |
| entry->nameidx = cpu_to_be16(ichdr->freemap[mapindex].base + |
| ichdr->freemap[mapindex].size); |
| entry->hashval = cpu_to_be32(args->hashval); |
| entry->flags = args->attr_filter; |
| if (tmp) |
| entry->flags |= XFS_ATTR_LOCAL; |
| if (args->op_flags & XFS_DA_OP_RENAME) { |
| entry->flags |= XFS_ATTR_INCOMPLETE; |
| if ((args->blkno2 == args->blkno) && |
| (args->index2 <= args->index)) { |
| args->index2++; |
| } |
| } |
| xfs_trans_log_buf(args->trans, bp, |
| XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry))); |
| ASSERT((args->index == 0) || |
| (be32_to_cpu(entry->hashval) >= be32_to_cpu((entry-1)->hashval))); |
| ASSERT((args->index == ichdr->count - 1) || |
| (be32_to_cpu(entry->hashval) <= be32_to_cpu((entry+1)->hashval))); |
| |
| /* |
| * For "remote" attribute values, simply note that we need to |
| * allocate space for the "remote" value. We can't actually |
| * allocate the extents in this transaction, and we can't decide |
| * which blocks they should be as we might allocate more blocks |
| * as part of this transaction (a split operation for example). |
| */ |
| if (entry->flags & XFS_ATTR_LOCAL) { |
| name_loc = xfs_attr3_leaf_name_local(leaf, args->index); |
| name_loc->namelen = args->namelen; |
| name_loc->valuelen = cpu_to_be16(args->valuelen); |
| memcpy((char *)name_loc->nameval, args->name, args->namelen); |
| memcpy((char *)&name_loc->nameval[args->namelen], args->value, |
| be16_to_cpu(name_loc->valuelen)); |
| } else { |
| name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); |
| name_rmt->namelen = args->namelen; |
| memcpy((char *)name_rmt->name, args->name, args->namelen); |
| entry->flags |= XFS_ATTR_INCOMPLETE; |
| /* just in case */ |
| name_rmt->valuelen = 0; |
| name_rmt->valueblk = 0; |
| args->rmtblkno = 1; |
| args->rmtblkcnt = xfs_attr3_rmt_blocks(mp, args->valuelen); |
| args->rmtvaluelen = args->valuelen; |
| } |
| xfs_trans_log_buf(args->trans, bp, |
| XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index), |
| xfs_attr_leaf_entsize(leaf, args->index))); |
| |
| /* |
| * Update the control info for this leaf node |
| */ |
| if (be16_to_cpu(entry->nameidx) < ichdr->firstused) |
| ichdr->firstused = be16_to_cpu(entry->nameidx); |
| |
| ASSERT(ichdr->firstused >= ichdr->count * sizeof(xfs_attr_leaf_entry_t) |
| + xfs_attr3_leaf_hdr_size(leaf)); |
| tmp = (ichdr->count - 1) * sizeof(xfs_attr_leaf_entry_t) |
| + xfs_attr3_leaf_hdr_size(leaf); |
| |
| for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { |
| if (ichdr->freemap[i].base == tmp) { |
| ichdr->freemap[i].base += sizeof(xfs_attr_leaf_entry_t); |
| ichdr->freemap[i].size -= |
| min_t(uint16_t, ichdr->freemap[i].size, |
| sizeof(xfs_attr_leaf_entry_t)); |
| } |
| } |
| ichdr->usedbytes += xfs_attr_leaf_entsize(leaf, args->index); |
| return 0; |
| } |
| |
| /* |
| * Garbage collect a leaf attribute list block by copying it to a new buffer. |
| */ |
| STATIC void |
| xfs_attr3_leaf_compact( |
| struct xfs_da_args *args, |
| struct xfs_attr3_icleaf_hdr *ichdr_dst, |
| struct xfs_buf *bp) |
| { |
| struct xfs_attr_leafblock *leaf_src; |
| struct xfs_attr_leafblock *leaf_dst; |
| struct xfs_attr3_icleaf_hdr ichdr_src; |
| struct xfs_trans *trans = args->trans; |
| char *tmpbuffer; |
| |
| trace_xfs_attr_leaf_compact(args); |
| |
| tmpbuffer = kmem_alloc(args->geo->blksize, 0); |
| memcpy(tmpbuffer, bp->b_addr, args->geo->blksize); |
| memset(bp->b_addr, 0, args->geo->blksize); |
| leaf_src = (xfs_attr_leafblock_t *)tmpbuffer; |
| leaf_dst = bp->b_addr; |
| |
| /* |
| * Copy the on-disk header back into the destination buffer to ensure |
| * all the information in the header that is not part of the incore |
| * header structure is preserved. |
| */ |
| memcpy(bp->b_addr, tmpbuffer, xfs_attr3_leaf_hdr_size(leaf_src)); |
| |
| /* Initialise the incore headers */ |
| ichdr_src = *ichdr_dst; /* struct copy */ |
| ichdr_dst->firstused = args->geo->blksize; |
| ichdr_dst->usedbytes = 0; |
| ichdr_dst->count = 0; |
| ichdr_dst->holes = 0; |
| ichdr_dst->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_src); |
| ichdr_dst->freemap[0].size = ichdr_dst->firstused - |
| ichdr_dst->freemap[0].base; |
| |
| /* write the header back to initialise the underlying buffer */ |
| xfs_attr3_leaf_hdr_to_disk(args->geo, leaf_dst, ichdr_dst); |
| |
| /* |
| * Copy all entry's in the same (sorted) order, |
| * but allocate name/value pairs packed and in sequence. |
| */ |
| xfs_attr3_leaf_moveents(args, leaf_src, &ichdr_src, 0, |
| leaf_dst, ichdr_dst, 0, ichdr_src.count); |
| /* |
| * this logs the entire buffer, but the caller must write the header |
| * back to the buffer when it is finished modifying it. |
| */ |
| xfs_trans_log_buf(trans, bp, 0, args->geo->blksize - 1); |
| |
| kmem_free(tmpbuffer); |
| } |
| |
| /* |
| * Compare two leaf blocks "order". |
| * Return 0 unless leaf2 should go before leaf1. |
| */ |
| static int |
| xfs_attr3_leaf_order( |
| struct xfs_buf *leaf1_bp, |
| struct xfs_attr3_icleaf_hdr *leaf1hdr, |
| struct xfs_buf *leaf2_bp, |
| struct xfs_attr3_icleaf_hdr *leaf2hdr) |
| { |
| struct xfs_attr_leaf_entry *entries1; |
| struct xfs_attr_leaf_entry *entries2; |
| |
| entries1 = xfs_attr3_leaf_entryp(leaf1_bp->b_addr); |
| entries2 = xfs_attr3_leaf_entryp(leaf2_bp->b_addr); |
| if (leaf1hdr->count > 0 && leaf2hdr->count > 0 && |
| ((be32_to_cpu(entries2[0].hashval) < |
| be32_to_cpu(entries1[0].hashval)) || |
| (be32_to_cpu(entries2[leaf2hdr->count - 1].hashval) < |
| be32_to_cpu(entries1[leaf1hdr->count - 1].hashval)))) { |
| return 1; |
| } |
| return 0; |
| } |
| |
| int |
| xfs_attr_leaf_order( |
| struct xfs_buf *leaf1_bp, |
| struct xfs_buf *leaf2_bp) |
| { |
| struct xfs_attr3_icleaf_hdr ichdr1; |
| struct xfs_attr3_icleaf_hdr ichdr2; |
| struct xfs_mount *mp = leaf1_bp->b_mount; |
| |
| xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr1, leaf1_bp->b_addr); |
| xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr2, leaf2_bp->b_addr); |
| return xfs_attr3_leaf_order(leaf1_bp, &ichdr1, leaf2_bp, &ichdr2); |
| } |
| |
| /* |
| * Redistribute the attribute list entries between two leaf nodes, |
| * taking into account the size of the new entry. |
| * |
| * NOTE: if new block is empty, then it will get the upper half of the |
| * old block. At present, all (one) callers pass in an empty second block. |
| * |
| * This code adjusts the args->index/blkno and args->index2/blkno2 fields |
| * to match what it is doing in splitting the attribute leaf block. Those |
| * values are used in "atomic rename" operations on attributes. Note that |
| * the "new" and "old" values can end up in different blocks. |
| */ |
| STATIC void |
| xfs_attr3_leaf_rebalance( |
| struct xfs_da_state *state, |
| struct xfs_da_state_blk *blk1, |
| struct xfs_da_state_blk *blk2) |
| { |
| struct xfs_da_args *args; |
| struct xfs_attr_leafblock *leaf1; |
| struct xfs_attr_leafblock *leaf2; |
| struct xfs_attr3_icleaf_hdr ichdr1; |
| struct xfs_attr3_icleaf_hdr ichdr2; |
| struct xfs_attr_leaf_entry *entries1; |
| struct xfs_attr_leaf_entry *entries2; |
| int count; |
| int totallen; |
| int max; |
| int space; |
| int swap; |
| |
| /* |
| * Set up environment. |
| */ |
| ASSERT(blk1->magic == XFS_ATTR_LEAF_MAGIC); |
| ASSERT(blk2->magic == XFS_ATTR_LEAF_MAGIC); |
| leaf1 = blk1->bp->b_addr; |
| leaf2 = blk2->bp->b_addr; |
| xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr1, leaf1); |
| xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, leaf2); |
| ASSERT(ichdr2.count == 0); |
| args = state->args; |
| |
| trace_xfs_attr_leaf_rebalance(args); |
| |
| /* |
| * Check ordering of blocks, reverse if it makes things simpler. |
| * |
| * NOTE: Given that all (current) callers pass in an empty |
| * second block, this code should never set "swap". |
| */ |
| swap = 0; |
| if (xfs_attr3_leaf_order(blk1->bp, &ichdr1, blk2->bp, &ichdr2)) { |
| swap(blk1, blk2); |
| |
| /* swap structures rather than reconverting them */ |
| swap(ichdr1, ichdr2); |
| |
| leaf1 = blk1->bp->b_addr; |
| leaf2 = blk2->bp->b_addr; |
| swap = 1; |
| } |
| |
| /* |
| * Examine entries until we reduce the absolute difference in |
| * byte usage between the two blocks to a minimum. Then get |
| * the direction to copy and the number of elements to move. |
| * |
| * "inleaf" is true if the new entry should be inserted into blk1. |
| * If "swap" is also true, then reverse the sense of "inleaf". |
| */ |
| state->inleaf = xfs_attr3_leaf_figure_balance(state, blk1, &ichdr1, |
| blk2, &ichdr2, |
| &count, &totallen); |
| if (swap) |
| state->inleaf = !state->inleaf; |
| |
| /* |
| * Move any entries required from leaf to leaf: |
| */ |
| if (count < ichdr1.count) { |
| /* |
| * Figure the total bytes to be added to the destination leaf. |
| */ |
| /* number entries being moved */ |
| count = ichdr1.count - count; |
| space = ichdr1.usedbytes - totallen; |
| space += count * sizeof(xfs_attr_leaf_entry_t); |
| |
| /* |
| * leaf2 is the destination, compact it if it looks tight. |
| */ |
| max = ichdr2.firstused - xfs_attr3_leaf_hdr_size(leaf1); |
| max -= ichdr2.count * sizeof(xfs_attr_leaf_entry_t); |
| if (space > max) |
| xfs_attr3_leaf_compact(args, &ichdr2, blk2->bp); |
| |
| /* |
| * Move high entries from leaf1 to low end of leaf2. |
| */ |
| xfs_attr3_leaf_moveents(args, leaf1, &ichdr1, |
| ichdr1.count - count, leaf2, &ichdr2, 0, count); |
| |
| } else if (count > ichdr1.count) { |
| /* |
| * I assert that since all callers pass in an empty |
| * second buffer, this code should never execute. |
| */ |
| ASSERT(0); |
| |
| /* |
| * Figure the total bytes to be added to the destination leaf. |
| */ |
| /* number entries being moved */ |
| count -= ichdr1.count; |
| space = totallen - ichdr1.usedbytes; |
| space += count * sizeof(xfs_attr_leaf_entry_t); |
| |
| /* |
| * leaf1 is the destination, compact it if it looks tight. |
| */ |
| max = ichdr1.firstused - xfs_attr3_leaf_hdr_size(leaf1); |
| max -= ichdr1.count * sizeof(xfs_attr_leaf_entry_t); |
| if (space > max) |
| xfs_attr3_leaf_compact(args, &ichdr1, blk1->bp); |
| |
| /* |
| * Move low entries from leaf2 to high end of leaf1. |
| */ |
| xfs_attr3_leaf_moveents(args, leaf2, &ichdr2, 0, leaf1, &ichdr1, |
| ichdr1.count, count); |
| } |
| |
| xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf1, &ichdr1); |
| xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf2, &ichdr2); |
| xfs_trans_log_buf(args->trans, blk1->bp, 0, args->geo->blksize - 1); |
| xfs_trans_log_buf(args->trans, blk2->bp, 0, args->geo->blksize - 1); |
| |
| /* |
| * Copy out last hashval in each block for B-tree code. |
| */ |
| entries1 = xfs_attr3_leaf_entryp(leaf1); |
| entries2 = xfs_attr3_leaf_entryp(leaf2); |
| blk1->hashval = be32_to_cpu(entries1[ichdr1.count - 1].hashval); |
| blk2->hashval = be32_to_cpu(entries2[ichdr2.count - 1].hashval); |
| |
| /* |
| * Adjust the expected index for insertion. |
| * NOTE: this code depends on the (current) situation that the |
| * second block was originally empty. |
| * |
| * If the insertion point moved to the 2nd block, we must adjust |
| * the index. We must also track the entry just following the |
| * new entry for use in an "atomic rename" operation, that entry |
| * is always the "old" entry and the "new" entry is what we are |
| * inserting. The index/blkno fields refer to the "old" entry, |
| * while the index2/blkno2 fields refer to the "new" entry. |
| */ |
| if (blk1->index > ichdr1.count) { |
| ASSERT(state->inleaf == 0); |
| blk2->index = blk1->index - ichdr1.count; |
| args->index = args->index2 = blk2->index; |
| args->blkno = args->blkno2 = blk2->blkno; |
| } else if (blk1->index == ichdr1.count) { |
| if (state->inleaf) { |
| args->index = blk1->index; |
| args->blkno = blk1->blkno; |
| args->index2 = 0; |
| args->blkno2 = blk2->blkno; |
| } else { |
| /* |
| * On a double leaf split, the original attr location |
| * is already stored in blkno2/index2, so don't |
| * overwrite it overwise we corrupt the tree. |
| */ |
| blk2->index = blk1->index - ichdr1.count; |
| args->index = blk2->index; |
| args->blkno = blk2->blkno; |
| if (!state->extravalid) { |
| /* |
| * set the new attr location to match the old |
| * one and let the higher level split code |
| * decide where in the leaf to place it. |
| */ |
| args->index2 = blk2->index; |
| args->blkno2 = blk2->blkno; |
| } |
| } |
| } else { |
| ASSERT(state->inleaf == 1); |
| args->index = args->index2 = blk1->index; |
| args->blkno = args->blkno2 = blk1->blkno; |
| } |
| } |
| |
| /* |
| * Examine entries until we reduce the absolute difference in |
| * byte usage between the two blocks to a minimum. |
| * GROT: Is this really necessary? With other than a 512 byte blocksize, |
| * GROT: there will always be enough room in either block for a new entry. |
| * GROT: Do a double-split for this case? |
| */ |
| STATIC int |
| xfs_attr3_leaf_figure_balance( |
| struct xfs_da_state *state, |
| struct xfs_da_state_blk *blk1, |
| struct xfs_attr3_icleaf_hdr *ichdr1, |
| struct xfs_da_state_blk *blk2, |
| struct xfs_attr3_icleaf_hdr *ichdr2, |
| int *countarg, |
| int *usedbytesarg) |
| { |
| struct xfs_attr_leafblock *leaf1 = blk1->bp->b_addr; |
| struct xfs_attr_leafblock *leaf2 = blk2->bp->b_addr; |
| struct xfs_attr_leaf_entry *entry; |
| int count; |
| int max; |
| int index; |
| int totallen = 0; |
| int half; |
| int lastdelta; |
| int foundit = 0; |
| int tmp; |
| |
| /* |
| * Examine entries until we reduce the absolute difference in |
| * byte usage between the two blocks to a minimum. |
| */ |
| max = ichdr1->count + ichdr2->count; |
| half = (max + 1) * sizeof(*entry); |
| half += ichdr1->usedbytes + ichdr2->usedbytes + |
| xfs_attr_leaf_newentsize(state->args, NULL); |
| half /= 2; |
| lastdelta = state->args->geo->blksize; |
| entry = xfs_attr3_leaf_entryp(leaf1); |
| for (count = index = 0; count < max; entry++, index++, count++) { |
| |
| #define XFS_ATTR_ABS(A) (((A) < 0) ? -(A) : (A)) |
| /* |
| * The new entry is in the first block, account for it. |
| */ |
| if (count == blk1->index) { |
| tmp = totallen + sizeof(*entry) + |
| xfs_attr_leaf_newentsize(state->args, NULL); |
| if (XFS_ATTR_ABS(half - tmp) > lastdelta) |
| break; |
| lastdelta = XFS_ATTR_ABS(half - tmp); |
| totallen = tmp; |
| foundit = 1; |
| } |
| |
| /* |
| * Wrap around into the second block if necessary. |
| */ |
| if (count == ichdr1->count) { |
| leaf1 = leaf2; |
| entry = xfs_attr3_leaf_entryp(leaf1); |
| index = 0; |
| } |
| |
| /* |
| * Figure out if next leaf entry would be too much. |
| */ |
| tmp = totallen + sizeof(*entry) + xfs_attr_leaf_entsize(leaf1, |
| index); |
| if (XFS_ATTR_ABS(half - tmp) > lastdelta) |
| break; |
| lastdelta = XFS_ATTR_ABS(half - tmp); |
| totallen = tmp; |
| #undef XFS_ATTR_ABS |
| } |
| |
| /* |
| * Calculate the number of usedbytes that will end up in lower block. |
| * If new entry not in lower block, fix up the count. |
| */ |
| totallen -= count * sizeof(*entry); |
| if (foundit) { |
| totallen -= sizeof(*entry) + |
| xfs_attr_leaf_newentsize(state->args, NULL); |
| } |
| |
| *countarg = count; |
| *usedbytesarg = totallen; |
| return foundit; |
| } |
| |
| /*======================================================================== |
| * Routines used for shrinking the Btree. |
| *========================================================================*/ |
| |
| /* |
| * Check a leaf block and its neighbors to see if the block should be |
| * collapsed into one or the other neighbor. Always keep the block |
| * with the smaller block number. |
| * If the current block is over 50% full, don't try to join it, return 0. |
| * If the block is empty, fill in the state structure and return 2. |
| * If it can be collapsed, fill in the state structure and return 1. |
| * If nothing can be done, return 0. |
| * |
| * GROT: allow for INCOMPLETE entries in calculation. |
| */ |
| int |
| xfs_attr3_leaf_toosmall( |
| struct xfs_da_state *state, |
| int *action) |
| { |
| struct xfs_attr_leafblock *leaf; |
| struct xfs_da_state_blk *blk; |
| struct xfs_attr3_icleaf_hdr ichdr; |
| struct xfs_buf *bp; |
| xfs_dablk_t blkno; |
| int bytes; |
| int forward; |
| int error; |
| int retval; |
| int i; |
| |
| trace_xfs_attr_leaf_toosmall(state->args); |
| |
| /* |
| * Check for the degenerate case of the block being over 50% full. |
| * If so, it's not worth even looking to see if we might be able |
| * to coalesce with a sibling. |
| */ |
| blk = &state->path.blk[ state->path.active-1 ]; |
| leaf = blk->bp->b_addr; |
| xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr, leaf); |
| bytes = xfs_attr3_leaf_hdr_size(leaf) + |
| ichdr.count * sizeof(xfs_attr_leaf_entry_t) + |
| ichdr.usedbytes; |
| if (bytes > (state->args->geo->blksize >> 1)) { |
| *action = 0; /* blk over 50%, don't try to join */ |
| return 0; |
| } |
| |
| /* |
| * Check for the degenerate case of the block being empty. |
| * If the block is empty, we'll simply delete it, no need to |
| * coalesce it with a sibling block. We choose (arbitrarily) |
| * to merge with the forward block unless it is NULL. |
| */ |
| if (ichdr.count == 0) { |
| /* |
| * Make altpath point to the block we want to keep and |
| * path point to the block we want to drop (this one). |
| */ |
| forward = (ichdr.forw != 0); |
| memcpy(&state->altpath, &state->path, sizeof(state->path)); |
| error = xfs_da3_path_shift(state, &state->altpath, forward, |
| 0, &retval); |
| if (error) |
| return error; |
| if (retval) { |
| *action = 0; |
| } else { |
| *action = 2; |
| } |
| return 0; |
| } |
| |
| /* |
| * Examine each sibling block to see if we can coalesce with |
| * at least 25% free space to spare. We need to figure out |
| * whether to merge with the forward or the backward block. |
| * We prefer coalescing with the lower numbered sibling so as |
| * to shrink an attribute list over time. |
| */ |
| /* start with smaller blk num */ |
| forward = ichdr.forw < ichdr.back; |
| for (i = 0; i < 2; forward = !forward, i++) { |
| struct xfs_attr3_icleaf_hdr ichdr2; |
| if (forward) |
| blkno = ichdr.forw; |
| else |
| blkno = ichdr.back; |
| if (blkno == 0) |
| continue; |
| error = xfs_attr3_leaf_read(state->args->trans, state->args->dp, |
| blkno, &bp); |
| if (error) |
| return error; |
| |
| xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, bp->b_addr); |
| |
| bytes = state->args->geo->blksize - |
| (state->args->geo->blksize >> 2) - |
| ichdr.usedbytes - ichdr2.usedbytes - |
| ((ichdr.count + ichdr2.count) * |
| sizeof(xfs_attr_leaf_entry_t)) - |
| xfs_attr3_leaf_hdr_size(leaf); |
| |
| xfs_trans_brelse(state->args->trans, bp); |
| if (bytes >= 0) |
| break; /* fits with at least 25% to spare */ |
| } |
| if (i >= 2) { |
| *action = 0; |
| return 0; |
| } |
| |
| /* |
| * Make altpath point to the block we want to keep (the lower |
| * numbered block) and path point to the block we want to drop. |
| */ |
| memcpy(&state->altpath, &state->path, sizeof(state->path)); |
| if (blkno < blk->blkno) { |
| error = xfs_da3_path_shift(state, &state->altpath, forward, |
| 0, &retval); |
| } else { |
| error = xfs_da3_path_shift(state, &state->path, forward, |
| 0, &retval); |
| } |
| if (error) |
| return error; |
| if (retval) { |
| *action = 0; |
| } else { |
| *action = 1; |
| } |
| return 0; |
| } |
| |
| /* |
| * Remove a name from the leaf attribute list structure. |
| * |
| * Return 1 if leaf is less than 37% full, 0 if >= 37% full. |
| * If two leaves are 37% full, when combined they will leave 25% free. |
| */ |
| int |
| xfs_attr3_leaf_remove( |
| struct xfs_buf *bp, |
| struct xfs_da_args *args) |
| { |
| struct xfs_attr_leafblock *leaf; |
| struct xfs_attr3_icleaf_hdr ichdr; |
| struct xfs_attr_leaf_entry *entry; |
| int before; |
| int after; |
| int smallest; |
| int entsize; |
| int tablesize; |
| int tmp; |
| int i; |
| |
| trace_xfs_attr_leaf_remove(args); |
| |
| leaf = bp->b_addr; |
| xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); |
| |
| ASSERT(ichdr.count > 0 && ichdr.count < args->geo->blksize / 8); |
| ASSERT(args->index >= 0 && args->index < ichdr.count); |
| ASSERT(ichdr.firstused >= ichdr.count * sizeof(*entry) + |
| xfs_attr3_leaf_hdr_size(leaf)); |
| |
| entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; |
| |
| ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused); |
| ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize); |
| |
| /* |
| * Scan through free region table: |
| * check for adjacency of free'd entry with an existing one, |
| * find smallest free region in case we need to replace it, |
| * adjust any map that borders the entry table, |
| */ |
| tablesize = ichdr.count * sizeof(xfs_attr_leaf_entry_t) |
| + xfs_attr3_leaf_hdr_size(leaf); |
| tmp = ichdr.freemap[0].size; |
| before = after = -1; |
| smallest = XFS_ATTR_LEAF_MAPSIZE - 1; |
| entsize = xfs_attr_leaf_entsize(leaf, args->index); |
| for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { |
| ASSERT(ichdr.freemap[i].base < args->geo->blksize); |
| ASSERT(ichdr.freemap[i].size < args->geo->blksize); |
| if (ichdr.freemap[i].base == tablesize) { |
| ichdr.freemap[i].base -= sizeof(xfs_attr_leaf_entry_t); |
| ichdr.freemap[i].size += sizeof(xfs_attr_leaf_entry_t); |
| } |
| |
| if (ichdr.freemap[i].base + ichdr.freemap[i].size == |
| be16_to_cpu(entry->nameidx)) { |
| before = i; |
| } else if (ichdr.freemap[i].base == |
| (be16_to_cpu(entry->nameidx) + entsize)) { |
| after = i; |
| } else if (ichdr.freemap[i].size < tmp) { |
| tmp = ichdr.freemap[i].size; |
| smallest = i; |
| } |
| } |
| |
| /* |
| * Coalesce adjacent freemap regions, |
| * or replace the smallest region. |
| */ |
| if ((before >= 0) || (after >= 0)) { |
| if ((before >= 0) && (after >= 0)) { |
| ichdr.freemap[before].size += entsize; |
| ichdr.freemap[before].size += ichdr.freemap[after].size; |
| ichdr.freemap[after].base = 0; |
| ichdr.freemap[after].size = 0; |
| } else if (before >= 0) { |
| ichdr.freemap[before].size += entsize; |
| } else { |
| ichdr.freemap[after].base = be16_to_cpu(entry->nameidx); |
| ichdr.freemap[after].size += entsize; |
| } |
| } else { |
| /* |
| * Replace smallest region (if it is smaller than free'd entry) |
| */ |
| if (ichdr.freemap[smallest].size < entsize) { |
| ichdr.freemap[smallest].base = be16_to_cpu(entry->nameidx); |
| ichdr.freemap[smallest].size = entsize; |
| } |
| } |
| |
| /* |
| * Did we remove the first entry? |
| */ |
| if (be16_to_cpu(entry->nameidx) == ichdr.firstused) |
| smallest = 1; |
| else |
| smallest = 0; |
| |
| /* |
| * Compress the remaining entries and zero out the removed stuff. |
| */ |
| memset(xfs_attr3_leaf_name(leaf, args->index), 0, entsize); |
| ichdr.usedbytes -= entsize; |
| xfs_trans_log_buf(args->trans, bp, |
| XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index), |
| entsize)); |
| |
| tmp = (ichdr.count - args->index) * sizeof(xfs_attr_leaf_entry_t); |
| memmove(entry, entry + 1, tmp); |
| ichdr.count--; |
| xfs_trans_log_buf(args->trans, bp, |
| XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(xfs_attr_leaf_entry_t))); |
| |
| entry = &xfs_attr3_leaf_entryp(leaf)[ichdr.count]; |
| memset(entry, 0, sizeof(xfs_attr_leaf_entry_t)); |
| |
| /* |
| * If we removed the first entry, re-find the first used byte |
| * in the name area. Note that if the entry was the "firstused", |
| * then we don't have a "hole" in our block resulting from |
| * removing the name. |
| */ |
| if (smallest) { |
| tmp = args->geo->blksize; |
| entry = xfs_attr3_leaf_entryp(leaf); |
| for (i = ichdr.count - 1; i >= 0; entry++, i--) { |
| ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused); |
| ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize); |
| |
| if (be16_to_cpu(entry->nameidx) < tmp) |
| tmp = be16_to_cpu(entry->nameidx); |
| } |
| ichdr.firstused = tmp; |
| ASSERT(ichdr.firstused != 0); |
| } else { |
| ichdr.holes = 1; /* mark as needing compaction */ |
| } |
| xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr); |
| xfs_trans_log_buf(args->trans, bp, |
| XFS_DA_LOGRANGE(leaf, &leaf->hdr, |
| xfs_attr3_leaf_hdr_size(leaf))); |
| |
| /* |
| * Check if leaf is less than 50% full, caller may want to |
| * "join" the leaf with a sibling if so. |
| */ |
| tmp = ichdr.usedbytes + xfs_attr3_leaf_hdr_size(leaf) + |
| ichdr.count * sizeof(xfs_attr_leaf_entry_t); |
| |
| return tmp < args->geo->magicpct; /* leaf is < 37% full */ |
| } |
| |
| /* |
| * Move all the attribute list entries from drop_leaf into save_leaf. |
| */ |
| void |
| xfs_attr3_leaf_unbalance( |
| struct xfs_da_state *state, |
| struct xfs_da_state_blk *drop_blk, |
| struct xfs_da_state_blk *save_blk) |
| { |
| struct xfs_attr_leafblock *drop_leaf = drop_blk->bp->b_addr; |
| struct xfs_attr_leafblock *save_leaf = save_blk->bp->b_addr; |
| struct xfs_attr3_icleaf_hdr drophdr; |
| struct xfs_attr3_icleaf_hdr savehdr; |
| struct xfs_attr_leaf_entry *entry; |
| |
| trace_xfs_attr_leaf_unbalance(state->args); |
| |
| drop_leaf = drop_blk->bp->b_addr; |
| save_leaf = save_blk->bp->b_addr; |
| xfs_attr3_leaf_hdr_from_disk(state->args->geo, &drophdr, drop_leaf); |
| xfs_attr3_leaf_hdr_from_disk(state->args->geo, &savehdr, save_leaf); |
| entry = xfs_attr3_leaf_entryp(drop_leaf); |
| |
| /* |
| * Save last hashval from dying block for later Btree fixup. |
| */ |
| drop_blk->hashval = be32_to_cpu(entry[drophdr.count - 1].hashval); |
| |
| /* |
| * Check if we need a temp buffer, or can we do it in place. |
| * Note that we don't check "leaf" for holes because we will |
| * always be dropping it, toosmall() decided that for us already. |
| */ |
| if (savehdr.holes == 0) { |
| /* |
| * dest leaf has no holes, so we add there. May need |
| * to make some room in the entry array. |
| */ |
| if (xfs_attr3_leaf_order(save_blk->bp, &savehdr, |
| drop_blk->bp, &drophdr)) { |
| xfs_attr3_leaf_moveents(state->args, |
| drop_leaf, &drophdr, 0, |
| save_leaf, &savehdr, 0, |
| drophdr.count); |
| } else { |
| xfs_attr3_leaf_moveents(state->args, |
| drop_leaf, &drophdr, 0, |
| save_leaf, &savehdr, |
| savehdr.count, drophdr.count); |
| } |
| } else { |
| /* |
| * Destination has holes, so we make a temporary copy |
| * of the leaf and add them both to that. |
| */ |
| struct xfs_attr_leafblock *tmp_leaf; |
| struct xfs_attr3_icleaf_hdr tmphdr; |
| |
| tmp_leaf = kmem_zalloc(state->args->geo->blksize, 0); |
| |
| /* |
| * Copy the header into the temp leaf so that all the stuff |
| * not in the incore header is present and gets copied back in |
| * once we've moved all the entries. |
| */ |
| memcpy(tmp_leaf, save_leaf, xfs_attr3_leaf_hdr_size(save_leaf)); |
| |
| memset(&tmphdr, 0, sizeof(tmphdr)); |
| tmphdr.magic = savehdr.magic; |
| tmphdr.forw = savehdr.forw; |
| tmphdr.back = savehdr.back; |
| tmphdr.firstused = state->args->geo->blksize; |
| |
| /* write the header to the temp buffer to initialise it */ |
| xfs_attr3_leaf_hdr_to_disk(state->args->geo, tmp_leaf, &tmphdr); |
| |
| if (xfs_attr3_leaf_order(save_blk->bp, &savehdr, |
| drop_blk->bp, &drophdr)) { |
| xfs_attr3_leaf_moveents(state->args, |
| drop_leaf, &drophdr, 0, |
| tmp_leaf, &tmphdr, 0, |
| drophdr.count); |
| xfs_attr3_leaf_moveents(state->args, |
| save_leaf, &savehdr, 0, |
| tmp_leaf, &tmphdr, tmphdr.count, |
| savehdr.count); |
| } else { |
| xfs_attr3_leaf_moveents(state->args, |
| save_leaf, &savehdr, 0, |
| tmp_leaf, &tmphdr, 0, |
| savehdr.count); |
| xfs_attr3_leaf_moveents(state->args, |
| drop_leaf, &drophdr, 0, |
| tmp_leaf, &tmphdr, tmphdr.count, |
| drophdr.count); |
| } |
| memcpy(save_leaf, tmp_leaf, state->args->geo->blksize); |
| savehdr = tmphdr; /* struct copy */ |
| kmem_free(tmp_leaf); |
| } |
| |
| xfs_attr3_leaf_hdr_to_disk(state->args->geo, save_leaf, &savehdr); |
| xfs_trans_log_buf(state->args->trans, save_blk->bp, 0, |
| state->args->geo->blksize - 1); |
| |
| /* |
| * Copy out last hashval in each block for B-tree code. |
| */ |
| entry = xfs_attr3_leaf_entryp(save_leaf); |
| save_blk->hashval = be32_to_cpu(entry[savehdr.count - 1].hashval); |
| } |
| |
| /*======================================================================== |
| * Routines used for finding things in the Btree. |
| *========================================================================*/ |
| |
| /* |
| * Look up a name in a leaf attribute list structure. |
| * This is the internal routine, it uses the caller's buffer. |
| * |
| * Note that duplicate keys are allowed, but only check within the |
| * current leaf node. The Btree code must check in adjacent leaf nodes. |
| * |
| * Return in args->index the index into the entry[] array of either |
| * the found entry, or where the entry should have been (insert before |
| * that entry). |
| * |
| * Don't change the args->value unless we find the attribute. |
| */ |
| int |
| xfs_attr3_leaf_lookup_int( |
| struct xfs_buf *bp, |
| struct xfs_da_args *args) |
| { |
| struct xfs_attr_leafblock *leaf; |
| struct xfs_attr3_icleaf_hdr ichdr; |
| struct xfs_attr_leaf_entry *entry; |
| struct xfs_attr_leaf_entry *entries; |
| struct xfs_attr_leaf_name_local *name_loc; |
| struct xfs_attr_leaf_name_remote *name_rmt; |
| xfs_dahash_t hashval; |
| int probe; |
| int span; |
| |
| trace_xfs_attr_leaf_lookup(args); |
| |
| leaf = bp->b_addr; |
| xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); |
| entries = xfs_attr3_leaf_entryp(leaf); |
| if (ichdr.count >= args->geo->blksize / 8) { |
| xfs_buf_mark_corrupt(bp); |
| return -EFSCORRUPTED; |
| } |
| |
| /* |
| * Binary search. (note: small blocks will skip this loop) |
| */ |
| hashval = args->hashval; |
| probe = span = ichdr.count / 2; |
| for (entry = &entries[probe]; span > 4; entry = &entries[probe]) { |
| span /= 2; |
| if (be32_to_cpu(entry->hashval) < hashval) |
| probe += span; |
| else if (be32_to_cpu(entry->hashval) > hashval) |
| probe -= span; |
| else |
| break; |
| } |
| if (!(probe >= 0 && (!ichdr.count || probe < ichdr.count))) { |
| xfs_buf_mark_corrupt(bp); |
| return -EFSCORRUPTED; |
| } |
| if (!(span <= 4 || be32_to_cpu(entry->hashval) == hashval)) { |
| xfs_buf_mark_corrupt(bp); |
| return -EFSCORRUPTED; |
| } |
| |
| /* |
| * Since we may have duplicate hashval's, find the first matching |
| * hashval in the leaf. |
| */ |
| while (probe > 0 && be32_to_cpu(entry->hashval) >= hashval) { |
| entry--; |
| probe--; |
| } |
| while (probe < ichdr.count && |
| be32_to_cpu(entry->hashval) < hashval) { |
| entry++; |
| probe++; |
| } |
| if (probe == ichdr.count || be32_to_cpu(entry->hashval) != hashval) { |
| args->index = probe; |
| return -ENOATTR; |
| } |
| |
| /* |
| * Duplicate keys may be present, so search all of them for a match. |
| */ |
| for (; probe < ichdr.count && (be32_to_cpu(entry->hashval) == hashval); |
| entry++, probe++) { |
| /* |
| * GROT: Add code to remove incomplete entries. |
| */ |
| if (entry->flags & XFS_ATTR_LOCAL) { |
| name_loc = xfs_attr3_leaf_name_local(leaf, probe); |
| if (!xfs_attr_match(args, name_loc->namelen, |
| name_loc->nameval, entry->flags)) |
| continue; |
| args->index = probe; |
| return -EEXIST; |
| } else { |
| name_rmt = xfs_attr3_leaf_name_remote(leaf, probe); |
| if (!xfs_attr_match(args, name_rmt->namelen, |
| name_rmt->name, entry->flags)) |
| continue; |
| args->index = probe; |
| args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen); |
| args->rmtblkno = be32_to_cpu(name_rmt->valueblk); |
| args->rmtblkcnt = xfs_attr3_rmt_blocks( |
| args->dp->i_mount, |
| args->rmtvaluelen); |
| return -EEXIST; |
| } |
| } |
| args->index = probe; |
| return -ENOATTR; |
| } |
| |
| /* |
| * Get the value associated with an attribute name from a leaf attribute |
| * list structure. |
| * |
| * If args->valuelen is zero, only the length needs to be returned. Unlike a |
| * lookup, we only return an error if the attribute does not exist or we can't |
| * retrieve the value. |
| */ |
| int |
| xfs_attr3_leaf_getvalue( |
| struct xfs_buf *bp, |
| struct xfs_da_args *args) |
| { |
| struct xfs_attr_leafblock *leaf; |
| struct xfs_attr3_icleaf_hdr ichdr; |
| struct xfs_attr_leaf_entry *entry; |
| struct xfs_attr_leaf_name_local *name_loc; |
| struct xfs_attr_leaf_name_remote *name_rmt; |
| |
| leaf = bp->b_addr; |
| xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); |
| ASSERT(ichdr.count < args->geo->blksize / 8); |
| ASSERT(args->index < ichdr.count); |
| |
| entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; |
| if (entry->flags & XFS_ATTR_LOCAL) { |
| name_loc = xfs_attr3_leaf_name_local(leaf, args->index); |
| ASSERT(name_loc->namelen == args->namelen); |
| ASSERT(memcmp(args->name, name_loc->nameval, args->namelen) == 0); |
| return xfs_attr_copy_value(args, |
| &name_loc->nameval[args->namelen], |
| be16_to_cpu(name_loc->valuelen)); |
| } |
| |
| name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); |
| ASSERT(name_rmt->namelen == args->namelen); |
| ASSERT(memcmp(args->name, name_rmt->name, args->namelen) == 0); |
| args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen); |
| args->rmtblkno = be32_to_cpu(name_rmt->valueblk); |
| args->rmtblkcnt = xfs_attr3_rmt_blocks(args->dp->i_mount, |
| args->rmtvaluelen); |
| return xfs_attr_copy_value(args, NULL, args->rmtvaluelen); |
| } |
| |
| /*======================================================================== |
| * Utility routines. |
| *========================================================================*/ |
| |
| /* |
| * Move the indicated entries from one leaf to another. |
| * NOTE: this routine modifies both source and destination leaves. |
| */ |
| /*ARGSUSED*/ |
| STATIC void |
| xfs_attr3_leaf_moveents( |
| struct xfs_da_args *args, |
| struct xfs_attr_leafblock *leaf_s, |
| struct xfs_attr3_icleaf_hdr *ichdr_s, |
| int start_s, |
| struct xfs_attr_leafblock *leaf_d, |
| struct xfs_attr3_icleaf_hdr *ichdr_d, |
| int start_d, |
| int count) |
| { |
| struct xfs_attr_leaf_entry *entry_s; |
| struct xfs_attr_leaf_entry *entry_d; |
| int desti; |
| int tmp; |
| int i; |
| |
| /* |
| * Check for nothing to do. |
| */ |
| if (count == 0) |
| return; |
| |
| /* |
| * Set up environment. |
| */ |
| ASSERT(ichdr_s->magic == XFS_ATTR_LEAF_MAGIC || |
| ichdr_s->magic == XFS_ATTR3_LEAF_MAGIC); |
| ASSERT(ichdr_s->magic == ichdr_d->magic); |
| ASSERT(ichdr_s->count > 0 && ichdr_s->count < args->geo->blksize / 8); |
| ASSERT(ichdr_s->firstused >= (ichdr_s->count * sizeof(*entry_s)) |
| + xfs_attr3_leaf_hdr_size(leaf_s)); |
| ASSERT(ichdr_d->count < args->geo->blksize / 8); |
| ASSERT(ichdr_d->firstused >= (ichdr_d->count * sizeof(*entry_d)) |
| + xfs_attr3_leaf_hdr_size(leaf_d)); |
| |
| ASSERT(start_s < ichdr_s->count); |
| ASSERT(start_d <= ichdr_d->count); |
| ASSERT(count <= ichdr_s->count); |
| |
| |
| /* |
| * Move the entries in the destination leaf up to make a hole? |
| */ |
| if (start_d < ichdr_d->count) { |
| tmp = ichdr_d->count - start_d; |
| tmp *= sizeof(xfs_attr_leaf_entry_t); |
| entry_s = &xfs_attr3_leaf_entryp(leaf_d)[start_d]; |
| entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d + count]; |
| memmove(entry_d, entry_s, tmp); |
| } |
| |
| /* |
| * Copy all entry's in the same (sorted) order, |
| * but allocate attribute info packed and in sequence. |
| */ |
| entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s]; |
| entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d]; |
| desti = start_d; |
| for (i = 0; i < count; entry_s++, entry_d++, desti++, i++) { |
| ASSERT(be16_to_cpu(entry_s->nameidx) >= ichdr_s->firstused); |
| tmp = xfs_attr_leaf_entsize(leaf_s, start_s + i); |
| #ifdef GROT |
| /* |
| * Code to drop INCOMPLETE entries. Difficult to use as we |
| * may also need to change the insertion index. Code turned |
| * off for 6.2, should be revisited later. |
| */ |
| if (entry_s->flags & XFS_ATTR_INCOMPLETE) { /* skip partials? */ |
| memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp); |
| ichdr_s->usedbytes -= tmp; |
| ichdr_s->count -= 1; |
| entry_d--; /* to compensate for ++ in loop hdr */ |
| desti--; |
| if ((start_s + i) < offset) |
| result++; /* insertion index adjustment */ |
| } else { |
| #endif /* GROT */ |
| ichdr_d->firstused -= tmp; |
| /* both on-disk, don't endian flip twice */ |
| entry_d->hashval = entry_s->hashval; |
| entry_d->nameidx = cpu_to_be16(ichdr_d->firstused); |
| entry_d->flags = entry_s->flags; |
| ASSERT(be16_to_cpu(entry_d->nameidx) + tmp |
| <= args->geo->blksize); |
| memmove(xfs_attr3_leaf_name(leaf_d, desti), |
| xfs_attr3_leaf_name(leaf_s, start_s + i), tmp); |
| ASSERT(be16_to_cpu(entry_s->nameidx) + tmp |
| <= args->geo->blksize); |
| memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp); |
| ichdr_s->usedbytes -= tmp; |
| ichdr_d->usedbytes += tmp; |
| ichdr_s->count -= 1; |
| ichdr_d->count += 1; |
| tmp = ichdr_d->count * sizeof(xfs_attr_leaf_entry_t) |
| + xfs_attr3_leaf_hdr_size(leaf_d); |
| ASSERT(ichdr_d->firstused >= tmp); |
| #ifdef GROT |
| } |
| #endif /* GROT */ |
| } |
| |
| /* |
| * Zero out the entries we just copied. |
| */ |
| if (start_s == ichdr_s->count) { |
| tmp = count * sizeof(xfs_attr_leaf_entry_t); |
| entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s]; |
| ASSERT(((char *)entry_s + tmp) <= |
| ((char *)leaf_s + args->geo->blksize)); |
| memset(entry_s, 0, tmp); |
| } else { |
| /* |
| * Move the remaining entries down to fill the hole, |
| * then zero the entries at the top. |
| */ |
| tmp = (ichdr_s->count - count) * sizeof(xfs_attr_leaf_entry_t); |
| entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s + count]; |
| entry_d = &xfs_attr3_leaf_entryp(leaf_s)[start_s]; |
| memmove(entry_d, entry_s, tmp); |
| |
| tmp = count * sizeof(xfs_attr_leaf_entry_t); |
| entry_s = &xfs_attr3_leaf_entryp(leaf_s)[ichdr_s->count]; |
| ASSERT(((char *)entry_s + tmp) <= |
| ((char *)leaf_s + args->geo->blksize)); |
| memset(entry_s, 0, tmp); |
| } |
| |
| /* |
| * Fill in the freemap information |
| */ |
| ichdr_d->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_d); |
| ichdr_d->freemap[0].base += ichdr_d->count * sizeof(xfs_attr_leaf_entry_t); |
| ichdr_d->freemap[0].size = ichdr_d->firstused - ichdr_d->freemap[0].base; |
| ichdr_d->freemap[1].base = 0; |
| ichdr_d->freemap[2].base = 0; |
| ichdr_d->freemap[1].size = 0; |
| ichdr_d->freemap[2].size = 0; |
| ichdr_s->holes = 1; /* leaf may not be compact */ |
| } |
| |
| /* |
| * Pick up the last hashvalue from a leaf block. |
| */ |
| xfs_dahash_t |
| xfs_attr_leaf_lasthash( |
| struct xfs_buf *bp, |
| int *count) |
| { |
| struct xfs_attr3_icleaf_hdr ichdr; |
| struct xfs_attr_leaf_entry *entries; |
| struct xfs_mount *mp = bp->b_mount; |
| |
| xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, bp->b_addr); |
| entries = xfs_attr3_leaf_entryp(bp->b_addr); |
| if (count) |
| *count = ichdr.count; |
| if (!ichdr.count) |
| return 0; |
| return be32_to_cpu(entries[ichdr.count - 1].hashval); |
| } |
| |
| /* |
| * Calculate the number of bytes used to store the indicated attribute |
| * (whether local or remote only calculate bytes in this block). |
| */ |
| STATIC int |
| xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index) |
| { |
| struct xfs_attr_leaf_entry *entries; |
| xfs_attr_leaf_name_local_t *name_loc; |
| xfs_attr_leaf_name_remote_t *name_rmt; |
| int size; |
| |
| entries = xfs_attr3_leaf_entryp(leaf); |
| if (entries[index].flags & XFS_ATTR_LOCAL) { |
| name_loc = xfs_attr3_leaf_name_local(leaf, index); |
| size = xfs_attr_leaf_entsize_local(name_loc->namelen, |
| be16_to_cpu(name_loc->valuelen)); |
| } else { |
| name_rmt = xfs_attr3_leaf_name_remote(leaf, index); |
| size = xfs_attr_leaf_entsize_remote(name_rmt->namelen); |
| } |
| return size; |
| } |
| |
| /* |
| * Calculate the number of bytes that would be required to store the new |
| * attribute (whether local or remote only calculate bytes in this block). |
| * This routine decides as a side effect whether the attribute will be |
| * a "local" or a "remote" attribute. |
| */ |
| int |
| xfs_attr_leaf_newentsize( |
| struct xfs_da_args *args, |
| int *local) |
| { |
| int size; |
| |
| size = xfs_attr_leaf_entsize_local(args->namelen, args->valuelen); |
| if (size < xfs_attr_leaf_entsize_local_max(args->geo->blksize)) { |
| if (local) |
| *local = 1; |
| return size; |
| } |
| if (local) |
| *local = 0; |
| return xfs_attr_leaf_entsize_remote(args->namelen); |
| } |
| |
| |
| /*======================================================================== |
| * Manage the INCOMPLETE flag in a leaf entry |
| *========================================================================*/ |
| |
| /* |
| * Clear the INCOMPLETE flag on an entry in a leaf block. |
| */ |
| int |
| xfs_attr3_leaf_clearflag( |
| struct xfs_da_args *args) |
| { |
| struct xfs_attr_leafblock *leaf; |
| struct xfs_attr_leaf_entry *entry; |
| struct xfs_attr_leaf_name_remote *name_rmt; |
| struct xfs_buf *bp; |
| int error; |
| #ifdef DEBUG |
| struct xfs_attr3_icleaf_hdr ichdr; |
| xfs_attr_leaf_name_local_t *name_loc; |
| int namelen; |
| char *name; |
| #endif /* DEBUG */ |
| |
| trace_xfs_attr_leaf_clearflag(args); |
| /* |
| * Set up the operation. |
| */ |
| error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp); |
| if (error) |
| return error; |
| |
| leaf = bp->b_addr; |
| entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; |
| ASSERT(entry->flags & XFS_ATTR_INCOMPLETE); |
| |
| #ifdef DEBUG |
| xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); |
| ASSERT(args->index < ichdr.count); |
| ASSERT(args->index >= 0); |
| |
| if (entry->flags & XFS_ATTR_LOCAL) { |
| name_loc = xfs_attr3_leaf_name_local(leaf, args->index); |
| namelen = name_loc->namelen; |
| name = (char *)name_loc->nameval; |
| } else { |
| name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); |
| namelen = name_rmt->namelen; |
| name = (char *)name_rmt->name; |
| } |
| ASSERT(be32_to_cpu(entry->hashval) == args->hashval); |
| ASSERT(namelen == args->namelen); |
| ASSERT(memcmp(name, args->name, namelen) == 0); |
| #endif /* DEBUG */ |
| |
| entry->flags &= ~XFS_ATTR_INCOMPLETE; |
| xfs_trans_log_buf(args->trans, bp, |
| XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry))); |
| |
| if (args->rmtblkno) { |
| ASSERT((entry->flags & XFS_ATTR_LOCAL) == 0); |
| name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); |
| name_rmt->valueblk = cpu_to_be32(args->rmtblkno); |
| name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen); |
| xfs_trans_log_buf(args->trans, bp, |
| XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt))); |
| } |
| |
| /* |
| * Commit the flag value change and start the next trans in series. |
| */ |
| return xfs_trans_roll_inode(&args->trans, args->dp); |
| } |
| |
| /* |
| * Set the INCOMPLETE flag on an entry in a leaf block. |
| */ |
| int |
| xfs_attr3_leaf_setflag( |
| struct xfs_da_args *args) |
| { |
| struct xfs_attr_leafblock *leaf; |
| struct xfs_attr_leaf_entry *entry; |
| struct xfs_attr_leaf_name_remote *name_rmt; |
| struct xfs_buf *bp; |
| int error; |
| #ifdef DEBUG |
| struct xfs_attr3_icleaf_hdr ichdr; |
| #endif |
| |
| trace_xfs_attr_leaf_setflag(args); |
| |
| /* |
| * Set up the operation. |
| */ |
| error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp); |
| if (error) |
| return error; |
| |
| leaf = bp->b_addr; |
| #ifdef DEBUG |
| xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf); |
| ASSERT(args->index < ichdr.count); |
| ASSERT(args->index >= 0); |
| #endif |
| entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; |
| |
| ASSERT((entry->flags & XFS_ATTR_INCOMPLETE) == 0); |
| entry->flags |= XFS_ATTR_INCOMPLETE; |
| xfs_trans_log_buf(args->trans, bp, |
| XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry))); |
| if ((entry->flags & XFS_ATTR_LOCAL) == 0) { |
| name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); |
| name_rmt->valueblk = 0; |
| name_rmt->valuelen = 0; |
| xfs_trans_log_buf(args->trans, bp, |
| XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt))); |
| } |
| |
| /* |
| * Commit the flag value change and start the next trans in series. |
| */ |
| return xfs_trans_roll_inode(&args->trans, args->dp); |
| } |
| |
| /* |
| * In a single transaction, clear the INCOMPLETE flag on the leaf entry |
| * given by args->blkno/index and set the INCOMPLETE flag on the leaf |
| * entry given by args->blkno2/index2. |
| * |
| * Note that they could be in different blocks, or in the same block. |
| */ |
| int |
| xfs_attr3_leaf_flipflags( |
| struct xfs_da_args *args) |
| { |
| struct xfs_attr_leafblock *leaf1; |
| struct xfs_attr_leafblock *leaf2; |
| struct xfs_attr_leaf_entry *entry1; |
| struct xfs_attr_leaf_entry *entry2; |
| struct xfs_attr_leaf_name_remote *name_rmt; |
| struct xfs_buf *bp1; |
| struct xfs_buf *bp2; |
| int error; |
| #ifdef DEBUG |
| struct xfs_attr3_icleaf_hdr ichdr1; |
| struct xfs_attr3_icleaf_hdr ichdr2; |
| xfs_attr_leaf_name_local_t *name_loc; |
| int namelen1, namelen2; |
| char *name1, *name2; |
| #endif /* DEBUG */ |
| |
| trace_xfs_attr_leaf_flipflags(args); |
| |
| /* |
| * Read the block containing the "old" attr |
| */ |
| error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp1); |
| if (error) |
| return error; |
| |
| /* |
| * Read the block containing the "new" attr, if it is different |
| */ |
| if (args->blkno2 != args->blkno) { |
| error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno2, |
| &bp2); |
| if (error) |
| return error; |
| } else { |
| bp2 = bp1; |
| } |
| |
| leaf1 = bp1->b_addr; |
| entry1 = &xfs_attr3_leaf_entryp(leaf1)[args->index]; |
| |
| leaf2 = bp2->b_addr; |
| entry2 = &xfs_attr3_leaf_entryp(leaf2)[args->index2]; |
| |
| #ifdef DEBUG |
| xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr1, leaf1); |
| ASSERT(args->index < ichdr1.count); |
| ASSERT(args->index >= 0); |
| |
| xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr2, leaf2); |
| ASSERT(args->index2 < ichdr2.count); |
| ASSERT(args->index2 >= 0); |
| |
| if (entry1->flags & XFS_ATTR_LOCAL) { |
| name_loc = xfs_attr3_leaf_name_local(leaf1, args->index); |
| namelen1 = name_loc->namelen; |
| name1 = (char *)name_loc->nameval; |
| } else { |
| name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index); |
| namelen1 = name_rmt->namelen; |
| name1 = (char *)name_rmt->name; |
| } |
| if (entry2->flags & XFS_ATTR_LOCAL) { |
| name_loc = xfs_attr3_leaf_name_local(leaf2, args->index2); |
| namelen2 = name_loc->namelen; |
| name2 = (char *)name_loc->nameval; |
| } else { |
| name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2); |
| namelen2 = name_rmt->namelen; |
| name2 = (char *)name_rmt->name; |
| } |
| ASSERT(be32_to_cpu(entry1->hashval) == be32_to_cpu(entry2->hashval)); |
| ASSERT(namelen1 == namelen2); |
| ASSERT(memcmp(name1, name2, namelen1) == 0); |
| #endif /* DEBUG */ |
| |
| ASSERT(entry1->flags & XFS_ATTR_INCOMPLETE); |
| ASSERT((entry2->flags & XFS_ATTR_INCOMPLETE) == 0); |
| |
| entry1->flags &= ~XFS_ATTR_INCOMPLETE; |
| xfs_trans_log_buf(args->trans, bp1, |
| XFS_DA_LOGRANGE(leaf1, entry1, sizeof(*entry1))); |
| if (args->rmtblkno) { |
| ASSERT((entry1->flags & XFS_ATTR_LOCAL) == 0); |
| name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index); |
| name_rmt->valueblk = cpu_to_be32(args->rmtblkno); |
| name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen); |
| xfs_trans_log_buf(args->trans, bp1, |
| XFS_DA_LOGRANGE(leaf1, name_rmt, sizeof(*name_rmt))); |
| } |
| |
| entry2->flags |= XFS_ATTR_INCOMPLETE; |
| xfs_trans_log_buf(args->trans, bp2, |
| XFS_DA_LOGRANGE(leaf2, entry2, sizeof(*entry2))); |
| if ((entry2->flags & XFS_ATTR_LOCAL) == 0) { |
| name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2); |
| name_rmt->valueblk = 0; |
| name_rmt->valuelen = 0; |
| xfs_trans_log_buf(args->trans, bp2, |
| XFS_DA_LOGRANGE(leaf2, name_rmt, sizeof(*name_rmt))); |
| } |
| |
| /* |
| * Commit the flag value change and start the next trans in series. |
| */ |
| error = xfs_trans_roll_inode(&args->trans, args->dp); |
| |
| return error; |
| } |