| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright 2002-2005, Instant802 Networks, Inc. |
| * Copyright 2005-2006, Devicescape Software, Inc. |
| * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> |
| * Copyright 2007-2008 Johannes Berg <johannes@sipsolutions.net> |
| * Copyright 2013-2014 Intel Mobile Communications GmbH |
| * Copyright 2015-2017 Intel Deutschland GmbH |
| * Copyright 2018-2020 Intel Corporation |
| */ |
| |
| #include <linux/if_ether.h> |
| #include <linux/etherdevice.h> |
| #include <linux/list.h> |
| #include <linux/rcupdate.h> |
| #include <linux/rtnetlink.h> |
| #include <linux/slab.h> |
| #include <linux/export.h> |
| #include <net/mac80211.h> |
| #include <crypto/algapi.h> |
| #include <asm/unaligned.h> |
| #include "ieee80211_i.h" |
| #include "driver-ops.h" |
| #include "debugfs_key.h" |
| #include "aes_ccm.h" |
| #include "aes_cmac.h" |
| #include "aes_gmac.h" |
| #include "aes_gcm.h" |
| |
| |
| /** |
| * DOC: Key handling basics |
| * |
| * Key handling in mac80211 is done based on per-interface (sub_if_data) |
| * keys and per-station keys. Since each station belongs to an interface, |
| * each station key also belongs to that interface. |
| * |
| * Hardware acceleration is done on a best-effort basis for algorithms |
| * that are implemented in software, for each key the hardware is asked |
| * to enable that key for offloading but if it cannot do that the key is |
| * simply kept for software encryption (unless it is for an algorithm |
| * that isn't implemented in software). |
| * There is currently no way of knowing whether a key is handled in SW |
| * or HW except by looking into debugfs. |
| * |
| * All key management is internally protected by a mutex. Within all |
| * other parts of mac80211, key references are, just as STA structure |
| * references, protected by RCU. Note, however, that some things are |
| * unprotected, namely the key->sta dereferences within the hardware |
| * acceleration functions. This means that sta_info_destroy() must |
| * remove the key which waits for an RCU grace period. |
| */ |
| |
| static const u8 bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; |
| |
| static void assert_key_lock(struct ieee80211_local *local) |
| { |
| lockdep_assert_held(&local->key_mtx); |
| } |
| |
| static void |
| update_vlan_tailroom_need_count(struct ieee80211_sub_if_data *sdata, int delta) |
| { |
| struct ieee80211_sub_if_data *vlan; |
| |
| if (sdata->vif.type != NL80211_IFTYPE_AP) |
| return; |
| |
| /* crypto_tx_tailroom_needed_cnt is protected by this */ |
| assert_key_lock(sdata->local); |
| |
| rcu_read_lock(); |
| |
| list_for_each_entry_rcu(vlan, &sdata->u.ap.vlans, u.vlan.list) |
| vlan->crypto_tx_tailroom_needed_cnt += delta; |
| |
| rcu_read_unlock(); |
| } |
| |
| static void increment_tailroom_need_count(struct ieee80211_sub_if_data *sdata) |
| { |
| /* |
| * When this count is zero, SKB resizing for allocating tailroom |
| * for IV or MMIC is skipped. But, this check has created two race |
| * cases in xmit path while transiting from zero count to one: |
| * |
| * 1. SKB resize was skipped because no key was added but just before |
| * the xmit key is added and SW encryption kicks off. |
| * |
| * 2. SKB resize was skipped because all the keys were hw planted but |
| * just before xmit one of the key is deleted and SW encryption kicks |
| * off. |
| * |
| * In both the above case SW encryption will find not enough space for |
| * tailroom and exits with WARN_ON. (See WARN_ONs at wpa.c) |
| * |
| * Solution has been explained at |
| * http://mid.gmane.org/1308590980.4322.19.camel@jlt3.sipsolutions.net |
| */ |
| |
| assert_key_lock(sdata->local); |
| |
| update_vlan_tailroom_need_count(sdata, 1); |
| |
| if (!sdata->crypto_tx_tailroom_needed_cnt++) { |
| /* |
| * Flush all XMIT packets currently using HW encryption or no |
| * encryption at all if the count transition is from 0 -> 1. |
| */ |
| synchronize_net(); |
| } |
| } |
| |
| static void decrease_tailroom_need_count(struct ieee80211_sub_if_data *sdata, |
| int delta) |
| { |
| assert_key_lock(sdata->local); |
| |
| WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt < delta); |
| |
| update_vlan_tailroom_need_count(sdata, -delta); |
| sdata->crypto_tx_tailroom_needed_cnt -= delta; |
| } |
| |
| static int ieee80211_key_enable_hw_accel(struct ieee80211_key *key) |
| { |
| struct ieee80211_sub_if_data *sdata = key->sdata; |
| struct sta_info *sta; |
| int ret = -EOPNOTSUPP; |
| |
| might_sleep(); |
| |
| if (key->flags & KEY_FLAG_TAINTED) { |
| /* If we get here, it's during resume and the key is |
| * tainted so shouldn't be used/programmed any more. |
| * However, its flags may still indicate that it was |
| * programmed into the device (since we're in resume) |
| * so clear that flag now to avoid trying to remove |
| * it again later. |
| */ |
| if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE && |
| !(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC | |
| IEEE80211_KEY_FLAG_PUT_MIC_SPACE | |
| IEEE80211_KEY_FLAG_RESERVE_TAILROOM))) |
| increment_tailroom_need_count(sdata); |
| |
| key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE; |
| return -EINVAL; |
| } |
| |
| if (!key->local->ops->set_key) |
| goto out_unsupported; |
| |
| assert_key_lock(key->local); |
| |
| sta = key->sta; |
| |
| /* |
| * If this is a per-STA GTK, check if it |
| * is supported; if not, return. |
| */ |
| if (sta && !(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE) && |
| !ieee80211_hw_check(&key->local->hw, SUPPORTS_PER_STA_GTK)) |
| goto out_unsupported; |
| |
| if (sta && !sta->uploaded) |
| goto out_unsupported; |
| |
| if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { |
| /* |
| * The driver doesn't know anything about VLAN interfaces. |
| * Hence, don't send GTKs for VLAN interfaces to the driver. |
| */ |
| if (!(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE)) { |
| ret = 1; |
| goto out_unsupported; |
| } |
| } |
| |
| ret = drv_set_key(key->local, SET_KEY, sdata, |
| sta ? &sta->sta : NULL, &key->conf); |
| |
| if (!ret) { |
| key->flags |= KEY_FLAG_UPLOADED_TO_HARDWARE; |
| |
| if (!(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC | |
| IEEE80211_KEY_FLAG_PUT_MIC_SPACE | |
| IEEE80211_KEY_FLAG_RESERVE_TAILROOM))) |
| decrease_tailroom_need_count(sdata, 1); |
| |
| WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) && |
| (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV)); |
| |
| WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_MIC_SPACE) && |
| (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC)); |
| |
| return 0; |
| } |
| |
| if (ret != -ENOSPC && ret != -EOPNOTSUPP && ret != 1) |
| sdata_err(sdata, |
| "failed to set key (%d, %pM) to hardware (%d)\n", |
| key->conf.keyidx, |
| sta ? sta->sta.addr : bcast_addr, ret); |
| |
| out_unsupported: |
| switch (key->conf.cipher) { |
| case WLAN_CIPHER_SUITE_WEP40: |
| case WLAN_CIPHER_SUITE_WEP104: |
| case WLAN_CIPHER_SUITE_TKIP: |
| case WLAN_CIPHER_SUITE_CCMP: |
| case WLAN_CIPHER_SUITE_CCMP_256: |
| case WLAN_CIPHER_SUITE_AES_CMAC: |
| case WLAN_CIPHER_SUITE_BIP_CMAC_256: |
| case WLAN_CIPHER_SUITE_BIP_GMAC_128: |
| case WLAN_CIPHER_SUITE_BIP_GMAC_256: |
| case WLAN_CIPHER_SUITE_GCMP: |
| case WLAN_CIPHER_SUITE_GCMP_256: |
| /* all of these we can do in software - if driver can */ |
| if (ret == 1) |
| return 0; |
| if (ieee80211_hw_check(&key->local->hw, SW_CRYPTO_CONTROL)) |
| return -EINVAL; |
| return 0; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static void ieee80211_key_disable_hw_accel(struct ieee80211_key *key) |
| { |
| struct ieee80211_sub_if_data *sdata; |
| struct sta_info *sta; |
| int ret; |
| |
| might_sleep(); |
| |
| if (!key || !key->local->ops->set_key) |
| return; |
| |
| assert_key_lock(key->local); |
| |
| if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)) |
| return; |
| |
| sta = key->sta; |
| sdata = key->sdata; |
| |
| if (!(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC | |
| IEEE80211_KEY_FLAG_PUT_MIC_SPACE | |
| IEEE80211_KEY_FLAG_RESERVE_TAILROOM))) |
| increment_tailroom_need_count(sdata); |
| |
| key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE; |
| ret = drv_set_key(key->local, DISABLE_KEY, sdata, |
| sta ? &sta->sta : NULL, &key->conf); |
| |
| if (ret) |
| sdata_err(sdata, |
| "failed to remove key (%d, %pM) from hardware (%d)\n", |
| key->conf.keyidx, |
| sta ? sta->sta.addr : bcast_addr, ret); |
| } |
| |
| static int _ieee80211_set_tx_key(struct ieee80211_key *key, bool force) |
| { |
| struct sta_info *sta = key->sta; |
| struct ieee80211_local *local = key->local; |
| |
| assert_key_lock(local); |
| |
| set_sta_flag(sta, WLAN_STA_USES_ENCRYPTION); |
| |
| sta->ptk_idx = key->conf.keyidx; |
| |
| if (force || !ieee80211_hw_check(&local->hw, AMPDU_KEYBORDER_SUPPORT)) |
| clear_sta_flag(sta, WLAN_STA_BLOCK_BA); |
| ieee80211_check_fast_xmit(sta); |
| |
| return 0; |
| } |
| |
| int ieee80211_set_tx_key(struct ieee80211_key *key) |
| { |
| return _ieee80211_set_tx_key(key, false); |
| } |
| |
| static void ieee80211_pairwise_rekey(struct ieee80211_key *old, |
| struct ieee80211_key *new) |
| { |
| struct ieee80211_local *local = new->local; |
| struct sta_info *sta = new->sta; |
| int i; |
| |
| assert_key_lock(local); |
| |
| if (new->conf.flags & IEEE80211_KEY_FLAG_NO_AUTO_TX) { |
| /* Extended Key ID key install, initial one or rekey */ |
| |
| if (sta->ptk_idx != INVALID_PTK_KEYIDX && |
| !ieee80211_hw_check(&local->hw, AMPDU_KEYBORDER_SUPPORT)) { |
| /* Aggregation Sessions with Extended Key ID must not |
| * mix MPDUs with different keyIDs within one A-MPDU. |
| * Tear down running Tx aggregation sessions and block |
| * new Rx/Tx aggregation requests during rekey to |
| * ensure there are no A-MPDUs when the driver is not |
| * supporting A-MPDU key borders. (Blocking Tx only |
| * would be sufficient but WLAN_STA_BLOCK_BA gets the |
| * job done for the few ms we need it.) |
| */ |
| set_sta_flag(sta, WLAN_STA_BLOCK_BA); |
| mutex_lock(&sta->ampdu_mlme.mtx); |
| for (i = 0; i < IEEE80211_NUM_TIDS; i++) |
| ___ieee80211_stop_tx_ba_session(sta, i, |
| AGG_STOP_LOCAL_REQUEST); |
| mutex_unlock(&sta->ampdu_mlme.mtx); |
| } |
| } else if (old) { |
| /* Rekey without Extended Key ID. |
| * Aggregation sessions are OK when running on SW crypto. |
| * A broken remote STA may cause issues not observed with HW |
| * crypto, though. |
| */ |
| if (!(old->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)) |
| return; |
| |
| /* Stop Tx till we are on the new key */ |
| old->flags |= KEY_FLAG_TAINTED; |
| ieee80211_clear_fast_xmit(sta); |
| if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION)) { |
| set_sta_flag(sta, WLAN_STA_BLOCK_BA); |
| ieee80211_sta_tear_down_BA_sessions(sta, |
| AGG_STOP_LOCAL_REQUEST); |
| } |
| if (!wiphy_ext_feature_isset(local->hw.wiphy, |
| NL80211_EXT_FEATURE_CAN_REPLACE_PTK0)) { |
| pr_warn_ratelimited("Rekeying PTK for STA %pM but driver can't safely do that.", |
| sta->sta.addr); |
| /* Flushing the driver queues *may* help prevent |
| * the clear text leaks and freezes. |
| */ |
| ieee80211_flush_queues(local, old->sdata, false); |
| } |
| } |
| } |
| |
| static void __ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, |
| int idx, bool uni, bool multi) |
| { |
| struct ieee80211_key *key = NULL; |
| |
| assert_key_lock(sdata->local); |
| |
| if (idx >= 0 && idx < NUM_DEFAULT_KEYS) |
| key = key_mtx_dereference(sdata->local, sdata->keys[idx]); |
| |
| if (uni) { |
| rcu_assign_pointer(sdata->default_unicast_key, key); |
| ieee80211_check_fast_xmit_iface(sdata); |
| if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN) |
| drv_set_default_unicast_key(sdata->local, sdata, idx); |
| } |
| |
| if (multi) |
| rcu_assign_pointer(sdata->default_multicast_key, key); |
| |
| ieee80211_debugfs_key_update_default(sdata); |
| } |
| |
| void ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, int idx, |
| bool uni, bool multi) |
| { |
| mutex_lock(&sdata->local->key_mtx); |
| __ieee80211_set_default_key(sdata, idx, uni, multi); |
| mutex_unlock(&sdata->local->key_mtx); |
| } |
| |
| static void |
| __ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, int idx) |
| { |
| struct ieee80211_key *key = NULL; |
| |
| assert_key_lock(sdata->local); |
| |
| if (idx >= NUM_DEFAULT_KEYS && |
| idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) |
| key = key_mtx_dereference(sdata->local, sdata->keys[idx]); |
| |
| rcu_assign_pointer(sdata->default_mgmt_key, key); |
| |
| ieee80211_debugfs_key_update_default(sdata); |
| } |
| |
| void ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, |
| int idx) |
| { |
| mutex_lock(&sdata->local->key_mtx); |
| __ieee80211_set_default_mgmt_key(sdata, idx); |
| mutex_unlock(&sdata->local->key_mtx); |
| } |
| |
| static int ieee80211_key_replace(struct ieee80211_sub_if_data *sdata, |
| struct sta_info *sta, |
| bool pairwise, |
| struct ieee80211_key *old, |
| struct ieee80211_key *new) |
| { |
| int idx; |
| int ret = 0; |
| bool defunikey, defmultikey, defmgmtkey; |
| |
| /* caller must provide at least one old/new */ |
| if (WARN_ON(!new && !old)) |
| return 0; |
| |
| if (new) |
| list_add_tail_rcu(&new->list, &sdata->key_list); |
| |
| WARN_ON(new && old && new->conf.keyidx != old->conf.keyidx); |
| |
| if (new && sta && pairwise) { |
| /* Unicast rekey needs special handling. With Extended Key ID |
| * old is still NULL for the first rekey. |
| */ |
| ieee80211_pairwise_rekey(old, new); |
| } |
| |
| if (old) { |
| idx = old->conf.keyidx; |
| |
| if (old->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) { |
| ieee80211_key_disable_hw_accel(old); |
| |
| if (new) |
| ret = ieee80211_key_enable_hw_accel(new); |
| } |
| } else { |
| /* new must be provided in case old is not */ |
| idx = new->conf.keyidx; |
| if (!new->local->wowlan) |
| ret = ieee80211_key_enable_hw_accel(new); |
| } |
| |
| if (ret) |
| return ret; |
| |
| if (sta) { |
| if (pairwise) { |
| rcu_assign_pointer(sta->ptk[idx], new); |
| if (new && |
| !(new->conf.flags & IEEE80211_KEY_FLAG_NO_AUTO_TX)) |
| _ieee80211_set_tx_key(new, true); |
| } else { |
| rcu_assign_pointer(sta->gtk[idx], new); |
| } |
| /* Only needed for transition from no key -> key. |
| * Still triggers unnecessary when using Extended Key ID |
| * and installing the second key ID the first time. |
| */ |
| if (new && !old) |
| ieee80211_check_fast_rx(sta); |
| } else { |
| defunikey = old && |
| old == key_mtx_dereference(sdata->local, |
| sdata->default_unicast_key); |
| defmultikey = old && |
| old == key_mtx_dereference(sdata->local, |
| sdata->default_multicast_key); |
| defmgmtkey = old && |
| old == key_mtx_dereference(sdata->local, |
| sdata->default_mgmt_key); |
| |
| if (defunikey && !new) |
| __ieee80211_set_default_key(sdata, -1, true, false); |
| if (defmultikey && !new) |
| __ieee80211_set_default_key(sdata, -1, false, true); |
| if (defmgmtkey && !new) |
| __ieee80211_set_default_mgmt_key(sdata, -1); |
| |
| rcu_assign_pointer(sdata->keys[idx], new); |
| if (defunikey && new) |
| __ieee80211_set_default_key(sdata, new->conf.keyidx, |
| true, false); |
| if (defmultikey && new) |
| __ieee80211_set_default_key(sdata, new->conf.keyidx, |
| false, true); |
| if (defmgmtkey && new) |
| __ieee80211_set_default_mgmt_key(sdata, |
| new->conf.keyidx); |
| } |
| |
| if (old) |
| list_del_rcu(&old->list); |
| |
| return 0; |
| } |
| |
| struct ieee80211_key * |
| ieee80211_key_alloc(u32 cipher, int idx, size_t key_len, |
| const u8 *key_data, |
| size_t seq_len, const u8 *seq, |
| const struct ieee80211_cipher_scheme *cs) |
| { |
| struct ieee80211_key *key; |
| int i, j, err; |
| |
| if (WARN_ON(idx < 0 || idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)) |
| return ERR_PTR(-EINVAL); |
| |
| key = kzalloc(sizeof(struct ieee80211_key) + key_len, GFP_KERNEL); |
| if (!key) |
| return ERR_PTR(-ENOMEM); |
| |
| /* |
| * Default to software encryption; we'll later upload the |
| * key to the hardware if possible. |
| */ |
| key->conf.flags = 0; |
| key->flags = 0; |
| |
| key->conf.cipher = cipher; |
| key->conf.keyidx = idx; |
| key->conf.keylen = key_len; |
| switch (cipher) { |
| case WLAN_CIPHER_SUITE_WEP40: |
| case WLAN_CIPHER_SUITE_WEP104: |
| key->conf.iv_len = IEEE80211_WEP_IV_LEN; |
| key->conf.icv_len = IEEE80211_WEP_ICV_LEN; |
| break; |
| case WLAN_CIPHER_SUITE_TKIP: |
| key->conf.iv_len = IEEE80211_TKIP_IV_LEN; |
| key->conf.icv_len = IEEE80211_TKIP_ICV_LEN; |
| if (seq) { |
| for (i = 0; i < IEEE80211_NUM_TIDS; i++) { |
| key->u.tkip.rx[i].iv32 = |
| get_unaligned_le32(&seq[2]); |
| key->u.tkip.rx[i].iv16 = |
| get_unaligned_le16(seq); |
| } |
| } |
| spin_lock_init(&key->u.tkip.txlock); |
| break; |
| case WLAN_CIPHER_SUITE_CCMP: |
| key->conf.iv_len = IEEE80211_CCMP_HDR_LEN; |
| key->conf.icv_len = IEEE80211_CCMP_MIC_LEN; |
| if (seq) { |
| for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) |
| for (j = 0; j < IEEE80211_CCMP_PN_LEN; j++) |
| key->u.ccmp.rx_pn[i][j] = |
| seq[IEEE80211_CCMP_PN_LEN - j - 1]; |
| } |
| /* |
| * Initialize AES key state here as an optimization so that |
| * it does not need to be initialized for every packet. |
| */ |
| key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt( |
| key_data, key_len, IEEE80211_CCMP_MIC_LEN); |
| if (IS_ERR(key->u.ccmp.tfm)) { |
| err = PTR_ERR(key->u.ccmp.tfm); |
| kfree(key); |
| return ERR_PTR(err); |
| } |
| break; |
| case WLAN_CIPHER_SUITE_CCMP_256: |
| key->conf.iv_len = IEEE80211_CCMP_256_HDR_LEN; |
| key->conf.icv_len = IEEE80211_CCMP_256_MIC_LEN; |
| for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++) |
| for (j = 0; j < IEEE80211_CCMP_256_PN_LEN; j++) |
| key->u.ccmp.rx_pn[i][j] = |
| seq[IEEE80211_CCMP_256_PN_LEN - j - 1]; |
| /* Initialize AES key state here as an optimization so that |
| * it does not need to be initialized for every packet. |
| */ |
| key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt( |
| key_data, key_len, IEEE80211_CCMP_256_MIC_LEN); |
| if (IS_ERR(key->u.ccmp.tfm)) { |
| err = PTR_ERR(key->u.ccmp.tfm); |
| kfree(key); |
| return ERR_PTR(err); |
| } |
| break; |
| case WLAN_CIPHER_SUITE_AES_CMAC: |
| case WLAN_CIPHER_SUITE_BIP_CMAC_256: |
| key->conf.iv_len = 0; |
| if (cipher == WLAN_CIPHER_SUITE_AES_CMAC) |
| key->conf.icv_len = sizeof(struct ieee80211_mmie); |
| else |
| key->conf.icv_len = sizeof(struct ieee80211_mmie_16); |
| if (seq) |
| for (j = 0; j < IEEE80211_CMAC_PN_LEN; j++) |
| key->u.aes_cmac.rx_pn[j] = |
| seq[IEEE80211_CMAC_PN_LEN - j - 1]; |
| /* |
| * Initialize AES key state here as an optimization so that |
| * it does not need to be initialized for every packet. |
| */ |
| key->u.aes_cmac.tfm = |
| ieee80211_aes_cmac_key_setup(key_data, key_len); |
| if (IS_ERR(key->u.aes_cmac.tfm)) { |
| err = PTR_ERR(key->u.aes_cmac.tfm); |
| kfree(key); |
| return ERR_PTR(err); |
| } |
| break; |
| case WLAN_CIPHER_SUITE_BIP_GMAC_128: |
| case WLAN_CIPHER_SUITE_BIP_GMAC_256: |
| key->conf.iv_len = 0; |
| key->conf.icv_len = sizeof(struct ieee80211_mmie_16); |
| if (seq) |
| for (j = 0; j < IEEE80211_GMAC_PN_LEN; j++) |
| key->u.aes_gmac.rx_pn[j] = |
| seq[IEEE80211_GMAC_PN_LEN - j - 1]; |
| /* Initialize AES key state here as an optimization so that |
| * it does not need to be initialized for every packet. |
| */ |
| key->u.aes_gmac.tfm = |
| ieee80211_aes_gmac_key_setup(key_data, key_len); |
| if (IS_ERR(key->u.aes_gmac.tfm)) { |
| err = PTR_ERR(key->u.aes_gmac.tfm); |
| kfree(key); |
| return ERR_PTR(err); |
| } |
| break; |
| case WLAN_CIPHER_SUITE_GCMP: |
| case WLAN_CIPHER_SUITE_GCMP_256: |
| key->conf.iv_len = IEEE80211_GCMP_HDR_LEN; |
| key->conf.icv_len = IEEE80211_GCMP_MIC_LEN; |
| for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++) |
| for (j = 0; j < IEEE80211_GCMP_PN_LEN; j++) |
| key->u.gcmp.rx_pn[i][j] = |
| seq[IEEE80211_GCMP_PN_LEN - j - 1]; |
| /* Initialize AES key state here as an optimization so that |
| * it does not need to be initialized for every packet. |
| */ |
| key->u.gcmp.tfm = ieee80211_aes_gcm_key_setup_encrypt(key_data, |
| key_len); |
| if (IS_ERR(key->u.gcmp.tfm)) { |
| err = PTR_ERR(key->u.gcmp.tfm); |
| kfree(key); |
| return ERR_PTR(err); |
| } |
| break; |
| default: |
| if (cs) { |
| if (seq_len && seq_len != cs->pn_len) { |
| kfree(key); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| key->conf.iv_len = cs->hdr_len; |
| key->conf.icv_len = cs->mic_len; |
| for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) |
| for (j = 0; j < seq_len; j++) |
| key->u.gen.rx_pn[i][j] = |
| seq[seq_len - j - 1]; |
| key->flags |= KEY_FLAG_CIPHER_SCHEME; |
| } |
| } |
| memcpy(key->conf.key, key_data, key_len); |
| INIT_LIST_HEAD(&key->list); |
| |
| return key; |
| } |
| |
| static void ieee80211_key_free_common(struct ieee80211_key *key) |
| { |
| switch (key->conf.cipher) { |
| case WLAN_CIPHER_SUITE_CCMP: |
| case WLAN_CIPHER_SUITE_CCMP_256: |
| ieee80211_aes_key_free(key->u.ccmp.tfm); |
| break; |
| case WLAN_CIPHER_SUITE_AES_CMAC: |
| case WLAN_CIPHER_SUITE_BIP_CMAC_256: |
| ieee80211_aes_cmac_key_free(key->u.aes_cmac.tfm); |
| break; |
| case WLAN_CIPHER_SUITE_BIP_GMAC_128: |
| case WLAN_CIPHER_SUITE_BIP_GMAC_256: |
| ieee80211_aes_gmac_key_free(key->u.aes_gmac.tfm); |
| break; |
| case WLAN_CIPHER_SUITE_GCMP: |
| case WLAN_CIPHER_SUITE_GCMP_256: |
| ieee80211_aes_gcm_key_free(key->u.gcmp.tfm); |
| break; |
| } |
| kzfree(key); |
| } |
| |
| static void __ieee80211_key_destroy(struct ieee80211_key *key, |
| bool delay_tailroom) |
| { |
| if (key->local) { |
| struct ieee80211_sub_if_data *sdata = key->sdata; |
| |
| ieee80211_debugfs_key_remove(key); |
| |
| if (delay_tailroom) { |
| /* see ieee80211_delayed_tailroom_dec */ |
| sdata->crypto_tx_tailroom_pending_dec++; |
| schedule_delayed_work(&sdata->dec_tailroom_needed_wk, |
| HZ/2); |
| } else { |
| decrease_tailroom_need_count(sdata, 1); |
| } |
| } |
| |
| ieee80211_key_free_common(key); |
| } |
| |
| static void ieee80211_key_destroy(struct ieee80211_key *key, |
| bool delay_tailroom) |
| { |
| if (!key) |
| return; |
| |
| /* |
| * Synchronize so the TX path and rcu key iterators |
| * can no longer be using this key before we free/remove it. |
| */ |
| synchronize_net(); |
| |
| __ieee80211_key_destroy(key, delay_tailroom); |
| } |
| |
| void ieee80211_key_free_unused(struct ieee80211_key *key) |
| { |
| WARN_ON(key->sdata || key->local); |
| ieee80211_key_free_common(key); |
| } |
| |
| static bool ieee80211_key_identical(struct ieee80211_sub_if_data *sdata, |
| struct ieee80211_key *old, |
| struct ieee80211_key *new) |
| { |
| u8 tkip_old[WLAN_KEY_LEN_TKIP], tkip_new[WLAN_KEY_LEN_TKIP]; |
| u8 *tk_old, *tk_new; |
| |
| if (!old || new->conf.keylen != old->conf.keylen) |
| return false; |
| |
| tk_old = old->conf.key; |
| tk_new = new->conf.key; |
| |
| /* |
| * In station mode, don't compare the TX MIC key, as it's never used |
| * and offloaded rekeying may not care to send it to the host. This |
| * is the case in iwlwifi, for example. |
| */ |
| if (sdata->vif.type == NL80211_IFTYPE_STATION && |
| new->conf.cipher == WLAN_CIPHER_SUITE_TKIP && |
| new->conf.keylen == WLAN_KEY_LEN_TKIP && |
| !(new->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE)) { |
| memcpy(tkip_old, tk_old, WLAN_KEY_LEN_TKIP); |
| memcpy(tkip_new, tk_new, WLAN_KEY_LEN_TKIP); |
| memset(tkip_old + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY, 0, 8); |
| memset(tkip_new + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY, 0, 8); |
| tk_old = tkip_old; |
| tk_new = tkip_new; |
| } |
| |
| return !crypto_memneq(tk_old, tk_new, new->conf.keylen); |
| } |
| |
| int ieee80211_key_link(struct ieee80211_key *key, |
| struct ieee80211_sub_if_data *sdata, |
| struct sta_info *sta) |
| { |
| struct ieee80211_key *old_key; |
| int idx = key->conf.keyidx; |
| bool pairwise = key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE; |
| /* |
| * We want to delay tailroom updates only for station - in that |
| * case it helps roaming speed, but in other cases it hurts and |
| * can cause warnings to appear. |
| */ |
| bool delay_tailroom = sdata->vif.type == NL80211_IFTYPE_STATION; |
| int ret = -EOPNOTSUPP; |
| |
| mutex_lock(&sdata->local->key_mtx); |
| |
| if (sta && pairwise) { |
| struct ieee80211_key *alt_key; |
| |
| old_key = key_mtx_dereference(sdata->local, sta->ptk[idx]); |
| alt_key = key_mtx_dereference(sdata->local, sta->ptk[idx ^ 1]); |
| |
| /* The rekey code assumes that the old and new key are using |
| * the same cipher. Enforce the assumption for pairwise keys. |
| */ |
| if ((alt_key && alt_key->conf.cipher != key->conf.cipher) || |
| (old_key && old_key->conf.cipher != key->conf.cipher)) |
| goto out; |
| } else if (sta) { |
| old_key = key_mtx_dereference(sdata->local, sta->gtk[idx]); |
| } else { |
| old_key = key_mtx_dereference(sdata->local, sdata->keys[idx]); |
| } |
| |
| /* Non-pairwise keys must also not switch the cipher on rekey */ |
| if (!pairwise) { |
| if (old_key && old_key->conf.cipher != key->conf.cipher) |
| goto out; |
| } |
| |
| /* |
| * Silently accept key re-installation without really installing the |
| * new version of the key to avoid nonce reuse or replay issues. |
| */ |
| if (ieee80211_key_identical(sdata, old_key, key)) { |
| ieee80211_key_free_unused(key); |
| ret = 0; |
| goto out; |
| } |
| |
| key->local = sdata->local; |
| key->sdata = sdata; |
| key->sta = sta; |
| |
| increment_tailroom_need_count(sdata); |
| |
| ret = ieee80211_key_replace(sdata, sta, pairwise, old_key, key); |
| |
| if (!ret) { |
| ieee80211_debugfs_key_add(key); |
| ieee80211_key_destroy(old_key, delay_tailroom); |
| } else { |
| ieee80211_key_free(key, delay_tailroom); |
| } |
| |
| out: |
| mutex_unlock(&sdata->local->key_mtx); |
| |
| return ret; |
| } |
| |
| void ieee80211_key_free(struct ieee80211_key *key, bool delay_tailroom) |
| { |
| if (!key) |
| return; |
| |
| /* |
| * Replace key with nothingness if it was ever used. |
| */ |
| if (key->sdata) |
| ieee80211_key_replace(key->sdata, key->sta, |
| key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE, |
| key, NULL); |
| ieee80211_key_destroy(key, delay_tailroom); |
| } |
| |
| void ieee80211_reenable_keys(struct ieee80211_sub_if_data *sdata) |
| { |
| struct ieee80211_key *key; |
| struct ieee80211_sub_if_data *vlan; |
| |
| ASSERT_RTNL(); |
| |
| mutex_lock(&sdata->local->key_mtx); |
| |
| sdata->crypto_tx_tailroom_needed_cnt = 0; |
| sdata->crypto_tx_tailroom_pending_dec = 0; |
| |
| if (sdata->vif.type == NL80211_IFTYPE_AP) { |
| list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list) { |
| vlan->crypto_tx_tailroom_needed_cnt = 0; |
| vlan->crypto_tx_tailroom_pending_dec = 0; |
| } |
| } |
| |
| if (ieee80211_sdata_running(sdata)) { |
| list_for_each_entry(key, &sdata->key_list, list) { |
| increment_tailroom_need_count(sdata); |
| ieee80211_key_enable_hw_accel(key); |
| } |
| } |
| |
| mutex_unlock(&sdata->local->key_mtx); |
| } |
| |
| void ieee80211_iter_keys(struct ieee80211_hw *hw, |
| struct ieee80211_vif *vif, |
| void (*iter)(struct ieee80211_hw *hw, |
| struct ieee80211_vif *vif, |
| struct ieee80211_sta *sta, |
| struct ieee80211_key_conf *key, |
| void *data), |
| void *iter_data) |
| { |
| struct ieee80211_local *local = hw_to_local(hw); |
| struct ieee80211_key *key, *tmp; |
| struct ieee80211_sub_if_data *sdata; |
| |
| ASSERT_RTNL(); |
| |
| mutex_lock(&local->key_mtx); |
| if (vif) { |
| sdata = vif_to_sdata(vif); |
| list_for_each_entry_safe(key, tmp, &sdata->key_list, list) |
| iter(hw, &sdata->vif, |
| key->sta ? &key->sta->sta : NULL, |
| &key->conf, iter_data); |
| } else { |
| list_for_each_entry(sdata, &local->interfaces, list) |
| list_for_each_entry_safe(key, tmp, |
| &sdata->key_list, list) |
| iter(hw, &sdata->vif, |
| key->sta ? &key->sta->sta : NULL, |
| &key->conf, iter_data); |
| } |
| mutex_unlock(&local->key_mtx); |
| } |
| EXPORT_SYMBOL(ieee80211_iter_keys); |
| |
| static void |
| _ieee80211_iter_keys_rcu(struct ieee80211_hw *hw, |
| struct ieee80211_sub_if_data *sdata, |
| void (*iter)(struct ieee80211_hw *hw, |
| struct ieee80211_vif *vif, |
| struct ieee80211_sta *sta, |
| struct ieee80211_key_conf *key, |
| void *data), |
| void *iter_data) |
| { |
| struct ieee80211_key *key; |
| |
| list_for_each_entry_rcu(key, &sdata->key_list, list) { |
| /* skip keys of station in removal process */ |
| if (key->sta && key->sta->removed) |
| continue; |
| if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)) |
| continue; |
| |
| iter(hw, &sdata->vif, |
| key->sta ? &key->sta->sta : NULL, |
| &key->conf, iter_data); |
| } |
| } |
| |
| void ieee80211_iter_keys_rcu(struct ieee80211_hw *hw, |
| struct ieee80211_vif *vif, |
| void (*iter)(struct ieee80211_hw *hw, |
| struct ieee80211_vif *vif, |
| struct ieee80211_sta *sta, |
| struct ieee80211_key_conf *key, |
| void *data), |
| void *iter_data) |
| { |
| struct ieee80211_local *local = hw_to_local(hw); |
| struct ieee80211_sub_if_data *sdata; |
| |
| if (vif) { |
| sdata = vif_to_sdata(vif); |
| _ieee80211_iter_keys_rcu(hw, sdata, iter, iter_data); |
| } else { |
| list_for_each_entry_rcu(sdata, &local->interfaces, list) |
| _ieee80211_iter_keys_rcu(hw, sdata, iter, iter_data); |
| } |
| } |
| EXPORT_SYMBOL(ieee80211_iter_keys_rcu); |
| |
| static void ieee80211_free_keys_iface(struct ieee80211_sub_if_data *sdata, |
| struct list_head *keys) |
| { |
| struct ieee80211_key *key, *tmp; |
| |
| decrease_tailroom_need_count(sdata, |
| sdata->crypto_tx_tailroom_pending_dec); |
| sdata->crypto_tx_tailroom_pending_dec = 0; |
| |
| ieee80211_debugfs_key_remove_mgmt_default(sdata); |
| |
| list_for_each_entry_safe(key, tmp, &sdata->key_list, list) { |
| ieee80211_key_replace(key->sdata, key->sta, |
| key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE, |
| key, NULL); |
| list_add_tail(&key->list, keys); |
| } |
| |
| ieee80211_debugfs_key_update_default(sdata); |
| } |
| |
| void ieee80211_free_keys(struct ieee80211_sub_if_data *sdata, |
| bool force_synchronize) |
| { |
| struct ieee80211_local *local = sdata->local; |
| struct ieee80211_sub_if_data *vlan; |
| struct ieee80211_sub_if_data *master; |
| struct ieee80211_key *key, *tmp; |
| LIST_HEAD(keys); |
| |
| cancel_delayed_work_sync(&sdata->dec_tailroom_needed_wk); |
| |
| mutex_lock(&local->key_mtx); |
| |
| ieee80211_free_keys_iface(sdata, &keys); |
| |
| if (sdata->vif.type == NL80211_IFTYPE_AP) { |
| list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list) |
| ieee80211_free_keys_iface(vlan, &keys); |
| } |
| |
| if (!list_empty(&keys) || force_synchronize) |
| synchronize_net(); |
| list_for_each_entry_safe(key, tmp, &keys, list) |
| __ieee80211_key_destroy(key, false); |
| |
| if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { |
| if (sdata->bss) { |
| master = container_of(sdata->bss, |
| struct ieee80211_sub_if_data, |
| u.ap); |
| |
| WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt != |
| master->crypto_tx_tailroom_needed_cnt); |
| } |
| } else { |
| WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt || |
| sdata->crypto_tx_tailroom_pending_dec); |
| } |
| |
| if (sdata->vif.type == NL80211_IFTYPE_AP) { |
| list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list) |
| WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt || |
| vlan->crypto_tx_tailroom_pending_dec); |
| } |
| |
| mutex_unlock(&local->key_mtx); |
| } |
| |
| void ieee80211_free_sta_keys(struct ieee80211_local *local, |
| struct sta_info *sta) |
| { |
| struct ieee80211_key *key; |
| int i; |
| |
| mutex_lock(&local->key_mtx); |
| for (i = 0; i < ARRAY_SIZE(sta->gtk); i++) { |
| key = key_mtx_dereference(local, sta->gtk[i]); |
| if (!key) |
| continue; |
| ieee80211_key_replace(key->sdata, key->sta, |
| key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE, |
| key, NULL); |
| __ieee80211_key_destroy(key, key->sdata->vif.type == |
| NL80211_IFTYPE_STATION); |
| } |
| |
| for (i = 0; i < NUM_DEFAULT_KEYS; i++) { |
| key = key_mtx_dereference(local, sta->ptk[i]); |
| if (!key) |
| continue; |
| ieee80211_key_replace(key->sdata, key->sta, |
| key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE, |
| key, NULL); |
| __ieee80211_key_destroy(key, key->sdata->vif.type == |
| NL80211_IFTYPE_STATION); |
| } |
| |
| mutex_unlock(&local->key_mtx); |
| } |
| |
| void ieee80211_delayed_tailroom_dec(struct work_struct *wk) |
| { |
| struct ieee80211_sub_if_data *sdata; |
| |
| sdata = container_of(wk, struct ieee80211_sub_if_data, |
| dec_tailroom_needed_wk.work); |
| |
| /* |
| * The reason for the delayed tailroom needed decrementing is to |
| * make roaming faster: during roaming, all keys are first deleted |
| * and then new keys are installed. The first new key causes the |
| * crypto_tx_tailroom_needed_cnt to go from 0 to 1, which invokes |
| * the cost of synchronize_net() (which can be slow). Avoid this |
| * by deferring the crypto_tx_tailroom_needed_cnt decrementing on |
| * key removal for a while, so if we roam the value is larger than |
| * zero and no 0->1 transition happens. |
| * |
| * The cost is that if the AP switching was from an AP with keys |
| * to one without, we still allocate tailroom while it would no |
| * longer be needed. However, in the typical (fast) roaming case |
| * within an ESS this usually won't happen. |
| */ |
| |
| mutex_lock(&sdata->local->key_mtx); |
| decrease_tailroom_need_count(sdata, |
| sdata->crypto_tx_tailroom_pending_dec); |
| sdata->crypto_tx_tailroom_pending_dec = 0; |
| mutex_unlock(&sdata->local->key_mtx); |
| } |
| |
| void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid, |
| const u8 *replay_ctr, gfp_t gfp) |
| { |
| struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); |
| |
| trace_api_gtk_rekey_notify(sdata, bssid, replay_ctr); |
| |
| cfg80211_gtk_rekey_notify(sdata->dev, bssid, replay_ctr, gfp); |
| } |
| EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_notify); |
| |
| void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf, |
| int tid, struct ieee80211_key_seq *seq) |
| { |
| struct ieee80211_key *key; |
| const u8 *pn; |
| |
| key = container_of(keyconf, struct ieee80211_key, conf); |
| |
| switch (key->conf.cipher) { |
| case WLAN_CIPHER_SUITE_TKIP: |
| if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS)) |
| return; |
| seq->tkip.iv32 = key->u.tkip.rx[tid].iv32; |
| seq->tkip.iv16 = key->u.tkip.rx[tid].iv16; |
| break; |
| case WLAN_CIPHER_SUITE_CCMP: |
| case WLAN_CIPHER_SUITE_CCMP_256: |
| if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS)) |
| return; |
| if (tid < 0) |
| pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS]; |
| else |
| pn = key->u.ccmp.rx_pn[tid]; |
| memcpy(seq->ccmp.pn, pn, IEEE80211_CCMP_PN_LEN); |
| break; |
| case WLAN_CIPHER_SUITE_AES_CMAC: |
| case WLAN_CIPHER_SUITE_BIP_CMAC_256: |
| if (WARN_ON(tid != 0)) |
| return; |
| pn = key->u.aes_cmac.rx_pn; |
| memcpy(seq->aes_cmac.pn, pn, IEEE80211_CMAC_PN_LEN); |
| break; |
| case WLAN_CIPHER_SUITE_BIP_GMAC_128: |
| case WLAN_CIPHER_SUITE_BIP_GMAC_256: |
| if (WARN_ON(tid != 0)) |
| return; |
| pn = key->u.aes_gmac.rx_pn; |
| memcpy(seq->aes_gmac.pn, pn, IEEE80211_GMAC_PN_LEN); |
| break; |
| case WLAN_CIPHER_SUITE_GCMP: |
| case WLAN_CIPHER_SUITE_GCMP_256: |
| if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS)) |
| return; |
| if (tid < 0) |
| pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS]; |
| else |
| pn = key->u.gcmp.rx_pn[tid]; |
| memcpy(seq->gcmp.pn, pn, IEEE80211_GCMP_PN_LEN); |
| break; |
| } |
| } |
| EXPORT_SYMBOL(ieee80211_get_key_rx_seq); |
| |
| void ieee80211_set_key_rx_seq(struct ieee80211_key_conf *keyconf, |
| int tid, struct ieee80211_key_seq *seq) |
| { |
| struct ieee80211_key *key; |
| u8 *pn; |
| |
| key = container_of(keyconf, struct ieee80211_key, conf); |
| |
| switch (key->conf.cipher) { |
| case WLAN_CIPHER_SUITE_TKIP: |
| if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS)) |
| return; |
| key->u.tkip.rx[tid].iv32 = seq->tkip.iv32; |
| key->u.tkip.rx[tid].iv16 = seq->tkip.iv16; |
| break; |
| case WLAN_CIPHER_SUITE_CCMP: |
| case WLAN_CIPHER_SUITE_CCMP_256: |
| if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS)) |
| return; |
| if (tid < 0) |
| pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS]; |
| else |
| pn = key->u.ccmp.rx_pn[tid]; |
| memcpy(pn, seq->ccmp.pn, IEEE80211_CCMP_PN_LEN); |
| break; |
| case WLAN_CIPHER_SUITE_AES_CMAC: |
| case WLAN_CIPHER_SUITE_BIP_CMAC_256: |
| if (WARN_ON(tid != 0)) |
| return; |
| pn = key->u.aes_cmac.rx_pn; |
| memcpy(pn, seq->aes_cmac.pn, IEEE80211_CMAC_PN_LEN); |
| break; |
| case WLAN_CIPHER_SUITE_BIP_GMAC_128: |
| case WLAN_CIPHER_SUITE_BIP_GMAC_256: |
| if (WARN_ON(tid != 0)) |
| return; |
| pn = key->u.aes_gmac.rx_pn; |
| memcpy(pn, seq->aes_gmac.pn, IEEE80211_GMAC_PN_LEN); |
| break; |
| case WLAN_CIPHER_SUITE_GCMP: |
| case WLAN_CIPHER_SUITE_GCMP_256: |
| if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS)) |
| return; |
| if (tid < 0) |
| pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS]; |
| else |
| pn = key->u.gcmp.rx_pn[tid]; |
| memcpy(pn, seq->gcmp.pn, IEEE80211_GCMP_PN_LEN); |
| break; |
| default: |
| WARN_ON(1); |
| break; |
| } |
| } |
| EXPORT_SYMBOL_GPL(ieee80211_set_key_rx_seq); |
| |
| void ieee80211_remove_key(struct ieee80211_key_conf *keyconf) |
| { |
| struct ieee80211_key *key; |
| |
| key = container_of(keyconf, struct ieee80211_key, conf); |
| |
| assert_key_lock(key->local); |
| |
| /* |
| * if key was uploaded, we assume the driver will/has remove(d) |
| * it, so adjust bookkeeping accordingly |
| */ |
| if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) { |
| key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE; |
| |
| if (!(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC | |
| IEEE80211_KEY_FLAG_PUT_MIC_SPACE | |
| IEEE80211_KEY_FLAG_RESERVE_TAILROOM))) |
| increment_tailroom_need_count(key->sdata); |
| } |
| |
| ieee80211_key_free(key, false); |
| } |
| EXPORT_SYMBOL_GPL(ieee80211_remove_key); |
| |
| struct ieee80211_key_conf * |
| ieee80211_gtk_rekey_add(struct ieee80211_vif *vif, |
| struct ieee80211_key_conf *keyconf) |
| { |
| struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); |
| struct ieee80211_local *local = sdata->local; |
| struct ieee80211_key *key; |
| int err; |
| |
| if (WARN_ON(!local->wowlan)) |
| return ERR_PTR(-EINVAL); |
| |
| if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) |
| return ERR_PTR(-EINVAL); |
| |
| key = ieee80211_key_alloc(keyconf->cipher, keyconf->keyidx, |
| keyconf->keylen, keyconf->key, |
| 0, NULL, NULL); |
| if (IS_ERR(key)) |
| return ERR_CAST(key); |
| |
| if (sdata->u.mgd.mfp != IEEE80211_MFP_DISABLED) |
| key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT; |
| |
| err = ieee80211_key_link(key, sdata, NULL); |
| if (err) |
| return ERR_PTR(err); |
| |
| return &key->conf; |
| } |
| EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_add); |