| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (c) 2010 Christoph Mair <christoph.mair@gmail.com> |
| * Copyright (c) 2012 Bosch Sensortec GmbH |
| * Copyright (c) 2012 Unixphere AB |
| * Copyright (c) 2014 Intel Corporation |
| * Copyright (c) 2016 Linus Walleij <linus.walleij@linaro.org> |
| * |
| * Driver for Bosch Sensortec BMP180 and BMP280 digital pressure sensor. |
| * |
| * Datasheet: |
| * https://cdn-shop.adafruit.com/datasheets/BST-BMP180-DS000-09.pdf |
| * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp280-ds001.pdf |
| * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf |
| * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp388-ds001.pdf |
| * |
| * Notice: |
| * The link to the bmp180 datasheet points to an outdated version missing these changes: |
| * - Changed document referral from ANP015 to BST-MPS-AN004-00 on page 26 |
| * - Updated equation for B3 param on section 3.5 to ((((long)AC1 * 4 + X3) << oss) + 2) / 4 |
| * - Updated RoHS directive to 2011/65/EU effective 8 June 2011 on page 26 |
| */ |
| |
| #define pr_fmt(fmt) "bmp280: " fmt |
| |
| #include <linux/bitops.h> |
| #include <linux/bitfield.h> |
| #include <linux/device.h> |
| #include <linux/module.h> |
| #include <linux/regmap.h> |
| #include <linux/delay.h> |
| #include <linux/iio/iio.h> |
| #include <linux/iio/sysfs.h> |
| #include <linux/gpio/consumer.h> |
| #include <linux/regulator/consumer.h> |
| #include <linux/interrupt.h> |
| #include <linux/irq.h> /* For irq_get_irq_data() */ |
| #include <linux/completion.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/random.h> |
| |
| #include <asm/unaligned.h> |
| |
| #include "bmp280.h" |
| |
| /* |
| * These enums are used for indexing into the array of calibration |
| * coefficients for BMP180. |
| */ |
| enum { AC1, AC2, AC3, AC4, AC5, AC6, B1, B2, MB, MC, MD }; |
| |
| struct bmp180_calib { |
| s16 AC1; |
| s16 AC2; |
| s16 AC3; |
| u16 AC4; |
| u16 AC5; |
| u16 AC6; |
| s16 B1; |
| s16 B2; |
| s16 MB; |
| s16 MC; |
| s16 MD; |
| }; |
| |
| /* See datasheet Section 4.2.2. */ |
| struct bmp280_calib { |
| u16 T1; |
| s16 T2; |
| s16 T3; |
| u16 P1; |
| s16 P2; |
| s16 P3; |
| s16 P4; |
| s16 P5; |
| s16 P6; |
| s16 P7; |
| s16 P8; |
| s16 P9; |
| u8 H1; |
| s16 H2; |
| u8 H3; |
| s16 H4; |
| s16 H5; |
| s8 H6; |
| }; |
| |
| /* See datasheet Section 3.11.1. */ |
| struct bmp380_calib { |
| u16 T1; |
| u16 T2; |
| s8 T3; |
| s16 P1; |
| s16 P2; |
| s8 P3; |
| s8 P4; |
| u16 P5; |
| u16 P6; |
| s8 P7; |
| s8 P8; |
| s16 P9; |
| s8 P10; |
| s8 P11; |
| }; |
| |
| static const char *const bmp280_supply_names[] = { |
| "vddd", "vdda" |
| }; |
| |
| #define BMP280_NUM_SUPPLIES ARRAY_SIZE(bmp280_supply_names) |
| |
| enum bmp380_odr { |
| BMP380_ODR_200HZ, |
| BMP380_ODR_100HZ, |
| BMP380_ODR_50HZ, |
| BMP380_ODR_25HZ, |
| BMP380_ODR_12_5HZ, |
| BMP380_ODR_6_25HZ, |
| BMP380_ODR_3_125HZ, |
| BMP380_ODR_1_5625HZ, |
| BMP380_ODR_0_78HZ, |
| BMP380_ODR_0_39HZ, |
| BMP380_ODR_0_2HZ, |
| BMP380_ODR_0_1HZ, |
| BMP380_ODR_0_05HZ, |
| BMP380_ODR_0_02HZ, |
| BMP380_ODR_0_01HZ, |
| BMP380_ODR_0_006HZ, |
| BMP380_ODR_0_003HZ, |
| BMP380_ODR_0_0015HZ, |
| }; |
| |
| struct bmp280_data { |
| struct device *dev; |
| struct mutex lock; |
| struct regmap *regmap; |
| struct completion done; |
| bool use_eoc; |
| const struct bmp280_chip_info *chip_info; |
| union { |
| struct bmp180_calib bmp180; |
| struct bmp280_calib bmp280; |
| struct bmp380_calib bmp380; |
| } calib; |
| struct regulator_bulk_data supplies[BMP280_NUM_SUPPLIES]; |
| unsigned int start_up_time; /* in microseconds */ |
| |
| /* log of base 2 of oversampling rate */ |
| u8 oversampling_press; |
| u8 oversampling_temp; |
| u8 oversampling_humid; |
| u8 iir_filter_coeff; |
| |
| /* |
| * BMP380 devices introduce sampling frequency configuration. See |
| * datasheet sections 3.3.3. and 4.3.19 for more details. |
| * |
| * BMx280 devices allowed indirect configuration of sampling frequency |
| * changing the t_standby duration between measurements, as detailed on |
| * section 3.6.3 of the datasheet. |
| */ |
| int sampling_freq; |
| |
| /* |
| * Carryover value from temperature conversion, used in pressure |
| * calculation. |
| */ |
| s32 t_fine; |
| |
| /* |
| * DMA (thus cache coherency maintenance) may require the |
| * transfer buffers to live in their own cache lines. |
| */ |
| union { |
| /* Sensor data buffer */ |
| u8 buf[3]; |
| /* Calibration data buffers */ |
| __le16 bmp280_cal_buf[BMP280_CONTIGUOUS_CALIB_REGS / 2]; |
| __be16 bmp180_cal_buf[BMP180_REG_CALIB_COUNT / 2]; |
| u8 bmp380_cal_buf[BMP380_CALIB_REG_COUNT]; |
| /* Miscellaneous, endianess-aware data buffers */ |
| __le16 le16; |
| __be16 be16; |
| } __aligned(IIO_DMA_MINALIGN); |
| }; |
| |
| struct bmp280_chip_info { |
| unsigned int id_reg; |
| |
| const struct iio_chan_spec *channels; |
| int num_channels; |
| unsigned int start_up_time; |
| |
| const int *oversampling_temp_avail; |
| int num_oversampling_temp_avail; |
| int oversampling_temp_default; |
| |
| const int *oversampling_press_avail; |
| int num_oversampling_press_avail; |
| int oversampling_press_default; |
| |
| const int *oversampling_humid_avail; |
| int num_oversampling_humid_avail; |
| int oversampling_humid_default; |
| |
| const int *iir_filter_coeffs_avail; |
| int num_iir_filter_coeffs_avail; |
| int iir_filter_coeff_default; |
| |
| const int (*sampling_freq_avail)[2]; |
| int num_sampling_freq_avail; |
| int sampling_freq_default; |
| |
| int (*chip_config)(struct bmp280_data *); |
| int (*read_temp)(struct bmp280_data *, int *); |
| int (*read_press)(struct bmp280_data *, int *, int *); |
| int (*read_humid)(struct bmp280_data *, int *, int *); |
| int (*read_calib)(struct bmp280_data *); |
| }; |
| |
| /* |
| * These enums are used for indexing into the array of compensation |
| * parameters for BMP280. |
| */ |
| enum { T1, T2, T3, P1, P2, P3, P4, P5, P6, P7, P8, P9 }; |
| |
| enum { |
| /* Temperature calib indexes */ |
| BMP380_T1 = 0, |
| BMP380_T2 = 2, |
| BMP380_T3 = 4, |
| /* Pressure calib indexes */ |
| BMP380_P1 = 5, |
| BMP380_P2 = 7, |
| BMP380_P3 = 9, |
| BMP380_P4 = 10, |
| BMP380_P5 = 11, |
| BMP380_P6 = 13, |
| BMP380_P7 = 15, |
| BMP380_P8 = 16, |
| BMP380_P9 = 17, |
| BMP380_P10 = 19, |
| BMP380_P11 = 20, |
| }; |
| |
| static const struct iio_chan_spec bmp280_channels[] = { |
| { |
| .type = IIO_PRESSURE, |
| .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | |
| BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), |
| }, |
| { |
| .type = IIO_TEMP, |
| .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | |
| BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), |
| }, |
| { |
| .type = IIO_HUMIDITYRELATIVE, |
| .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | |
| BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), |
| }, |
| }; |
| |
| static const struct iio_chan_spec bmp380_channels[] = { |
| { |
| .type = IIO_PRESSURE, |
| .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | |
| BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), |
| .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) | |
| BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), |
| }, |
| { |
| .type = IIO_TEMP, |
| .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | |
| BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), |
| .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) | |
| BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), |
| }, |
| { |
| .type = IIO_HUMIDITYRELATIVE, |
| .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | |
| BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), |
| .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) | |
| BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), |
| }, |
| }; |
| |
| static int bmp280_read_calib(struct bmp280_data *data) |
| { |
| struct bmp280_calib *calib = &data->calib.bmp280; |
| int ret; |
| |
| |
| /* Read temperature and pressure calibration values. */ |
| ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_TEMP_START, |
| data->bmp280_cal_buf, sizeof(data->bmp280_cal_buf)); |
| if (ret < 0) { |
| dev_err(data->dev, |
| "failed to read temperature and pressure calibration parameters\n"); |
| return ret; |
| } |
| |
| /* Toss the temperature and pressure calibration data into the entropy pool */ |
| add_device_randomness(data->bmp280_cal_buf, sizeof(data->bmp280_cal_buf)); |
| |
| /* Parse temperature calibration values. */ |
| calib->T1 = le16_to_cpu(data->bmp280_cal_buf[T1]); |
| calib->T2 = le16_to_cpu(data->bmp280_cal_buf[T2]); |
| calib->T3 = le16_to_cpu(data->bmp280_cal_buf[T3]); |
| |
| /* Parse pressure calibration values. */ |
| calib->P1 = le16_to_cpu(data->bmp280_cal_buf[P1]); |
| calib->P2 = le16_to_cpu(data->bmp280_cal_buf[P2]); |
| calib->P3 = le16_to_cpu(data->bmp280_cal_buf[P3]); |
| calib->P4 = le16_to_cpu(data->bmp280_cal_buf[P4]); |
| calib->P5 = le16_to_cpu(data->bmp280_cal_buf[P5]); |
| calib->P6 = le16_to_cpu(data->bmp280_cal_buf[P6]); |
| calib->P7 = le16_to_cpu(data->bmp280_cal_buf[P7]); |
| calib->P8 = le16_to_cpu(data->bmp280_cal_buf[P8]); |
| calib->P9 = le16_to_cpu(data->bmp280_cal_buf[P9]); |
| |
| return 0; |
| } |
| |
| static int bme280_read_calib(struct bmp280_data *data) |
| { |
| struct bmp280_calib *calib = &data->calib.bmp280; |
| struct device *dev = data->dev; |
| unsigned int tmp; |
| int ret; |
| |
| /* Load shared calibration params with bmp280 first */ |
| ret = bmp280_read_calib(data); |
| if (ret < 0) { |
| dev_err(dev, "failed to read common bmp280 calibration parameters\n"); |
| return ret; |
| } |
| |
| /* |
| * Read humidity calibration values. |
| * Due to some odd register addressing we cannot just |
| * do a big bulk read. Instead, we have to read each Hx |
| * value separately and sometimes do some bit shifting... |
| * Humidity data is only available on BME280. |
| */ |
| |
| ret = regmap_read(data->regmap, BMP280_REG_COMP_H1, &tmp); |
| if (ret < 0) { |
| dev_err(dev, "failed to read H1 comp value\n"); |
| return ret; |
| } |
| calib->H1 = tmp; |
| |
| ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H2, |
| &data->le16, sizeof(data->le16)); |
| if (ret < 0) { |
| dev_err(dev, "failed to read H2 comp value\n"); |
| return ret; |
| } |
| calib->H2 = sign_extend32(le16_to_cpu(data->le16), 15); |
| |
| ret = regmap_read(data->regmap, BMP280_REG_COMP_H3, &tmp); |
| if (ret < 0) { |
| dev_err(dev, "failed to read H3 comp value\n"); |
| return ret; |
| } |
| calib->H3 = tmp; |
| |
| ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H4, |
| &data->be16, sizeof(data->be16)); |
| if (ret < 0) { |
| dev_err(dev, "failed to read H4 comp value\n"); |
| return ret; |
| } |
| calib->H4 = sign_extend32(((be16_to_cpu(data->be16) >> 4) & 0xff0) | |
| (be16_to_cpu(data->be16) & 0xf), 11); |
| |
| ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H5, |
| &data->le16, sizeof(data->le16)); |
| if (ret < 0) { |
| dev_err(dev, "failed to read H5 comp value\n"); |
| return ret; |
| } |
| calib->H5 = sign_extend32(FIELD_GET(BMP280_COMP_H5_MASK, le16_to_cpu(data->le16)), 11); |
| |
| ret = regmap_read(data->regmap, BMP280_REG_COMP_H6, &tmp); |
| if (ret < 0) { |
| dev_err(dev, "failed to read H6 comp value\n"); |
| return ret; |
| } |
| calib->H6 = sign_extend32(tmp, 7); |
| |
| return 0; |
| } |
| /* |
| * Returns humidity in percent, resolution is 0.01 percent. Output value of |
| * "47445" represents 47445/1024 = 46.333 %RH. |
| * |
| * Taken from BME280 datasheet, Section 4.2.3, "Compensation formula". |
| */ |
| static u32 bmp280_compensate_humidity(struct bmp280_data *data, |
| s32 adc_humidity) |
| { |
| struct bmp280_calib *calib = &data->calib.bmp280; |
| s32 var; |
| |
| var = ((s32)data->t_fine) - (s32)76800; |
| var = ((((adc_humidity << 14) - (calib->H4 << 20) - (calib->H5 * var)) |
| + (s32)16384) >> 15) * (((((((var * calib->H6) >> 10) |
| * (((var * (s32)calib->H3) >> 11) + (s32)32768)) >> 10) |
| + (s32)2097152) * calib->H2 + 8192) >> 14); |
| var -= ((((var >> 15) * (var >> 15)) >> 7) * (s32)calib->H1) >> 4; |
| |
| var = clamp_val(var, 0, 419430400); |
| |
| return var >> 12; |
| }; |
| |
| /* |
| * Returns temperature in DegC, resolution is 0.01 DegC. Output value of |
| * "5123" equals 51.23 DegC. t_fine carries fine temperature as global |
| * value. |
| * |
| * Taken from datasheet, Section 3.11.3, "Compensation formula". |
| */ |
| static s32 bmp280_compensate_temp(struct bmp280_data *data, |
| s32 adc_temp) |
| { |
| struct bmp280_calib *calib = &data->calib.bmp280; |
| s32 var1, var2; |
| |
| var1 = (((adc_temp >> 3) - ((s32)calib->T1 << 1)) * |
| ((s32)calib->T2)) >> 11; |
| var2 = (((((adc_temp >> 4) - ((s32)calib->T1)) * |
| ((adc_temp >> 4) - ((s32)calib->T1))) >> 12) * |
| ((s32)calib->T3)) >> 14; |
| data->t_fine = var1 + var2; |
| |
| return (data->t_fine * 5 + 128) >> 8; |
| } |
| |
| /* |
| * Returns pressure in Pa as unsigned 32 bit integer in Q24.8 format (24 |
| * integer bits and 8 fractional bits). Output value of "24674867" |
| * represents 24674867/256 = 96386.2 Pa = 963.862 hPa |
| * |
| * Taken from datasheet, Section 3.11.3, "Compensation formula". |
| */ |
| static u32 bmp280_compensate_press(struct bmp280_data *data, |
| s32 adc_press) |
| { |
| struct bmp280_calib *calib = &data->calib.bmp280; |
| s64 var1, var2, p; |
| |
| var1 = ((s64)data->t_fine) - 128000; |
| var2 = var1 * var1 * (s64)calib->P6; |
| var2 += (var1 * (s64)calib->P5) << 17; |
| var2 += ((s64)calib->P4) << 35; |
| var1 = ((var1 * var1 * (s64)calib->P3) >> 8) + |
| ((var1 * (s64)calib->P2) << 12); |
| var1 = ((((s64)1) << 47) + var1) * ((s64)calib->P1) >> 33; |
| |
| if (var1 == 0) |
| return 0; |
| |
| p = ((((s64)1048576 - adc_press) << 31) - var2) * 3125; |
| p = div64_s64(p, var1); |
| var1 = (((s64)calib->P9) * (p >> 13) * (p >> 13)) >> 25; |
| var2 = ((s64)(calib->P8) * p) >> 19; |
| p = ((p + var1 + var2) >> 8) + (((s64)calib->P7) << 4); |
| |
| return (u32)p; |
| } |
| |
| static int bmp280_read_temp(struct bmp280_data *data, |
| int *val) |
| { |
| s32 adc_temp, comp_temp; |
| int ret; |
| |
| ret = regmap_bulk_read(data->regmap, BMP280_REG_TEMP_MSB, |
| data->buf, sizeof(data->buf)); |
| if (ret < 0) { |
| dev_err(data->dev, "failed to read temperature\n"); |
| return ret; |
| } |
| |
| adc_temp = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(data->buf)); |
| if (adc_temp == BMP280_TEMP_SKIPPED) { |
| /* reading was skipped */ |
| dev_err(data->dev, "reading temperature skipped\n"); |
| return -EIO; |
| } |
| comp_temp = bmp280_compensate_temp(data, adc_temp); |
| |
| /* |
| * val might be NULL if we're called by the read_press routine, |
| * who only cares about the carry over t_fine value. |
| */ |
| if (val) { |
| *val = comp_temp * 10; |
| return IIO_VAL_INT; |
| } |
| |
| return 0; |
| } |
| |
| static int bmp280_read_press(struct bmp280_data *data, |
| int *val, int *val2) |
| { |
| u32 comp_press; |
| s32 adc_press; |
| int ret; |
| |
| /* Read and compensate temperature so we get a reading of t_fine. */ |
| ret = bmp280_read_temp(data, NULL); |
| if (ret < 0) |
| return ret; |
| |
| ret = regmap_bulk_read(data->regmap, BMP280_REG_PRESS_MSB, |
| data->buf, sizeof(data->buf)); |
| if (ret < 0) { |
| dev_err(data->dev, "failed to read pressure\n"); |
| return ret; |
| } |
| |
| adc_press = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(data->buf)); |
| if (adc_press == BMP280_PRESS_SKIPPED) { |
| /* reading was skipped */ |
| dev_err(data->dev, "reading pressure skipped\n"); |
| return -EIO; |
| } |
| comp_press = bmp280_compensate_press(data, adc_press); |
| |
| *val = comp_press; |
| *val2 = 256000; |
| |
| return IIO_VAL_FRACTIONAL; |
| } |
| |
| static int bmp280_read_humid(struct bmp280_data *data, int *val, int *val2) |
| { |
| u32 comp_humidity; |
| s32 adc_humidity; |
| int ret; |
| |
| /* Read and compensate temperature so we get a reading of t_fine. */ |
| ret = bmp280_read_temp(data, NULL); |
| if (ret < 0) |
| return ret; |
| |
| ret = regmap_bulk_read(data->regmap, BMP280_REG_HUMIDITY_MSB, |
| &data->be16, sizeof(data->be16)); |
| if (ret < 0) { |
| dev_err(data->dev, "failed to read humidity\n"); |
| return ret; |
| } |
| |
| adc_humidity = be16_to_cpu(data->be16); |
| if (adc_humidity == BMP280_HUMIDITY_SKIPPED) { |
| /* reading was skipped */ |
| dev_err(data->dev, "reading humidity skipped\n"); |
| return -EIO; |
| } |
| comp_humidity = bmp280_compensate_humidity(data, adc_humidity); |
| |
| *val = comp_humidity * 1000 / 1024; |
| |
| return IIO_VAL_INT; |
| } |
| |
| static int bmp280_read_raw(struct iio_dev *indio_dev, |
| struct iio_chan_spec const *chan, |
| int *val, int *val2, long mask) |
| { |
| struct bmp280_data *data = iio_priv(indio_dev); |
| int ret; |
| |
| pm_runtime_get_sync(data->dev); |
| mutex_lock(&data->lock); |
| |
| switch (mask) { |
| case IIO_CHAN_INFO_PROCESSED: |
| switch (chan->type) { |
| case IIO_HUMIDITYRELATIVE: |
| ret = data->chip_info->read_humid(data, val, val2); |
| break; |
| case IIO_PRESSURE: |
| ret = data->chip_info->read_press(data, val, val2); |
| break; |
| case IIO_TEMP: |
| ret = data->chip_info->read_temp(data, val); |
| break; |
| default: |
| ret = -EINVAL; |
| break; |
| } |
| break; |
| case IIO_CHAN_INFO_OVERSAMPLING_RATIO: |
| switch (chan->type) { |
| case IIO_HUMIDITYRELATIVE: |
| *val = 1 << data->oversampling_humid; |
| ret = IIO_VAL_INT; |
| break; |
| case IIO_PRESSURE: |
| *val = 1 << data->oversampling_press; |
| ret = IIO_VAL_INT; |
| break; |
| case IIO_TEMP: |
| *val = 1 << data->oversampling_temp; |
| ret = IIO_VAL_INT; |
| break; |
| default: |
| ret = -EINVAL; |
| break; |
| } |
| break; |
| case IIO_CHAN_INFO_SAMP_FREQ: |
| if (!data->chip_info->sampling_freq_avail) { |
| ret = -EINVAL; |
| break; |
| } |
| |
| *val = data->chip_info->sampling_freq_avail[data->sampling_freq][0]; |
| *val2 = data->chip_info->sampling_freq_avail[data->sampling_freq][1]; |
| ret = IIO_VAL_INT_PLUS_MICRO; |
| break; |
| case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: |
| if (!data->chip_info->iir_filter_coeffs_avail) { |
| ret = -EINVAL; |
| break; |
| } |
| |
| *val = (1 << data->iir_filter_coeff) - 1; |
| ret = IIO_VAL_INT; |
| break; |
| default: |
| ret = -EINVAL; |
| break; |
| } |
| |
| mutex_unlock(&data->lock); |
| pm_runtime_mark_last_busy(data->dev); |
| pm_runtime_put_autosuspend(data->dev); |
| |
| return ret; |
| } |
| |
| static int bmp280_write_oversampling_ratio_humid(struct bmp280_data *data, |
| int val) |
| { |
| const int *avail = data->chip_info->oversampling_humid_avail; |
| const int n = data->chip_info->num_oversampling_humid_avail; |
| int ret, prev; |
| int i; |
| |
| for (i = 0; i < n; i++) { |
| if (avail[i] == val) { |
| prev = data->oversampling_humid; |
| data->oversampling_humid = ilog2(val); |
| |
| ret = data->chip_info->chip_config(data); |
| if (ret) { |
| data->oversampling_humid = prev; |
| data->chip_info->chip_config(data); |
| return ret; |
| } |
| return 0; |
| } |
| } |
| return -EINVAL; |
| } |
| |
| static int bmp280_write_oversampling_ratio_temp(struct bmp280_data *data, |
| int val) |
| { |
| const int *avail = data->chip_info->oversampling_temp_avail; |
| const int n = data->chip_info->num_oversampling_temp_avail; |
| int ret, prev; |
| int i; |
| |
| for (i = 0; i < n; i++) { |
| if (avail[i] == val) { |
| prev = data->oversampling_temp; |
| data->oversampling_temp = ilog2(val); |
| |
| ret = data->chip_info->chip_config(data); |
| if (ret) { |
| data->oversampling_temp = prev; |
| data->chip_info->chip_config(data); |
| return ret; |
| } |
| return 0; |
| } |
| } |
| return -EINVAL; |
| } |
| |
| static int bmp280_write_oversampling_ratio_press(struct bmp280_data *data, |
| int val) |
| { |
| const int *avail = data->chip_info->oversampling_press_avail; |
| const int n = data->chip_info->num_oversampling_press_avail; |
| int ret, prev; |
| int i; |
| |
| for (i = 0; i < n; i++) { |
| if (avail[i] == val) { |
| prev = data->oversampling_press; |
| data->oversampling_press = ilog2(val); |
| |
| ret = data->chip_info->chip_config(data); |
| if (ret) { |
| data->oversampling_press = prev; |
| data->chip_info->chip_config(data); |
| return ret; |
| } |
| return 0; |
| } |
| } |
| return -EINVAL; |
| } |
| |
| static int bmp280_write_sampling_frequency(struct bmp280_data *data, |
| int val, int val2) |
| { |
| const int (*avail)[2] = data->chip_info->sampling_freq_avail; |
| const int n = data->chip_info->num_sampling_freq_avail; |
| int ret, prev; |
| int i; |
| |
| for (i = 0; i < n; i++) { |
| if (avail[i][0] == val && avail[i][1] == val2) { |
| prev = data->sampling_freq; |
| data->sampling_freq = i; |
| |
| ret = data->chip_info->chip_config(data); |
| if (ret) { |
| data->sampling_freq = prev; |
| data->chip_info->chip_config(data); |
| return ret; |
| } |
| return 0; |
| } |
| } |
| return -EINVAL; |
| } |
| |
| static int bmp280_write_iir_filter_coeffs(struct bmp280_data *data, int val) |
| { |
| const int *avail = data->chip_info->iir_filter_coeffs_avail; |
| const int n = data->chip_info->num_iir_filter_coeffs_avail; |
| int ret, prev; |
| int i; |
| |
| for (i = 0; i < n; i++) { |
| if (avail[i] - 1 == val) { |
| prev = data->iir_filter_coeff; |
| data->iir_filter_coeff = i; |
| |
| ret = data->chip_info->chip_config(data); |
| if (ret) { |
| data->iir_filter_coeff = prev; |
| data->chip_info->chip_config(data); |
| return ret; |
| |
| } |
| return 0; |
| } |
| } |
| return -EINVAL; |
| } |
| |
| static int bmp280_write_raw(struct iio_dev *indio_dev, |
| struct iio_chan_spec const *chan, |
| int val, int val2, long mask) |
| { |
| struct bmp280_data *data = iio_priv(indio_dev); |
| int ret = 0; |
| |
| /* |
| * Helper functions to update sensor running configuration. |
| * If an error happens applying new settings, will try restore |
| * previous parameters to ensure the sensor is left in a known |
| * working configuration. |
| */ |
| switch (mask) { |
| case IIO_CHAN_INFO_OVERSAMPLING_RATIO: |
| pm_runtime_get_sync(data->dev); |
| mutex_lock(&data->lock); |
| switch (chan->type) { |
| case IIO_HUMIDITYRELATIVE: |
| ret = bmp280_write_oversampling_ratio_humid(data, val); |
| break; |
| case IIO_PRESSURE: |
| ret = bmp280_write_oversampling_ratio_press(data, val); |
| break; |
| case IIO_TEMP: |
| ret = bmp280_write_oversampling_ratio_temp(data, val); |
| break; |
| default: |
| ret = -EINVAL; |
| break; |
| } |
| mutex_unlock(&data->lock); |
| pm_runtime_mark_last_busy(data->dev); |
| pm_runtime_put_autosuspend(data->dev); |
| break; |
| case IIO_CHAN_INFO_SAMP_FREQ: |
| pm_runtime_get_sync(data->dev); |
| mutex_lock(&data->lock); |
| ret = bmp280_write_sampling_frequency(data, val, val2); |
| mutex_unlock(&data->lock); |
| pm_runtime_mark_last_busy(data->dev); |
| pm_runtime_put_autosuspend(data->dev); |
| break; |
| case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: |
| pm_runtime_get_sync(data->dev); |
| mutex_lock(&data->lock); |
| ret = bmp280_write_iir_filter_coeffs(data, val); |
| mutex_unlock(&data->lock); |
| pm_runtime_mark_last_busy(data->dev); |
| pm_runtime_put_autosuspend(data->dev); |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return ret; |
| } |
| |
| static int bmp280_read_avail(struct iio_dev *indio_dev, |
| struct iio_chan_spec const *chan, |
| const int **vals, int *type, int *length, |
| long mask) |
| { |
| struct bmp280_data *data = iio_priv(indio_dev); |
| |
| switch (mask) { |
| case IIO_CHAN_INFO_OVERSAMPLING_RATIO: |
| switch (chan->type) { |
| case IIO_PRESSURE: |
| *vals = data->chip_info->oversampling_press_avail; |
| *length = data->chip_info->num_oversampling_press_avail; |
| break; |
| case IIO_TEMP: |
| *vals = data->chip_info->oversampling_temp_avail; |
| *length = data->chip_info->num_oversampling_temp_avail; |
| break; |
| default: |
| return -EINVAL; |
| } |
| *type = IIO_VAL_INT; |
| return IIO_AVAIL_LIST; |
| case IIO_CHAN_INFO_SAMP_FREQ: |
| *vals = (const int *)data->chip_info->sampling_freq_avail; |
| *type = IIO_VAL_INT_PLUS_MICRO; |
| /* Values are stored in a 2D matrix */ |
| *length = data->chip_info->num_sampling_freq_avail; |
| return IIO_AVAIL_LIST; |
| case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: |
| *vals = data->chip_info->iir_filter_coeffs_avail; |
| *type = IIO_VAL_INT; |
| *length = data->chip_info->num_iir_filter_coeffs_avail; |
| return IIO_AVAIL_LIST; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static const struct iio_info bmp280_info = { |
| .read_raw = &bmp280_read_raw, |
| .read_avail = &bmp280_read_avail, |
| .write_raw = &bmp280_write_raw, |
| }; |
| |
| static int bmp280_chip_config(struct bmp280_data *data) |
| { |
| u8 osrs = FIELD_PREP(BMP280_OSRS_TEMP_MASK, data->oversampling_temp + 1) | |
| FIELD_PREP(BMP280_OSRS_PRESS_MASK, data->oversampling_press + 1); |
| int ret; |
| |
| ret = regmap_write_bits(data->regmap, BMP280_REG_CTRL_MEAS, |
| BMP280_OSRS_TEMP_MASK | |
| BMP280_OSRS_PRESS_MASK | |
| BMP280_MODE_MASK, |
| osrs | BMP280_MODE_NORMAL); |
| if (ret < 0) { |
| dev_err(data->dev, |
| "failed to write ctrl_meas register\n"); |
| return ret; |
| } |
| |
| ret = regmap_update_bits(data->regmap, BMP280_REG_CONFIG, |
| BMP280_FILTER_MASK, |
| BMP280_FILTER_4X); |
| if (ret < 0) { |
| dev_err(data->dev, |
| "failed to write config register\n"); |
| return ret; |
| } |
| |
| return ret; |
| } |
| |
| static const int bmp280_oversampling_avail[] = { 1, 2, 4, 8, 16 }; |
| |
| static const struct bmp280_chip_info bmp280_chip_info = { |
| .id_reg = BMP280_REG_ID, |
| .start_up_time = 2000, |
| .channels = bmp280_channels, |
| .num_channels = 2, |
| |
| .oversampling_temp_avail = bmp280_oversampling_avail, |
| .num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail), |
| /* |
| * Oversampling config values on BMx280 have one additional setting |
| * that other generations of the family don't: |
| * The value 0 means the measurement is bypassed instead of |
| * oversampling set to x1. |
| * |
| * To account for this difference, and preserve the same common |
| * config logic, this is handled later on chip_config callback |
| * incrementing one unit the oversampling setting. |
| */ |
| .oversampling_temp_default = BMP280_OSRS_TEMP_2X - 1, |
| |
| .oversampling_press_avail = bmp280_oversampling_avail, |
| .num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail), |
| .oversampling_press_default = BMP280_OSRS_PRESS_16X - 1, |
| |
| .chip_config = bmp280_chip_config, |
| .read_temp = bmp280_read_temp, |
| .read_press = bmp280_read_press, |
| .read_calib = bmp280_read_calib, |
| }; |
| |
| static int bme280_chip_config(struct bmp280_data *data) |
| { |
| u8 osrs = FIELD_PREP(BMP280_OSRS_HUMIDITY_MASK, data->oversampling_humid + 1); |
| int ret; |
| |
| /* |
| * Oversampling of humidity must be set before oversampling of |
| * temperature/pressure is set to become effective. |
| */ |
| ret = regmap_update_bits(data->regmap, BMP280_REG_CTRL_HUMIDITY, |
| BMP280_OSRS_HUMIDITY_MASK, osrs); |
| |
| if (ret < 0) |
| return ret; |
| |
| return bmp280_chip_config(data); |
| } |
| |
| static const struct bmp280_chip_info bme280_chip_info = { |
| .id_reg = BMP280_REG_ID, |
| .start_up_time = 2000, |
| .channels = bmp280_channels, |
| .num_channels = 3, |
| |
| .oversampling_temp_avail = bmp280_oversampling_avail, |
| .num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail), |
| .oversampling_temp_default = BMP280_OSRS_TEMP_2X - 1, |
| |
| .oversampling_press_avail = bmp280_oversampling_avail, |
| .num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail), |
| .oversampling_press_default = BMP280_OSRS_PRESS_16X - 1, |
| |
| .oversampling_humid_avail = bmp280_oversampling_avail, |
| .num_oversampling_humid_avail = ARRAY_SIZE(bmp280_oversampling_avail), |
| .oversampling_humid_default = BMP280_OSRS_HUMIDITY_16X - 1, |
| |
| .chip_config = bme280_chip_config, |
| .read_temp = bmp280_read_temp, |
| .read_press = bmp280_read_press, |
| .read_humid = bmp280_read_humid, |
| .read_calib = bme280_read_calib, |
| }; |
| |
| /* |
| * Helper function to send a command to BMP3XX sensors. |
| * |
| * Sensor processes commands written to the CMD register and signals |
| * execution result through "cmd_rdy" and "cmd_error" flags available on |
| * STATUS and ERROR registers. |
| */ |
| static int bmp380_cmd(struct bmp280_data *data, u8 cmd) |
| { |
| unsigned int reg; |
| int ret; |
| |
| /* Check if device is ready to process a command */ |
| ret = regmap_read(data->regmap, BMP380_REG_STATUS, ®); |
| if (ret) { |
| dev_err(data->dev, "failed to read error register\n"); |
| return ret; |
| } |
| if (!(reg & BMP380_STATUS_CMD_RDY_MASK)) { |
| dev_err(data->dev, "device is not ready to accept commands\n"); |
| return -EBUSY; |
| } |
| |
| /* Send command to process */ |
| ret = regmap_write(data->regmap, BMP380_REG_CMD, cmd); |
| if (ret) { |
| dev_err(data->dev, "failed to send command to device\n"); |
| return ret; |
| } |
| /* Wait for 2ms for command to be processed */ |
| usleep_range(data->start_up_time, data->start_up_time + 100); |
| /* Check for command processing error */ |
| ret = regmap_read(data->regmap, BMP380_REG_ERROR, ®); |
| if (ret) { |
| dev_err(data->dev, "error reading ERROR reg\n"); |
| return ret; |
| } |
| if (reg & BMP380_ERR_CMD_MASK) { |
| dev_err(data->dev, "error processing command 0x%X\n", cmd); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Returns temperature in Celsius dregrees, resolution is 0.01º C. Output value of |
| * "5123" equals 51.2º C. t_fine carries fine temperature as global value. |
| * |
| * Taken from datasheet, Section Appendix 9, "Compensation formula" and repo |
| * https://github.com/BoschSensortec/BMP3-Sensor-API. |
| */ |
| static s32 bmp380_compensate_temp(struct bmp280_data *data, u32 adc_temp) |
| { |
| s64 var1, var2, var3, var4, var5, var6, comp_temp; |
| struct bmp380_calib *calib = &data->calib.bmp380; |
| |
| var1 = ((s64) adc_temp) - (((s64) calib->T1) << 8); |
| var2 = var1 * ((s64) calib->T2); |
| var3 = var1 * var1; |
| var4 = var3 * ((s64) calib->T3); |
| var5 = (var2 << 18) + var4; |
| var6 = var5 >> 32; |
| data->t_fine = (s32) var6; |
| comp_temp = (var6 * 25) >> 14; |
| |
| comp_temp = clamp_val(comp_temp, BMP380_MIN_TEMP, BMP380_MAX_TEMP); |
| return (s32) comp_temp; |
| } |
| |
| /* |
| * Returns pressure in Pa as an unsigned 32 bit integer in fractional Pascal. |
| * Output value of "9528709" represents 9528709/100 = 95287.09 Pa = 952.8709 hPa. |
| * |
| * Taken from datasheet, Section 9.3. "Pressure compensation" and repository |
| * https://github.com/BoschSensortec/BMP3-Sensor-API. |
| */ |
| static u32 bmp380_compensate_press(struct bmp280_data *data, u32 adc_press) |
| { |
| s64 var1, var2, var3, var4, var5, var6, offset, sensitivity; |
| struct bmp380_calib *calib = &data->calib.bmp380; |
| u32 comp_press; |
| |
| var1 = (s64)data->t_fine * (s64)data->t_fine; |
| var2 = var1 >> 6; |
| var3 = (var2 * ((s64) data->t_fine)) >> 8; |
| var4 = ((s64)calib->P8 * var3) >> 5; |
| var5 = ((s64)calib->P7 * var1) << 4; |
| var6 = ((s64)calib->P6 * (s64)data->t_fine) << 22; |
| offset = ((s64)calib->P5 << 47) + var4 + var5 + var6; |
| var2 = ((s64)calib->P4 * var3) >> 5; |
| var4 = ((s64)calib->P3 * var1) << 2; |
| var5 = ((s64)calib->P2 - ((s64)1 << 14)) * |
| ((s64)data->t_fine << 21); |
| sensitivity = (((s64) calib->P1 - ((s64) 1 << 14)) << 46) + |
| var2 + var4 + var5; |
| var1 = (sensitivity >> 24) * (s64)adc_press; |
| var2 = (s64)calib->P10 * (s64)data->t_fine; |
| var3 = var2 + ((s64)calib->P9 << 16); |
| var4 = (var3 * (s64)adc_press) >> 13; |
| |
| /* |
| * Dividing by 10 followed by multiplying by 10 to avoid |
| * possible overflow caused by (uncomp_data->pressure * partial_data4). |
| */ |
| var5 = ((s64)adc_press * div_s64(var4, 10)) >> 9; |
| var5 *= 10; |
| var6 = (s64)adc_press * (s64)adc_press; |
| var2 = ((s64)calib->P11 * var6) >> 16; |
| var3 = (var2 * (s64)adc_press) >> 7; |
| var4 = (offset >> 2) + var1 + var5 + var3; |
| comp_press = ((u64)var4 * 25) >> 40; |
| |
| comp_press = clamp_val(comp_press, BMP380_MIN_PRES, BMP380_MAX_PRES); |
| return comp_press; |
| } |
| |
| static int bmp380_read_temp(struct bmp280_data *data, int *val) |
| { |
| s32 comp_temp; |
| u32 adc_temp; |
| int ret; |
| |
| ret = regmap_bulk_read(data->regmap, BMP380_REG_TEMP_XLSB, |
| data->buf, sizeof(data->buf)); |
| if (ret) { |
| dev_err(data->dev, "failed to read temperature\n"); |
| return ret; |
| } |
| |
| adc_temp = get_unaligned_le24(data->buf); |
| if (adc_temp == BMP380_TEMP_SKIPPED) { |
| dev_err(data->dev, "reading temperature skipped\n"); |
| return -EIO; |
| } |
| comp_temp = bmp380_compensate_temp(data, adc_temp); |
| |
| /* |
| * Val might be NULL if we're called by the read_press routine, |
| * who only cares about the carry over t_fine value. |
| */ |
| if (val) { |
| /* IIO reports temperatures in milli Celsius */ |
| *val = comp_temp * 10; |
| return IIO_VAL_INT; |
| } |
| |
| return 0; |
| } |
| |
| static int bmp380_read_press(struct bmp280_data *data, int *val, int *val2) |
| { |
| s32 comp_press; |
| u32 adc_press; |
| int ret; |
| |
| /* Read and compensate for temperature so we get a reading of t_fine */ |
| ret = bmp380_read_temp(data, NULL); |
| if (ret) |
| return ret; |
| |
| ret = regmap_bulk_read(data->regmap, BMP380_REG_PRESS_XLSB, |
| data->buf, sizeof(data->buf)); |
| if (ret) { |
| dev_err(data->dev, "failed to read pressure\n"); |
| return ret; |
| } |
| |
| adc_press = get_unaligned_le24(data->buf); |
| if (adc_press == BMP380_PRESS_SKIPPED) { |
| dev_err(data->dev, "reading pressure skipped\n"); |
| return -EIO; |
| } |
| comp_press = bmp380_compensate_press(data, adc_press); |
| |
| *val = comp_press; |
| /* Compensated pressure is in cPa (centipascals) */ |
| *val2 = 100000; |
| |
| return IIO_VAL_FRACTIONAL; |
| } |
| |
| static int bmp380_read_calib(struct bmp280_data *data) |
| { |
| struct bmp380_calib *calib = &data->calib.bmp380; |
| int ret; |
| |
| /* Read temperature and pressure calibration data */ |
| ret = regmap_bulk_read(data->regmap, BMP380_REG_CALIB_TEMP_START, |
| data->bmp380_cal_buf, sizeof(data->bmp380_cal_buf)); |
| if (ret) { |
| dev_err(data->dev, |
| "failed to read temperature calibration parameters\n"); |
| return ret; |
| } |
| |
| /* Toss the temperature calibration data into the entropy pool */ |
| add_device_randomness(data->bmp380_cal_buf, sizeof(data->bmp380_cal_buf)); |
| |
| /* Parse calibration values */ |
| calib->T1 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_T1]); |
| calib->T2 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_T2]); |
| calib->T3 = data->bmp380_cal_buf[BMP380_T3]; |
| calib->P1 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P1]); |
| calib->P2 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P2]); |
| calib->P3 = data->bmp380_cal_buf[BMP380_P3]; |
| calib->P4 = data->bmp380_cal_buf[BMP380_P4]; |
| calib->P5 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P5]); |
| calib->P6 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P6]); |
| calib->P7 = data->bmp380_cal_buf[BMP380_P7]; |
| calib->P8 = data->bmp380_cal_buf[BMP380_P8]; |
| calib->P9 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P9]); |
| calib->P10 = data->bmp380_cal_buf[BMP380_P10]; |
| calib->P11 = data->bmp380_cal_buf[BMP380_P11]; |
| |
| return 0; |
| } |
| |
| static const int bmp380_odr_table[][2] = { |
| [BMP380_ODR_200HZ] = {200, 0}, |
| [BMP380_ODR_100HZ] = {100, 0}, |
| [BMP380_ODR_50HZ] = {50, 0}, |
| [BMP380_ODR_25HZ] = {25, 0}, |
| [BMP380_ODR_12_5HZ] = {12, 500000}, |
| [BMP380_ODR_6_25HZ] = {6, 250000}, |
| [BMP380_ODR_3_125HZ] = {3, 125000}, |
| [BMP380_ODR_1_5625HZ] = {1, 562500}, |
| [BMP380_ODR_0_78HZ] = {0, 781250}, |
| [BMP380_ODR_0_39HZ] = {0, 390625}, |
| [BMP380_ODR_0_2HZ] = {0, 195313}, |
| [BMP380_ODR_0_1HZ] = {0, 97656}, |
| [BMP380_ODR_0_05HZ] = {0, 48828}, |
| [BMP380_ODR_0_02HZ] = {0, 24414}, |
| [BMP380_ODR_0_01HZ] = {0, 12207}, |
| [BMP380_ODR_0_006HZ] = {0, 6104}, |
| [BMP380_ODR_0_003HZ] = {0, 3052}, |
| [BMP380_ODR_0_0015HZ] = {0, 1526}, |
| }; |
| |
| static int bmp380_chip_config(struct bmp280_data *data) |
| { |
| bool change = false, aux; |
| unsigned int tmp; |
| u8 osrs; |
| int ret; |
| |
| /* Configure power control register */ |
| ret = regmap_update_bits(data->regmap, BMP380_REG_POWER_CONTROL, |
| BMP380_CTRL_SENSORS_MASK, |
| BMP380_CTRL_SENSORS_PRESS_EN | |
| BMP380_CTRL_SENSORS_TEMP_EN); |
| if (ret) { |
| dev_err(data->dev, |
| "failed to write operation control register\n"); |
| return ret; |
| } |
| |
| /* Configure oversampling */ |
| osrs = FIELD_PREP(BMP380_OSRS_TEMP_MASK, data->oversampling_temp) | |
| FIELD_PREP(BMP380_OSRS_PRESS_MASK, data->oversampling_press); |
| |
| ret = regmap_update_bits_check(data->regmap, BMP380_REG_OSR, |
| BMP380_OSRS_TEMP_MASK | |
| BMP380_OSRS_PRESS_MASK, |
| osrs, &aux); |
| if (ret) { |
| dev_err(data->dev, "failed to write oversampling register\n"); |
| return ret; |
| } |
| change = change || aux; |
| |
| /* Configure output data rate */ |
| ret = regmap_update_bits_check(data->regmap, BMP380_REG_ODR, |
| BMP380_ODRS_MASK, data->sampling_freq, &aux); |
| if (ret) { |
| dev_err(data->dev, "failed to write ODR selection register\n"); |
| return ret; |
| } |
| change = change || aux; |
| |
| /* Set filter data */ |
| ret = regmap_update_bits_check(data->regmap, BMP380_REG_CONFIG, BMP380_FILTER_MASK, |
| FIELD_PREP(BMP380_FILTER_MASK, data->iir_filter_coeff), |
| &aux); |
| if (ret) { |
| dev_err(data->dev, "failed to write config register\n"); |
| return ret; |
| } |
| change = change || aux; |
| |
| if (change) { |
| /* |
| * The configurations errors are detected on the fly during a measurement |
| * cycle. If the sampling frequency is too low, it's faster to reset |
| * the measurement loop than wait until the next measurement is due. |
| * |
| * Resets sensor measurement loop toggling between sleep and normal |
| * operating modes. |
| */ |
| ret = regmap_write_bits(data->regmap, BMP380_REG_POWER_CONTROL, |
| BMP380_MODE_MASK, |
| FIELD_PREP(BMP380_MODE_MASK, BMP380_MODE_SLEEP)); |
| if (ret) { |
| dev_err(data->dev, "failed to set sleep mode\n"); |
| return ret; |
| } |
| usleep_range(2000, 2500); |
| ret = regmap_write_bits(data->regmap, BMP380_REG_POWER_CONTROL, |
| BMP380_MODE_MASK, |
| FIELD_PREP(BMP380_MODE_MASK, BMP380_MODE_NORMAL)); |
| if (ret) { |
| dev_err(data->dev, "failed to set normal mode\n"); |
| return ret; |
| } |
| /* |
| * Waits for measurement before checking configuration error flag. |
| * Selected longest measure time indicated in section 3.9.1 |
| * in the datasheet. |
| */ |
| msleep(80); |
| |
| /* Check config error flag */ |
| ret = regmap_read(data->regmap, BMP380_REG_ERROR, &tmp); |
| if (ret) { |
| dev_err(data->dev, |
| "failed to read error register\n"); |
| return ret; |
| } |
| if (tmp & BMP380_ERR_CONF_MASK) { |
| dev_warn(data->dev, |
| "sensor flagged configuration as incompatible\n"); |
| return -EINVAL; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static const int bmp380_oversampling_avail[] = { 1, 2, 4, 8, 16, 32 }; |
| static const int bmp380_iir_filter_coeffs_avail[] = { 1, 2, 4, 8, 16, 32, 64, 128}; |
| |
| static const struct bmp280_chip_info bmp380_chip_info = { |
| .id_reg = BMP380_REG_ID, |
| .start_up_time = 2000, |
| .channels = bmp380_channels, |
| .num_channels = 2, |
| |
| .oversampling_temp_avail = bmp380_oversampling_avail, |
| .num_oversampling_temp_avail = ARRAY_SIZE(bmp380_oversampling_avail), |
| .oversampling_temp_default = ilog2(1), |
| |
| .oversampling_press_avail = bmp380_oversampling_avail, |
| .num_oversampling_press_avail = ARRAY_SIZE(bmp380_oversampling_avail), |
| .oversampling_press_default = ilog2(4), |
| |
| .sampling_freq_avail = bmp380_odr_table, |
| .num_sampling_freq_avail = ARRAY_SIZE(bmp380_odr_table) * 2, |
| .sampling_freq_default = BMP380_ODR_50HZ, |
| |
| .iir_filter_coeffs_avail = bmp380_iir_filter_coeffs_avail, |
| .num_iir_filter_coeffs_avail = ARRAY_SIZE(bmp380_iir_filter_coeffs_avail), |
| .iir_filter_coeff_default = 2, |
| |
| .chip_config = bmp380_chip_config, |
| .read_temp = bmp380_read_temp, |
| .read_press = bmp380_read_press, |
| .read_calib = bmp380_read_calib, |
| }; |
| |
| static int bmp180_measure(struct bmp280_data *data, u8 ctrl_meas) |
| { |
| const int conversion_time_max[] = { 4500, 7500, 13500, 25500 }; |
| unsigned int delay_us; |
| unsigned int ctrl; |
| int ret; |
| |
| if (data->use_eoc) |
| reinit_completion(&data->done); |
| |
| ret = regmap_write(data->regmap, BMP280_REG_CTRL_MEAS, ctrl_meas); |
| if (ret) |
| return ret; |
| |
| if (data->use_eoc) { |
| /* |
| * If we have a completion interrupt, use it, wait up to |
| * 100ms. The longest conversion time listed is 76.5 ms for |
| * advanced resolution mode. |
| */ |
| ret = wait_for_completion_timeout(&data->done, |
| 1 + msecs_to_jiffies(100)); |
| if (!ret) |
| dev_err(data->dev, "timeout waiting for completion\n"); |
| } else { |
| if (FIELD_GET(BMP180_MEAS_CTRL_MASK, ctrl_meas) == BMP180_MEAS_TEMP) |
| delay_us = 4500; |
| else |
| delay_us = |
| conversion_time_max[data->oversampling_press]; |
| |
| usleep_range(delay_us, delay_us + 1000); |
| } |
| |
| ret = regmap_read(data->regmap, BMP280_REG_CTRL_MEAS, &ctrl); |
| if (ret) |
| return ret; |
| |
| /* The value of this bit reset to "0" after conversion is complete */ |
| if (ctrl & BMP180_MEAS_SCO) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| static int bmp180_read_adc_temp(struct bmp280_data *data, int *val) |
| { |
| int ret; |
| |
| ret = bmp180_measure(data, |
| FIELD_PREP(BMP180_MEAS_CTRL_MASK, BMP180_MEAS_TEMP) | |
| BMP180_MEAS_SCO); |
| if (ret) |
| return ret; |
| |
| ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB, |
| &data->be16, sizeof(data->be16)); |
| if (ret) |
| return ret; |
| |
| *val = be16_to_cpu(data->be16); |
| |
| return 0; |
| } |
| |
| static int bmp180_read_calib(struct bmp280_data *data) |
| { |
| struct bmp180_calib *calib = &data->calib.bmp180; |
| int ret; |
| int i; |
| |
| ret = regmap_bulk_read(data->regmap, BMP180_REG_CALIB_START, |
| data->bmp180_cal_buf, sizeof(data->bmp180_cal_buf)); |
| |
| if (ret < 0) |
| return ret; |
| |
| /* None of the words has the value 0 or 0xFFFF */ |
| for (i = 0; i < ARRAY_SIZE(data->bmp180_cal_buf); i++) { |
| if (data->bmp180_cal_buf[i] == cpu_to_be16(0) || |
| data->bmp180_cal_buf[i] == cpu_to_be16(0xffff)) |
| return -EIO; |
| } |
| |
| /* Toss the calibration data into the entropy pool */ |
| add_device_randomness(data->bmp180_cal_buf, sizeof(data->bmp180_cal_buf)); |
| |
| calib->AC1 = be16_to_cpu(data->bmp180_cal_buf[AC1]); |
| calib->AC2 = be16_to_cpu(data->bmp180_cal_buf[AC2]); |
| calib->AC3 = be16_to_cpu(data->bmp180_cal_buf[AC3]); |
| calib->AC4 = be16_to_cpu(data->bmp180_cal_buf[AC4]); |
| calib->AC5 = be16_to_cpu(data->bmp180_cal_buf[AC5]); |
| calib->AC6 = be16_to_cpu(data->bmp180_cal_buf[AC6]); |
| calib->B1 = be16_to_cpu(data->bmp180_cal_buf[B1]); |
| calib->B2 = be16_to_cpu(data->bmp180_cal_buf[B2]); |
| calib->MB = be16_to_cpu(data->bmp180_cal_buf[MB]); |
| calib->MC = be16_to_cpu(data->bmp180_cal_buf[MC]); |
| calib->MD = be16_to_cpu(data->bmp180_cal_buf[MD]); |
| |
| return 0; |
| } |
| |
| /* |
| * Returns temperature in DegC, resolution is 0.1 DegC. |
| * t_fine carries fine temperature as global value. |
| * |
| * Taken from datasheet, Section 3.5, "Calculating pressure and temperature". |
| */ |
| static s32 bmp180_compensate_temp(struct bmp280_data *data, s32 adc_temp) |
| { |
| struct bmp180_calib *calib = &data->calib.bmp180; |
| s32 x1, x2; |
| |
| x1 = ((adc_temp - calib->AC6) * calib->AC5) >> 15; |
| x2 = (calib->MC << 11) / (x1 + calib->MD); |
| data->t_fine = x1 + x2; |
| |
| return (data->t_fine + 8) >> 4; |
| } |
| |
| static int bmp180_read_temp(struct bmp280_data *data, int *val) |
| { |
| s32 adc_temp, comp_temp; |
| int ret; |
| |
| ret = bmp180_read_adc_temp(data, &adc_temp); |
| if (ret) |
| return ret; |
| |
| comp_temp = bmp180_compensate_temp(data, adc_temp); |
| |
| /* |
| * val might be NULL if we're called by the read_press routine, |
| * who only cares about the carry over t_fine value. |
| */ |
| if (val) { |
| *val = comp_temp * 100; |
| return IIO_VAL_INT; |
| } |
| |
| return 0; |
| } |
| |
| static int bmp180_read_adc_press(struct bmp280_data *data, int *val) |
| { |
| u8 oss = data->oversampling_press; |
| int ret; |
| |
| ret = bmp180_measure(data, |
| FIELD_PREP(BMP180_MEAS_CTRL_MASK, BMP180_MEAS_PRESS) | |
| FIELD_PREP(BMP180_OSRS_PRESS_MASK, oss) | |
| BMP180_MEAS_SCO); |
| if (ret) |
| return ret; |
| |
| ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB, |
| data->buf, sizeof(data->buf)); |
| if (ret) |
| return ret; |
| |
| *val = get_unaligned_be24(data->buf) >> (8 - oss); |
| |
| return 0; |
| } |
| |
| /* |
| * Returns pressure in Pa, resolution is 1 Pa. |
| * |
| * Taken from datasheet, Section 3.5, "Calculating pressure and temperature". |
| */ |
| static u32 bmp180_compensate_press(struct bmp280_data *data, s32 adc_press) |
| { |
| struct bmp180_calib *calib = &data->calib.bmp180; |
| s32 oss = data->oversampling_press; |
| s32 x1, x2, x3, p; |
| s32 b3, b6; |
| u32 b4, b7; |
| |
| b6 = data->t_fine - 4000; |
| x1 = (calib->B2 * (b6 * b6 >> 12)) >> 11; |
| x2 = calib->AC2 * b6 >> 11; |
| x3 = x1 + x2; |
| b3 = ((((s32)calib->AC1 * 4 + x3) << oss) + 2) / 4; |
| x1 = calib->AC3 * b6 >> 13; |
| x2 = (calib->B1 * ((b6 * b6) >> 12)) >> 16; |
| x3 = (x1 + x2 + 2) >> 2; |
| b4 = calib->AC4 * (u32)(x3 + 32768) >> 15; |
| b7 = ((u32)adc_press - b3) * (50000 >> oss); |
| if (b7 < 0x80000000) |
| p = (b7 * 2) / b4; |
| else |
| p = (b7 / b4) * 2; |
| |
| x1 = (p >> 8) * (p >> 8); |
| x1 = (x1 * 3038) >> 16; |
| x2 = (-7357 * p) >> 16; |
| |
| return p + ((x1 + x2 + 3791) >> 4); |
| } |
| |
| static int bmp180_read_press(struct bmp280_data *data, |
| int *val, int *val2) |
| { |
| u32 comp_press; |
| s32 adc_press; |
| int ret; |
| |
| /* Read and compensate temperature so we get a reading of t_fine. */ |
| ret = bmp180_read_temp(data, NULL); |
| if (ret) |
| return ret; |
| |
| ret = bmp180_read_adc_press(data, &adc_press); |
| if (ret) |
| return ret; |
| |
| comp_press = bmp180_compensate_press(data, adc_press); |
| |
| *val = comp_press; |
| *val2 = 1000; |
| |
| return IIO_VAL_FRACTIONAL; |
| } |
| |
| static int bmp180_chip_config(struct bmp280_data *data) |
| { |
| return 0; |
| } |
| |
| static const int bmp180_oversampling_temp_avail[] = { 1 }; |
| static const int bmp180_oversampling_press_avail[] = { 1, 2, 4, 8 }; |
| |
| static const struct bmp280_chip_info bmp180_chip_info = { |
| .id_reg = BMP280_REG_ID, |
| .start_up_time = 2000, |
| .channels = bmp280_channels, |
| .num_channels = 2, |
| |
| .oversampling_temp_avail = bmp180_oversampling_temp_avail, |
| .num_oversampling_temp_avail = |
| ARRAY_SIZE(bmp180_oversampling_temp_avail), |
| .oversampling_temp_default = 0, |
| |
| .oversampling_press_avail = bmp180_oversampling_press_avail, |
| .num_oversampling_press_avail = |
| ARRAY_SIZE(bmp180_oversampling_press_avail), |
| .oversampling_press_default = BMP180_MEAS_PRESS_8X, |
| |
| .chip_config = bmp180_chip_config, |
| .read_temp = bmp180_read_temp, |
| .read_press = bmp180_read_press, |
| .read_calib = bmp180_read_calib, |
| }; |
| |
| static irqreturn_t bmp085_eoc_irq(int irq, void *d) |
| { |
| struct bmp280_data *data = d; |
| |
| complete(&data->done); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int bmp085_fetch_eoc_irq(struct device *dev, |
| const char *name, |
| int irq, |
| struct bmp280_data *data) |
| { |
| unsigned long irq_trig; |
| int ret; |
| |
| irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq)); |
| if (irq_trig != IRQF_TRIGGER_RISING) { |
| dev_err(dev, "non-rising trigger given for EOC interrupt, trying to enforce it\n"); |
| irq_trig = IRQF_TRIGGER_RISING; |
| } |
| |
| init_completion(&data->done); |
| |
| ret = devm_request_threaded_irq(dev, |
| irq, |
| bmp085_eoc_irq, |
| NULL, |
| irq_trig, |
| name, |
| data); |
| if (ret) { |
| /* Bail out without IRQ but keep the driver in place */ |
| dev_err(dev, "unable to request DRDY IRQ\n"); |
| return 0; |
| } |
| |
| data->use_eoc = true; |
| return 0; |
| } |
| |
| static void bmp280_pm_disable(void *data) |
| { |
| struct device *dev = data; |
| |
| pm_runtime_get_sync(dev); |
| pm_runtime_put_noidle(dev); |
| pm_runtime_disable(dev); |
| } |
| |
| static void bmp280_regulators_disable(void *data) |
| { |
| struct regulator_bulk_data *supplies = data; |
| |
| regulator_bulk_disable(BMP280_NUM_SUPPLIES, supplies); |
| } |
| |
| int bmp280_common_probe(struct device *dev, |
| struct regmap *regmap, |
| unsigned int chip, |
| const char *name, |
| int irq) |
| { |
| const struct bmp280_chip_info *chip_info; |
| struct iio_dev *indio_dev; |
| struct bmp280_data *data; |
| struct gpio_desc *gpiod; |
| unsigned int chip_id; |
| int ret; |
| |
| indio_dev = devm_iio_device_alloc(dev, sizeof(*data)); |
| if (!indio_dev) |
| return -ENOMEM; |
| |
| data = iio_priv(indio_dev); |
| mutex_init(&data->lock); |
| data->dev = dev; |
| |
| indio_dev->name = name; |
| indio_dev->info = &bmp280_info; |
| indio_dev->modes = INDIO_DIRECT_MODE; |
| |
| switch (chip) { |
| case BMP180_CHIP_ID: |
| chip_info = &bmp180_chip_info; |
| break; |
| case BMP280_CHIP_ID: |
| chip_info = &bmp280_chip_info; |
| break; |
| case BME280_CHIP_ID: |
| chip_info = &bme280_chip_info; |
| break; |
| case BMP380_CHIP_ID: |
| chip_info = &bmp380_chip_info; |
| break; |
| default: |
| return -EINVAL; |
| } |
| data->chip_info = chip_info; |
| |
| /* Apply initial values from chip info structure */ |
| indio_dev->channels = chip_info->channels; |
| indio_dev->num_channels = chip_info->num_channels; |
| data->oversampling_press = chip_info->oversampling_press_default; |
| data->oversampling_humid = chip_info->oversampling_humid_default; |
| data->oversampling_temp = chip_info->oversampling_temp_default; |
| data->iir_filter_coeff = chip_info->iir_filter_coeff_default; |
| data->sampling_freq = chip_info->sampling_freq_default; |
| data->start_up_time = chip_info->start_up_time; |
| |
| /* Bring up regulators */ |
| regulator_bulk_set_supply_names(data->supplies, |
| bmp280_supply_names, |
| BMP280_NUM_SUPPLIES); |
| |
| ret = devm_regulator_bulk_get(dev, |
| BMP280_NUM_SUPPLIES, data->supplies); |
| if (ret) { |
| dev_err(dev, "failed to get regulators\n"); |
| return ret; |
| } |
| |
| ret = regulator_bulk_enable(BMP280_NUM_SUPPLIES, data->supplies); |
| if (ret) { |
| dev_err(dev, "failed to enable regulators\n"); |
| return ret; |
| } |
| |
| ret = devm_add_action_or_reset(dev, bmp280_regulators_disable, |
| data->supplies); |
| if (ret) |
| return ret; |
| |
| /* Wait to make sure we started up properly */ |
| usleep_range(data->start_up_time, data->start_up_time + 100); |
| |
| /* Bring chip out of reset if there is an assigned GPIO line */ |
| gpiod = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH); |
| /* Deassert the signal */ |
| if (gpiod) { |
| dev_info(dev, "release reset\n"); |
| gpiod_set_value(gpiod, 0); |
| } |
| |
| data->regmap = regmap; |
| |
| ret = regmap_read(regmap, data->chip_info->id_reg, &chip_id); |
| if (ret < 0) |
| return ret; |
| if (chip_id != chip) { |
| dev_err(dev, "bad chip id: expected %x got %x\n", |
| chip, chip_id); |
| return -EINVAL; |
| } |
| |
| /* BMP3xx requires soft-reset as part of initialization */ |
| if (chip_id == BMP380_CHIP_ID) { |
| ret = bmp380_cmd(data, BMP380_CMD_SOFT_RESET); |
| if (ret < 0) |
| return ret; |
| } |
| |
| ret = data->chip_info->chip_config(data); |
| if (ret < 0) |
| return ret; |
| |
| dev_set_drvdata(dev, indio_dev); |
| |
| /* |
| * Some chips have calibration parameters "programmed into the devices' |
| * non-volatile memory during production". Let's read them out at probe |
| * time once. They will not change. |
| */ |
| |
| ret = data->chip_info->read_calib(data); |
| if (ret < 0) |
| return dev_err_probe(data->dev, ret, |
| "failed to read calibration coefficients\n"); |
| |
| /* |
| * Attempt to grab an optional EOC IRQ - only the BMP085 has this |
| * however as it happens, the BMP085 shares the chip ID of BMP180 |
| * so we look for an IRQ if we have that. |
| */ |
| if (irq > 0 || (chip_id == BMP180_CHIP_ID)) { |
| ret = bmp085_fetch_eoc_irq(dev, name, irq, data); |
| if (ret) |
| return ret; |
| } |
| |
| /* Enable runtime PM */ |
| pm_runtime_get_noresume(dev); |
| pm_runtime_set_active(dev); |
| pm_runtime_enable(dev); |
| /* |
| * Set autosuspend to two orders of magnitude larger than the |
| * start-up time. |
| */ |
| pm_runtime_set_autosuspend_delay(dev, data->start_up_time / 10); |
| pm_runtime_use_autosuspend(dev); |
| pm_runtime_put(dev); |
| |
| ret = devm_add_action_or_reset(dev, bmp280_pm_disable, dev); |
| if (ret) |
| return ret; |
| |
| return devm_iio_device_register(dev, indio_dev); |
| } |
| EXPORT_SYMBOL_NS(bmp280_common_probe, IIO_BMP280); |
| |
| static int bmp280_runtime_suspend(struct device *dev) |
| { |
| struct iio_dev *indio_dev = dev_get_drvdata(dev); |
| struct bmp280_data *data = iio_priv(indio_dev); |
| |
| return regulator_bulk_disable(BMP280_NUM_SUPPLIES, data->supplies); |
| } |
| |
| static int bmp280_runtime_resume(struct device *dev) |
| { |
| struct iio_dev *indio_dev = dev_get_drvdata(dev); |
| struct bmp280_data *data = iio_priv(indio_dev); |
| int ret; |
| |
| ret = regulator_bulk_enable(BMP280_NUM_SUPPLIES, data->supplies); |
| if (ret) |
| return ret; |
| usleep_range(data->start_up_time, data->start_up_time + 100); |
| return data->chip_info->chip_config(data); |
| } |
| |
| EXPORT_RUNTIME_DEV_PM_OPS(bmp280_dev_pm_ops, bmp280_runtime_suspend, |
| bmp280_runtime_resume, NULL); |
| |
| MODULE_AUTHOR("Vlad Dogaru <vlad.dogaru@intel.com>"); |
| MODULE_DESCRIPTION("Driver for Bosch Sensortec BMP180/BMP280 pressure and temperature sensor"); |
| MODULE_LICENSE("GPL v2"); |