| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Routines to identify caches on Intel CPU. |
| * |
| * Changes: |
| * Venkatesh Pallipadi : Adding cache identification through cpuid(4) |
| * Ashok Raj <ashok.raj@intel.com>: Work with CPU hotplug infrastructure. |
| * Andi Kleen / Andreas Herrmann : CPUID4 emulation on AMD. |
| */ |
| |
| #include <linux/slab.h> |
| #include <linux/cacheinfo.h> |
| #include <linux/cpu.h> |
| #include <linux/cpuhotplug.h> |
| #include <linux/sched.h> |
| #include <linux/capability.h> |
| #include <linux/sysfs.h> |
| #include <linux/pci.h> |
| #include <linux/stop_machine.h> |
| |
| #include <asm/cpufeature.h> |
| #include <asm/cacheinfo.h> |
| #include <asm/amd_nb.h> |
| #include <asm/smp.h> |
| #include <asm/mtrr.h> |
| #include <asm/tlbflush.h> |
| |
| #include "cpu.h" |
| |
| #define LVL_1_INST 1 |
| #define LVL_1_DATA 2 |
| #define LVL_2 3 |
| #define LVL_3 4 |
| #define LVL_TRACE 5 |
| |
| /* Shared last level cache maps */ |
| DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map); |
| |
| /* Shared L2 cache maps */ |
| DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_l2c_shared_map); |
| |
| static cpumask_var_t cpu_cacheinfo_mask; |
| |
| /* Kernel controls MTRR and/or PAT MSRs. */ |
| unsigned int memory_caching_control __ro_after_init; |
| |
| struct _cache_table { |
| unsigned char descriptor; |
| char cache_type; |
| short size; |
| }; |
| |
| #define MB(x) ((x) * 1024) |
| |
| /* All the cache descriptor types we care about (no TLB or |
| trace cache entries) */ |
| |
| static const struct _cache_table cache_table[] = |
| { |
| { 0x06, LVL_1_INST, 8 }, /* 4-way set assoc, 32 byte line size */ |
| { 0x08, LVL_1_INST, 16 }, /* 4-way set assoc, 32 byte line size */ |
| { 0x09, LVL_1_INST, 32 }, /* 4-way set assoc, 64 byte line size */ |
| { 0x0a, LVL_1_DATA, 8 }, /* 2 way set assoc, 32 byte line size */ |
| { 0x0c, LVL_1_DATA, 16 }, /* 4-way set assoc, 32 byte line size */ |
| { 0x0d, LVL_1_DATA, 16 }, /* 4-way set assoc, 64 byte line size */ |
| { 0x0e, LVL_1_DATA, 24 }, /* 6-way set assoc, 64 byte line size */ |
| { 0x21, LVL_2, 256 }, /* 8-way set assoc, 64 byte line size */ |
| { 0x22, LVL_3, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */ |
| { 0x23, LVL_3, MB(1) }, /* 8-way set assoc, sectored cache, 64 byte line size */ |
| { 0x25, LVL_3, MB(2) }, /* 8-way set assoc, sectored cache, 64 byte line size */ |
| { 0x29, LVL_3, MB(4) }, /* 8-way set assoc, sectored cache, 64 byte line size */ |
| { 0x2c, LVL_1_DATA, 32 }, /* 8-way set assoc, 64 byte line size */ |
| { 0x30, LVL_1_INST, 32 }, /* 8-way set assoc, 64 byte line size */ |
| { 0x39, LVL_2, 128 }, /* 4-way set assoc, sectored cache, 64 byte line size */ |
| { 0x3a, LVL_2, 192 }, /* 6-way set assoc, sectored cache, 64 byte line size */ |
| { 0x3b, LVL_2, 128 }, /* 2-way set assoc, sectored cache, 64 byte line size */ |
| { 0x3c, LVL_2, 256 }, /* 4-way set assoc, sectored cache, 64 byte line size */ |
| { 0x3d, LVL_2, 384 }, /* 6-way set assoc, sectored cache, 64 byte line size */ |
| { 0x3e, LVL_2, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */ |
| { 0x3f, LVL_2, 256 }, /* 2-way set assoc, 64 byte line size */ |
| { 0x41, LVL_2, 128 }, /* 4-way set assoc, 32 byte line size */ |
| { 0x42, LVL_2, 256 }, /* 4-way set assoc, 32 byte line size */ |
| { 0x43, LVL_2, 512 }, /* 4-way set assoc, 32 byte line size */ |
| { 0x44, LVL_2, MB(1) }, /* 4-way set assoc, 32 byte line size */ |
| { 0x45, LVL_2, MB(2) }, /* 4-way set assoc, 32 byte line size */ |
| { 0x46, LVL_3, MB(4) }, /* 4-way set assoc, 64 byte line size */ |
| { 0x47, LVL_3, MB(8) }, /* 8-way set assoc, 64 byte line size */ |
| { 0x48, LVL_2, MB(3) }, /* 12-way set assoc, 64 byte line size */ |
| { 0x49, LVL_3, MB(4) }, /* 16-way set assoc, 64 byte line size */ |
| { 0x4a, LVL_3, MB(6) }, /* 12-way set assoc, 64 byte line size */ |
| { 0x4b, LVL_3, MB(8) }, /* 16-way set assoc, 64 byte line size */ |
| { 0x4c, LVL_3, MB(12) }, /* 12-way set assoc, 64 byte line size */ |
| { 0x4d, LVL_3, MB(16) }, /* 16-way set assoc, 64 byte line size */ |
| { 0x4e, LVL_2, MB(6) }, /* 24-way set assoc, 64 byte line size */ |
| { 0x60, LVL_1_DATA, 16 }, /* 8-way set assoc, sectored cache, 64 byte line size */ |
| { 0x66, LVL_1_DATA, 8 }, /* 4-way set assoc, sectored cache, 64 byte line size */ |
| { 0x67, LVL_1_DATA, 16 }, /* 4-way set assoc, sectored cache, 64 byte line size */ |
| { 0x68, LVL_1_DATA, 32 }, /* 4-way set assoc, sectored cache, 64 byte line size */ |
| { 0x70, LVL_TRACE, 12 }, /* 8-way set assoc */ |
| { 0x71, LVL_TRACE, 16 }, /* 8-way set assoc */ |
| { 0x72, LVL_TRACE, 32 }, /* 8-way set assoc */ |
| { 0x73, LVL_TRACE, 64 }, /* 8-way set assoc */ |
| { 0x78, LVL_2, MB(1) }, /* 4-way set assoc, 64 byte line size */ |
| { 0x79, LVL_2, 128 }, /* 8-way set assoc, sectored cache, 64 byte line size */ |
| { 0x7a, LVL_2, 256 }, /* 8-way set assoc, sectored cache, 64 byte line size */ |
| { 0x7b, LVL_2, 512 }, /* 8-way set assoc, sectored cache, 64 byte line size */ |
| { 0x7c, LVL_2, MB(1) }, /* 8-way set assoc, sectored cache, 64 byte line size */ |
| { 0x7d, LVL_2, MB(2) }, /* 8-way set assoc, 64 byte line size */ |
| { 0x7f, LVL_2, 512 }, /* 2-way set assoc, 64 byte line size */ |
| { 0x80, LVL_2, 512 }, /* 8-way set assoc, 64 byte line size */ |
| { 0x82, LVL_2, 256 }, /* 8-way set assoc, 32 byte line size */ |
| { 0x83, LVL_2, 512 }, /* 8-way set assoc, 32 byte line size */ |
| { 0x84, LVL_2, MB(1) }, /* 8-way set assoc, 32 byte line size */ |
| { 0x85, LVL_2, MB(2) }, /* 8-way set assoc, 32 byte line size */ |
| { 0x86, LVL_2, 512 }, /* 4-way set assoc, 64 byte line size */ |
| { 0x87, LVL_2, MB(1) }, /* 8-way set assoc, 64 byte line size */ |
| { 0xd0, LVL_3, 512 }, /* 4-way set assoc, 64 byte line size */ |
| { 0xd1, LVL_3, MB(1) }, /* 4-way set assoc, 64 byte line size */ |
| { 0xd2, LVL_3, MB(2) }, /* 4-way set assoc, 64 byte line size */ |
| { 0xd6, LVL_3, MB(1) }, /* 8-way set assoc, 64 byte line size */ |
| { 0xd7, LVL_3, MB(2) }, /* 8-way set assoc, 64 byte line size */ |
| { 0xd8, LVL_3, MB(4) }, /* 12-way set assoc, 64 byte line size */ |
| { 0xdc, LVL_3, MB(2) }, /* 12-way set assoc, 64 byte line size */ |
| { 0xdd, LVL_3, MB(4) }, /* 12-way set assoc, 64 byte line size */ |
| { 0xde, LVL_3, MB(8) }, /* 12-way set assoc, 64 byte line size */ |
| { 0xe2, LVL_3, MB(2) }, /* 16-way set assoc, 64 byte line size */ |
| { 0xe3, LVL_3, MB(4) }, /* 16-way set assoc, 64 byte line size */ |
| { 0xe4, LVL_3, MB(8) }, /* 16-way set assoc, 64 byte line size */ |
| { 0xea, LVL_3, MB(12) }, /* 24-way set assoc, 64 byte line size */ |
| { 0xeb, LVL_3, MB(18) }, /* 24-way set assoc, 64 byte line size */ |
| { 0xec, LVL_3, MB(24) }, /* 24-way set assoc, 64 byte line size */ |
| { 0x00, 0, 0} |
| }; |
| |
| |
| enum _cache_type { |
| CTYPE_NULL = 0, |
| CTYPE_DATA = 1, |
| CTYPE_INST = 2, |
| CTYPE_UNIFIED = 3 |
| }; |
| |
| union _cpuid4_leaf_eax { |
| struct { |
| enum _cache_type type:5; |
| unsigned int level:3; |
| unsigned int is_self_initializing:1; |
| unsigned int is_fully_associative:1; |
| unsigned int reserved:4; |
| unsigned int num_threads_sharing:12; |
| unsigned int num_cores_on_die:6; |
| } split; |
| u32 full; |
| }; |
| |
| union _cpuid4_leaf_ebx { |
| struct { |
| unsigned int coherency_line_size:12; |
| unsigned int physical_line_partition:10; |
| unsigned int ways_of_associativity:10; |
| } split; |
| u32 full; |
| }; |
| |
| union _cpuid4_leaf_ecx { |
| struct { |
| unsigned int number_of_sets:32; |
| } split; |
| u32 full; |
| }; |
| |
| struct _cpuid4_info_regs { |
| union _cpuid4_leaf_eax eax; |
| union _cpuid4_leaf_ebx ebx; |
| union _cpuid4_leaf_ecx ecx; |
| unsigned int id; |
| unsigned long size; |
| struct amd_northbridge *nb; |
| }; |
| |
| static unsigned short num_cache_leaves; |
| |
| /* AMD doesn't have CPUID4. Emulate it here to report the same |
| information to the user. This makes some assumptions about the machine: |
| L2 not shared, no SMT etc. that is currently true on AMD CPUs. |
| |
| In theory the TLBs could be reported as fake type (they are in "dummy"). |
| Maybe later */ |
| union l1_cache { |
| struct { |
| unsigned line_size:8; |
| unsigned lines_per_tag:8; |
| unsigned assoc:8; |
| unsigned size_in_kb:8; |
| }; |
| unsigned val; |
| }; |
| |
| union l2_cache { |
| struct { |
| unsigned line_size:8; |
| unsigned lines_per_tag:4; |
| unsigned assoc:4; |
| unsigned size_in_kb:16; |
| }; |
| unsigned val; |
| }; |
| |
| union l3_cache { |
| struct { |
| unsigned line_size:8; |
| unsigned lines_per_tag:4; |
| unsigned assoc:4; |
| unsigned res:2; |
| unsigned size_encoded:14; |
| }; |
| unsigned val; |
| }; |
| |
| static const unsigned short assocs[] = { |
| [1] = 1, |
| [2] = 2, |
| [4] = 4, |
| [6] = 8, |
| [8] = 16, |
| [0xa] = 32, |
| [0xb] = 48, |
| [0xc] = 64, |
| [0xd] = 96, |
| [0xe] = 128, |
| [0xf] = 0xffff /* fully associative - no way to show this currently */ |
| }; |
| |
| static const unsigned char levels[] = { 1, 1, 2, 3 }; |
| static const unsigned char types[] = { 1, 2, 3, 3 }; |
| |
| static const enum cache_type cache_type_map[] = { |
| [CTYPE_NULL] = CACHE_TYPE_NOCACHE, |
| [CTYPE_DATA] = CACHE_TYPE_DATA, |
| [CTYPE_INST] = CACHE_TYPE_INST, |
| [CTYPE_UNIFIED] = CACHE_TYPE_UNIFIED, |
| }; |
| |
| static void |
| amd_cpuid4(int leaf, union _cpuid4_leaf_eax *eax, |
| union _cpuid4_leaf_ebx *ebx, |
| union _cpuid4_leaf_ecx *ecx) |
| { |
| unsigned dummy; |
| unsigned line_size, lines_per_tag, assoc, size_in_kb; |
| union l1_cache l1i, l1d; |
| union l2_cache l2; |
| union l3_cache l3; |
| union l1_cache *l1 = &l1d; |
| |
| eax->full = 0; |
| ebx->full = 0; |
| ecx->full = 0; |
| |
| cpuid(0x80000005, &dummy, &dummy, &l1d.val, &l1i.val); |
| cpuid(0x80000006, &dummy, &dummy, &l2.val, &l3.val); |
| |
| switch (leaf) { |
| case 1: |
| l1 = &l1i; |
| fallthrough; |
| case 0: |
| if (!l1->val) |
| return; |
| assoc = assocs[l1->assoc]; |
| line_size = l1->line_size; |
| lines_per_tag = l1->lines_per_tag; |
| size_in_kb = l1->size_in_kb; |
| break; |
| case 2: |
| if (!l2.val) |
| return; |
| assoc = assocs[l2.assoc]; |
| line_size = l2.line_size; |
| lines_per_tag = l2.lines_per_tag; |
| /* cpu_data has errata corrections for K7 applied */ |
| size_in_kb = __this_cpu_read(cpu_info.x86_cache_size); |
| break; |
| case 3: |
| if (!l3.val) |
| return; |
| assoc = assocs[l3.assoc]; |
| line_size = l3.line_size; |
| lines_per_tag = l3.lines_per_tag; |
| size_in_kb = l3.size_encoded * 512; |
| if (boot_cpu_has(X86_FEATURE_AMD_DCM)) { |
| size_in_kb = size_in_kb >> 1; |
| assoc = assoc >> 1; |
| } |
| break; |
| default: |
| return; |
| } |
| |
| eax->split.is_self_initializing = 1; |
| eax->split.type = types[leaf]; |
| eax->split.level = levels[leaf]; |
| eax->split.num_threads_sharing = 0; |
| eax->split.num_cores_on_die = __this_cpu_read(cpu_info.x86_max_cores) - 1; |
| |
| |
| if (assoc == 0xffff) |
| eax->split.is_fully_associative = 1; |
| ebx->split.coherency_line_size = line_size - 1; |
| ebx->split.ways_of_associativity = assoc - 1; |
| ebx->split.physical_line_partition = lines_per_tag - 1; |
| ecx->split.number_of_sets = (size_in_kb * 1024) / line_size / |
| (ebx->split.ways_of_associativity + 1) - 1; |
| } |
| |
| #if defined(CONFIG_AMD_NB) && defined(CONFIG_SYSFS) |
| |
| /* |
| * L3 cache descriptors |
| */ |
| static void amd_calc_l3_indices(struct amd_northbridge *nb) |
| { |
| struct amd_l3_cache *l3 = &nb->l3_cache; |
| unsigned int sc0, sc1, sc2, sc3; |
| u32 val = 0; |
| |
| pci_read_config_dword(nb->misc, 0x1C4, &val); |
| |
| /* calculate subcache sizes */ |
| l3->subcaches[0] = sc0 = !(val & BIT(0)); |
| l3->subcaches[1] = sc1 = !(val & BIT(4)); |
| |
| if (boot_cpu_data.x86 == 0x15) { |
| l3->subcaches[0] = sc0 += !(val & BIT(1)); |
| l3->subcaches[1] = sc1 += !(val & BIT(5)); |
| } |
| |
| l3->subcaches[2] = sc2 = !(val & BIT(8)) + !(val & BIT(9)); |
| l3->subcaches[3] = sc3 = !(val & BIT(12)) + !(val & BIT(13)); |
| |
| l3->indices = (max(max3(sc0, sc1, sc2), sc3) << 10) - 1; |
| } |
| |
| /* |
| * check whether a slot used for disabling an L3 index is occupied. |
| * @l3: L3 cache descriptor |
| * @slot: slot number (0..1) |
| * |
| * @returns: the disabled index if used or negative value if slot free. |
| */ |
| static int amd_get_l3_disable_slot(struct amd_northbridge *nb, unsigned slot) |
| { |
| unsigned int reg = 0; |
| |
| pci_read_config_dword(nb->misc, 0x1BC + slot * 4, ®); |
| |
| /* check whether this slot is activated already */ |
| if (reg & (3UL << 30)) |
| return reg & 0xfff; |
| |
| return -1; |
| } |
| |
| static ssize_t show_cache_disable(struct cacheinfo *this_leaf, char *buf, |
| unsigned int slot) |
| { |
| int index; |
| struct amd_northbridge *nb = this_leaf->priv; |
| |
| index = amd_get_l3_disable_slot(nb, slot); |
| if (index >= 0) |
| return sprintf(buf, "%d\n", index); |
| |
| return sprintf(buf, "FREE\n"); |
| } |
| |
| #define SHOW_CACHE_DISABLE(slot) \ |
| static ssize_t \ |
| cache_disable_##slot##_show(struct device *dev, \ |
| struct device_attribute *attr, char *buf) \ |
| { \ |
| struct cacheinfo *this_leaf = dev_get_drvdata(dev); \ |
| return show_cache_disable(this_leaf, buf, slot); \ |
| } |
| SHOW_CACHE_DISABLE(0) |
| SHOW_CACHE_DISABLE(1) |
| |
| static void amd_l3_disable_index(struct amd_northbridge *nb, int cpu, |
| unsigned slot, unsigned long idx) |
| { |
| int i; |
| |
| idx |= BIT(30); |
| |
| /* |
| * disable index in all 4 subcaches |
| */ |
| for (i = 0; i < 4; i++) { |
| u32 reg = idx | (i << 20); |
| |
| if (!nb->l3_cache.subcaches[i]) |
| continue; |
| |
| pci_write_config_dword(nb->misc, 0x1BC + slot * 4, reg); |
| |
| /* |
| * We need to WBINVD on a core on the node containing the L3 |
| * cache which indices we disable therefore a simple wbinvd() |
| * is not sufficient. |
| */ |
| wbinvd_on_cpu(cpu); |
| |
| reg |= BIT(31); |
| pci_write_config_dword(nb->misc, 0x1BC + slot * 4, reg); |
| } |
| } |
| |
| /* |
| * disable a L3 cache index by using a disable-slot |
| * |
| * @l3: L3 cache descriptor |
| * @cpu: A CPU on the node containing the L3 cache |
| * @slot: slot number (0..1) |
| * @index: index to disable |
| * |
| * @return: 0 on success, error status on failure |
| */ |
| static int amd_set_l3_disable_slot(struct amd_northbridge *nb, int cpu, |
| unsigned slot, unsigned long index) |
| { |
| int ret = 0; |
| |
| /* check if @slot is already used or the index is already disabled */ |
| ret = amd_get_l3_disable_slot(nb, slot); |
| if (ret >= 0) |
| return -EEXIST; |
| |
| if (index > nb->l3_cache.indices) |
| return -EINVAL; |
| |
| /* check whether the other slot has disabled the same index already */ |
| if (index == amd_get_l3_disable_slot(nb, !slot)) |
| return -EEXIST; |
| |
| amd_l3_disable_index(nb, cpu, slot, index); |
| |
| return 0; |
| } |
| |
| static ssize_t store_cache_disable(struct cacheinfo *this_leaf, |
| const char *buf, size_t count, |
| unsigned int slot) |
| { |
| unsigned long val = 0; |
| int cpu, err = 0; |
| struct amd_northbridge *nb = this_leaf->priv; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| cpu = cpumask_first(&this_leaf->shared_cpu_map); |
| |
| if (kstrtoul(buf, 10, &val) < 0) |
| return -EINVAL; |
| |
| err = amd_set_l3_disable_slot(nb, cpu, slot, val); |
| if (err) { |
| if (err == -EEXIST) |
| pr_warn("L3 slot %d in use/index already disabled!\n", |
| slot); |
| return err; |
| } |
| return count; |
| } |
| |
| #define STORE_CACHE_DISABLE(slot) \ |
| static ssize_t \ |
| cache_disable_##slot##_store(struct device *dev, \ |
| struct device_attribute *attr, \ |
| const char *buf, size_t count) \ |
| { \ |
| struct cacheinfo *this_leaf = dev_get_drvdata(dev); \ |
| return store_cache_disable(this_leaf, buf, count, slot); \ |
| } |
| STORE_CACHE_DISABLE(0) |
| STORE_CACHE_DISABLE(1) |
| |
| static ssize_t subcaches_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct cacheinfo *this_leaf = dev_get_drvdata(dev); |
| int cpu = cpumask_first(&this_leaf->shared_cpu_map); |
| |
| return sprintf(buf, "%x\n", amd_get_subcaches(cpu)); |
| } |
| |
| static ssize_t subcaches_store(struct device *dev, |
| struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| struct cacheinfo *this_leaf = dev_get_drvdata(dev); |
| int cpu = cpumask_first(&this_leaf->shared_cpu_map); |
| unsigned long val; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| if (kstrtoul(buf, 16, &val) < 0) |
| return -EINVAL; |
| |
| if (amd_set_subcaches(cpu, val)) |
| return -EINVAL; |
| |
| return count; |
| } |
| |
| static DEVICE_ATTR_RW(cache_disable_0); |
| static DEVICE_ATTR_RW(cache_disable_1); |
| static DEVICE_ATTR_RW(subcaches); |
| |
| static umode_t |
| cache_private_attrs_is_visible(struct kobject *kobj, |
| struct attribute *attr, int unused) |
| { |
| struct device *dev = kobj_to_dev(kobj); |
| struct cacheinfo *this_leaf = dev_get_drvdata(dev); |
| umode_t mode = attr->mode; |
| |
| if (!this_leaf->priv) |
| return 0; |
| |
| if ((attr == &dev_attr_subcaches.attr) && |
| amd_nb_has_feature(AMD_NB_L3_PARTITIONING)) |
| return mode; |
| |
| if ((attr == &dev_attr_cache_disable_0.attr || |
| attr == &dev_attr_cache_disable_1.attr) && |
| amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE)) |
| return mode; |
| |
| return 0; |
| } |
| |
| static struct attribute_group cache_private_group = { |
| .is_visible = cache_private_attrs_is_visible, |
| }; |
| |
| static void init_amd_l3_attrs(void) |
| { |
| int n = 1; |
| static struct attribute **amd_l3_attrs; |
| |
| if (amd_l3_attrs) /* already initialized */ |
| return; |
| |
| if (amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE)) |
| n += 2; |
| if (amd_nb_has_feature(AMD_NB_L3_PARTITIONING)) |
| n += 1; |
| |
| amd_l3_attrs = kcalloc(n, sizeof(*amd_l3_attrs), GFP_KERNEL); |
| if (!amd_l3_attrs) |
| return; |
| |
| n = 0; |
| if (amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE)) { |
| amd_l3_attrs[n++] = &dev_attr_cache_disable_0.attr; |
| amd_l3_attrs[n++] = &dev_attr_cache_disable_1.attr; |
| } |
| if (amd_nb_has_feature(AMD_NB_L3_PARTITIONING)) |
| amd_l3_attrs[n++] = &dev_attr_subcaches.attr; |
| |
| cache_private_group.attrs = amd_l3_attrs; |
| } |
| |
| const struct attribute_group * |
| cache_get_priv_group(struct cacheinfo *this_leaf) |
| { |
| struct amd_northbridge *nb = this_leaf->priv; |
| |
| if (this_leaf->level < 3 || !nb) |
| return NULL; |
| |
| if (nb && nb->l3_cache.indices) |
| init_amd_l3_attrs(); |
| |
| return &cache_private_group; |
| } |
| |
| static void amd_init_l3_cache(struct _cpuid4_info_regs *this_leaf, int index) |
| { |
| int node; |
| |
| /* only for L3, and not in virtualized environments */ |
| if (index < 3) |
| return; |
| |
| node = topology_die_id(smp_processor_id()); |
| this_leaf->nb = node_to_amd_nb(node); |
| if (this_leaf->nb && !this_leaf->nb->l3_cache.indices) |
| amd_calc_l3_indices(this_leaf->nb); |
| } |
| #else |
| #define amd_init_l3_cache(x, y) |
| #endif /* CONFIG_AMD_NB && CONFIG_SYSFS */ |
| |
| static int |
| cpuid4_cache_lookup_regs(int index, struct _cpuid4_info_regs *this_leaf) |
| { |
| union _cpuid4_leaf_eax eax; |
| union _cpuid4_leaf_ebx ebx; |
| union _cpuid4_leaf_ecx ecx; |
| unsigned edx; |
| |
| if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) { |
| if (boot_cpu_has(X86_FEATURE_TOPOEXT)) |
| cpuid_count(0x8000001d, index, &eax.full, |
| &ebx.full, &ecx.full, &edx); |
| else |
| amd_cpuid4(index, &eax, &ebx, &ecx); |
| amd_init_l3_cache(this_leaf, index); |
| } else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) { |
| cpuid_count(0x8000001d, index, &eax.full, |
| &ebx.full, &ecx.full, &edx); |
| amd_init_l3_cache(this_leaf, index); |
| } else { |
| cpuid_count(4, index, &eax.full, &ebx.full, &ecx.full, &edx); |
| } |
| |
| if (eax.split.type == CTYPE_NULL) |
| return -EIO; /* better error ? */ |
| |
| this_leaf->eax = eax; |
| this_leaf->ebx = ebx; |
| this_leaf->ecx = ecx; |
| this_leaf->size = (ecx.split.number_of_sets + 1) * |
| (ebx.split.coherency_line_size + 1) * |
| (ebx.split.physical_line_partition + 1) * |
| (ebx.split.ways_of_associativity + 1); |
| return 0; |
| } |
| |
| static int find_num_cache_leaves(struct cpuinfo_x86 *c) |
| { |
| unsigned int eax, ebx, ecx, edx, op; |
| union _cpuid4_leaf_eax cache_eax; |
| int i = -1; |
| |
| if (c->x86_vendor == X86_VENDOR_AMD || |
| c->x86_vendor == X86_VENDOR_HYGON) |
| op = 0x8000001d; |
| else |
| op = 4; |
| |
| do { |
| ++i; |
| /* Do cpuid(op) loop to find out num_cache_leaves */ |
| cpuid_count(op, i, &eax, &ebx, &ecx, &edx); |
| cache_eax.full = eax; |
| } while (cache_eax.split.type != CTYPE_NULL); |
| return i; |
| } |
| |
| void cacheinfo_amd_init_llc_id(struct cpuinfo_x86 *c) |
| { |
| /* |
| * We may have multiple LLCs if L3 caches exist, so check if we |
| * have an L3 cache by looking at the L3 cache CPUID leaf. |
| */ |
| if (!cpuid_edx(0x80000006)) |
| return; |
| |
| if (c->x86 < 0x17) { |
| /* LLC is at the node level. */ |
| c->topo.llc_id = c->topo.die_id; |
| } else if (c->x86 == 0x17 && c->x86_model <= 0x1F) { |
| /* |
| * LLC is at the core complex level. |
| * Core complex ID is ApicId[3] for these processors. |
| */ |
| c->topo.llc_id = c->topo.apicid >> 3; |
| } else { |
| /* |
| * LLC ID is calculated from the number of threads sharing the |
| * cache. |
| * */ |
| u32 eax, ebx, ecx, edx, num_sharing_cache = 0; |
| u32 llc_index = find_num_cache_leaves(c) - 1; |
| |
| cpuid_count(0x8000001d, llc_index, &eax, &ebx, &ecx, &edx); |
| if (eax) |
| num_sharing_cache = ((eax >> 14) & 0xfff) + 1; |
| |
| if (num_sharing_cache) { |
| int bits = get_count_order(num_sharing_cache); |
| |
| c->topo.llc_id = c->topo.apicid >> bits; |
| } |
| } |
| } |
| |
| void cacheinfo_hygon_init_llc_id(struct cpuinfo_x86 *c) |
| { |
| /* |
| * We may have multiple LLCs if L3 caches exist, so check if we |
| * have an L3 cache by looking at the L3 cache CPUID leaf. |
| */ |
| if (!cpuid_edx(0x80000006)) |
| return; |
| |
| /* |
| * LLC is at the core complex level. |
| * Core complex ID is ApicId[3] for these processors. |
| */ |
| c->topo.llc_id = c->topo.apicid >> 3; |
| } |
| |
| void init_amd_cacheinfo(struct cpuinfo_x86 *c) |
| { |
| |
| if (boot_cpu_has(X86_FEATURE_TOPOEXT)) { |
| num_cache_leaves = find_num_cache_leaves(c); |
| } else if (c->extended_cpuid_level >= 0x80000006) { |
| if (cpuid_edx(0x80000006) & 0xf000) |
| num_cache_leaves = 4; |
| else |
| num_cache_leaves = 3; |
| } |
| } |
| |
| void init_hygon_cacheinfo(struct cpuinfo_x86 *c) |
| { |
| num_cache_leaves = find_num_cache_leaves(c); |
| } |
| |
| void init_intel_cacheinfo(struct cpuinfo_x86 *c) |
| { |
| /* Cache sizes */ |
| unsigned int l1i = 0, l1d = 0, l2 = 0, l3 = 0; |
| unsigned int new_l1d = 0, new_l1i = 0; /* Cache sizes from cpuid(4) */ |
| unsigned int new_l2 = 0, new_l3 = 0, i; /* Cache sizes from cpuid(4) */ |
| unsigned int l2_id = 0, l3_id = 0, num_threads_sharing, index_msb; |
| |
| if (c->cpuid_level > 3) { |
| static int is_initialized; |
| |
| if (is_initialized == 0) { |
| /* Init num_cache_leaves from boot CPU */ |
| num_cache_leaves = find_num_cache_leaves(c); |
| is_initialized++; |
| } |
| |
| /* |
| * Whenever possible use cpuid(4), deterministic cache |
| * parameters cpuid leaf to find the cache details |
| */ |
| for (i = 0; i < num_cache_leaves; i++) { |
| struct _cpuid4_info_regs this_leaf = {}; |
| int retval; |
| |
| retval = cpuid4_cache_lookup_regs(i, &this_leaf); |
| if (retval < 0) |
| continue; |
| |
| switch (this_leaf.eax.split.level) { |
| case 1: |
| if (this_leaf.eax.split.type == CTYPE_DATA) |
| new_l1d = this_leaf.size/1024; |
| else if (this_leaf.eax.split.type == CTYPE_INST) |
| new_l1i = this_leaf.size/1024; |
| break; |
| case 2: |
| new_l2 = this_leaf.size/1024; |
| num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing; |
| index_msb = get_count_order(num_threads_sharing); |
| l2_id = c->topo.apicid & ~((1 << index_msb) - 1); |
| break; |
| case 3: |
| new_l3 = this_leaf.size/1024; |
| num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing; |
| index_msb = get_count_order(num_threads_sharing); |
| l3_id = c->topo.apicid & ~((1 << index_msb) - 1); |
| break; |
| default: |
| break; |
| } |
| } |
| } |
| /* |
| * Don't use cpuid2 if cpuid4 is supported. For P4, we use cpuid2 for |
| * trace cache |
| */ |
| if ((num_cache_leaves == 0 || c->x86 == 15) && c->cpuid_level > 1) { |
| /* supports eax=2 call */ |
| int j, n; |
| unsigned int regs[4]; |
| unsigned char *dp = (unsigned char *)regs; |
| int only_trace = 0; |
| |
| if (num_cache_leaves != 0 && c->x86 == 15) |
| only_trace = 1; |
| |
| /* Number of times to iterate */ |
| n = cpuid_eax(2) & 0xFF; |
| |
| for (i = 0 ; i < n ; i++) { |
| cpuid(2, ®s[0], ®s[1], ®s[2], ®s[3]); |
| |
| /* If bit 31 is set, this is an unknown format */ |
| for (j = 0 ; j < 3 ; j++) |
| if (regs[j] & (1 << 31)) |
| regs[j] = 0; |
| |
| /* Byte 0 is level count, not a descriptor */ |
| for (j = 1 ; j < 16 ; j++) { |
| unsigned char des = dp[j]; |
| unsigned char k = 0; |
| |
| /* look up this descriptor in the table */ |
| while (cache_table[k].descriptor != 0) { |
| if (cache_table[k].descriptor == des) { |
| if (only_trace && cache_table[k].cache_type != LVL_TRACE) |
| break; |
| switch (cache_table[k].cache_type) { |
| case LVL_1_INST: |
| l1i += cache_table[k].size; |
| break; |
| case LVL_1_DATA: |
| l1d += cache_table[k].size; |
| break; |
| case LVL_2: |
| l2 += cache_table[k].size; |
| break; |
| case LVL_3: |
| l3 += cache_table[k].size; |
| break; |
| } |
| |
| break; |
| } |
| |
| k++; |
| } |
| } |
| } |
| } |
| |
| if (new_l1d) |
| l1d = new_l1d; |
| |
| if (new_l1i) |
| l1i = new_l1i; |
| |
| if (new_l2) { |
| l2 = new_l2; |
| c->topo.llc_id = l2_id; |
| c->topo.l2c_id = l2_id; |
| } |
| |
| if (new_l3) { |
| l3 = new_l3; |
| c->topo.llc_id = l3_id; |
| } |
| |
| /* |
| * If llc_id is not yet set, this means cpuid_level < 4 which in |
| * turns means that the only possibility is SMT (as indicated in |
| * cpuid1). Since cpuid2 doesn't specify shared caches, and we know |
| * that SMT shares all caches, we can unconditionally set cpu_llc_id to |
| * c->topo.pkg_id. |
| */ |
| if (c->topo.llc_id == BAD_APICID) |
| c->topo.llc_id = c->topo.pkg_id; |
| |
| c->x86_cache_size = l3 ? l3 : (l2 ? l2 : (l1i+l1d)); |
| |
| if (!l2) |
| cpu_detect_cache_sizes(c); |
| } |
| |
| static int __cache_amd_cpumap_setup(unsigned int cpu, int index, |
| struct _cpuid4_info_regs *base) |
| { |
| struct cpu_cacheinfo *this_cpu_ci; |
| struct cacheinfo *this_leaf; |
| int i, sibling; |
| |
| /* |
| * For L3, always use the pre-calculated cpu_llc_shared_mask |
| * to derive shared_cpu_map. |
| */ |
| if (index == 3) { |
| for_each_cpu(i, cpu_llc_shared_mask(cpu)) { |
| this_cpu_ci = get_cpu_cacheinfo(i); |
| if (!this_cpu_ci->info_list) |
| continue; |
| this_leaf = this_cpu_ci->info_list + index; |
| for_each_cpu(sibling, cpu_llc_shared_mask(cpu)) { |
| if (!cpu_online(sibling)) |
| continue; |
| cpumask_set_cpu(sibling, |
| &this_leaf->shared_cpu_map); |
| } |
| } |
| } else if (boot_cpu_has(X86_FEATURE_TOPOEXT)) { |
| unsigned int apicid, nshared, first, last; |
| |
| nshared = base->eax.split.num_threads_sharing + 1; |
| apicid = cpu_data(cpu).topo.apicid; |
| first = apicid - (apicid % nshared); |
| last = first + nshared - 1; |
| |
| for_each_online_cpu(i) { |
| this_cpu_ci = get_cpu_cacheinfo(i); |
| if (!this_cpu_ci->info_list) |
| continue; |
| |
| apicid = cpu_data(i).topo.apicid; |
| if ((apicid < first) || (apicid > last)) |
| continue; |
| |
| this_leaf = this_cpu_ci->info_list + index; |
| |
| for_each_online_cpu(sibling) { |
| apicid = cpu_data(sibling).topo.apicid; |
| if ((apicid < first) || (apicid > last)) |
| continue; |
| cpumask_set_cpu(sibling, |
| &this_leaf->shared_cpu_map); |
| } |
| } |
| } else |
| return 0; |
| |
| return 1; |
| } |
| |
| static void __cache_cpumap_setup(unsigned int cpu, int index, |
| struct _cpuid4_info_regs *base) |
| { |
| struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); |
| struct cacheinfo *this_leaf, *sibling_leaf; |
| unsigned long num_threads_sharing; |
| int index_msb, i; |
| struct cpuinfo_x86 *c = &cpu_data(cpu); |
| |
| if (c->x86_vendor == X86_VENDOR_AMD || |
| c->x86_vendor == X86_VENDOR_HYGON) { |
| if (__cache_amd_cpumap_setup(cpu, index, base)) |
| return; |
| } |
| |
| this_leaf = this_cpu_ci->info_list + index; |
| num_threads_sharing = 1 + base->eax.split.num_threads_sharing; |
| |
| cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map); |
| if (num_threads_sharing == 1) |
| return; |
| |
| index_msb = get_count_order(num_threads_sharing); |
| |
| for_each_online_cpu(i) |
| if (cpu_data(i).topo.apicid >> index_msb == c->topo.apicid >> index_msb) { |
| struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i); |
| |
| if (i == cpu || !sib_cpu_ci->info_list) |
| continue;/* skip if itself or no cacheinfo */ |
| sibling_leaf = sib_cpu_ci->info_list + index; |
| cpumask_set_cpu(i, &this_leaf->shared_cpu_map); |
| cpumask_set_cpu(cpu, &sibling_leaf->shared_cpu_map); |
| } |
| } |
| |
| static void ci_leaf_init(struct cacheinfo *this_leaf, |
| struct _cpuid4_info_regs *base) |
| { |
| this_leaf->id = base->id; |
| this_leaf->attributes = CACHE_ID; |
| this_leaf->level = base->eax.split.level; |
| this_leaf->type = cache_type_map[base->eax.split.type]; |
| this_leaf->coherency_line_size = |
| base->ebx.split.coherency_line_size + 1; |
| this_leaf->ways_of_associativity = |
| base->ebx.split.ways_of_associativity + 1; |
| this_leaf->size = base->size; |
| this_leaf->number_of_sets = base->ecx.split.number_of_sets + 1; |
| this_leaf->physical_line_partition = |
| base->ebx.split.physical_line_partition + 1; |
| this_leaf->priv = base->nb; |
| } |
| |
| int init_cache_level(unsigned int cpu) |
| { |
| struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); |
| |
| if (!num_cache_leaves) |
| return -ENOENT; |
| if (!this_cpu_ci) |
| return -EINVAL; |
| this_cpu_ci->num_levels = 3; |
| this_cpu_ci->num_leaves = num_cache_leaves; |
| return 0; |
| } |
| |
| /* |
| * The max shared threads number comes from CPUID.4:EAX[25-14] with input |
| * ECX as cache index. Then right shift apicid by the number's order to get |
| * cache id for this cache node. |
| */ |
| static void get_cache_id(int cpu, struct _cpuid4_info_regs *id4_regs) |
| { |
| struct cpuinfo_x86 *c = &cpu_data(cpu); |
| unsigned long num_threads_sharing; |
| int index_msb; |
| |
| num_threads_sharing = 1 + id4_regs->eax.split.num_threads_sharing; |
| index_msb = get_count_order(num_threads_sharing); |
| id4_regs->id = c->topo.apicid >> index_msb; |
| } |
| |
| int populate_cache_leaves(unsigned int cpu) |
| { |
| unsigned int idx, ret; |
| struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); |
| struct cacheinfo *this_leaf = this_cpu_ci->info_list; |
| struct _cpuid4_info_regs id4_regs = {}; |
| |
| for (idx = 0; idx < this_cpu_ci->num_leaves; idx++) { |
| ret = cpuid4_cache_lookup_regs(idx, &id4_regs); |
| if (ret) |
| return ret; |
| get_cache_id(cpu, &id4_regs); |
| ci_leaf_init(this_leaf++, &id4_regs); |
| __cache_cpumap_setup(cpu, idx, &id4_regs); |
| } |
| this_cpu_ci->cpu_map_populated = true; |
| |
| return 0; |
| } |
| |
| /* |
| * Disable and enable caches. Needed for changing MTRRs and the PAT MSR. |
| * |
| * Since we are disabling the cache don't allow any interrupts, |
| * they would run extremely slow and would only increase the pain. |
| * |
| * The caller must ensure that local interrupts are disabled and |
| * are reenabled after cache_enable() has been called. |
| */ |
| static unsigned long saved_cr4; |
| static DEFINE_RAW_SPINLOCK(cache_disable_lock); |
| |
| void cache_disable(void) __acquires(cache_disable_lock) |
| { |
| unsigned long cr0; |
| |
| /* |
| * Note that this is not ideal |
| * since the cache is only flushed/disabled for this CPU while the |
| * MTRRs are changed, but changing this requires more invasive |
| * changes to the way the kernel boots |
| */ |
| |
| raw_spin_lock(&cache_disable_lock); |
| |
| /* Enter the no-fill (CD=1, NW=0) cache mode and flush caches. */ |
| cr0 = read_cr0() | X86_CR0_CD; |
| write_cr0(cr0); |
| |
| /* |
| * Cache flushing is the most time-consuming step when programming |
| * the MTRRs. Fortunately, as per the Intel Software Development |
| * Manual, we can skip it if the processor supports cache self- |
| * snooping. |
| */ |
| if (!static_cpu_has(X86_FEATURE_SELFSNOOP)) |
| wbinvd(); |
| |
| /* Save value of CR4 and clear Page Global Enable (bit 7) */ |
| if (cpu_feature_enabled(X86_FEATURE_PGE)) { |
| saved_cr4 = __read_cr4(); |
| __write_cr4(saved_cr4 & ~X86_CR4_PGE); |
| } |
| |
| /* Flush all TLBs via a mov %cr3, %reg; mov %reg, %cr3 */ |
| count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL); |
| flush_tlb_local(); |
| |
| if (cpu_feature_enabled(X86_FEATURE_MTRR)) |
| mtrr_disable(); |
| |
| /* Again, only flush caches if we have to. */ |
| if (!static_cpu_has(X86_FEATURE_SELFSNOOP)) |
| wbinvd(); |
| } |
| |
| void cache_enable(void) __releases(cache_disable_lock) |
| { |
| /* Flush TLBs (no need to flush caches - they are disabled) */ |
| count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL); |
| flush_tlb_local(); |
| |
| if (cpu_feature_enabled(X86_FEATURE_MTRR)) |
| mtrr_enable(); |
| |
| /* Enable caches */ |
| write_cr0(read_cr0() & ~X86_CR0_CD); |
| |
| /* Restore value of CR4 */ |
| if (cpu_feature_enabled(X86_FEATURE_PGE)) |
| __write_cr4(saved_cr4); |
| |
| raw_spin_unlock(&cache_disable_lock); |
| } |
| |
| static void cache_cpu_init(void) |
| { |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| cache_disable(); |
| |
| if (memory_caching_control & CACHE_MTRR) |
| mtrr_generic_set_state(); |
| |
| if (memory_caching_control & CACHE_PAT) |
| pat_cpu_init(); |
| |
| cache_enable(); |
| local_irq_restore(flags); |
| } |
| |
| static bool cache_aps_delayed_init = true; |
| |
| void set_cache_aps_delayed_init(bool val) |
| { |
| cache_aps_delayed_init = val; |
| } |
| |
| bool get_cache_aps_delayed_init(void) |
| { |
| return cache_aps_delayed_init; |
| } |
| |
| static int cache_rendezvous_handler(void *unused) |
| { |
| if (get_cache_aps_delayed_init() || !cpu_online(smp_processor_id())) |
| cache_cpu_init(); |
| |
| return 0; |
| } |
| |
| void __init cache_bp_init(void) |
| { |
| mtrr_bp_init(); |
| pat_bp_init(); |
| |
| if (memory_caching_control) |
| cache_cpu_init(); |
| } |
| |
| void cache_bp_restore(void) |
| { |
| if (memory_caching_control) |
| cache_cpu_init(); |
| } |
| |
| static int cache_ap_online(unsigned int cpu) |
| { |
| cpumask_set_cpu(cpu, cpu_cacheinfo_mask); |
| |
| if (!memory_caching_control || get_cache_aps_delayed_init()) |
| return 0; |
| |
| /* |
| * Ideally we should hold mtrr_mutex here to avoid MTRR entries |
| * changed, but this routine will be called in CPU boot time, |
| * holding the lock breaks it. |
| * |
| * This routine is called in two cases: |
| * |
| * 1. very early time of software resume, when there absolutely |
| * isn't MTRR entry changes; |
| * |
| * 2. CPU hotadd time. We let mtrr_add/del_page hold cpuhotplug |
| * lock to prevent MTRR entry changes |
| */ |
| stop_machine_from_inactive_cpu(cache_rendezvous_handler, NULL, |
| cpu_cacheinfo_mask); |
| |
| return 0; |
| } |
| |
| static int cache_ap_offline(unsigned int cpu) |
| { |
| cpumask_clear_cpu(cpu, cpu_cacheinfo_mask); |
| return 0; |
| } |
| |
| /* |
| * Delayed cache initialization for all AP's |
| */ |
| void cache_aps_init(void) |
| { |
| if (!memory_caching_control || !get_cache_aps_delayed_init()) |
| return; |
| |
| stop_machine(cache_rendezvous_handler, NULL, cpu_online_mask); |
| set_cache_aps_delayed_init(false); |
| } |
| |
| static int __init cache_ap_register(void) |
| { |
| zalloc_cpumask_var(&cpu_cacheinfo_mask, GFP_KERNEL); |
| cpumask_set_cpu(smp_processor_id(), cpu_cacheinfo_mask); |
| |
| cpuhp_setup_state_nocalls(CPUHP_AP_CACHECTRL_STARTING, |
| "x86/cachectrl:starting", |
| cache_ap_online, cache_ap_offline); |
| return 0; |
| } |
| early_initcall(cache_ap_register); |