| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Data Access Monitor |
| * |
| * Author: SeongJae Park <sj@kernel.org> |
| */ |
| |
| #define pr_fmt(fmt) "damon: " fmt |
| |
| #include <linux/damon.h> |
| #include <linux/delay.h> |
| #include <linux/kthread.h> |
| #include <linux/mm.h> |
| #include <linux/slab.h> |
| #include <linux/string.h> |
| |
| #define CREATE_TRACE_POINTS |
| #include <trace/events/damon.h> |
| |
| #ifdef CONFIG_DAMON_KUNIT_TEST |
| #undef DAMON_MIN_REGION |
| #define DAMON_MIN_REGION 1 |
| #endif |
| |
| static DEFINE_MUTEX(damon_lock); |
| static int nr_running_ctxs; |
| static bool running_exclusive_ctxs; |
| |
| static DEFINE_MUTEX(damon_ops_lock); |
| static struct damon_operations damon_registered_ops[NR_DAMON_OPS]; |
| |
| static struct kmem_cache *damon_region_cache __ro_after_init; |
| |
| /* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */ |
| static bool __damon_is_registered_ops(enum damon_ops_id id) |
| { |
| struct damon_operations empty_ops = {}; |
| |
| if (!memcmp(&empty_ops, &damon_registered_ops[id], sizeof(empty_ops))) |
| return false; |
| return true; |
| } |
| |
| /** |
| * damon_is_registered_ops() - Check if a given damon_operations is registered. |
| * @id: Id of the damon_operations to check if registered. |
| * |
| * Return: true if the ops is set, false otherwise. |
| */ |
| bool damon_is_registered_ops(enum damon_ops_id id) |
| { |
| bool registered; |
| |
| if (id >= NR_DAMON_OPS) |
| return false; |
| mutex_lock(&damon_ops_lock); |
| registered = __damon_is_registered_ops(id); |
| mutex_unlock(&damon_ops_lock); |
| return registered; |
| } |
| |
| /** |
| * damon_register_ops() - Register a monitoring operations set to DAMON. |
| * @ops: monitoring operations set to register. |
| * |
| * This function registers a monitoring operations set of valid &struct |
| * damon_operations->id so that others can find and use them later. |
| * |
| * Return: 0 on success, negative error code otherwise. |
| */ |
| int damon_register_ops(struct damon_operations *ops) |
| { |
| int err = 0; |
| |
| if (ops->id >= NR_DAMON_OPS) |
| return -EINVAL; |
| mutex_lock(&damon_ops_lock); |
| /* Fail for already registered ops */ |
| if (__damon_is_registered_ops(ops->id)) { |
| err = -EINVAL; |
| goto out; |
| } |
| damon_registered_ops[ops->id] = *ops; |
| out: |
| mutex_unlock(&damon_ops_lock); |
| return err; |
| } |
| |
| /** |
| * damon_select_ops() - Select a monitoring operations to use with the context. |
| * @ctx: monitoring context to use the operations. |
| * @id: id of the registered monitoring operations to select. |
| * |
| * This function finds registered monitoring operations set of @id and make |
| * @ctx to use it. |
| * |
| * Return: 0 on success, negative error code otherwise. |
| */ |
| int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id) |
| { |
| int err = 0; |
| |
| if (id >= NR_DAMON_OPS) |
| return -EINVAL; |
| |
| mutex_lock(&damon_ops_lock); |
| if (!__damon_is_registered_ops(id)) |
| err = -EINVAL; |
| else |
| ctx->ops = damon_registered_ops[id]; |
| mutex_unlock(&damon_ops_lock); |
| return err; |
| } |
| |
| /* |
| * Construct a damon_region struct |
| * |
| * Returns the pointer to the new struct if success, or NULL otherwise |
| */ |
| struct damon_region *damon_new_region(unsigned long start, unsigned long end) |
| { |
| struct damon_region *region; |
| |
| region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL); |
| if (!region) |
| return NULL; |
| |
| region->ar.start = start; |
| region->ar.end = end; |
| region->nr_accesses = 0; |
| region->nr_accesses_bp = 0; |
| INIT_LIST_HEAD(®ion->list); |
| |
| region->age = 0; |
| region->last_nr_accesses = 0; |
| |
| return region; |
| } |
| |
| void damon_add_region(struct damon_region *r, struct damon_target *t) |
| { |
| list_add_tail(&r->list, &t->regions_list); |
| t->nr_regions++; |
| } |
| |
| static void damon_del_region(struct damon_region *r, struct damon_target *t) |
| { |
| list_del(&r->list); |
| t->nr_regions--; |
| } |
| |
| static void damon_free_region(struct damon_region *r) |
| { |
| kmem_cache_free(damon_region_cache, r); |
| } |
| |
| void damon_destroy_region(struct damon_region *r, struct damon_target *t) |
| { |
| damon_del_region(r, t); |
| damon_free_region(r); |
| } |
| |
| /* |
| * Check whether a region is intersecting an address range |
| * |
| * Returns true if it is. |
| */ |
| static bool damon_intersect(struct damon_region *r, |
| struct damon_addr_range *re) |
| { |
| return !(r->ar.end <= re->start || re->end <= r->ar.start); |
| } |
| |
| /* |
| * Fill holes in regions with new regions. |
| */ |
| static int damon_fill_regions_holes(struct damon_region *first, |
| struct damon_region *last, struct damon_target *t) |
| { |
| struct damon_region *r = first; |
| |
| damon_for_each_region_from(r, t) { |
| struct damon_region *next, *newr; |
| |
| if (r == last) |
| break; |
| next = damon_next_region(r); |
| if (r->ar.end != next->ar.start) { |
| newr = damon_new_region(r->ar.end, next->ar.start); |
| if (!newr) |
| return -ENOMEM; |
| damon_insert_region(newr, r, next, t); |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| * damon_set_regions() - Set regions of a target for given address ranges. |
| * @t: the given target. |
| * @ranges: array of new monitoring target ranges. |
| * @nr_ranges: length of @ranges. |
| * |
| * This function adds new regions to, or modify existing regions of a |
| * monitoring target to fit in specific ranges. |
| * |
| * Return: 0 if success, or negative error code otherwise. |
| */ |
| int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges, |
| unsigned int nr_ranges) |
| { |
| struct damon_region *r, *next; |
| unsigned int i; |
| int err; |
| |
| /* Remove regions which are not in the new ranges */ |
| damon_for_each_region_safe(r, next, t) { |
| for (i = 0; i < nr_ranges; i++) { |
| if (damon_intersect(r, &ranges[i])) |
| break; |
| } |
| if (i == nr_ranges) |
| damon_destroy_region(r, t); |
| } |
| |
| r = damon_first_region(t); |
| /* Add new regions or resize existing regions to fit in the ranges */ |
| for (i = 0; i < nr_ranges; i++) { |
| struct damon_region *first = NULL, *last, *newr; |
| struct damon_addr_range *range; |
| |
| range = &ranges[i]; |
| /* Get the first/last regions intersecting with the range */ |
| damon_for_each_region_from(r, t) { |
| if (damon_intersect(r, range)) { |
| if (!first) |
| first = r; |
| last = r; |
| } |
| if (r->ar.start >= range->end) |
| break; |
| } |
| if (!first) { |
| /* no region intersects with this range */ |
| newr = damon_new_region( |
| ALIGN_DOWN(range->start, |
| DAMON_MIN_REGION), |
| ALIGN(range->end, DAMON_MIN_REGION)); |
| if (!newr) |
| return -ENOMEM; |
| damon_insert_region(newr, damon_prev_region(r), r, t); |
| } else { |
| /* resize intersecting regions to fit in this range */ |
| first->ar.start = ALIGN_DOWN(range->start, |
| DAMON_MIN_REGION); |
| last->ar.end = ALIGN(range->end, DAMON_MIN_REGION); |
| |
| /* fill possible holes in the range */ |
| err = damon_fill_regions_holes(first, last, t); |
| if (err) |
| return err; |
| } |
| } |
| return 0; |
| } |
| |
| struct damos_filter *damos_new_filter(enum damos_filter_type type, |
| bool matching) |
| { |
| struct damos_filter *filter; |
| |
| filter = kmalloc(sizeof(*filter), GFP_KERNEL); |
| if (!filter) |
| return NULL; |
| filter->type = type; |
| filter->matching = matching; |
| INIT_LIST_HEAD(&filter->list); |
| return filter; |
| } |
| |
| void damos_add_filter(struct damos *s, struct damos_filter *f) |
| { |
| list_add_tail(&f->list, &s->filters); |
| } |
| |
| static void damos_del_filter(struct damos_filter *f) |
| { |
| list_del(&f->list); |
| } |
| |
| static void damos_free_filter(struct damos_filter *f) |
| { |
| kfree(f); |
| } |
| |
| void damos_destroy_filter(struct damos_filter *f) |
| { |
| damos_del_filter(f); |
| damos_free_filter(f); |
| } |
| |
| /* initialize private fields of damos_quota and return the pointer */ |
| static struct damos_quota *damos_quota_init_priv(struct damos_quota *quota) |
| { |
| quota->total_charged_sz = 0; |
| quota->total_charged_ns = 0; |
| quota->esz = 0; |
| quota->charged_sz = 0; |
| quota->charged_from = 0; |
| quota->charge_target_from = NULL; |
| quota->charge_addr_from = 0; |
| return quota; |
| } |
| |
| struct damos *damon_new_scheme(struct damos_access_pattern *pattern, |
| enum damos_action action, |
| unsigned long apply_interval_us, |
| struct damos_quota *quota, |
| struct damos_watermarks *wmarks) |
| { |
| struct damos *scheme; |
| |
| scheme = kmalloc(sizeof(*scheme), GFP_KERNEL); |
| if (!scheme) |
| return NULL; |
| scheme->pattern = *pattern; |
| scheme->action = action; |
| scheme->apply_interval_us = apply_interval_us; |
| /* |
| * next_apply_sis will be set when kdamond starts. While kdamond is |
| * running, it will also updated when it is added to the DAMON context, |
| * or damon_attrs are updated. |
| */ |
| scheme->next_apply_sis = 0; |
| INIT_LIST_HEAD(&scheme->filters); |
| scheme->stat = (struct damos_stat){}; |
| INIT_LIST_HEAD(&scheme->list); |
| |
| scheme->quota = *(damos_quota_init_priv(quota)); |
| |
| scheme->wmarks = *wmarks; |
| scheme->wmarks.activated = true; |
| |
| return scheme; |
| } |
| |
| static void damos_set_next_apply_sis(struct damos *s, struct damon_ctx *ctx) |
| { |
| unsigned long sample_interval = ctx->attrs.sample_interval ? |
| ctx->attrs.sample_interval : 1; |
| unsigned long apply_interval = s->apply_interval_us ? |
| s->apply_interval_us : ctx->attrs.aggr_interval; |
| |
| s->next_apply_sis = ctx->passed_sample_intervals + |
| apply_interval / sample_interval; |
| } |
| |
| void damon_add_scheme(struct damon_ctx *ctx, struct damos *s) |
| { |
| list_add_tail(&s->list, &ctx->schemes); |
| damos_set_next_apply_sis(s, ctx); |
| } |
| |
| static void damon_del_scheme(struct damos *s) |
| { |
| list_del(&s->list); |
| } |
| |
| static void damon_free_scheme(struct damos *s) |
| { |
| kfree(s); |
| } |
| |
| void damon_destroy_scheme(struct damos *s) |
| { |
| struct damos_filter *f, *next; |
| |
| damos_for_each_filter_safe(f, next, s) |
| damos_destroy_filter(f); |
| damon_del_scheme(s); |
| damon_free_scheme(s); |
| } |
| |
| /* |
| * Construct a damon_target struct |
| * |
| * Returns the pointer to the new struct if success, or NULL otherwise |
| */ |
| struct damon_target *damon_new_target(void) |
| { |
| struct damon_target *t; |
| |
| t = kmalloc(sizeof(*t), GFP_KERNEL); |
| if (!t) |
| return NULL; |
| |
| t->pid = NULL; |
| t->nr_regions = 0; |
| INIT_LIST_HEAD(&t->regions_list); |
| INIT_LIST_HEAD(&t->list); |
| |
| return t; |
| } |
| |
| void damon_add_target(struct damon_ctx *ctx, struct damon_target *t) |
| { |
| list_add_tail(&t->list, &ctx->adaptive_targets); |
| } |
| |
| bool damon_targets_empty(struct damon_ctx *ctx) |
| { |
| return list_empty(&ctx->adaptive_targets); |
| } |
| |
| static void damon_del_target(struct damon_target *t) |
| { |
| list_del(&t->list); |
| } |
| |
| void damon_free_target(struct damon_target *t) |
| { |
| struct damon_region *r, *next; |
| |
| damon_for_each_region_safe(r, next, t) |
| damon_free_region(r); |
| kfree(t); |
| } |
| |
| void damon_destroy_target(struct damon_target *t) |
| { |
| damon_del_target(t); |
| damon_free_target(t); |
| } |
| |
| unsigned int damon_nr_regions(struct damon_target *t) |
| { |
| return t->nr_regions; |
| } |
| |
| struct damon_ctx *damon_new_ctx(void) |
| { |
| struct damon_ctx *ctx; |
| |
| ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); |
| if (!ctx) |
| return NULL; |
| |
| init_completion(&ctx->kdamond_started); |
| |
| ctx->attrs.sample_interval = 5 * 1000; |
| ctx->attrs.aggr_interval = 100 * 1000; |
| ctx->attrs.ops_update_interval = 60 * 1000 * 1000; |
| |
| ctx->passed_sample_intervals = 0; |
| /* These will be set from kdamond_init_intervals_sis() */ |
| ctx->next_aggregation_sis = 0; |
| ctx->next_ops_update_sis = 0; |
| |
| mutex_init(&ctx->kdamond_lock); |
| |
| ctx->attrs.min_nr_regions = 10; |
| ctx->attrs.max_nr_regions = 1000; |
| |
| INIT_LIST_HEAD(&ctx->adaptive_targets); |
| INIT_LIST_HEAD(&ctx->schemes); |
| |
| return ctx; |
| } |
| |
| static void damon_destroy_targets(struct damon_ctx *ctx) |
| { |
| struct damon_target *t, *next_t; |
| |
| if (ctx->ops.cleanup) { |
| ctx->ops.cleanup(ctx); |
| return; |
| } |
| |
| damon_for_each_target_safe(t, next_t, ctx) |
| damon_destroy_target(t); |
| } |
| |
| void damon_destroy_ctx(struct damon_ctx *ctx) |
| { |
| struct damos *s, *next_s; |
| |
| damon_destroy_targets(ctx); |
| |
| damon_for_each_scheme_safe(s, next_s, ctx) |
| damon_destroy_scheme(s); |
| |
| kfree(ctx); |
| } |
| |
| static unsigned int damon_age_for_new_attrs(unsigned int age, |
| struct damon_attrs *old_attrs, struct damon_attrs *new_attrs) |
| { |
| return age * old_attrs->aggr_interval / new_attrs->aggr_interval; |
| } |
| |
| /* convert access ratio in bp (per 10,000) to nr_accesses */ |
| static unsigned int damon_accesses_bp_to_nr_accesses( |
| unsigned int accesses_bp, struct damon_attrs *attrs) |
| { |
| return accesses_bp * damon_max_nr_accesses(attrs) / 10000; |
| } |
| |
| /* convert nr_accesses to access ratio in bp (per 10,000) */ |
| static unsigned int damon_nr_accesses_to_accesses_bp( |
| unsigned int nr_accesses, struct damon_attrs *attrs) |
| { |
| return nr_accesses * 10000 / damon_max_nr_accesses(attrs); |
| } |
| |
| static unsigned int damon_nr_accesses_for_new_attrs(unsigned int nr_accesses, |
| struct damon_attrs *old_attrs, struct damon_attrs *new_attrs) |
| { |
| return damon_accesses_bp_to_nr_accesses( |
| damon_nr_accesses_to_accesses_bp( |
| nr_accesses, old_attrs), |
| new_attrs); |
| } |
| |
| static void damon_update_monitoring_result(struct damon_region *r, |
| struct damon_attrs *old_attrs, struct damon_attrs *new_attrs) |
| { |
| r->nr_accesses = damon_nr_accesses_for_new_attrs(r->nr_accesses, |
| old_attrs, new_attrs); |
| r->nr_accesses_bp = r->nr_accesses * 10000; |
| r->age = damon_age_for_new_attrs(r->age, old_attrs, new_attrs); |
| } |
| |
| /* |
| * region->nr_accesses is the number of sampling intervals in the last |
| * aggregation interval that access to the region has found, and region->age is |
| * the number of aggregation intervals that its access pattern has maintained. |
| * For the reason, the real meaning of the two fields depend on current |
| * sampling interval and aggregation interval. This function updates |
| * ->nr_accesses and ->age of given damon_ctx's regions for new damon_attrs. |
| */ |
| static void damon_update_monitoring_results(struct damon_ctx *ctx, |
| struct damon_attrs *new_attrs) |
| { |
| struct damon_attrs *old_attrs = &ctx->attrs; |
| struct damon_target *t; |
| struct damon_region *r; |
| |
| /* if any interval is zero, simply forgive conversion */ |
| if (!old_attrs->sample_interval || !old_attrs->aggr_interval || |
| !new_attrs->sample_interval || |
| !new_attrs->aggr_interval) |
| return; |
| |
| damon_for_each_target(t, ctx) |
| damon_for_each_region(r, t) |
| damon_update_monitoring_result( |
| r, old_attrs, new_attrs); |
| } |
| |
| /** |
| * damon_set_attrs() - Set attributes for the monitoring. |
| * @ctx: monitoring context |
| * @attrs: monitoring attributes |
| * |
| * This function should be called while the kdamond is not running, or an |
| * access check results aggregation is not ongoing (e.g., from |
| * &struct damon_callback->after_aggregation or |
| * &struct damon_callback->after_wmarks_check callbacks). |
| * |
| * Every time interval is in micro-seconds. |
| * |
| * Return: 0 on success, negative error code otherwise. |
| */ |
| int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs) |
| { |
| unsigned long sample_interval = attrs->sample_interval ? |
| attrs->sample_interval : 1; |
| struct damos *s; |
| |
| if (attrs->min_nr_regions < 3) |
| return -EINVAL; |
| if (attrs->min_nr_regions > attrs->max_nr_regions) |
| return -EINVAL; |
| if (attrs->sample_interval > attrs->aggr_interval) |
| return -EINVAL; |
| |
| ctx->next_aggregation_sis = ctx->passed_sample_intervals + |
| attrs->aggr_interval / sample_interval; |
| ctx->next_ops_update_sis = ctx->passed_sample_intervals + |
| attrs->ops_update_interval / sample_interval; |
| |
| damon_update_monitoring_results(ctx, attrs); |
| ctx->attrs = *attrs; |
| |
| damon_for_each_scheme(s, ctx) |
| damos_set_next_apply_sis(s, ctx); |
| |
| return 0; |
| } |
| |
| /** |
| * damon_set_schemes() - Set data access monitoring based operation schemes. |
| * @ctx: monitoring context |
| * @schemes: array of the schemes |
| * @nr_schemes: number of entries in @schemes |
| * |
| * This function should not be called while the kdamond of the context is |
| * running. |
| */ |
| void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes, |
| ssize_t nr_schemes) |
| { |
| struct damos *s, *next; |
| ssize_t i; |
| |
| damon_for_each_scheme_safe(s, next, ctx) |
| damon_destroy_scheme(s); |
| for (i = 0; i < nr_schemes; i++) |
| damon_add_scheme(ctx, schemes[i]); |
| } |
| |
| /** |
| * damon_nr_running_ctxs() - Return number of currently running contexts. |
| */ |
| int damon_nr_running_ctxs(void) |
| { |
| int nr_ctxs; |
| |
| mutex_lock(&damon_lock); |
| nr_ctxs = nr_running_ctxs; |
| mutex_unlock(&damon_lock); |
| |
| return nr_ctxs; |
| } |
| |
| /* Returns the size upper limit for each monitoring region */ |
| static unsigned long damon_region_sz_limit(struct damon_ctx *ctx) |
| { |
| struct damon_target *t; |
| struct damon_region *r; |
| unsigned long sz = 0; |
| |
| damon_for_each_target(t, ctx) { |
| damon_for_each_region(r, t) |
| sz += damon_sz_region(r); |
| } |
| |
| if (ctx->attrs.min_nr_regions) |
| sz /= ctx->attrs.min_nr_regions; |
| if (sz < DAMON_MIN_REGION) |
| sz = DAMON_MIN_REGION; |
| |
| return sz; |
| } |
| |
| static int kdamond_fn(void *data); |
| |
| /* |
| * __damon_start() - Starts monitoring with given context. |
| * @ctx: monitoring context |
| * |
| * This function should be called while damon_lock is hold. |
| * |
| * Return: 0 on success, negative error code otherwise. |
| */ |
| static int __damon_start(struct damon_ctx *ctx) |
| { |
| int err = -EBUSY; |
| |
| mutex_lock(&ctx->kdamond_lock); |
| if (!ctx->kdamond) { |
| err = 0; |
| reinit_completion(&ctx->kdamond_started); |
| ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d", |
| nr_running_ctxs); |
| if (IS_ERR(ctx->kdamond)) { |
| err = PTR_ERR(ctx->kdamond); |
| ctx->kdamond = NULL; |
| } else { |
| wait_for_completion(&ctx->kdamond_started); |
| } |
| } |
| mutex_unlock(&ctx->kdamond_lock); |
| |
| return err; |
| } |
| |
| /** |
| * damon_start() - Starts the monitorings for a given group of contexts. |
| * @ctxs: an array of the pointers for contexts to start monitoring |
| * @nr_ctxs: size of @ctxs |
| * @exclusive: exclusiveness of this contexts group |
| * |
| * This function starts a group of monitoring threads for a group of monitoring |
| * contexts. One thread per each context is created and run in parallel. The |
| * caller should handle synchronization between the threads by itself. If |
| * @exclusive is true and a group of threads that created by other |
| * 'damon_start()' call is currently running, this function does nothing but |
| * returns -EBUSY. |
| * |
| * Return: 0 on success, negative error code otherwise. |
| */ |
| int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive) |
| { |
| int i; |
| int err = 0; |
| |
| mutex_lock(&damon_lock); |
| if ((exclusive && nr_running_ctxs) || |
| (!exclusive && running_exclusive_ctxs)) { |
| mutex_unlock(&damon_lock); |
| return -EBUSY; |
| } |
| |
| for (i = 0; i < nr_ctxs; i++) { |
| err = __damon_start(ctxs[i]); |
| if (err) |
| break; |
| nr_running_ctxs++; |
| } |
| if (exclusive && nr_running_ctxs) |
| running_exclusive_ctxs = true; |
| mutex_unlock(&damon_lock); |
| |
| return err; |
| } |
| |
| /* |
| * __damon_stop() - Stops monitoring of a given context. |
| * @ctx: monitoring context |
| * |
| * Return: 0 on success, negative error code otherwise. |
| */ |
| static int __damon_stop(struct damon_ctx *ctx) |
| { |
| struct task_struct *tsk; |
| |
| mutex_lock(&ctx->kdamond_lock); |
| tsk = ctx->kdamond; |
| if (tsk) { |
| get_task_struct(tsk); |
| mutex_unlock(&ctx->kdamond_lock); |
| kthread_stop_put(tsk); |
| return 0; |
| } |
| mutex_unlock(&ctx->kdamond_lock); |
| |
| return -EPERM; |
| } |
| |
| /** |
| * damon_stop() - Stops the monitorings for a given group of contexts. |
| * @ctxs: an array of the pointers for contexts to stop monitoring |
| * @nr_ctxs: size of @ctxs |
| * |
| * Return: 0 on success, negative error code otherwise. |
| */ |
| int damon_stop(struct damon_ctx **ctxs, int nr_ctxs) |
| { |
| int i, err = 0; |
| |
| for (i = 0; i < nr_ctxs; i++) { |
| /* nr_running_ctxs is decremented in kdamond_fn */ |
| err = __damon_stop(ctxs[i]); |
| if (err) |
| break; |
| } |
| return err; |
| } |
| |
| /* |
| * Reset the aggregated monitoring results ('nr_accesses' of each region). |
| */ |
| static void kdamond_reset_aggregated(struct damon_ctx *c) |
| { |
| struct damon_target *t; |
| unsigned int ti = 0; /* target's index */ |
| |
| damon_for_each_target(t, c) { |
| struct damon_region *r; |
| |
| damon_for_each_region(r, t) { |
| trace_damon_aggregated(ti, r, damon_nr_regions(t)); |
| r->last_nr_accesses = r->nr_accesses; |
| r->nr_accesses = 0; |
| } |
| ti++; |
| } |
| } |
| |
| static void damon_split_region_at(struct damon_target *t, |
| struct damon_region *r, unsigned long sz_r); |
| |
| static bool __damos_valid_target(struct damon_region *r, struct damos *s) |
| { |
| unsigned long sz; |
| unsigned int nr_accesses = r->nr_accesses_bp / 10000; |
| |
| sz = damon_sz_region(r); |
| return s->pattern.min_sz_region <= sz && |
| sz <= s->pattern.max_sz_region && |
| s->pattern.min_nr_accesses <= nr_accesses && |
| nr_accesses <= s->pattern.max_nr_accesses && |
| s->pattern.min_age_region <= r->age && |
| r->age <= s->pattern.max_age_region; |
| } |
| |
| static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t, |
| struct damon_region *r, struct damos *s) |
| { |
| bool ret = __damos_valid_target(r, s); |
| |
| if (!ret || !s->quota.esz || !c->ops.get_scheme_score) |
| return ret; |
| |
| return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score; |
| } |
| |
| /* |
| * damos_skip_charged_region() - Check if the given region or starting part of |
| * it is already charged for the DAMOS quota. |
| * @t: The target of the region. |
| * @rp: The pointer to the region. |
| * @s: The scheme to be applied. |
| * |
| * If a quota of a scheme has exceeded in a quota charge window, the scheme's |
| * action would applied to only a part of the target access pattern fulfilling |
| * regions. To avoid applying the scheme action to only already applied |
| * regions, DAMON skips applying the scheme action to the regions that charged |
| * in the previous charge window. |
| * |
| * This function checks if a given region should be skipped or not for the |
| * reason. If only the starting part of the region has previously charged, |
| * this function splits the region into two so that the second one covers the |
| * area that not charged in the previous charge widnow and saves the second |
| * region in *rp and returns false, so that the caller can apply DAMON action |
| * to the second one. |
| * |
| * Return: true if the region should be entirely skipped, false otherwise. |
| */ |
| static bool damos_skip_charged_region(struct damon_target *t, |
| struct damon_region **rp, struct damos *s) |
| { |
| struct damon_region *r = *rp; |
| struct damos_quota *quota = &s->quota; |
| unsigned long sz_to_skip; |
| |
| /* Skip previously charged regions */ |
| if (quota->charge_target_from) { |
| if (t != quota->charge_target_from) |
| return true; |
| if (r == damon_last_region(t)) { |
| quota->charge_target_from = NULL; |
| quota->charge_addr_from = 0; |
| return true; |
| } |
| if (quota->charge_addr_from && |
| r->ar.end <= quota->charge_addr_from) |
| return true; |
| |
| if (quota->charge_addr_from && r->ar.start < |
| quota->charge_addr_from) { |
| sz_to_skip = ALIGN_DOWN(quota->charge_addr_from - |
| r->ar.start, DAMON_MIN_REGION); |
| if (!sz_to_skip) { |
| if (damon_sz_region(r) <= DAMON_MIN_REGION) |
| return true; |
| sz_to_skip = DAMON_MIN_REGION; |
| } |
| damon_split_region_at(t, r, sz_to_skip); |
| r = damon_next_region(r); |
| *rp = r; |
| } |
| quota->charge_target_from = NULL; |
| quota->charge_addr_from = 0; |
| } |
| return false; |
| } |
| |
| static void damos_update_stat(struct damos *s, |
| unsigned long sz_tried, unsigned long sz_applied) |
| { |
| s->stat.nr_tried++; |
| s->stat.sz_tried += sz_tried; |
| if (sz_applied) |
| s->stat.nr_applied++; |
| s->stat.sz_applied += sz_applied; |
| } |
| |
| static bool __damos_filter_out(struct damon_ctx *ctx, struct damon_target *t, |
| struct damon_region *r, struct damos_filter *filter) |
| { |
| bool matched = false; |
| struct damon_target *ti; |
| int target_idx = 0; |
| unsigned long start, end; |
| |
| switch (filter->type) { |
| case DAMOS_FILTER_TYPE_TARGET: |
| damon_for_each_target(ti, ctx) { |
| if (ti == t) |
| break; |
| target_idx++; |
| } |
| matched = target_idx == filter->target_idx; |
| break; |
| case DAMOS_FILTER_TYPE_ADDR: |
| start = ALIGN_DOWN(filter->addr_range.start, DAMON_MIN_REGION); |
| end = ALIGN_DOWN(filter->addr_range.end, DAMON_MIN_REGION); |
| |
| /* inside the range */ |
| if (start <= r->ar.start && r->ar.end <= end) { |
| matched = true; |
| break; |
| } |
| /* outside of the range */ |
| if (r->ar.end <= start || end <= r->ar.start) { |
| matched = false; |
| break; |
| } |
| /* start before the range and overlap */ |
| if (r->ar.start < start) { |
| damon_split_region_at(t, r, start - r->ar.start); |
| matched = false; |
| break; |
| } |
| /* start inside the range */ |
| damon_split_region_at(t, r, end - r->ar.start); |
| matched = true; |
| break; |
| default: |
| return false; |
| } |
| |
| return matched == filter->matching; |
| } |
| |
| static bool damos_filter_out(struct damon_ctx *ctx, struct damon_target *t, |
| struct damon_region *r, struct damos *s) |
| { |
| struct damos_filter *filter; |
| |
| damos_for_each_filter(filter, s) { |
| if (__damos_filter_out(ctx, t, r, filter)) |
| return true; |
| } |
| return false; |
| } |
| |
| static void damos_apply_scheme(struct damon_ctx *c, struct damon_target *t, |
| struct damon_region *r, struct damos *s) |
| { |
| struct damos_quota *quota = &s->quota; |
| unsigned long sz = damon_sz_region(r); |
| struct timespec64 begin, end; |
| unsigned long sz_applied = 0; |
| int err = 0; |
| /* |
| * We plan to support multiple context per kdamond, as DAMON sysfs |
| * implies with 'nr_contexts' file. Nevertheless, only single context |
| * per kdamond is supported for now. So, we can simply use '0' context |
| * index here. |
| */ |
| unsigned int cidx = 0; |
| struct damos *siter; /* schemes iterator */ |
| unsigned int sidx = 0; |
| struct damon_target *titer; /* targets iterator */ |
| unsigned int tidx = 0; |
| bool do_trace = false; |
| |
| /* get indices for trace_damos_before_apply() */ |
| if (trace_damos_before_apply_enabled()) { |
| damon_for_each_scheme(siter, c) { |
| if (siter == s) |
| break; |
| sidx++; |
| } |
| damon_for_each_target(titer, c) { |
| if (titer == t) |
| break; |
| tidx++; |
| } |
| do_trace = true; |
| } |
| |
| if (c->ops.apply_scheme) { |
| if (quota->esz && quota->charged_sz + sz > quota->esz) { |
| sz = ALIGN_DOWN(quota->esz - quota->charged_sz, |
| DAMON_MIN_REGION); |
| if (!sz) |
| goto update_stat; |
| damon_split_region_at(t, r, sz); |
| } |
| if (damos_filter_out(c, t, r, s)) |
| return; |
| ktime_get_coarse_ts64(&begin); |
| if (c->callback.before_damos_apply) |
| err = c->callback.before_damos_apply(c, t, r, s); |
| if (!err) { |
| trace_damos_before_apply(cidx, sidx, tidx, r, |
| damon_nr_regions(t), do_trace); |
| sz_applied = c->ops.apply_scheme(c, t, r, s); |
| } |
| ktime_get_coarse_ts64(&end); |
| quota->total_charged_ns += timespec64_to_ns(&end) - |
| timespec64_to_ns(&begin); |
| quota->charged_sz += sz; |
| if (quota->esz && quota->charged_sz >= quota->esz) { |
| quota->charge_target_from = t; |
| quota->charge_addr_from = r->ar.end + 1; |
| } |
| } |
| if (s->action != DAMOS_STAT) |
| r->age = 0; |
| |
| update_stat: |
| damos_update_stat(s, sz, sz_applied); |
| } |
| |
| static void damon_do_apply_schemes(struct damon_ctx *c, |
| struct damon_target *t, |
| struct damon_region *r) |
| { |
| struct damos *s; |
| |
| damon_for_each_scheme(s, c) { |
| struct damos_quota *quota = &s->quota; |
| |
| if (!s->wmarks.activated) |
| continue; |
| |
| /* Check the quota */ |
| if (quota->esz && quota->charged_sz >= quota->esz) |
| continue; |
| |
| if (damos_skip_charged_region(t, &r, s)) |
| continue; |
| |
| if (!damos_valid_target(c, t, r, s)) |
| continue; |
| |
| damos_apply_scheme(c, t, r, s); |
| } |
| } |
| |
| /* |
| * damon_feed_loop_next_input() - get next input to achieve a target score. |
| * @last_input The last input. |
| * @score Current score that made with @last_input. |
| * |
| * Calculate next input to achieve the target score, based on the last input |
| * and current score. Assuming the input and the score are positively |
| * proportional, calculate how much compensation should be added to or |
| * subtracted from the last input as a proportion of the last input. Avoid |
| * next input always being zero by setting it non-zero always. In short form |
| * (assuming support of float and signed calculations), the algorithm is as |
| * below. |
| * |
| * next_input = max(last_input * ((goal - current) / goal + 1), 1) |
| * |
| * For simple implementation, we assume the target score is always 10,000. The |
| * caller should adjust @score for this. |
| * |
| * Returns next input that assumed to achieve the target score. |
| */ |
| static unsigned long damon_feed_loop_next_input(unsigned long last_input, |
| unsigned long score) |
| { |
| const unsigned long goal = 10000; |
| unsigned long score_goal_diff = max(goal, score) - min(goal, score); |
| unsigned long score_goal_diff_bp = score_goal_diff * 10000 / goal; |
| unsigned long compensation = last_input * score_goal_diff_bp / 10000; |
| /* Set minimum input as 10000 to avoid compensation be zero */ |
| const unsigned long min_input = 10000; |
| |
| if (goal > score) |
| return last_input + compensation; |
| if (last_input > compensation + min_input) |
| return last_input - compensation; |
| return min_input; |
| } |
| |
| /* Shouldn't be called if quota->ms, quota->sz, and quota->get_score unset */ |
| static void damos_set_effective_quota(struct damos_quota *quota) |
| { |
| unsigned long throughput; |
| unsigned long esz; |
| |
| if (!quota->ms && !quota->get_score) { |
| quota->esz = quota->sz; |
| return; |
| } |
| |
| if (quota->get_score) { |
| quota->esz_bp = damon_feed_loop_next_input( |
| max(quota->esz_bp, 10000UL), |
| quota->get_score(quota->get_score_arg)); |
| esz = quota->esz_bp / 10000; |
| } |
| |
| if (quota->ms) { |
| if (quota->total_charged_ns) |
| throughput = quota->total_charged_sz * 1000000 / |
| quota->total_charged_ns; |
| else |
| throughput = PAGE_SIZE * 1024; |
| if (quota->get_score) |
| esz = min(throughput * quota->ms, esz); |
| else |
| esz = throughput * quota->ms; |
| } |
| |
| if (quota->sz && quota->sz < esz) |
| esz = quota->sz; |
| |
| quota->esz = esz; |
| } |
| |
| static void damos_adjust_quota(struct damon_ctx *c, struct damos *s) |
| { |
| struct damos_quota *quota = &s->quota; |
| struct damon_target *t; |
| struct damon_region *r; |
| unsigned long cumulated_sz; |
| unsigned int score, max_score = 0; |
| |
| if (!quota->ms && !quota->sz && !quota->get_score) |
| return; |
| |
| /* New charge window starts */ |
| if (time_after_eq(jiffies, quota->charged_from + |
| msecs_to_jiffies(quota->reset_interval))) { |
| if (quota->esz && quota->charged_sz >= quota->esz) |
| s->stat.qt_exceeds++; |
| quota->total_charged_sz += quota->charged_sz; |
| quota->charged_from = jiffies; |
| quota->charged_sz = 0; |
| damos_set_effective_quota(quota); |
| } |
| |
| if (!c->ops.get_scheme_score) |
| return; |
| |
| /* Fill up the score histogram */ |
| memset(quota->histogram, 0, sizeof(quota->histogram)); |
| damon_for_each_target(t, c) { |
| damon_for_each_region(r, t) { |
| if (!__damos_valid_target(r, s)) |
| continue; |
| score = c->ops.get_scheme_score(c, t, r, s); |
| quota->histogram[score] += damon_sz_region(r); |
| if (score > max_score) |
| max_score = score; |
| } |
| } |
| |
| /* Set the min score limit */ |
| for (cumulated_sz = 0, score = max_score; ; score--) { |
| cumulated_sz += quota->histogram[score]; |
| if (cumulated_sz >= quota->esz || !score) |
| break; |
| } |
| quota->min_score = score; |
| } |
| |
| static void kdamond_apply_schemes(struct damon_ctx *c) |
| { |
| struct damon_target *t; |
| struct damon_region *r, *next_r; |
| struct damos *s; |
| unsigned long sample_interval = c->attrs.sample_interval ? |
| c->attrs.sample_interval : 1; |
| bool has_schemes_to_apply = false; |
| |
| damon_for_each_scheme(s, c) { |
| if (c->passed_sample_intervals != s->next_apply_sis) |
| continue; |
| |
| s->next_apply_sis += |
| (s->apply_interval_us ? s->apply_interval_us : |
| c->attrs.aggr_interval) / sample_interval; |
| |
| if (!s->wmarks.activated) |
| continue; |
| |
| has_schemes_to_apply = true; |
| |
| damos_adjust_quota(c, s); |
| } |
| |
| if (!has_schemes_to_apply) |
| return; |
| |
| damon_for_each_target(t, c) { |
| damon_for_each_region_safe(r, next_r, t) |
| damon_do_apply_schemes(c, t, r); |
| } |
| } |
| |
| /* |
| * Merge two adjacent regions into one region |
| */ |
| static void damon_merge_two_regions(struct damon_target *t, |
| struct damon_region *l, struct damon_region *r) |
| { |
| unsigned long sz_l = damon_sz_region(l), sz_r = damon_sz_region(r); |
| |
| l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) / |
| (sz_l + sz_r); |
| l->nr_accesses_bp = l->nr_accesses * 10000; |
| l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r); |
| l->ar.end = r->ar.end; |
| damon_destroy_region(r, t); |
| } |
| |
| /* |
| * Merge adjacent regions having similar access frequencies |
| * |
| * t target affected by this merge operation |
| * thres '->nr_accesses' diff threshold for the merge |
| * sz_limit size upper limit of each region |
| */ |
| static void damon_merge_regions_of(struct damon_target *t, unsigned int thres, |
| unsigned long sz_limit) |
| { |
| struct damon_region *r, *prev = NULL, *next; |
| |
| damon_for_each_region_safe(r, next, t) { |
| if (abs(r->nr_accesses - r->last_nr_accesses) > thres) |
| r->age = 0; |
| else |
| r->age++; |
| |
| if (prev && prev->ar.end == r->ar.start && |
| abs(prev->nr_accesses - r->nr_accesses) <= thres && |
| damon_sz_region(prev) + damon_sz_region(r) <= sz_limit) |
| damon_merge_two_regions(t, prev, r); |
| else |
| prev = r; |
| } |
| } |
| |
| /* |
| * Merge adjacent regions having similar access frequencies |
| * |
| * threshold '->nr_accesses' diff threshold for the merge |
| * sz_limit size upper limit of each region |
| * |
| * This function merges monitoring target regions which are adjacent and their |
| * access frequencies are similar. This is for minimizing the monitoring |
| * overhead under the dynamically changeable access pattern. If a merge was |
| * unnecessarily made, later 'kdamond_split_regions()' will revert it. |
| */ |
| static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold, |
| unsigned long sz_limit) |
| { |
| struct damon_target *t; |
| |
| damon_for_each_target(t, c) |
| damon_merge_regions_of(t, threshold, sz_limit); |
| } |
| |
| /* |
| * Split a region in two |
| * |
| * r the region to be split |
| * sz_r size of the first sub-region that will be made |
| */ |
| static void damon_split_region_at(struct damon_target *t, |
| struct damon_region *r, unsigned long sz_r) |
| { |
| struct damon_region *new; |
| |
| new = damon_new_region(r->ar.start + sz_r, r->ar.end); |
| if (!new) |
| return; |
| |
| r->ar.end = new->ar.start; |
| |
| new->age = r->age; |
| new->last_nr_accesses = r->last_nr_accesses; |
| new->nr_accesses_bp = r->nr_accesses_bp; |
| new->nr_accesses = r->nr_accesses; |
| |
| damon_insert_region(new, r, damon_next_region(r), t); |
| } |
| |
| /* Split every region in the given target into 'nr_subs' regions */ |
| static void damon_split_regions_of(struct damon_target *t, int nr_subs) |
| { |
| struct damon_region *r, *next; |
| unsigned long sz_region, sz_sub = 0; |
| int i; |
| |
| damon_for_each_region_safe(r, next, t) { |
| sz_region = damon_sz_region(r); |
| |
| for (i = 0; i < nr_subs - 1 && |
| sz_region > 2 * DAMON_MIN_REGION; i++) { |
| /* |
| * Randomly select size of left sub-region to be at |
| * least 10 percent and at most 90% of original region |
| */ |
| sz_sub = ALIGN_DOWN(damon_rand(1, 10) * |
| sz_region / 10, DAMON_MIN_REGION); |
| /* Do not allow blank region */ |
| if (sz_sub == 0 || sz_sub >= sz_region) |
| continue; |
| |
| damon_split_region_at(t, r, sz_sub); |
| sz_region = sz_sub; |
| } |
| } |
| } |
| |
| /* |
| * Split every target region into randomly-sized small regions |
| * |
| * This function splits every target region into random-sized small regions if |
| * current total number of the regions is equal or smaller than half of the |
| * user-specified maximum number of regions. This is for maximizing the |
| * monitoring accuracy under the dynamically changeable access patterns. If a |
| * split was unnecessarily made, later 'kdamond_merge_regions()' will revert |
| * it. |
| */ |
| static void kdamond_split_regions(struct damon_ctx *ctx) |
| { |
| struct damon_target *t; |
| unsigned int nr_regions = 0; |
| static unsigned int last_nr_regions; |
| int nr_subregions = 2; |
| |
| damon_for_each_target(t, ctx) |
| nr_regions += damon_nr_regions(t); |
| |
| if (nr_regions > ctx->attrs.max_nr_regions / 2) |
| return; |
| |
| /* Maybe the middle of the region has different access frequency */ |
| if (last_nr_regions == nr_regions && |
| nr_regions < ctx->attrs.max_nr_regions / 3) |
| nr_subregions = 3; |
| |
| damon_for_each_target(t, ctx) |
| damon_split_regions_of(t, nr_subregions); |
| |
| last_nr_regions = nr_regions; |
| } |
| |
| /* |
| * Check whether current monitoring should be stopped |
| * |
| * The monitoring is stopped when either the user requested to stop, or all |
| * monitoring targets are invalid. |
| * |
| * Returns true if need to stop current monitoring. |
| */ |
| static bool kdamond_need_stop(struct damon_ctx *ctx) |
| { |
| struct damon_target *t; |
| |
| if (kthread_should_stop()) |
| return true; |
| |
| if (!ctx->ops.target_valid) |
| return false; |
| |
| damon_for_each_target(t, ctx) { |
| if (ctx->ops.target_valid(t)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static unsigned long damos_wmark_metric_value(enum damos_wmark_metric metric) |
| { |
| switch (metric) { |
| case DAMOS_WMARK_FREE_MEM_RATE: |
| return global_zone_page_state(NR_FREE_PAGES) * 1000 / |
| totalram_pages(); |
| default: |
| break; |
| } |
| return -EINVAL; |
| } |
| |
| /* |
| * Returns zero if the scheme is active. Else, returns time to wait for next |
| * watermark check in micro-seconds. |
| */ |
| static unsigned long damos_wmark_wait_us(struct damos *scheme) |
| { |
| unsigned long metric; |
| |
| if (scheme->wmarks.metric == DAMOS_WMARK_NONE) |
| return 0; |
| |
| metric = damos_wmark_metric_value(scheme->wmarks.metric); |
| /* higher than high watermark or lower than low watermark */ |
| if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) { |
| if (scheme->wmarks.activated) |
| pr_debug("deactivate a scheme (%d) for %s wmark\n", |
| scheme->action, |
| metric > scheme->wmarks.high ? |
| "high" : "low"); |
| scheme->wmarks.activated = false; |
| return scheme->wmarks.interval; |
| } |
| |
| /* inactive and higher than middle watermark */ |
| if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) && |
| !scheme->wmarks.activated) |
| return scheme->wmarks.interval; |
| |
| if (!scheme->wmarks.activated) |
| pr_debug("activate a scheme (%d)\n", scheme->action); |
| scheme->wmarks.activated = true; |
| return 0; |
| } |
| |
| static void kdamond_usleep(unsigned long usecs) |
| { |
| /* See Documentation/timers/timers-howto.rst for the thresholds */ |
| if (usecs > 20 * USEC_PER_MSEC) |
| schedule_timeout_idle(usecs_to_jiffies(usecs)); |
| else |
| usleep_idle_range(usecs, usecs + 1); |
| } |
| |
| /* Returns negative error code if it's not activated but should return */ |
| static int kdamond_wait_activation(struct damon_ctx *ctx) |
| { |
| struct damos *s; |
| unsigned long wait_time; |
| unsigned long min_wait_time = 0; |
| bool init_wait_time = false; |
| |
| while (!kdamond_need_stop(ctx)) { |
| damon_for_each_scheme(s, ctx) { |
| wait_time = damos_wmark_wait_us(s); |
| if (!init_wait_time || wait_time < min_wait_time) { |
| init_wait_time = true; |
| min_wait_time = wait_time; |
| } |
| } |
| if (!min_wait_time) |
| return 0; |
| |
| kdamond_usleep(min_wait_time); |
| |
| if (ctx->callback.after_wmarks_check && |
| ctx->callback.after_wmarks_check(ctx)) |
| break; |
| } |
| return -EBUSY; |
| } |
| |
| static void kdamond_init_intervals_sis(struct damon_ctx *ctx) |
| { |
| unsigned long sample_interval = ctx->attrs.sample_interval ? |
| ctx->attrs.sample_interval : 1; |
| unsigned long apply_interval; |
| struct damos *scheme; |
| |
| ctx->passed_sample_intervals = 0; |
| ctx->next_aggregation_sis = ctx->attrs.aggr_interval / sample_interval; |
| ctx->next_ops_update_sis = ctx->attrs.ops_update_interval / |
| sample_interval; |
| |
| damon_for_each_scheme(scheme, ctx) { |
| apply_interval = scheme->apply_interval_us ? |
| scheme->apply_interval_us : ctx->attrs.aggr_interval; |
| scheme->next_apply_sis = apply_interval / sample_interval; |
| } |
| } |
| |
| /* |
| * The monitoring daemon that runs as a kernel thread |
| */ |
| static int kdamond_fn(void *data) |
| { |
| struct damon_ctx *ctx = data; |
| struct damon_target *t; |
| struct damon_region *r, *next; |
| unsigned int max_nr_accesses = 0; |
| unsigned long sz_limit = 0; |
| |
| pr_debug("kdamond (%d) starts\n", current->pid); |
| |
| complete(&ctx->kdamond_started); |
| kdamond_init_intervals_sis(ctx); |
| |
| if (ctx->ops.init) |
| ctx->ops.init(ctx); |
| if (ctx->callback.before_start && ctx->callback.before_start(ctx)) |
| goto done; |
| |
| sz_limit = damon_region_sz_limit(ctx); |
| |
| while (!kdamond_need_stop(ctx)) { |
| /* |
| * ctx->attrs and ctx->next_{aggregation,ops_update}_sis could |
| * be changed from after_wmarks_check() or after_aggregation() |
| * callbacks. Read the values here, and use those for this |
| * iteration. That is, damon_set_attrs() updated new values |
| * are respected from next iteration. |
| */ |
| unsigned long next_aggregation_sis = ctx->next_aggregation_sis; |
| unsigned long next_ops_update_sis = ctx->next_ops_update_sis; |
| unsigned long sample_interval = ctx->attrs.sample_interval; |
| |
| if (kdamond_wait_activation(ctx)) |
| break; |
| |
| if (ctx->ops.prepare_access_checks) |
| ctx->ops.prepare_access_checks(ctx); |
| if (ctx->callback.after_sampling && |
| ctx->callback.after_sampling(ctx)) |
| break; |
| |
| kdamond_usleep(sample_interval); |
| ctx->passed_sample_intervals++; |
| |
| if (ctx->ops.check_accesses) |
| max_nr_accesses = ctx->ops.check_accesses(ctx); |
| |
| if (ctx->passed_sample_intervals == next_aggregation_sis) { |
| kdamond_merge_regions(ctx, |
| max_nr_accesses / 10, |
| sz_limit); |
| if (ctx->callback.after_aggregation && |
| ctx->callback.after_aggregation(ctx)) |
| break; |
| } |
| |
| /* |
| * do kdamond_apply_schemes() after kdamond_merge_regions() if |
| * possible, to reduce overhead |
| */ |
| if (!list_empty(&ctx->schemes)) |
| kdamond_apply_schemes(ctx); |
| |
| sample_interval = ctx->attrs.sample_interval ? |
| ctx->attrs.sample_interval : 1; |
| if (ctx->passed_sample_intervals == next_aggregation_sis) { |
| ctx->next_aggregation_sis = next_aggregation_sis + |
| ctx->attrs.aggr_interval / sample_interval; |
| |
| kdamond_reset_aggregated(ctx); |
| kdamond_split_regions(ctx); |
| if (ctx->ops.reset_aggregated) |
| ctx->ops.reset_aggregated(ctx); |
| } |
| |
| if (ctx->passed_sample_intervals == next_ops_update_sis) { |
| ctx->next_ops_update_sis = next_ops_update_sis + |
| ctx->attrs.ops_update_interval / |
| sample_interval; |
| if (ctx->ops.update) |
| ctx->ops.update(ctx); |
| sz_limit = damon_region_sz_limit(ctx); |
| } |
| } |
| done: |
| damon_for_each_target(t, ctx) { |
| damon_for_each_region_safe(r, next, t) |
| damon_destroy_region(r, t); |
| } |
| |
| if (ctx->callback.before_terminate) |
| ctx->callback.before_terminate(ctx); |
| if (ctx->ops.cleanup) |
| ctx->ops.cleanup(ctx); |
| |
| pr_debug("kdamond (%d) finishes\n", current->pid); |
| mutex_lock(&ctx->kdamond_lock); |
| ctx->kdamond = NULL; |
| mutex_unlock(&ctx->kdamond_lock); |
| |
| mutex_lock(&damon_lock); |
| nr_running_ctxs--; |
| if (!nr_running_ctxs && running_exclusive_ctxs) |
| running_exclusive_ctxs = false; |
| mutex_unlock(&damon_lock); |
| |
| return 0; |
| } |
| |
| /* |
| * struct damon_system_ram_region - System RAM resource address region of |
| * [@start, @end). |
| * @start: Start address of the region (inclusive). |
| * @end: End address of the region (exclusive). |
| */ |
| struct damon_system_ram_region { |
| unsigned long start; |
| unsigned long end; |
| }; |
| |
| static int walk_system_ram(struct resource *res, void *arg) |
| { |
| struct damon_system_ram_region *a = arg; |
| |
| if (a->end - a->start < resource_size(res)) { |
| a->start = res->start; |
| a->end = res->end; |
| } |
| return 0; |
| } |
| |
| /* |
| * Find biggest 'System RAM' resource and store its start and end address in |
| * @start and @end, respectively. If no System RAM is found, returns false. |
| */ |
| static bool damon_find_biggest_system_ram(unsigned long *start, |
| unsigned long *end) |
| |
| { |
| struct damon_system_ram_region arg = {}; |
| |
| walk_system_ram_res(0, ULONG_MAX, &arg, walk_system_ram); |
| if (arg.end <= arg.start) |
| return false; |
| |
| *start = arg.start; |
| *end = arg.end; |
| return true; |
| } |
| |
| /** |
| * damon_set_region_biggest_system_ram_default() - Set the region of the given |
| * monitoring target as requested, or biggest 'System RAM'. |
| * @t: The monitoring target to set the region. |
| * @start: The pointer to the start address of the region. |
| * @end: The pointer to the end address of the region. |
| * |
| * This function sets the region of @t as requested by @start and @end. If the |
| * values of @start and @end are zero, however, this function finds the biggest |
| * 'System RAM' resource and sets the region to cover the resource. In the |
| * latter case, this function saves the start and end addresses of the resource |
| * in @start and @end, respectively. |
| * |
| * Return: 0 on success, negative error code otherwise. |
| */ |
| int damon_set_region_biggest_system_ram_default(struct damon_target *t, |
| unsigned long *start, unsigned long *end) |
| { |
| struct damon_addr_range addr_range; |
| |
| if (*start > *end) |
| return -EINVAL; |
| |
| if (!*start && !*end && |
| !damon_find_biggest_system_ram(start, end)) |
| return -EINVAL; |
| |
| addr_range.start = *start; |
| addr_range.end = *end; |
| return damon_set_regions(t, &addr_range, 1); |
| } |
| |
| /* |
| * damon_moving_sum() - Calculate an inferred moving sum value. |
| * @mvsum: Inferred sum of the last @len_window values. |
| * @nomvsum: Non-moving sum of the last discrete @len_window window values. |
| * @len_window: The number of last values to take care of. |
| * @new_value: New value that will be added to the pseudo moving sum. |
| * |
| * Moving sum (moving average * window size) is good for handling noise, but |
| * the cost of keeping past values can be high for arbitrary window size. This |
| * function implements a lightweight pseudo moving sum function that doesn't |
| * keep the past window values. |
| * |
| * It simply assumes there was no noise in the past, and get the no-noise |
| * assumed past value to drop from @nomvsum and @len_window. @nomvsum is a |
| * non-moving sum of the last window. For example, if @len_window is 10 and we |
| * have 25 values, @nomvsum is the sum of the 11th to 20th values of the 25 |
| * values. Hence, this function simply drops @nomvsum / @len_window from |
| * given @mvsum and add @new_value. |
| * |
| * For example, if @len_window is 10 and @nomvsum is 50, the last 10 values for |
| * the last window could be vary, e.g., 0, 10, 0, 10, 0, 10, 0, 0, 0, 20. For |
| * calculating next moving sum with a new value, we should drop 0 from 50 and |
| * add the new value. However, this function assumes it got value 5 for each |
| * of the last ten times. Based on the assumption, when the next value is |
| * measured, it drops the assumed past value, 5 from the current sum, and add |
| * the new value to get the updated pseduo-moving average. |
| * |
| * This means the value could have errors, but the errors will be disappeared |
| * for every @len_window aligned calls. For example, if @len_window is 10, the |
| * pseudo moving sum with 11th value to 19th value would have an error. But |
| * the sum with 20th value will not have the error. |
| * |
| * Return: Pseudo-moving average after getting the @new_value. |
| */ |
| static unsigned int damon_moving_sum(unsigned int mvsum, unsigned int nomvsum, |
| unsigned int len_window, unsigned int new_value) |
| { |
| return mvsum - nomvsum / len_window + new_value; |
| } |
| |
| /** |
| * damon_update_region_access_rate() - Update the access rate of a region. |
| * @r: The DAMON region to update for its access check result. |
| * @accessed: Whether the region has accessed during last sampling interval. |
| * @attrs: The damon_attrs of the DAMON context. |
| * |
| * Update the access rate of a region with the region's last sampling interval |
| * access check result. |
| * |
| * Usually this will be called by &damon_operations->check_accesses callback. |
| */ |
| void damon_update_region_access_rate(struct damon_region *r, bool accessed, |
| struct damon_attrs *attrs) |
| { |
| unsigned int len_window = 1; |
| |
| /* |
| * sample_interval can be zero, but cannot be larger than |
| * aggr_interval, owing to validation of damon_set_attrs(). |
| */ |
| if (attrs->sample_interval) |
| len_window = damon_max_nr_accesses(attrs); |
| r->nr_accesses_bp = damon_moving_sum(r->nr_accesses_bp, |
| r->last_nr_accesses * 10000, len_window, |
| accessed ? 10000 : 0); |
| |
| if (accessed) |
| r->nr_accesses++; |
| } |
| |
| static int __init damon_init(void) |
| { |
| damon_region_cache = KMEM_CACHE(damon_region, 0); |
| if (unlikely(!damon_region_cache)) { |
| pr_err("creating damon_region_cache fails\n"); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| subsys_initcall(damon_init); |
| |
| #include "core-test.h" |