| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Contains CPU feature definitions |
| * |
| * Copyright (C) 2015 ARM Ltd. |
| * |
| * A note for the weary kernel hacker: the code here is confusing and hard to |
| * follow! That's partly because it's solving a nasty problem, but also because |
| * there's a little bit of over-abstraction that tends to obscure what's going |
| * on behind a maze of helper functions and macros. |
| * |
| * The basic problem is that hardware folks have started gluing together CPUs |
| * with distinct architectural features; in some cases even creating SoCs where |
| * user-visible instructions are available only on a subset of the available |
| * cores. We try to address this by snapshotting the feature registers of the |
| * boot CPU and comparing these with the feature registers of each secondary |
| * CPU when bringing them up. If there is a mismatch, then we update the |
| * snapshot state to indicate the lowest-common denominator of the feature, |
| * known as the "safe" value. This snapshot state can be queried to view the |
| * "sanitised" value of a feature register. |
| * |
| * The sanitised register values are used to decide which capabilities we |
| * have in the system. These may be in the form of traditional "hwcaps" |
| * advertised to userspace or internal "cpucaps" which are used to configure |
| * things like alternative patching and static keys. While a feature mismatch |
| * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch |
| * may prevent a CPU from being onlined at all. |
| * |
| * Some implementation details worth remembering: |
| * |
| * - Mismatched features are *always* sanitised to a "safe" value, which |
| * usually indicates that the feature is not supported. |
| * |
| * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK" |
| * warning when onlining an offending CPU and the kernel will be tainted |
| * with TAINT_CPU_OUT_OF_SPEC. |
| * |
| * - Features marked as FTR_VISIBLE have their sanitised value visible to |
| * userspace. FTR_VISIBLE features in registers that are only visible |
| * to EL0 by trapping *must* have a corresponding HWCAP so that late |
| * onlining of CPUs cannot lead to features disappearing at runtime. |
| * |
| * - A "feature" is typically a 4-bit register field. A "capability" is the |
| * high-level description derived from the sanitised field value. |
| * |
| * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID |
| * scheme for fields in ID registers") to understand when feature fields |
| * may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly). |
| * |
| * - KVM exposes its own view of the feature registers to guest operating |
| * systems regardless of FTR_VISIBLE. This is typically driven from the |
| * sanitised register values to allow virtual CPUs to be migrated between |
| * arbitrary physical CPUs, but some features not present on the host are |
| * also advertised and emulated. Look at sys_reg_descs[] for the gory |
| * details. |
| * |
| * - If the arm64_ftr_bits[] for a register has a missing field, then this |
| * field is treated as STRICT RES0, including for read_sanitised_ftr_reg(). |
| * This is stronger than FTR_HIDDEN and can be used to hide features from |
| * KVM guests. |
| */ |
| |
| #define pr_fmt(fmt) "CPU features: " fmt |
| |
| #include <linux/bsearch.h> |
| #include <linux/cpumask.h> |
| #include <linux/crash_dump.h> |
| #include <linux/kstrtox.h> |
| #include <linux/sort.h> |
| #include <linux/stop_machine.h> |
| #include <linux/sysfs.h> |
| #include <linux/types.h> |
| #include <linux/minmax.h> |
| #include <linux/mm.h> |
| #include <linux/cpu.h> |
| #include <linux/kasan.h> |
| #include <linux/percpu.h> |
| |
| #include <asm/cpu.h> |
| #include <asm/cpufeature.h> |
| #include <asm/cpu_ops.h> |
| #include <asm/fpsimd.h> |
| #include <asm/hwcap.h> |
| #include <asm/insn.h> |
| #include <asm/kvm_host.h> |
| #include <asm/mmu_context.h> |
| #include <asm/mte.h> |
| #include <asm/processor.h> |
| #include <asm/smp.h> |
| #include <asm/sysreg.h> |
| #include <asm/traps.h> |
| #include <asm/vectors.h> |
| #include <asm/virt.h> |
| |
| /* Kernel representation of AT_HWCAP and AT_HWCAP2 */ |
| static DECLARE_BITMAP(elf_hwcap, MAX_CPU_FEATURES) __read_mostly; |
| |
| #ifdef CONFIG_COMPAT |
| #define COMPAT_ELF_HWCAP_DEFAULT \ |
| (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\ |
| COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\ |
| COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\ |
| COMPAT_HWCAP_LPAE) |
| unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT; |
| unsigned int compat_elf_hwcap2 __read_mostly; |
| #endif |
| |
| DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS); |
| EXPORT_SYMBOL(cpu_hwcaps); |
| static struct arm64_cpu_capabilities const __ro_after_init *cpu_hwcaps_ptrs[ARM64_NCAPS]; |
| |
| DECLARE_BITMAP(boot_capabilities, ARM64_NCAPS); |
| |
| bool arm64_use_ng_mappings = false; |
| EXPORT_SYMBOL(arm64_use_ng_mappings); |
| |
| DEFINE_PER_CPU_READ_MOSTLY(const char *, this_cpu_vector) = vectors; |
| |
| /* |
| * Permit PER_LINUX32 and execve() of 32-bit binaries even if not all CPUs |
| * support it? |
| */ |
| static bool __read_mostly allow_mismatched_32bit_el0; |
| |
| /* |
| * Static branch enabled only if allow_mismatched_32bit_el0 is set and we have |
| * seen at least one CPU capable of 32-bit EL0. |
| */ |
| DEFINE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0); |
| |
| /* |
| * Mask of CPUs supporting 32-bit EL0. |
| * Only valid if arm64_mismatched_32bit_el0 is enabled. |
| */ |
| static cpumask_var_t cpu_32bit_el0_mask __cpumask_var_read_mostly; |
| |
| void dump_cpu_features(void) |
| { |
| /* file-wide pr_fmt adds "CPU features: " prefix */ |
| pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps); |
| } |
| |
| #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \ |
| { \ |
| .sign = SIGNED, \ |
| .visible = VISIBLE, \ |
| .strict = STRICT, \ |
| .type = TYPE, \ |
| .shift = SHIFT, \ |
| .width = WIDTH, \ |
| .safe_val = SAFE_VAL, \ |
| } |
| |
| /* Define a feature with unsigned values */ |
| #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \ |
| __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) |
| |
| /* Define a feature with a signed value */ |
| #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \ |
| __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) |
| |
| #define ARM64_FTR_END \ |
| { \ |
| .width = 0, \ |
| } |
| |
| static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap); |
| |
| static bool __system_matches_cap(unsigned int n); |
| |
| /* |
| * NOTE: Any changes to the visibility of features should be kept in |
| * sync with the documentation of the CPU feature register ABI. |
| */ |
| static const struct arm64_ftr_bits ftr_id_aa64isar0[] = { |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RNDR_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TLB_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TS_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_FHM_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_DP_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM4_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM3_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA3_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RDM_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_CRC32_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA1_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_AES_SHIFT, 4, 0), |
| ARM64_FTR_END, |
| }; |
| |
| static const struct arm64_ftr_bits ftr_id_aa64isar1[] = { |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_I8MM_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DGH_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_BF16_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SPECRES_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SB_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FRINTTS_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH), |
| FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPI_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH), |
| FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPA_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_LRCPC_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FCMA_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_JSCVT_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH), |
| FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_API_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH), |
| FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_APA_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DPB_SHIFT, 4, 0), |
| ARM64_FTR_END, |
| }; |
| |
| static const struct arm64_ftr_bits ftr_id_aa64isar2[] = { |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CSSC_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRFM_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64ISAR2_EL1_BC_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH), |
| FTR_STRICT, FTR_EXACT, ID_AA64ISAR2_EL1_APA3_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH), |
| FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_GPA3_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRES_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_WFxT_SHIFT, 4, 0), |
| ARM64_FTR_END, |
| }; |
| |
| static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = { |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV3_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV2_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_DIT_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AMU_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_MPAM_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SEL2_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), |
| FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SVE_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_RAS_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_GIC_SHIFT, 4, 0), |
| S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AdvSIMD_SHIFT, 4, ID_AA64PFR0_EL1_AdvSIMD_NI), |
| S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_FP_SHIFT, 4, ID_AA64PFR0_EL1_FP_NI), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL3_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL2_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL1_SHIFT, 4, ID_AA64PFR0_EL1_ELx_64BIT_ONLY), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL0_SHIFT, 4, ID_AA64PFR0_EL1_ELx_64BIT_ONLY), |
| ARM64_FTR_END, |
| }; |
| |
| static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = { |
| ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME), |
| FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SME_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MPAM_frac_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_RAS_frac_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE), |
| FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MTE_SHIFT, 4, ID_AA64PFR1_EL1_MTE_NI), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SSBS_SHIFT, 4, ID_AA64PFR1_EL1_SSBS_NI), |
| ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI), |
| FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_BT_SHIFT, 4, 0), |
| ARM64_FTR_END, |
| }; |
| |
| static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = { |
| ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), |
| FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F64MM_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), |
| FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F32MM_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), |
| FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_I8MM_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), |
| FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SM4_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), |
| FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SHA3_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), |
| FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BF16_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), |
| FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BitPerm_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), |
| FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_AES_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), |
| FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SVEver_SHIFT, 4, 0), |
| ARM64_FTR_END, |
| }; |
| |
| static const struct arm64_ftr_bits ftr_id_aa64smfr0[] = { |
| ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME), |
| FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_FA64_SHIFT, 1, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME), |
| FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SMEver_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME), |
| FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I64_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME), |
| FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F64F64_SHIFT, 1, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME), |
| FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I32_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME), |
| FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16B16_SHIFT, 1, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME), |
| FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F16_SHIFT, 1, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME), |
| FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I8I32_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME), |
| FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F32_SHIFT, 1, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME), |
| FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16F32_SHIFT, 1, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME), |
| FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_BI32I32_SHIFT, 1, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME), |
| FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F32F32_SHIFT, 1, 0), |
| ARM64_FTR_END, |
| }; |
| |
| static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = { |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ECV_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_FGT_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_EXS_SHIFT, 4, 0), |
| /* |
| * Page size not being supported at Stage-2 is not fatal. You |
| * just give up KVM if PAGE_SIZE isn't supported there. Go fix |
| * your favourite nesting hypervisor. |
| * |
| * There is a small corner case where the hypervisor explicitly |
| * advertises a given granule size at Stage-2 (value 2) on some |
| * vCPUs, and uses the fallback to Stage-1 (value 0) for other |
| * vCPUs. Although this is not forbidden by the architecture, it |
| * indicates that the hypervisor is being silly (or buggy). |
| * |
| * We make no effort to cope with this and pretend that if these |
| * fields are inconsistent across vCPUs, then it isn't worth |
| * trying to bring KVM up. |
| */ |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN4_2_SHIFT, 4, 1), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN64_2_SHIFT, 4, 1), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN16_2_SHIFT, 4, 1), |
| /* |
| * We already refuse to boot CPUs that don't support our configured |
| * page size, so we can only detect mismatches for a page size other |
| * than the one we're currently using. Unfortunately, SoCs like this |
| * exist in the wild so, even though we don't like it, we'll have to go |
| * along with it and treat them as non-strict. |
| */ |
| S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN4_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN4_NI), |
| S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN64_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN64_NI), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN16_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN16_NI), |
| |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGENDEL0_SHIFT, 4, 0), |
| /* Linux shouldn't care about secure memory */ |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_SNSMEM_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGEND_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ASIDBITS_SHIFT, 4, 0), |
| /* |
| * Differing PARange is fine as long as all peripherals and memory are mapped |
| * within the minimum PARange of all CPUs |
| */ |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_PARANGE_SHIFT, 4, 0), |
| ARM64_FTR_END, |
| }; |
| |
| static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = { |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TIDCP1_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_AFP_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_ETS_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TWED_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_XNX_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_EL1_SpecSEI_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_PAN_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_LO_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HPDS_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VH_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VMIDBits_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HAFDBS_SHIFT, 4, 0), |
| ARM64_FTR_END, |
| }; |
| |
| static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = { |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_E0PD_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_EVT_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_BBM_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_TTL_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_FWB_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IDS_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_AT_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_ST_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_NV_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CCIDX_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_VARange_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IESB_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_LSM_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_UAO_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CnP_SHIFT, 4, 0), |
| ARM64_FTR_END, |
| }; |
| |
| static const struct arm64_ftr_bits ftr_ctr[] = { |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */ |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DIC_SHIFT, 1, 1), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IDC_SHIFT, 1, 1), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_CWG_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_ERG_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DminLine_SHIFT, 4, 1), |
| /* |
| * Linux can handle differing I-cache policies. Userspace JITs will |
| * make use of *minLine. |
| * If we have differing I-cache policies, report it as the weakest - VIPT. |
| */ |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_EL0_L1Ip_SHIFT, 2, CTR_EL0_L1Ip_VIPT), /* L1Ip */ |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IminLine_SHIFT, 4, 0), |
| ARM64_FTR_END, |
| }; |
| |
| static struct arm64_ftr_override __ro_after_init no_override = { }; |
| |
| struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = { |
| .name = "SYS_CTR_EL0", |
| .ftr_bits = ftr_ctr, |
| .override = &no_override, |
| }; |
| |
| static const struct arm64_ftr_bits ftr_id_mmfr0[] = { |
| S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_InnerShr_SHIFT, 4, 0xf), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_FCSE_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_AuxReg_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_TCM_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_ShareLvl_SHIFT, 4, 0), |
| S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_OuterShr_SHIFT, 4, 0xf), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_PMSA_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_VMSA_SHIFT, 4, 0), |
| ARM64_FTR_END, |
| }; |
| |
| static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = { |
| S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_DoubleLock_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_PMSVer_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_CTX_CMPs_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_WRPs_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_BRPs_SHIFT, 4, 0), |
| /* |
| * We can instantiate multiple PMU instances with different levels |
| * of support. |
| */ |
| S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_EL1_PMUVer_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_EL1_DebugVer_SHIFT, 4, 0x6), |
| ARM64_FTR_END, |
| }; |
| |
| static const struct arm64_ftr_bits ftr_mvfr0[] = { |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPRound_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPShVec_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSqrt_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDivide_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPTrap_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDP_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSP_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_SIMDReg_SHIFT, 4, 0), |
| ARM64_FTR_END, |
| }; |
| |
| static const struct arm64_ftr_bits ftr_mvfr1[] = { |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDFMAC_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPHP_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDHP_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDSP_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDInt_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDLS_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPDNaN_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPFtZ_SHIFT, 4, 0), |
| ARM64_FTR_END, |
| }; |
| |
| static const struct arm64_ftr_bits ftr_mvfr2[] = { |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_FPMisc_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_SIMDMisc_SHIFT, 4, 0), |
| ARM64_FTR_END, |
| }; |
| |
| static const struct arm64_ftr_bits ftr_dczid[] = { |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_EL0_DZP_SHIFT, 1, 1), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_EL0_BS_SHIFT, 4, 0), |
| ARM64_FTR_END, |
| }; |
| |
| static const struct arm64_ftr_bits ftr_gmid[] = { |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, GMID_EL1_BS_SHIFT, 4, 0), |
| ARM64_FTR_END, |
| }; |
| |
| static const struct arm64_ftr_bits ftr_id_isar0[] = { |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Divide_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Debug_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Coproc_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_CmpBranch_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitField_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitCount_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Swap_SHIFT, 4, 0), |
| ARM64_FTR_END, |
| }; |
| |
| static const struct arm64_ftr_bits ftr_id_isar5[] = { |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_RDM_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_CRC32_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA2_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA1_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_AES_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SEVL_SHIFT, 4, 0), |
| ARM64_FTR_END, |
| }; |
| |
| static const struct arm64_ftr_bits ftr_id_mmfr4[] = { |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_EVT_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CCIDX_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_LSM_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_HPDS_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CnP_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_XNX_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_AC2_SHIFT, 4, 0), |
| |
| /* |
| * SpecSEI = 1 indicates that the PE might generate an SError on an |
| * external abort on speculative read. It is safe to assume that an |
| * SError might be generated than it will not be. Hence it has been |
| * classified as FTR_HIGHER_SAFE. |
| */ |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_EL1_SpecSEI_SHIFT, 4, 0), |
| ARM64_FTR_END, |
| }; |
| |
| static const struct arm64_ftr_bits ftr_id_isar4[] = { |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SWP_frac_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_PSR_M_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SynchPrim_frac_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Barrier_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SMC_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Writeback_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_WithShifts_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Unpriv_SHIFT, 4, 0), |
| ARM64_FTR_END, |
| }; |
| |
| static const struct arm64_ftr_bits ftr_id_mmfr5[] = { |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_EL1_ETS_SHIFT, 4, 0), |
| ARM64_FTR_END, |
| }; |
| |
| static const struct arm64_ftr_bits ftr_id_isar6[] = { |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_I8MM_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_BF16_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SPECRES_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SB_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_FHM_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_DP_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_JSCVT_SHIFT, 4, 0), |
| ARM64_FTR_END, |
| }; |
| |
| static const struct arm64_ftr_bits ftr_id_pfr0[] = { |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_DIT_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_CSV2_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State3_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State2_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State1_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State0_SHIFT, 4, 0), |
| ARM64_FTR_END, |
| }; |
| |
| static const struct arm64_ftr_bits ftr_id_pfr1[] = { |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GIC_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virt_frac_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Sec_frac_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GenTimer_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virtualization_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_MProgMod_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Security_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_ProgMod_SHIFT, 4, 0), |
| ARM64_FTR_END, |
| }; |
| |
| static const struct arm64_ftr_bits ftr_id_pfr2[] = { |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_SSBS_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_CSV3_SHIFT, 4, 0), |
| ARM64_FTR_END, |
| }; |
| |
| static const struct arm64_ftr_bits ftr_id_dfr0[] = { |
| /* [31:28] TraceFilt */ |
| S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_DFR0_EL1_PerfMon_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MProfDbg_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapTrc_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopTrc_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapDbg_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopSDbg_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopDbg_SHIFT, 4, 0), |
| ARM64_FTR_END, |
| }; |
| |
| static const struct arm64_ftr_bits ftr_id_dfr1[] = { |
| S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_EL1_MTPMU_SHIFT, 4, 0), |
| ARM64_FTR_END, |
| }; |
| |
| static const struct arm64_ftr_bits ftr_zcr[] = { |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, |
| ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_WIDTH, 0), /* LEN */ |
| ARM64_FTR_END, |
| }; |
| |
| static const struct arm64_ftr_bits ftr_smcr[] = { |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, |
| SMCR_ELx_LEN_SHIFT, SMCR_ELx_LEN_WIDTH, 0), /* LEN */ |
| ARM64_FTR_END, |
| }; |
| |
| /* |
| * Common ftr bits for a 32bit register with all hidden, strict |
| * attributes, with 4bit feature fields and a default safe value of |
| * 0. Covers the following 32bit registers: |
| * id_isar[1-3], id_mmfr[1-3] |
| */ |
| static const struct arm64_ftr_bits ftr_generic_32bits[] = { |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), |
| ARM64_FTR_END, |
| }; |
| |
| /* Table for a single 32bit feature value */ |
| static const struct arm64_ftr_bits ftr_single32[] = { |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0), |
| ARM64_FTR_END, |
| }; |
| |
| static const struct arm64_ftr_bits ftr_raz[] = { |
| ARM64_FTR_END, |
| }; |
| |
| #define __ARM64_FTR_REG_OVERRIDE(id_str, id, table, ovr) { \ |
| .sys_id = id, \ |
| .reg = &(struct arm64_ftr_reg){ \ |
| .name = id_str, \ |
| .override = (ovr), \ |
| .ftr_bits = &((table)[0]), \ |
| }} |
| |
| #define ARM64_FTR_REG_OVERRIDE(id, table, ovr) \ |
| __ARM64_FTR_REG_OVERRIDE(#id, id, table, ovr) |
| |
| #define ARM64_FTR_REG(id, table) \ |
| __ARM64_FTR_REG_OVERRIDE(#id, id, table, &no_override) |
| |
| struct arm64_ftr_override __ro_after_init id_aa64mmfr1_override; |
| struct arm64_ftr_override __ro_after_init id_aa64pfr0_override; |
| struct arm64_ftr_override __ro_after_init id_aa64pfr1_override; |
| struct arm64_ftr_override __ro_after_init id_aa64zfr0_override; |
| struct arm64_ftr_override __ro_after_init id_aa64smfr0_override; |
| struct arm64_ftr_override __ro_after_init id_aa64isar1_override; |
| struct arm64_ftr_override __ro_after_init id_aa64isar2_override; |
| |
| static const struct __ftr_reg_entry { |
| u32 sys_id; |
| struct arm64_ftr_reg *reg; |
| } arm64_ftr_regs[] = { |
| |
| /* Op1 = 0, CRn = 0, CRm = 1 */ |
| ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0), |
| ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1), |
| ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0), |
| ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0), |
| ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits), |
| ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits), |
| ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits), |
| |
| /* Op1 = 0, CRn = 0, CRm = 2 */ |
| ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0), |
| ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits), |
| ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits), |
| ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits), |
| ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4), |
| ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5), |
| ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4), |
| ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6), |
| |
| /* Op1 = 0, CRn = 0, CRm = 3 */ |
| ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_mvfr0), |
| ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_mvfr1), |
| ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2), |
| ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2), |
| ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1), |
| ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5), |
| |
| /* Op1 = 0, CRn = 0, CRm = 4 */ |
| ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0, |
| &id_aa64pfr0_override), |
| ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1, |
| &id_aa64pfr1_override), |
| ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0, |
| &id_aa64zfr0_override), |
| ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64SMFR0_EL1, ftr_id_aa64smfr0, |
| &id_aa64smfr0_override), |
| |
| /* Op1 = 0, CRn = 0, CRm = 5 */ |
| ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0), |
| ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz), |
| |
| /* Op1 = 0, CRn = 0, CRm = 6 */ |
| ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0), |
| ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1, |
| &id_aa64isar1_override), |
| ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2, |
| &id_aa64isar2_override), |
| |
| /* Op1 = 0, CRn = 0, CRm = 7 */ |
| ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0), |
| ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1, |
| &id_aa64mmfr1_override), |
| ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2), |
| |
| /* Op1 = 0, CRn = 1, CRm = 2 */ |
| ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr), |
| ARM64_FTR_REG(SYS_SMCR_EL1, ftr_smcr), |
| |
| /* Op1 = 1, CRn = 0, CRm = 0 */ |
| ARM64_FTR_REG(SYS_GMID_EL1, ftr_gmid), |
| |
| /* Op1 = 3, CRn = 0, CRm = 0 */ |
| { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 }, |
| ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid), |
| |
| /* Op1 = 3, CRn = 14, CRm = 0 */ |
| ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32), |
| }; |
| |
| static int search_cmp_ftr_reg(const void *id, const void *regp) |
| { |
| return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id; |
| } |
| |
| /* |
| * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using |
| * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the |
| * ascending order of sys_id, we use binary search to find a matching |
| * entry. |
| * |
| * returns - Upon success, matching ftr_reg entry for id. |
| * - NULL on failure. It is upto the caller to decide |
| * the impact of a failure. |
| */ |
| static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id) |
| { |
| const struct __ftr_reg_entry *ret; |
| |
| ret = bsearch((const void *)(unsigned long)sys_id, |
| arm64_ftr_regs, |
| ARRAY_SIZE(arm64_ftr_regs), |
| sizeof(arm64_ftr_regs[0]), |
| search_cmp_ftr_reg); |
| if (ret) |
| return ret->reg; |
| return NULL; |
| } |
| |
| /* |
| * get_arm64_ftr_reg - Looks up a feature register entry using |
| * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn(). |
| * |
| * returns - Upon success, matching ftr_reg entry for id. |
| * - NULL on failure but with an WARN_ON(). |
| */ |
| struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id) |
| { |
| struct arm64_ftr_reg *reg; |
| |
| reg = get_arm64_ftr_reg_nowarn(sys_id); |
| |
| /* |
| * Requesting a non-existent register search is an error. Warn |
| * and let the caller handle it. |
| */ |
| WARN_ON(!reg); |
| return reg; |
| } |
| |
| static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg, |
| s64 ftr_val) |
| { |
| u64 mask = arm64_ftr_mask(ftrp); |
| |
| reg &= ~mask; |
| reg |= (ftr_val << ftrp->shift) & mask; |
| return reg; |
| } |
| |
| static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new, |
| s64 cur) |
| { |
| s64 ret = 0; |
| |
| switch (ftrp->type) { |
| case FTR_EXACT: |
| ret = ftrp->safe_val; |
| break; |
| case FTR_LOWER_SAFE: |
| ret = min(new, cur); |
| break; |
| case FTR_HIGHER_OR_ZERO_SAFE: |
| if (!cur || !new) |
| break; |
| fallthrough; |
| case FTR_HIGHER_SAFE: |
| ret = max(new, cur); |
| break; |
| default: |
| BUG(); |
| } |
| |
| return ret; |
| } |
| |
| static void __init sort_ftr_regs(void) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) { |
| const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg; |
| const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits; |
| unsigned int j = 0; |
| |
| /* |
| * Features here must be sorted in descending order with respect |
| * to their shift values and should not overlap with each other. |
| */ |
| for (; ftr_bits->width != 0; ftr_bits++, j++) { |
| unsigned int width = ftr_reg->ftr_bits[j].width; |
| unsigned int shift = ftr_reg->ftr_bits[j].shift; |
| unsigned int prev_shift; |
| |
| WARN((shift + width) > 64, |
| "%s has invalid feature at shift %d\n", |
| ftr_reg->name, shift); |
| |
| /* |
| * Skip the first feature. There is nothing to |
| * compare against for now. |
| */ |
| if (j == 0) |
| continue; |
| |
| prev_shift = ftr_reg->ftr_bits[j - 1].shift; |
| WARN((shift + width) > prev_shift, |
| "%s has feature overlap at shift %d\n", |
| ftr_reg->name, shift); |
| } |
| |
| /* |
| * Skip the first register. There is nothing to |
| * compare against for now. |
| */ |
| if (i == 0) |
| continue; |
| /* |
| * Registers here must be sorted in ascending order with respect |
| * to sys_id for subsequent binary search in get_arm64_ftr_reg() |
| * to work correctly. |
| */ |
| BUG_ON(arm64_ftr_regs[i].sys_id <= arm64_ftr_regs[i - 1].sys_id); |
| } |
| } |
| |
| /* |
| * Initialise the CPU feature register from Boot CPU values. |
| * Also initiliases the strict_mask for the register. |
| * Any bits that are not covered by an arm64_ftr_bits entry are considered |
| * RES0 for the system-wide value, and must strictly match. |
| */ |
| static void init_cpu_ftr_reg(u32 sys_reg, u64 new) |
| { |
| u64 val = 0; |
| u64 strict_mask = ~0x0ULL; |
| u64 user_mask = 0; |
| u64 valid_mask = 0; |
| |
| const struct arm64_ftr_bits *ftrp; |
| struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg); |
| |
| if (!reg) |
| return; |
| |
| for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) { |
| u64 ftr_mask = arm64_ftr_mask(ftrp); |
| s64 ftr_new = arm64_ftr_value(ftrp, new); |
| s64 ftr_ovr = arm64_ftr_value(ftrp, reg->override->val); |
| |
| if ((ftr_mask & reg->override->mask) == ftr_mask) { |
| s64 tmp = arm64_ftr_safe_value(ftrp, ftr_ovr, ftr_new); |
| char *str = NULL; |
| |
| if (ftr_ovr != tmp) { |
| /* Unsafe, remove the override */ |
| reg->override->mask &= ~ftr_mask; |
| reg->override->val &= ~ftr_mask; |
| tmp = ftr_ovr; |
| str = "ignoring override"; |
| } else if (ftr_new != tmp) { |
| /* Override was valid */ |
| ftr_new = tmp; |
| str = "forced"; |
| } else if (ftr_ovr == tmp) { |
| /* Override was the safe value */ |
| str = "already set"; |
| } |
| |
| if (str) |
| pr_warn("%s[%d:%d]: %s to %llx\n", |
| reg->name, |
| ftrp->shift + ftrp->width - 1, |
| ftrp->shift, str, tmp); |
| } else if ((ftr_mask & reg->override->val) == ftr_mask) { |
| reg->override->val &= ~ftr_mask; |
| pr_warn("%s[%d:%d]: impossible override, ignored\n", |
| reg->name, |
| ftrp->shift + ftrp->width - 1, |
| ftrp->shift); |
| } |
| |
| val = arm64_ftr_set_value(ftrp, val, ftr_new); |
| |
| valid_mask |= ftr_mask; |
| if (!ftrp->strict) |
| strict_mask &= ~ftr_mask; |
| if (ftrp->visible) |
| user_mask |= ftr_mask; |
| else |
| reg->user_val = arm64_ftr_set_value(ftrp, |
| reg->user_val, |
| ftrp->safe_val); |
| } |
| |
| val &= valid_mask; |
| |
| reg->sys_val = val; |
| reg->strict_mask = strict_mask; |
| reg->user_mask = user_mask; |
| } |
| |
| extern const struct arm64_cpu_capabilities arm64_errata[]; |
| static const struct arm64_cpu_capabilities arm64_features[]; |
| |
| static void __init |
| init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities *caps) |
| { |
| for (; caps->matches; caps++) { |
| if (WARN(caps->capability >= ARM64_NCAPS, |
| "Invalid capability %d\n", caps->capability)) |
| continue; |
| if (WARN(cpu_hwcaps_ptrs[caps->capability], |
| "Duplicate entry for capability %d\n", |
| caps->capability)) |
| continue; |
| cpu_hwcaps_ptrs[caps->capability] = caps; |
| } |
| } |
| |
| static void __init init_cpu_hwcaps_indirect_list(void) |
| { |
| init_cpu_hwcaps_indirect_list_from_array(arm64_features); |
| init_cpu_hwcaps_indirect_list_from_array(arm64_errata); |
| } |
| |
| static void __init setup_boot_cpu_capabilities(void); |
| |
| static void init_32bit_cpu_features(struct cpuinfo_32bit *info) |
| { |
| init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0); |
| init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1); |
| init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0); |
| init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1); |
| init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2); |
| init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3); |
| init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4); |
| init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5); |
| init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6); |
| init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0); |
| init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1); |
| init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2); |
| init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3); |
| init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4); |
| init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5); |
| init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0); |
| init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1); |
| init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2); |
| init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0); |
| init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1); |
| init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2); |
| } |
| |
| void __init init_cpu_features(struct cpuinfo_arm64 *info) |
| { |
| /* Before we start using the tables, make sure it is sorted */ |
| sort_ftr_regs(); |
| |
| init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr); |
| init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid); |
| init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq); |
| init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0); |
| init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1); |
| init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0); |
| init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1); |
| init_cpu_ftr_reg(SYS_ID_AA64ISAR2_EL1, info->reg_id_aa64isar2); |
| init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0); |
| init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1); |
| init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2); |
| init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0); |
| init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1); |
| init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0); |
| init_cpu_ftr_reg(SYS_ID_AA64SMFR0_EL1, info->reg_id_aa64smfr0); |
| |
| if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) |
| init_32bit_cpu_features(&info->aarch32); |
| |
| if (IS_ENABLED(CONFIG_ARM64_SVE) && |
| id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) { |
| info->reg_zcr = read_zcr_features(); |
| init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr); |
| vec_init_vq_map(ARM64_VEC_SVE); |
| } |
| |
| if (IS_ENABLED(CONFIG_ARM64_SME) && |
| id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) { |
| info->reg_smcr = read_smcr_features(); |
| /* |
| * We mask out SMPS since even if the hardware |
| * supports priorities the kernel does not at present |
| * and we block access to them. |
| */ |
| info->reg_smidr = read_cpuid(SMIDR_EL1) & ~SMIDR_EL1_SMPS; |
| init_cpu_ftr_reg(SYS_SMCR_EL1, info->reg_smcr); |
| vec_init_vq_map(ARM64_VEC_SME); |
| } |
| |
| if (id_aa64pfr1_mte(info->reg_id_aa64pfr1)) |
| init_cpu_ftr_reg(SYS_GMID_EL1, info->reg_gmid); |
| |
| /* |
| * Initialize the indirect array of CPU hwcaps capabilities pointers |
| * before we handle the boot CPU below. |
| */ |
| init_cpu_hwcaps_indirect_list(); |
| |
| /* |
| * Detect and enable early CPU capabilities based on the boot CPU, |
| * after we have initialised the CPU feature infrastructure. |
| */ |
| setup_boot_cpu_capabilities(); |
| } |
| |
| static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new) |
| { |
| const struct arm64_ftr_bits *ftrp; |
| |
| for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) { |
| s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val); |
| s64 ftr_new = arm64_ftr_value(ftrp, new); |
| |
| if (ftr_cur == ftr_new) |
| continue; |
| /* Find a safe value */ |
| ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur); |
| reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new); |
| } |
| |
| } |
| |
| static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot) |
| { |
| struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id); |
| |
| if (!regp) |
| return 0; |
| |
| update_cpu_ftr_reg(regp, val); |
| if ((boot & regp->strict_mask) == (val & regp->strict_mask)) |
| return 0; |
| pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n", |
| regp->name, boot, cpu, val); |
| return 1; |
| } |
| |
| static void relax_cpu_ftr_reg(u32 sys_id, int field) |
| { |
| const struct arm64_ftr_bits *ftrp; |
| struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id); |
| |
| if (!regp) |
| return; |
| |
| for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) { |
| if (ftrp->shift == field) { |
| regp->strict_mask &= ~arm64_ftr_mask(ftrp); |
| break; |
| } |
| } |
| |
| /* Bogus field? */ |
| WARN_ON(!ftrp->width); |
| } |
| |
| static void lazy_init_32bit_cpu_features(struct cpuinfo_arm64 *info, |
| struct cpuinfo_arm64 *boot) |
| { |
| static bool boot_cpu_32bit_regs_overridden = false; |
| |
| if (!allow_mismatched_32bit_el0 || boot_cpu_32bit_regs_overridden) |
| return; |
| |
| if (id_aa64pfr0_32bit_el0(boot->reg_id_aa64pfr0)) |
| return; |
| |
| boot->aarch32 = info->aarch32; |
| init_32bit_cpu_features(&boot->aarch32); |
| boot_cpu_32bit_regs_overridden = true; |
| } |
| |
| static int update_32bit_cpu_features(int cpu, struct cpuinfo_32bit *info, |
| struct cpuinfo_32bit *boot) |
| { |
| int taint = 0; |
| u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); |
| |
| /* |
| * If we don't have AArch32 at EL1, then relax the strictness of |
| * EL1-dependent register fields to avoid spurious sanity check fails. |
| */ |
| if (!id_aa64pfr0_32bit_el1(pfr0)) { |
| relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_EL1_SMC_SHIFT); |
| relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virt_frac_SHIFT); |
| relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Sec_frac_SHIFT); |
| relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virtualization_SHIFT); |
| relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Security_SHIFT); |
| relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_ProgMod_SHIFT); |
| } |
| |
| taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu, |
| info->reg_id_dfr0, boot->reg_id_dfr0); |
| taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu, |
| info->reg_id_dfr1, boot->reg_id_dfr1); |
| taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu, |
| info->reg_id_isar0, boot->reg_id_isar0); |
| taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu, |
| info->reg_id_isar1, boot->reg_id_isar1); |
| taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu, |
| info->reg_id_isar2, boot->reg_id_isar2); |
| taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu, |
| info->reg_id_isar3, boot->reg_id_isar3); |
| taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu, |
| info->reg_id_isar4, boot->reg_id_isar4); |
| taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu, |
| info->reg_id_isar5, boot->reg_id_isar5); |
| taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu, |
| info->reg_id_isar6, boot->reg_id_isar6); |
| |
| /* |
| * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and |
| * ACTLR formats could differ across CPUs and therefore would have to |
| * be trapped for virtualization anyway. |
| */ |
| taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu, |
| info->reg_id_mmfr0, boot->reg_id_mmfr0); |
| taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu, |
| info->reg_id_mmfr1, boot->reg_id_mmfr1); |
| taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu, |
| info->reg_id_mmfr2, boot->reg_id_mmfr2); |
| taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu, |
| info->reg_id_mmfr3, boot->reg_id_mmfr3); |
| taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu, |
| info->reg_id_mmfr4, boot->reg_id_mmfr4); |
| taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu, |
| info->reg_id_mmfr5, boot->reg_id_mmfr5); |
| taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu, |
| info->reg_id_pfr0, boot->reg_id_pfr0); |
| taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu, |
| info->reg_id_pfr1, boot->reg_id_pfr1); |
| taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu, |
| info->reg_id_pfr2, boot->reg_id_pfr2); |
| taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu, |
| info->reg_mvfr0, boot->reg_mvfr0); |
| taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu, |
| info->reg_mvfr1, boot->reg_mvfr1); |
| taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu, |
| info->reg_mvfr2, boot->reg_mvfr2); |
| |
| return taint; |
| } |
| |
| /* |
| * Update system wide CPU feature registers with the values from a |
| * non-boot CPU. Also performs SANITY checks to make sure that there |
| * aren't any insane variations from that of the boot CPU. |
| */ |
| void update_cpu_features(int cpu, |
| struct cpuinfo_arm64 *info, |
| struct cpuinfo_arm64 *boot) |
| { |
| int taint = 0; |
| |
| /* |
| * The kernel can handle differing I-cache policies, but otherwise |
| * caches should look identical. Userspace JITs will make use of |
| * *minLine. |
| */ |
| taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu, |
| info->reg_ctr, boot->reg_ctr); |
| |
| /* |
| * Userspace may perform DC ZVA instructions. Mismatched block sizes |
| * could result in too much or too little memory being zeroed if a |
| * process is preempted and migrated between CPUs. |
| */ |
| taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu, |
| info->reg_dczid, boot->reg_dczid); |
| |
| /* If different, timekeeping will be broken (especially with KVM) */ |
| taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu, |
| info->reg_cntfrq, boot->reg_cntfrq); |
| |
| /* |
| * The kernel uses self-hosted debug features and expects CPUs to |
| * support identical debug features. We presently need CTX_CMPs, WRPs, |
| * and BRPs to be identical. |
| * ID_AA64DFR1 is currently RES0. |
| */ |
| taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu, |
| info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0); |
| taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu, |
| info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1); |
| /* |
| * Even in big.LITTLE, processors should be identical instruction-set |
| * wise. |
| */ |
| taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu, |
| info->reg_id_aa64isar0, boot->reg_id_aa64isar0); |
| taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu, |
| info->reg_id_aa64isar1, boot->reg_id_aa64isar1); |
| taint |= check_update_ftr_reg(SYS_ID_AA64ISAR2_EL1, cpu, |
| info->reg_id_aa64isar2, boot->reg_id_aa64isar2); |
| |
| /* |
| * Differing PARange support is fine as long as all peripherals and |
| * memory are mapped within the minimum PARange of all CPUs. |
| * Linux should not care about secure memory. |
| */ |
| taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu, |
| info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0); |
| taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu, |
| info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1); |
| taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu, |
| info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2); |
| |
| taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu, |
| info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0); |
| taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu, |
| info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1); |
| |
| taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu, |
| info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0); |
| |
| taint |= check_update_ftr_reg(SYS_ID_AA64SMFR0_EL1, cpu, |
| info->reg_id_aa64smfr0, boot->reg_id_aa64smfr0); |
| |
| if (IS_ENABLED(CONFIG_ARM64_SVE) && |
| id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) { |
| info->reg_zcr = read_zcr_features(); |
| taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu, |
| info->reg_zcr, boot->reg_zcr); |
| |
| /* Probe vector lengths */ |
| if (!system_capabilities_finalized()) |
| vec_update_vq_map(ARM64_VEC_SVE); |
| } |
| |
| if (IS_ENABLED(CONFIG_ARM64_SME) && |
| id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) { |
| info->reg_smcr = read_smcr_features(); |
| /* |
| * We mask out SMPS since even if the hardware |
| * supports priorities the kernel does not at present |
| * and we block access to them. |
| */ |
| info->reg_smidr = read_cpuid(SMIDR_EL1) & ~SMIDR_EL1_SMPS; |
| taint |= check_update_ftr_reg(SYS_SMCR_EL1, cpu, |
| info->reg_smcr, boot->reg_smcr); |
| |
| /* Probe vector lengths */ |
| if (!system_capabilities_finalized()) |
| vec_update_vq_map(ARM64_VEC_SME); |
| } |
| |
| /* |
| * The kernel uses the LDGM/STGM instructions and the number of tags |
| * they read/write depends on the GMID_EL1.BS field. Check that the |
| * value is the same on all CPUs. |
| */ |
| if (IS_ENABLED(CONFIG_ARM64_MTE) && |
| id_aa64pfr1_mte(info->reg_id_aa64pfr1)) { |
| taint |= check_update_ftr_reg(SYS_GMID_EL1, cpu, |
| info->reg_gmid, boot->reg_gmid); |
| } |
| |
| /* |
| * If we don't have AArch32 at all then skip the checks entirely |
| * as the register values may be UNKNOWN and we're not going to be |
| * using them for anything. |
| * |
| * This relies on a sanitised view of the AArch64 ID registers |
| * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last. |
| */ |
| if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) { |
| lazy_init_32bit_cpu_features(info, boot); |
| taint |= update_32bit_cpu_features(cpu, &info->aarch32, |
| &boot->aarch32); |
| } |
| |
| /* |
| * Mismatched CPU features are a recipe for disaster. Don't even |
| * pretend to support them. |
| */ |
| if (taint) { |
| pr_warn_once("Unsupported CPU feature variation detected.\n"); |
| add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); |
| } |
| } |
| |
| u64 read_sanitised_ftr_reg(u32 id) |
| { |
| struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id); |
| |
| if (!regp) |
| return 0; |
| return regp->sys_val; |
| } |
| EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg); |
| |
| #define read_sysreg_case(r) \ |
| case r: val = read_sysreg_s(r); break; |
| |
| /* |
| * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated. |
| * Read the system register on the current CPU |
| */ |
| u64 __read_sysreg_by_encoding(u32 sys_id) |
| { |
| struct arm64_ftr_reg *regp; |
| u64 val; |
| |
| switch (sys_id) { |
| read_sysreg_case(SYS_ID_PFR0_EL1); |
| read_sysreg_case(SYS_ID_PFR1_EL1); |
| read_sysreg_case(SYS_ID_PFR2_EL1); |
| read_sysreg_case(SYS_ID_DFR0_EL1); |
| read_sysreg_case(SYS_ID_DFR1_EL1); |
| read_sysreg_case(SYS_ID_MMFR0_EL1); |
| read_sysreg_case(SYS_ID_MMFR1_EL1); |
| read_sysreg_case(SYS_ID_MMFR2_EL1); |
| read_sysreg_case(SYS_ID_MMFR3_EL1); |
| read_sysreg_case(SYS_ID_MMFR4_EL1); |
| read_sysreg_case(SYS_ID_MMFR5_EL1); |
| read_sysreg_case(SYS_ID_ISAR0_EL1); |
| read_sysreg_case(SYS_ID_ISAR1_EL1); |
| read_sysreg_case(SYS_ID_ISAR2_EL1); |
| read_sysreg_case(SYS_ID_ISAR3_EL1); |
| read_sysreg_case(SYS_ID_ISAR4_EL1); |
| read_sysreg_case(SYS_ID_ISAR5_EL1); |
| read_sysreg_case(SYS_ID_ISAR6_EL1); |
| read_sysreg_case(SYS_MVFR0_EL1); |
| read_sysreg_case(SYS_MVFR1_EL1); |
| read_sysreg_case(SYS_MVFR2_EL1); |
| |
| read_sysreg_case(SYS_ID_AA64PFR0_EL1); |
| read_sysreg_case(SYS_ID_AA64PFR1_EL1); |
| read_sysreg_case(SYS_ID_AA64ZFR0_EL1); |
| read_sysreg_case(SYS_ID_AA64SMFR0_EL1); |
| read_sysreg_case(SYS_ID_AA64DFR0_EL1); |
| read_sysreg_case(SYS_ID_AA64DFR1_EL1); |
| read_sysreg_case(SYS_ID_AA64MMFR0_EL1); |
| read_sysreg_case(SYS_ID_AA64MMFR1_EL1); |
| read_sysreg_case(SYS_ID_AA64MMFR2_EL1); |
| read_sysreg_case(SYS_ID_AA64ISAR0_EL1); |
| read_sysreg_case(SYS_ID_AA64ISAR1_EL1); |
| read_sysreg_case(SYS_ID_AA64ISAR2_EL1); |
| |
| read_sysreg_case(SYS_CNTFRQ_EL0); |
| read_sysreg_case(SYS_CTR_EL0); |
| read_sysreg_case(SYS_DCZID_EL0); |
| |
| default: |
| BUG(); |
| return 0; |
| } |
| |
| regp = get_arm64_ftr_reg(sys_id); |
| if (regp) { |
| val &= ~regp->override->mask; |
| val |= (regp->override->val & regp->override->mask); |
| } |
| |
| return val; |
| } |
| |
| #include <linux/irqchip/arm-gic-v3.h> |
| |
| static bool |
| has_always(const struct arm64_cpu_capabilities *entry, int scope) |
| { |
| return true; |
| } |
| |
| static bool |
| feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry) |
| { |
| int val = cpuid_feature_extract_field_width(reg, entry->field_pos, |
| entry->field_width, |
| entry->sign); |
| |
| return val >= entry->min_field_value; |
| } |
| |
| static u64 |
| read_scoped_sysreg(const struct arm64_cpu_capabilities *entry, int scope) |
| { |
| WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible()); |
| if (scope == SCOPE_SYSTEM) |
| return read_sanitised_ftr_reg(entry->sys_reg); |
| else |
| return __read_sysreg_by_encoding(entry->sys_reg); |
| } |
| |
| static bool |
| has_user_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope) |
| { |
| int mask; |
| struct arm64_ftr_reg *regp; |
| u64 val = read_scoped_sysreg(entry, scope); |
| |
| regp = get_arm64_ftr_reg(entry->sys_reg); |
| if (!regp) |
| return false; |
| |
| mask = cpuid_feature_extract_unsigned_field_width(regp->user_mask, |
| entry->field_pos, |
| entry->field_width); |
| if (!mask) |
| return false; |
| |
| return feature_matches(val, entry); |
| } |
| |
| static bool |
| has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope) |
| { |
| u64 val = read_scoped_sysreg(entry, scope); |
| return feature_matches(val, entry); |
| } |
| |
| const struct cpumask *system_32bit_el0_cpumask(void) |
| { |
| if (!system_supports_32bit_el0()) |
| return cpu_none_mask; |
| |
| if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) |
| return cpu_32bit_el0_mask; |
| |
| return cpu_possible_mask; |
| } |
| |
| static int __init parse_32bit_el0_param(char *str) |
| { |
| allow_mismatched_32bit_el0 = true; |
| return 0; |
| } |
| early_param("allow_mismatched_32bit_el0", parse_32bit_el0_param); |
| |
| static ssize_t aarch32_el0_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| const struct cpumask *mask = system_32bit_el0_cpumask(); |
| |
| return sysfs_emit(buf, "%*pbl\n", cpumask_pr_args(mask)); |
| } |
| static const DEVICE_ATTR_RO(aarch32_el0); |
| |
| static int __init aarch32_el0_sysfs_init(void) |
| { |
| if (!allow_mismatched_32bit_el0) |
| return 0; |
| |
| return device_create_file(cpu_subsys.dev_root, &dev_attr_aarch32_el0); |
| } |
| device_initcall(aarch32_el0_sysfs_init); |
| |
| static bool has_32bit_el0(const struct arm64_cpu_capabilities *entry, int scope) |
| { |
| if (!has_cpuid_feature(entry, scope)) |
| return allow_mismatched_32bit_el0; |
| |
| if (scope == SCOPE_SYSTEM) |
| pr_info("detected: 32-bit EL0 Support\n"); |
| |
| return true; |
| } |
| |
| static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope) |
| { |
| bool has_sre; |
| |
| if (!has_cpuid_feature(entry, scope)) |
| return false; |
| |
| has_sre = gic_enable_sre(); |
| if (!has_sre) |
| pr_warn_once("%s present but disabled by higher exception level\n", |
| entry->desc); |
| |
| return has_sre; |
| } |
| |
| static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused) |
| { |
| u32 midr = read_cpuid_id(); |
| |
| /* Cavium ThunderX pass 1.x and 2.x */ |
| return midr_is_cpu_model_range(midr, MIDR_THUNDERX, |
| MIDR_CPU_VAR_REV(0, 0), |
| MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK)); |
| } |
| |
| static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused) |
| { |
| u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); |
| |
| return cpuid_feature_extract_signed_field(pfr0, |
| ID_AA64PFR0_EL1_FP_SHIFT) < 0; |
| } |
| |
| static bool has_cache_idc(const struct arm64_cpu_capabilities *entry, |
| int scope) |
| { |
| u64 ctr; |
| |
| if (scope == SCOPE_SYSTEM) |
| ctr = arm64_ftr_reg_ctrel0.sys_val; |
| else |
| ctr = read_cpuid_effective_cachetype(); |
| |
| return ctr & BIT(CTR_EL0_IDC_SHIFT); |
| } |
| |
| static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused) |
| { |
| /* |
| * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively |
| * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses |
| * to the CTR_EL0 on this CPU and emulate it with the real/safe |
| * value. |
| */ |
| if (!(read_cpuid_cachetype() & BIT(CTR_EL0_IDC_SHIFT))) |
| sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0); |
| } |
| |
| static bool has_cache_dic(const struct arm64_cpu_capabilities *entry, |
| int scope) |
| { |
| u64 ctr; |
| |
| if (scope == SCOPE_SYSTEM) |
| ctr = arm64_ftr_reg_ctrel0.sys_val; |
| else |
| ctr = read_cpuid_cachetype(); |
| |
| return ctr & BIT(CTR_EL0_DIC_SHIFT); |
| } |
| |
| static bool __maybe_unused |
| has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope) |
| { |
| /* |
| * Kdump isn't guaranteed to power-off all secondary CPUs, CNP |
| * may share TLB entries with a CPU stuck in the crashed |
| * kernel. |
| */ |
| if (is_kdump_kernel()) |
| return false; |
| |
| if (cpus_have_const_cap(ARM64_WORKAROUND_NVIDIA_CARMEL_CNP)) |
| return false; |
| |
| return has_cpuid_feature(entry, scope); |
| } |
| |
| /* |
| * This check is triggered during the early boot before the cpufeature |
| * is initialised. Checking the status on the local CPU allows the boot |
| * CPU to detect the need for non-global mappings and thus avoiding a |
| * pagetable re-write after all the CPUs are booted. This check will be |
| * anyway run on individual CPUs, allowing us to get the consistent |
| * state once the SMP CPUs are up and thus make the switch to non-global |
| * mappings if required. |
| */ |
| bool kaslr_requires_kpti(void) |
| { |
| if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE)) |
| return false; |
| |
| /* |
| * E0PD does a similar job to KPTI so can be used instead |
| * where available. |
| */ |
| if (IS_ENABLED(CONFIG_ARM64_E0PD)) { |
| u64 mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1); |
| if (cpuid_feature_extract_unsigned_field(mmfr2, |
| ID_AA64MMFR2_EL1_E0PD_SHIFT)) |
| return false; |
| } |
| |
| /* |
| * Systems affected by Cavium erratum 24756 are incompatible |
| * with KPTI. |
| */ |
| if (IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) { |
| extern const struct midr_range cavium_erratum_27456_cpus[]; |
| |
| if (is_midr_in_range_list(read_cpuid_id(), |
| cavium_erratum_27456_cpus)) |
| return false; |
| } |
| |
| return kaslr_offset() > 0; |
| } |
| |
| static bool __meltdown_safe = true; |
| static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */ |
| |
| static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry, |
| int scope) |
| { |
| /* List of CPUs that are not vulnerable and don't need KPTI */ |
| static const struct midr_range kpti_safe_list[] = { |
| MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2), |
| MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN), |
| MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53), |
| MIDR_ALL_VERSIONS(MIDR_CORTEX_A35), |
| MIDR_ALL_VERSIONS(MIDR_CORTEX_A53), |
| MIDR_ALL_VERSIONS(MIDR_CORTEX_A55), |
| MIDR_ALL_VERSIONS(MIDR_CORTEX_A57), |
| MIDR_ALL_VERSIONS(MIDR_CORTEX_A72), |
| MIDR_ALL_VERSIONS(MIDR_CORTEX_A73), |
| MIDR_ALL_VERSIONS(MIDR_HISI_TSV110), |
| MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL), |
| MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD), |
| MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER), |
| MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER), |
| MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER), |
| { /* sentinel */ } |
| }; |
| char const *str = "kpti command line option"; |
| bool meltdown_safe; |
| |
| meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list); |
| |
| /* Defer to CPU feature registers */ |
| if (has_cpuid_feature(entry, scope)) |
| meltdown_safe = true; |
| |
| if (!meltdown_safe) |
| __meltdown_safe = false; |
| |
| /* |
| * For reasons that aren't entirely clear, enabling KPTI on Cavium |
| * ThunderX leads to apparent I-cache corruption of kernel text, which |
| * ends as well as you might imagine. Don't even try. We cannot rely |
| * on the cpus_have_*cap() helpers here to detect the CPU erratum |
| * because cpucap detection order may change. However, since we know |
| * affected CPUs are always in a homogeneous configuration, it is |
| * safe to rely on this_cpu_has_cap() here. |
| */ |
| if (this_cpu_has_cap(ARM64_WORKAROUND_CAVIUM_27456)) { |
| str = "ARM64_WORKAROUND_CAVIUM_27456"; |
| __kpti_forced = -1; |
| } |
| |
| /* Useful for KASLR robustness */ |
| if (kaslr_requires_kpti()) { |
| if (!__kpti_forced) { |
| str = "KASLR"; |
| __kpti_forced = 1; |
| } |
| } |
| |
| if (cpu_mitigations_off() && !__kpti_forced) { |
| str = "mitigations=off"; |
| __kpti_forced = -1; |
| } |
| |
| if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) { |
| pr_info_once("kernel page table isolation disabled by kernel configuration\n"); |
| return false; |
| } |
| |
| /* Forced? */ |
| if (__kpti_forced) { |
| pr_info_once("kernel page table isolation forced %s by %s\n", |
| __kpti_forced > 0 ? "ON" : "OFF", str); |
| return __kpti_forced > 0; |
| } |
| |
| return !meltdown_safe; |
| } |
| |
| #ifdef CONFIG_UNMAP_KERNEL_AT_EL0 |
| #define KPTI_NG_TEMP_VA (-(1UL << PMD_SHIFT)) |
| |
| extern |
| void create_kpti_ng_temp_pgd(pgd_t *pgdir, phys_addr_t phys, unsigned long virt, |
| phys_addr_t size, pgprot_t prot, |
| phys_addr_t (*pgtable_alloc)(int), int flags); |
| |
| static phys_addr_t kpti_ng_temp_alloc; |
| |
| static phys_addr_t kpti_ng_pgd_alloc(int shift) |
| { |
| kpti_ng_temp_alloc -= PAGE_SIZE; |
| return kpti_ng_temp_alloc; |
| } |
| |
| static void |
| kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused) |
| { |
| typedef void (kpti_remap_fn)(int, int, phys_addr_t, unsigned long); |
| extern kpti_remap_fn idmap_kpti_install_ng_mappings; |
| kpti_remap_fn *remap_fn; |
| |
| int cpu = smp_processor_id(); |
| int levels = CONFIG_PGTABLE_LEVELS; |
| int order = order_base_2(levels); |
| u64 kpti_ng_temp_pgd_pa = 0; |
| pgd_t *kpti_ng_temp_pgd; |
| u64 alloc = 0; |
| |
| if (__this_cpu_read(this_cpu_vector) == vectors) { |
| const char *v = arm64_get_bp_hardening_vector(EL1_VECTOR_KPTI); |
| |
| __this_cpu_write(this_cpu_vector, v); |
| } |
| |
| /* |
| * We don't need to rewrite the page-tables if either we've done |
| * it already or we have KASLR enabled and therefore have not |
| * created any global mappings at all. |
| */ |
| if (arm64_use_ng_mappings) |
| return; |
| |
| remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings); |
| |
| if (!cpu) { |
| alloc = __get_free_pages(GFP_ATOMIC | __GFP_ZERO, order); |
| kpti_ng_temp_pgd = (pgd_t *)(alloc + (levels - 1) * PAGE_SIZE); |
| kpti_ng_temp_alloc = kpti_ng_temp_pgd_pa = __pa(kpti_ng_temp_pgd); |
| |
| // |
| // Create a minimal page table hierarchy that permits us to map |
| // the swapper page tables temporarily as we traverse them. |
| // |
| // The physical pages are laid out as follows: |
| // |
| // +--------+-/-------+-/------ +-\\--------+ |
| // : PTE[] : | PMD[] : | PUD[] : || PGD[] : |
| // +--------+-\-------+-\------ +-//--------+ |
| // ^ |
| // The first page is mapped into this hierarchy at a PMD_SHIFT |
| // aligned virtual address, so that we can manipulate the PTE |
| // level entries while the mapping is active. The first entry |
| // covers the PTE[] page itself, the remaining entries are free |
| // to be used as a ad-hoc fixmap. |
| // |
| create_kpti_ng_temp_pgd(kpti_ng_temp_pgd, __pa(alloc), |
| KPTI_NG_TEMP_VA, PAGE_SIZE, PAGE_KERNEL, |
| kpti_ng_pgd_alloc, 0); |
| } |
| |
| cpu_install_idmap(); |
| remap_fn(cpu, num_online_cpus(), kpti_ng_temp_pgd_pa, KPTI_NG_TEMP_VA); |
| cpu_uninstall_idmap(); |
| |
| if (!cpu) { |
| free_pages(alloc, order); |
| arm64_use_ng_mappings = true; |
| } |
| } |
| #else |
| static void |
| kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused) |
| { |
| } |
| #endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */ |
| |
| static int __init parse_kpti(char *str) |
| { |
| bool enabled; |
| int ret = kstrtobool(str, &enabled); |
| |
| if (ret) |
| return ret; |
| |
| __kpti_forced = enabled ? 1 : -1; |
| return 0; |
| } |
| early_param("kpti", parse_kpti); |
| |
| #ifdef CONFIG_ARM64_HW_AFDBM |
| static inline void __cpu_enable_hw_dbm(void) |
| { |
| u64 tcr = read_sysreg(tcr_el1) | TCR_HD; |
| |
| write_sysreg(tcr, tcr_el1); |
| isb(); |
| local_flush_tlb_all(); |
| } |
| |
| static bool cpu_has_broken_dbm(void) |
| { |
| /* List of CPUs which have broken DBM support. */ |
| static const struct midr_range cpus[] = { |
| #ifdef CONFIG_ARM64_ERRATUM_1024718 |
| MIDR_ALL_VERSIONS(MIDR_CORTEX_A55), |
| /* Kryo4xx Silver (rdpe => r1p0) */ |
| MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe), |
| #endif |
| #ifdef CONFIG_ARM64_ERRATUM_2051678 |
| MIDR_REV_RANGE(MIDR_CORTEX_A510, 0, 0, 2), |
| #endif |
| {}, |
| }; |
| |
| return is_midr_in_range_list(read_cpuid_id(), cpus); |
| } |
| |
| static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap) |
| { |
| return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) && |
| !cpu_has_broken_dbm(); |
| } |
| |
| static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap) |
| { |
| if (cpu_can_use_dbm(cap)) |
| __cpu_enable_hw_dbm(); |
| } |
| |
| static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap, |
| int __unused) |
| { |
| static bool detected = false; |
| /* |
| * DBM is a non-conflicting feature. i.e, the kernel can safely |
| * run a mix of CPUs with and without the feature. So, we |
| * unconditionally enable the capability to allow any late CPU |
| * to use the feature. We only enable the control bits on the |
| * CPU, if it actually supports. |
| * |
| * We have to make sure we print the "feature" detection only |
| * when at least one CPU actually uses it. So check if this CPU |
| * can actually use it and print the message exactly once. |
| * |
| * This is safe as all CPUs (including secondary CPUs - due to the |
| * LOCAL_CPU scope - and the hotplugged CPUs - via verification) |
| * goes through the "matches" check exactly once. Also if a CPU |
| * matches the criteria, it is guaranteed that the CPU will turn |
| * the DBM on, as the capability is unconditionally enabled. |
| */ |
| if (!detected && cpu_can_use_dbm(cap)) { |
| detected = true; |
| pr_info("detected: Hardware dirty bit management\n"); |
| } |
| |
| return true; |
| } |
| |
| #endif |
| |
| #ifdef CONFIG_ARM64_AMU_EXTN |
| |
| /* |
| * The "amu_cpus" cpumask only signals that the CPU implementation for the |
| * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide |
| * information regarding all the events that it supports. When a CPU bit is |
| * set in the cpumask, the user of this feature can only rely on the presence |
| * of the 4 fixed counters for that CPU. But this does not guarantee that the |
| * counters are enabled or access to these counters is enabled by code |
| * executed at higher exception levels (firmware). |
| */ |
| static struct cpumask amu_cpus __read_mostly; |
| |
| bool cpu_has_amu_feat(int cpu) |
| { |
| return cpumask_test_cpu(cpu, &amu_cpus); |
| } |
| |
| int get_cpu_with_amu_feat(void) |
| { |
| return cpumask_any(&amu_cpus); |
| } |
| |
| static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap) |
| { |
| if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) { |
| pr_info("detected CPU%d: Activity Monitors Unit (AMU)\n", |
| smp_processor_id()); |
| cpumask_set_cpu(smp_processor_id(), &amu_cpus); |
| |
| /* 0 reference values signal broken/disabled counters */ |
| if (!this_cpu_has_cap(ARM64_WORKAROUND_2457168)) |
| update_freq_counters_refs(); |
| } |
| } |
| |
| static bool has_amu(const struct arm64_cpu_capabilities *cap, |
| int __unused) |
| { |
| /* |
| * The AMU extension is a non-conflicting feature: the kernel can |
| * safely run a mix of CPUs with and without support for the |
| * activity monitors extension. Therefore, unconditionally enable |
| * the capability to allow any late CPU to use the feature. |
| * |
| * With this feature unconditionally enabled, the cpu_enable |
| * function will be called for all CPUs that match the criteria, |
| * including secondary and hotplugged, marking this feature as |
| * present on that respective CPU. The enable function will also |
| * print a detection message. |
| */ |
| |
| return true; |
| } |
| #else |
| int get_cpu_with_amu_feat(void) |
| { |
| return nr_cpu_ids; |
| } |
| #endif |
| |
| static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused) |
| { |
| return is_kernel_in_hyp_mode(); |
| } |
| |
| static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused) |
| { |
| /* |
| * Copy register values that aren't redirected by hardware. |
| * |
| * Before code patching, we only set tpidr_el1, all CPUs need to copy |
| * this value to tpidr_el2 before we patch the code. Once we've done |
| * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to |
| * do anything here. |
| */ |
| if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN)) |
| write_sysreg(read_sysreg(tpidr_el1), tpidr_el2); |
| } |
| |
| static bool has_nested_virt_support(const struct arm64_cpu_capabilities *cap, |
| int scope) |
| { |
| if (kvm_get_mode() != KVM_MODE_NV) |
| return false; |
| |
| if (!has_cpuid_feature(cap, scope)) { |
| pr_warn("unavailable: %s\n", cap->desc); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| #ifdef CONFIG_ARM64_PAN |
| static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused) |
| { |
| /* |
| * We modify PSTATE. This won't work from irq context as the PSTATE |
| * is discarded once we return from the exception. |
| */ |
| WARN_ON_ONCE(in_interrupt()); |
| |
| sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0); |
| set_pstate_pan(1); |
| } |
| #endif /* CONFIG_ARM64_PAN */ |
| |
| #ifdef CONFIG_ARM64_RAS_EXTN |
| static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused) |
| { |
| /* Firmware may have left a deferred SError in this register. */ |
| write_sysreg_s(0, SYS_DISR_EL1); |
| } |
| #endif /* CONFIG_ARM64_RAS_EXTN */ |
| |
| #ifdef CONFIG_ARM64_PTR_AUTH |
| static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope) |
| { |
| int boot_val, sec_val; |
| |
| /* We don't expect to be called with SCOPE_SYSTEM */ |
| WARN_ON(scope == SCOPE_SYSTEM); |
| /* |
| * The ptr-auth feature levels are not intercompatible with lower |
| * levels. Hence we must match ptr-auth feature level of the secondary |
| * CPUs with that of the boot CPU. The level of boot cpu is fetched |
| * from the sanitised register whereas direct register read is done for |
| * the secondary CPUs. |
| * The sanitised feature state is guaranteed to match that of the |
| * boot CPU as a mismatched secondary CPU is parked before it gets |
| * a chance to update the state, with the capability. |
| */ |
| boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg), |
| entry->field_pos, entry->sign); |
| if (scope & SCOPE_BOOT_CPU) |
| return boot_val >= entry->min_field_value; |
| /* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */ |
| sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg), |
| entry->field_pos, entry->sign); |
| return (sec_val >= entry->min_field_value) && (sec_val == boot_val); |
| } |
| |
| static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry, |
| int scope) |
| { |
| bool api = has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope); |
| bool apa = has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5], scope); |
| bool apa3 = has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3], scope); |
| |
| return apa || apa3 || api; |
| } |
| |
| static bool has_generic_auth(const struct arm64_cpu_capabilities *entry, |
| int __unused) |
| { |
| bool gpi = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF); |
| bool gpa = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5); |
| bool gpa3 = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3); |
| |
| return gpa || gpa3 || gpi; |
| } |
| #endif /* CONFIG_ARM64_PTR_AUTH */ |
| |
| #ifdef CONFIG_ARM64_E0PD |
| static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap) |
| { |
| if (this_cpu_has_cap(ARM64_HAS_E0PD)) |
| sysreg_clear_set(tcr_el1, 0, TCR_E0PD1); |
| } |
| #endif /* CONFIG_ARM64_E0PD */ |
| |
| #ifdef CONFIG_ARM64_PSEUDO_NMI |
| static bool enable_pseudo_nmi; |
| |
| static int __init early_enable_pseudo_nmi(char *p) |
| { |
| return kstrtobool(p, &enable_pseudo_nmi); |
| } |
| early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi); |
| |
| static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry, |
| int scope) |
| { |
| /* |
| * ARM64_HAS_GIC_CPUIF_SYSREGS has a lower index, and is a boot CPU |
| * feature, so will be detected earlier. |
| */ |
| BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_MASKING <= ARM64_HAS_GIC_CPUIF_SYSREGS); |
| if (!cpus_have_cap(ARM64_HAS_GIC_CPUIF_SYSREGS)) |
| return false; |
| |
| return enable_pseudo_nmi; |
| } |
| |
| static bool has_gic_prio_relaxed_sync(const struct arm64_cpu_capabilities *entry, |
| int scope) |
| { |
| /* |
| * If we're not using priority masking then we won't be poking PMR_EL1, |
| * and there's no need to relax synchronization of writes to it, and |
| * ICC_CTLR_EL1 might not be accessible and we must avoid reads from |
| * that. |
| * |
| * ARM64_HAS_GIC_PRIO_MASKING has a lower index, and is a boot CPU |
| * feature, so will be detected earlier. |
| */ |
| BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_RELAXED_SYNC <= ARM64_HAS_GIC_PRIO_MASKING); |
| if (!cpus_have_cap(ARM64_HAS_GIC_PRIO_MASKING)) |
| return false; |
| |
| /* |
| * When Priority Mask Hint Enable (PMHE) == 0b0, PMR is not used as a |
| * hint for interrupt distribution, a DSB is not necessary when |
| * unmasking IRQs via PMR, and we can relax the barrier to a NOP. |
| * |
| * Linux itself doesn't use 1:N distribution, so has no need to |
| * set PMHE. The only reason to have it set is if EL3 requires it |
| * (and we can't change it). |
| */ |
| return (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK) == 0; |
| } |
| #endif |
| |
| #ifdef CONFIG_ARM64_BTI |
| static void bti_enable(const struct arm64_cpu_capabilities *__unused) |
| { |
| /* |
| * Use of X16/X17 for tail-calls and trampolines that jump to |
| * function entry points using BR is a requirement for |
| * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI. |
| * So, be strict and forbid other BRs using other registers to |
| * jump onto a PACIxSP instruction: |
| */ |
| sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1); |
| isb(); |
| } |
| #endif /* CONFIG_ARM64_BTI */ |
| |
| #ifdef CONFIG_ARM64_MTE |
| static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap) |
| { |
| sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ATA | SCTLR_EL1_ATA0); |
| |
| mte_cpu_setup(); |
| |
| /* |
| * Clear the tags in the zero page. This needs to be done via the |
| * linear map which has the Tagged attribute. |
| */ |
| if (try_page_mte_tagging(ZERO_PAGE(0))) { |
| mte_clear_page_tags(lm_alias(empty_zero_page)); |
| set_page_mte_tagged(ZERO_PAGE(0)); |
| } |
| |
| kasan_init_hw_tags_cpu(); |
| } |
| #endif /* CONFIG_ARM64_MTE */ |
| |
| static void elf_hwcap_fixup(void) |
| { |
| #ifdef CONFIG_ARM64_ERRATUM_1742098 |
| if (cpus_have_const_cap(ARM64_WORKAROUND_1742098)) |
| compat_elf_hwcap2 &= ~COMPAT_HWCAP2_AES; |
| #endif /* ARM64_ERRATUM_1742098 */ |
| } |
| |
| #ifdef CONFIG_KVM |
| static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused) |
| { |
| return kvm_get_mode() == KVM_MODE_PROTECTED; |
| } |
| #endif /* CONFIG_KVM */ |
| |
| static void cpu_trap_el0_impdef(const struct arm64_cpu_capabilities *__unused) |
| { |
| sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_TIDCP); |
| } |
| |
| static void cpu_enable_dit(const struct arm64_cpu_capabilities *__unused) |
| { |
| set_pstate_dit(1); |
| } |
| |
| /* Internal helper functions to match cpu capability type */ |
| static bool |
| cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap) |
| { |
| return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU); |
| } |
| |
| static bool |
| cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap) |
| { |
| return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU); |
| } |
| |
| static bool |
| cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap) |
| { |
| return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT); |
| } |
| |
| static const struct arm64_cpu_capabilities arm64_features[] = { |
| { |
| .capability = ARM64_ALWAYS_BOOT, |
| .type = ARM64_CPUCAP_BOOT_CPU_FEATURE, |
| .matches = has_always, |
| }, |
| { |
| .capability = ARM64_ALWAYS_SYSTEM, |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .matches = has_always, |
| }, |
| { |
| .desc = "GIC system register CPU interface", |
| .capability = ARM64_HAS_GIC_CPUIF_SYSREGS, |
| .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE, |
| .matches = has_useable_gicv3_cpuif, |
| .sys_reg = SYS_ID_AA64PFR0_EL1, |
| .field_pos = ID_AA64PFR0_EL1_GIC_SHIFT, |
| .field_width = 4, |
| .sign = FTR_UNSIGNED, |
| .min_field_value = 1, |
| }, |
| { |
| .desc = "Enhanced Counter Virtualization", |
| .capability = ARM64_HAS_ECV, |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .matches = has_cpuid_feature, |
| .sys_reg = SYS_ID_AA64MMFR0_EL1, |
| .field_pos = ID_AA64MMFR0_EL1_ECV_SHIFT, |
| .field_width = 4, |
| .sign = FTR_UNSIGNED, |
| .min_field_value = 1, |
| }, |
| #ifdef CONFIG_ARM64_PAN |
| { |
| .desc = "Privileged Access Never", |
| .capability = ARM64_HAS_PAN, |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .matches = has_cpuid_feature, |
| .sys_reg = SYS_ID_AA64MMFR1_EL1, |
| .field_pos = ID_AA64MMFR1_EL1_PAN_SHIFT, |
| .field_width = 4, |
| .sign = FTR_UNSIGNED, |
| .min_field_value = 1, |
| .cpu_enable = cpu_enable_pan, |
| }, |
| #endif /* CONFIG_ARM64_PAN */ |
| #ifdef CONFIG_ARM64_EPAN |
| { |
| .desc = "Enhanced Privileged Access Never", |
| .capability = ARM64_HAS_EPAN, |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .matches = has_cpuid_feature, |
| .sys_reg = SYS_ID_AA64MMFR1_EL1, |
| .field_pos = ID_AA64MMFR1_EL1_PAN_SHIFT, |
| .field_width = 4, |
| .sign = FTR_UNSIGNED, |
| .min_field_value = 3, |
| }, |
| #endif /* CONFIG_ARM64_EPAN */ |
| #ifdef CONFIG_ARM64_LSE_ATOMICS |
| { |
| .desc = "LSE atomic instructions", |
| .capability = ARM64_HAS_LSE_ATOMICS, |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .matches = has_cpuid_feature, |
| .sys_reg = SYS_ID_AA64ISAR0_EL1, |
| .field_pos = ID_AA64ISAR0_EL1_ATOMIC_SHIFT, |
| .field_width = 4, |
| .sign = FTR_UNSIGNED, |
| .min_field_value = 2, |
| }, |
| #endif /* CONFIG_ARM64_LSE_ATOMICS */ |
| { |
| .desc = "Software prefetching using PRFM", |
| .capability = ARM64_HAS_NO_HW_PREFETCH, |
| .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE, |
| .matches = has_no_hw_prefetch, |
| }, |
| { |
| .desc = "Virtualization Host Extensions", |
| .capability = ARM64_HAS_VIRT_HOST_EXTN, |
| .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE, |
| .matches = runs_at_el2, |
| .cpu_enable = cpu_copy_el2regs, |
| }, |
| { |
| .desc = "Nested Virtualization Support", |
| .capability = ARM64_HAS_NESTED_VIRT, |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .matches = has_nested_virt_support, |
| .sys_reg = SYS_ID_AA64MMFR2_EL1, |
| .sign = FTR_UNSIGNED, |
| .field_pos = ID_AA64MMFR2_EL1_NV_SHIFT, |
| .field_width = 4, |
| .min_field_value = ID_AA64MMFR2_EL1_NV_IMP, |
| }, |
| { |
| .capability = ARM64_HAS_32BIT_EL0_DO_NOT_USE, |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .matches = has_32bit_el0, |
| .sys_reg = SYS_ID_AA64PFR0_EL1, |
| .sign = FTR_UNSIGNED, |
| .field_pos = ID_AA64PFR0_EL1_EL0_SHIFT, |
| .field_width = 4, |
| .min_field_value = ID_AA64PFR0_EL1_ELx_32BIT_64BIT, |
| }, |
| #ifdef CONFIG_KVM |
| { |
| .desc = "32-bit EL1 Support", |
| .capability = ARM64_HAS_32BIT_EL1, |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .matches = has_cpuid_feature, |
| .sys_reg = SYS_ID_AA64PFR0_EL1, |
| .sign = FTR_UNSIGNED, |
| .field_pos = ID_AA64PFR0_EL1_EL1_SHIFT, |
| .field_width = 4, |
| .min_field_value = ID_AA64PFR0_EL1_ELx_32BIT_64BIT, |
| }, |
| { |
| .desc = "Protected KVM", |
| .capability = ARM64_KVM_PROTECTED_MODE, |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .matches = is_kvm_protected_mode, |
| }, |
| #endif |
| { |
| .desc = "Kernel page table isolation (KPTI)", |
| .capability = ARM64_UNMAP_KERNEL_AT_EL0, |
| .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE, |
| /* |
| * The ID feature fields below are used to indicate that |
| * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for |
| * more details. |
| */ |
| .sys_reg = SYS_ID_AA64PFR0_EL1, |
| .field_pos = ID_AA64PFR0_EL1_CSV3_SHIFT, |
| .field_width = 4, |
| .min_field_value = 1, |
| .matches = unmap_kernel_at_el0, |
| .cpu_enable = kpti_install_ng_mappings, |
| }, |
| { |
| /* FP/SIMD is not implemented */ |
| .capability = ARM64_HAS_NO_FPSIMD, |
| .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE, |
| .min_field_value = 0, |
| .matches = has_no_fpsimd, |
| }, |
| #ifdef CONFIG_ARM64_PMEM |
| { |
| .desc = "Data cache clean to Point of Persistence", |
| .capability = ARM64_HAS_DCPOP, |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .matches = has_cpuid_feature, |
| .sys_reg = SYS_ID_AA64ISAR1_EL1, |
| .field_pos = ID_AA64ISAR1_EL1_DPB_SHIFT, |
| .field_width = 4, |
| .min_field_value = 1, |
| }, |
| { |
| .desc = "Data cache clean to Point of Deep Persistence", |
| .capability = ARM64_HAS_DCPODP, |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .matches = has_cpuid_feature, |
| .sys_reg = SYS_ID_AA64ISAR1_EL1, |
| .sign = FTR_UNSIGNED, |
| .field_pos = ID_AA64ISAR1_EL1_DPB_SHIFT, |
| .field_width = 4, |
| .min_field_value = 2, |
| }, |
| #endif |
| #ifdef CONFIG_ARM64_SVE |
| { |
| .desc = "Scalable Vector Extension", |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .capability = ARM64_SVE, |
| .sys_reg = SYS_ID_AA64PFR0_EL1, |
| .sign = FTR_UNSIGNED, |
| .field_pos = ID_AA64PFR0_EL1_SVE_SHIFT, |
| .field_width = 4, |
| .min_field_value = ID_AA64PFR0_EL1_SVE_IMP, |
| .matches = has_cpuid_feature, |
| .cpu_enable = sve_kernel_enable, |
| }, |
| #endif /* CONFIG_ARM64_SVE */ |
| #ifdef CONFIG_ARM64_RAS_EXTN |
| { |
| .desc = "RAS Extension Support", |
| .capability = ARM64_HAS_RAS_EXTN, |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .matches = has_cpuid_feature, |
| .sys_reg = SYS_ID_AA64PFR0_EL1, |
| .sign = FTR_UNSIGNED, |
| .field_pos = ID_AA64PFR0_EL1_RAS_SHIFT, |
| .field_width = 4, |
| .min_field_value = ID_AA64PFR0_EL1_RAS_IMP, |
| .cpu_enable = cpu_clear_disr, |
| }, |
| #endif /* CONFIG_ARM64_RAS_EXTN */ |
| #ifdef CONFIG_ARM64_AMU_EXTN |
| { |
| /* |
| * The feature is enabled by default if CONFIG_ARM64_AMU_EXTN=y. |
| * Therefore, don't provide .desc as we don't want the detection |
| * message to be shown until at least one CPU is detected to |
| * support the feature. |
| */ |
| .capability = ARM64_HAS_AMU_EXTN, |
| .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE, |
| .matches = has_amu, |
| .sys_reg = SYS_ID_AA64PFR0_EL1, |
| .sign = FTR_UNSIGNED, |
| .field_pos = ID_AA64PFR0_EL1_AMU_SHIFT, |
| .field_width = 4, |
| .min_field_value = ID_AA64PFR0_EL1_AMU_IMP, |
| .cpu_enable = cpu_amu_enable, |
| }, |
| #endif /* CONFIG_ARM64_AMU_EXTN */ |
| { |
| .desc = "Data cache clean to the PoU not required for I/D coherence", |
| .capability = ARM64_HAS_CACHE_IDC, |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .matches = has_cache_idc, |
| .cpu_enable = cpu_emulate_effective_ctr, |
| }, |
| { |
| .desc = "Instruction cache invalidation not required for I/D coherence", |
| .capability = ARM64_HAS_CACHE_DIC, |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .matches = has_cache_dic, |
| }, |
| { |
| .desc = "Stage-2 Force Write-Back", |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .capability = ARM64_HAS_STAGE2_FWB, |
| .sys_reg = SYS_ID_AA64MMFR2_EL1, |
| .sign = FTR_UNSIGNED, |
| .field_pos = ID_AA64MMFR2_EL1_FWB_SHIFT, |
| .field_width = 4, |
| .min_field_value = 1, |
| .matches = has_cpuid_feature, |
| }, |
| { |
| .desc = "ARMv8.4 Translation Table Level", |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .capability = ARM64_HAS_ARMv8_4_TTL, |
| .sys_reg = SYS_ID_AA64MMFR2_EL1, |
| .sign = FTR_UNSIGNED, |
| .field_pos = ID_AA64MMFR2_EL1_TTL_SHIFT, |
| .field_width = 4, |
| .min_field_value = 1, |
| .matches = has_cpuid_feature, |
| }, |
| { |
| .desc = "TLB range maintenance instructions", |
| .capability = ARM64_HAS_TLB_RANGE, |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .matches = has_cpuid_feature, |
| .sys_reg = SYS_ID_AA64ISAR0_EL1, |
| .field_pos = ID_AA64ISAR0_EL1_TLB_SHIFT, |
| .field_width = 4, |
| .sign = FTR_UNSIGNED, |
| .min_field_value = ID_AA64ISAR0_EL1_TLB_RANGE, |
| }, |
| #ifdef CONFIG_ARM64_HW_AFDBM |
| { |
| /* |
| * Since we turn this on always, we don't want the user to |
| * think that the feature is available when it may not be. |
| * So hide the description. |
| * |
| * .desc = "Hardware pagetable Dirty Bit Management", |
| * |
| */ |
| .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE, |
| .capability = ARM64_HW_DBM, |
| .sys_reg = SYS_ID_AA64MMFR1_EL1, |
| .sign = FTR_UNSIGNED, |
| .field_pos = ID_AA64MMFR1_EL1_HAFDBS_SHIFT, |
| .field_width = 4, |
| .min_field_value = 2, |
| .matches = has_hw_dbm, |
| .cpu_enable = cpu_enable_hw_dbm, |
| }, |
| #endif |
| { |
| .desc = "CRC32 instructions", |
| .capability = ARM64_HAS_CRC32, |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .matches = has_cpuid_feature, |
| .sys_reg = SYS_ID_AA64ISAR0_EL1, |
| .field_pos = ID_AA64ISAR0_EL1_CRC32_SHIFT, |
| .field_width = 4, |
| .min_field_value = 1, |
| }, |
| { |
| .desc = "Speculative Store Bypassing Safe (SSBS)", |
| .capability = ARM64_SSBS, |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .matches = has_cpuid_feature, |
| .sys_reg = SYS_ID_AA64PFR1_EL1, |
| .field_pos = ID_AA64PFR1_EL1_SSBS_SHIFT, |
| .field_width = 4, |
| .sign = FTR_UNSIGNED, |
| .min_field_value = ID_AA64PFR1_EL1_SSBS_IMP, |
| }, |
| #ifdef CONFIG_ARM64_CNP |
| { |
| .desc = "Common not Private translations", |
| .capability = ARM64_HAS_CNP, |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .matches = has_useable_cnp, |
| .sys_reg = SYS_ID_AA64MMFR2_EL1, |
| .sign = FTR_UNSIGNED, |
| .field_pos = ID_AA64MMFR2_EL1_CnP_SHIFT, |
| .field_width = 4, |
| .min_field_value = 1, |
| .cpu_enable = cpu_enable_cnp, |
| }, |
| #endif |
| { |
| .desc = "Speculation barrier (SB)", |
| .capability = ARM64_HAS_SB, |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .matches = has_cpuid_feature, |
| .sys_reg = SYS_ID_AA64ISAR1_EL1, |
| .field_pos = ID_AA64ISAR1_EL1_SB_SHIFT, |
| .field_width = 4, |
| .sign = FTR_UNSIGNED, |
| .min_field_value = 1, |
| }, |
| #ifdef CONFIG_ARM64_PTR_AUTH |
| { |
| .desc = "Address authentication (architected QARMA5 algorithm)", |
| .capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5, |
| .type = ARM64_CPUCAP_BOOT_CPU_FEATURE, |
| .sys_reg = SYS_ID_AA64ISAR1_EL1, |
| .sign = FTR_UNSIGNED, |
| .field_pos = ID_AA64ISAR1_EL1_APA_SHIFT, |
| .field_width = 4, |
| .min_field_value = ID_AA64ISAR1_EL1_APA_PAuth, |
| .matches = has_address_auth_cpucap, |
| }, |
| { |
| .desc = "Address authentication (architected QARMA3 algorithm)", |
| .capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3, |
| .type = ARM64_CPUCAP_BOOT_CPU_FEATURE, |
| .sys_reg = SYS_ID_AA64ISAR2_EL1, |
| .sign = FTR_UNSIGNED, |
| .field_pos = ID_AA64ISAR2_EL1_APA3_SHIFT, |
| .field_width = 4, |
| .min_field_value = ID_AA64ISAR2_EL1_APA3_PAuth, |
| .matches = has_address_auth_cpucap, |
| }, |
| { |
| .desc = "Address authentication (IMP DEF algorithm)", |
| .capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF, |
| .type = ARM64_CPUCAP_BOOT_CPU_FEATURE, |
| .sys_reg = SYS_ID_AA64ISAR1_EL1, |
| .sign = FTR_UNSIGNED, |
| .field_pos = ID_AA64ISAR1_EL1_API_SHIFT, |
| .field_width = 4, |
| .min_field_value = ID_AA64ISAR1_EL1_API_PAuth, |
| .matches = has_address_auth_cpucap, |
| }, |
| { |
| .capability = ARM64_HAS_ADDRESS_AUTH, |
| .type = ARM64_CPUCAP_BOOT_CPU_FEATURE, |
| .matches = has_address_auth_metacap, |
| }, |
| { |
| .desc = "Generic authentication (architected QARMA5 algorithm)", |
| .capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5, |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .sys_reg = SYS_ID_AA64ISAR1_EL1, |
| .sign = FTR_UNSIGNED, |
| .field_pos = ID_AA64ISAR1_EL1_GPA_SHIFT, |
| .field_width = 4, |
| .min_field_value = ID_AA64ISAR1_EL1_GPA_IMP, |
| .matches = has_cpuid_feature, |
| }, |
| { |
| .desc = "Generic authentication (architected QARMA3 algorithm)", |
| .capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3, |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .sys_reg = SYS_ID_AA64ISAR2_EL1, |
| .sign = FTR_UNSIGNED, |
| .field_pos = ID_AA64ISAR2_EL1_GPA3_SHIFT, |
| .field_width = 4, |
| .min_field_value = ID_AA64ISAR2_EL1_GPA3_IMP, |
| .matches = has_cpuid_feature, |
| }, |
| { |
| .desc = "Generic authentication (IMP DEF algorithm)", |
| .capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF, |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .sys_reg = SYS_ID_AA64ISAR1_EL1, |
| .sign = FTR_UNSIGNED, |
| .field_pos = ID_AA64ISAR1_EL1_GPI_SHIFT, |
| .field_width = 4, |
| .min_field_value = ID_AA64ISAR1_EL1_GPI_IMP, |
| .matches = has_cpuid_feature, |
| }, |
| { |
| .capability = ARM64_HAS_GENERIC_AUTH, |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .matches = has_generic_auth, |
| }, |
| #endif /* CONFIG_ARM64_PTR_AUTH */ |
| #ifdef CONFIG_ARM64_PSEUDO_NMI |
| { |
| /* |
| * Depends on having GICv3 |
| */ |
| .desc = "IRQ priority masking", |
| .capability = ARM64_HAS_GIC_PRIO_MASKING, |
| .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE, |
| .matches = can_use_gic_priorities, |
| }, |
| { |
| /* |
| * Depends on ARM64_HAS_GIC_PRIO_MASKING |
| */ |
| .capability = ARM64_HAS_GIC_PRIO_RELAXED_SYNC, |
| .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE, |
| .matches = has_gic_prio_relaxed_sync, |
| }, |
| #endif |
| #ifdef CONFIG_ARM64_E0PD |
| { |
| .desc = "E0PD", |
| .capability = ARM64_HAS_E0PD, |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .sys_reg = SYS_ID_AA64MMFR2_EL1, |
| .sign = FTR_UNSIGNED, |
| .field_width = 4, |
| .field_pos = ID_AA64MMFR2_EL1_E0PD_SHIFT, |
| .matches = has_cpuid_feature, |
| .min_field_value = 1, |
| .cpu_enable = cpu_enable_e0pd, |
| }, |
| #endif |
| { |
| .desc = "Random Number Generator", |
| .capability = ARM64_HAS_RNG, |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .matches = has_cpuid_feature, |
| .sys_reg = SYS_ID_AA64ISAR0_EL1, |
| .field_pos = ID_AA64ISAR0_EL1_RNDR_SHIFT, |
| .field_width = 4, |
| .sign = FTR_UNSIGNED, |
| .min_field_value = 1, |
| }, |
| #ifdef CONFIG_ARM64_BTI |
| { |
| .desc = "Branch Target Identification", |
| .capability = ARM64_BTI, |
| #ifdef CONFIG_ARM64_BTI_KERNEL |
| .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE, |
| #else |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| #endif |
| .matches = has_cpuid_feature, |
| .cpu_enable = bti_enable, |
| .sys_reg = SYS_ID_AA64PFR1_EL1, |
| .field_pos = ID_AA64PFR1_EL1_BT_SHIFT, |
| .field_width = 4, |
| .min_field_value = ID_AA64PFR1_EL1_BT_IMP, |
| .sign = FTR_UNSIGNED, |
| }, |
| #endif |
| #ifdef CONFIG_ARM64_MTE |
| { |
| .desc = "Memory Tagging Extension", |
| .capability = ARM64_MTE, |
| .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE, |
| .matches = has_cpuid_feature, |
| .sys_reg = SYS_ID_AA64PFR1_EL1, |
| .field_pos = ID_AA64PFR1_EL1_MTE_SHIFT, |
| .field_width = 4, |
| .min_field_value = ID_AA64PFR1_EL1_MTE_MTE2, |
| .sign = FTR_UNSIGNED, |
| .cpu_enable = cpu_enable_mte, |
| }, |
| { |
| .desc = "Asymmetric MTE Tag Check Fault", |
| .capability = ARM64_MTE_ASYMM, |
| .type = ARM64_CPUCAP_BOOT_CPU_FEATURE, |
| .matches = has_cpuid_feature, |
| .sys_reg = SYS_ID_AA64PFR1_EL1, |
| .field_pos = ID_AA64PFR1_EL1_MTE_SHIFT, |
| .field_width = 4, |
| .min_field_value = ID_AA64PFR1_EL1_MTE_MTE3, |
| .sign = FTR_UNSIGNED, |
| }, |
| #endif /* CONFIG_ARM64_MTE */ |
| { |
| .desc = "RCpc load-acquire (LDAPR)", |
| .capability = ARM64_HAS_LDAPR, |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .sys_reg = SYS_ID_AA64ISAR1_EL1, |
| .sign = FTR_UNSIGNED, |
| .field_pos = ID_AA64ISAR1_EL1_LRCPC_SHIFT, |
| .field_width = 4, |
| .matches = has_cpuid_feature, |
| .min_field_value = 1, |
| }, |
| #ifdef CONFIG_ARM64_SME |
| { |
| .desc = "Scalable Matrix Extension", |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .capability = ARM64_SME, |
| .sys_reg = SYS_ID_AA64PFR1_EL1, |
| .sign = FTR_UNSIGNED, |
| .field_pos = ID_AA64PFR1_EL1_SME_SHIFT, |
| .field_width = 4, |
| .min_field_value = ID_AA64PFR1_EL1_SME_IMP, |
| .matches = has_cpuid_feature, |
| .cpu_enable = sme_kernel_enable, |
| }, |
| /* FA64 should be sorted after the base SME capability */ |
| { |
| .desc = "FA64", |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .capability = ARM64_SME_FA64, |
| .sys_reg = SYS_ID_AA64SMFR0_EL1, |
| .sign = FTR_UNSIGNED, |
| .field_pos = ID_AA64SMFR0_EL1_FA64_SHIFT, |
| .field_width = 1, |
| .min_field_value = ID_AA64SMFR0_EL1_FA64_IMP, |
| .matches = has_cpuid_feature, |
| .cpu_enable = fa64_kernel_enable, |
| }, |
| { |
| .desc = "SME2", |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .capability = ARM64_SME2, |
| .sys_reg = SYS_ID_AA64PFR1_EL1, |
| .sign = FTR_UNSIGNED, |
| .field_pos = ID_AA64PFR1_EL1_SME_SHIFT, |
| .field_width = ID_AA64PFR1_EL1_SME_WIDTH, |
| .min_field_value = ID_AA64PFR1_EL1_SME_SME2, |
| .matches = has_cpuid_feature, |
| .cpu_enable = sme2_kernel_enable, |
| }, |
| #endif /* CONFIG_ARM64_SME */ |
| { |
| .desc = "WFx with timeout", |
| .capability = ARM64_HAS_WFXT, |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .sys_reg = SYS_ID_AA64ISAR2_EL1, |
| .sign = FTR_UNSIGNED, |
| .field_pos = ID_AA64ISAR2_EL1_WFxT_SHIFT, |
| .field_width = 4, |
| .matches = has_cpuid_feature, |
| .min_field_value = ID_AA64ISAR2_EL1_WFxT_IMP, |
| }, |
| { |
| .desc = "Trap EL0 IMPLEMENTATION DEFINED functionality", |
| .capability = ARM64_HAS_TIDCP1, |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .sys_reg = SYS_ID_AA64MMFR1_EL1, |
| .sign = FTR_UNSIGNED, |
| .field_pos = ID_AA64MMFR1_EL1_TIDCP1_SHIFT, |
| .field_width = 4, |
| .min_field_value = ID_AA64MMFR1_EL1_TIDCP1_IMP, |
| .matches = has_cpuid_feature, |
| .cpu_enable = cpu_trap_el0_impdef, |
| }, |
| { |
| .desc = "Data independent timing control (DIT)", |
| .capability = ARM64_HAS_DIT, |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .sys_reg = SYS_ID_AA64PFR0_EL1, |
| .sign = FTR_UNSIGNED, |
| .field_pos = ID_AA64PFR0_EL1_DIT_SHIFT, |
| .field_width = 4, |
| .min_field_value = ID_AA64PFR0_EL1_DIT_IMP, |
| .matches = has_cpuid_feature, |
| .cpu_enable = cpu_enable_dit, |
| }, |
| {}, |
| }; |
| |
| #define HWCAP_CPUID_MATCH(reg, field, min_value) \ |
| .matches = has_user_cpuid_feature, \ |
| .sys_reg = SYS_##reg, \ |
| .field_pos = reg##_##field##_SHIFT, \ |
| .field_width = reg##_##field##_WIDTH, \ |
| .sign = reg##_##field##_SIGNED, \ |
| .min_field_value = reg##_##field##_##min_value, |
| |
| #define __HWCAP_CAP(name, cap_type, cap) \ |
| .desc = name, \ |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, \ |
| .hwcap_type = cap_type, \ |
| .hwcap = cap, \ |
| |
| #define HWCAP_CAP(reg, field, min_value, cap_type, cap) \ |
| { \ |
| __HWCAP_CAP(#cap, cap_type, cap) \ |
| HWCAP_CPUID_MATCH(reg, field, min_value) \ |
| } |
| |
| #define HWCAP_MULTI_CAP(list, cap_type, cap) \ |
| { \ |
| __HWCAP_CAP(#cap, cap_type, cap) \ |
| .matches = cpucap_multi_entry_cap_matches, \ |
| .match_list = list, \ |
| } |
| |
| #define HWCAP_CAP_MATCH(match, cap_type, cap) \ |
| { \ |
| __HWCAP_CAP(#cap, cap_type, cap) \ |
| .matches = match, \ |
| } |
| |
| #ifdef CONFIG_ARM64_PTR_AUTH |
| static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = { |
| { |
| HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, APA, PAuth) |
| }, |
| { |
| HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, APA3, PAuth) |
| }, |
| { |
| HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, API, PAuth) |
| }, |
| {}, |
| }; |
| |
| static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = { |
| { |
| HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPA, IMP) |
| }, |
| { |
| HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, GPA3, IMP) |
| }, |
| { |
| HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPI, IMP) |
| }, |
| {}, |
| }; |
| #endif |
| |
| static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = { |
| HWCAP_CAP(ID_AA64ISAR0_EL1, AES, PMULL, CAP_HWCAP, KERNEL_HWCAP_PMULL), |
| HWCAP_CAP(ID_AA64ISAR0_EL1, AES, AES, CAP_HWCAP, KERNEL_HWCAP_AES), |
| HWCAP_CAP(ID_AA64ISAR0_EL1, SHA1, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA1), |
| HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA256, CAP_HWCAP, KERNEL_HWCAP_SHA2), |
| HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA512, CAP_HWCAP, KERNEL_HWCAP_SHA512), |
| HWCAP_CAP(ID_AA64ISAR0_EL1, CRC32, IMP, CAP_HWCAP, KERNEL_HWCAP_CRC32), |
| HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, IMP, CAP_HWCAP, KERNEL_HWCAP_ATOMICS), |
| HWCAP_CAP(ID_AA64ISAR0_EL1, RDM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM), |
| HWCAP_CAP(ID_AA64ISAR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA3), |
| HWCAP_CAP(ID_AA64ISAR0_EL1, SM3, IMP, CAP_HWCAP, KERNEL_HWCAP_SM3), |
| HWCAP_CAP(ID_AA64ISAR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SM4), |
| HWCAP_CAP(ID_AA64ISAR0_EL1, DP, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP), |
| HWCAP_CAP(ID_AA64ISAR0_EL1, FHM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM), |
| HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM, CAP_HWCAP, KERNEL_HWCAP_FLAGM), |
| HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2), |
| HWCAP_CAP(ID_AA64ISAR0_EL1, RNDR, IMP, CAP_HWCAP, KERNEL_HWCAP_RNG), |
| HWCAP_CAP(ID_AA64PFR0_EL1, FP, IMP, CAP_HWCAP, KERNEL_HWCAP_FP), |
| HWCAP_CAP(ID_AA64PFR0_EL1, FP, FP16, CAP_HWCAP, KERNEL_HWCAP_FPHP), |
| HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMD), |
| HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, FP16, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP), |
| HWCAP_CAP(ID_AA64PFR0_EL1, DIT, IMP, CAP_HWCAP, KERNEL_HWCAP_DIT), |
| HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, IMP, CAP_HWCAP, KERNEL_HWCAP_DCPOP), |
| HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, DPB2, CAP_HWCAP, KERNEL_HWCAP_DCPODP), |
| HWCAP_CAP(ID_AA64ISAR1_EL1, JSCVT, IMP, CAP_HWCAP, KERNEL_HWCAP_JSCVT), |
| HWCAP_CAP(ID_AA64ISAR1_EL1, FCMA, IMP, CAP_HWCAP, KERNEL_HWCAP_FCMA), |
| HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, IMP, CAP_HWCAP, KERNEL_HWCAP_LRCPC), |
| HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC), |
| HWCAP_CAP(ID_AA64ISAR1_EL1, FRINTTS, IMP, CAP_HWCAP, KERNEL_HWCAP_FRINT), |
| HWCAP_CAP(ID_AA64ISAR1_EL1, SB, IMP, CAP_HWCAP, KERNEL_HWCAP_SB), |
| HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_BF16), |
| HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_EBF16), |
| HWCAP_CAP(ID_AA64ISAR1_EL1, DGH, IMP, CAP_HWCAP, KERNEL_HWCAP_DGH), |
| HWCAP_CAP(ID_AA64ISAR1_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_I8MM), |
| HWCAP_CAP(ID_AA64MMFR2_EL1, AT, IMP, CAP_HWCAP, KERNEL_HWCAP_USCAT), |
| #ifdef CONFIG_ARM64_SVE |
| HWCAP_CAP(ID_AA64PFR0_EL1, SVE, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE), |
| HWCAP_CAP(ID_AA64ZFR0_EL1, SVEver, SVE2p1, CAP_HWCAP, KERNEL_HWCAP_SVE2P1), |
| HWCAP_CAP(ID_AA64ZFR0_EL1, SVEver, SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2), |
| HWCAP_CAP(ID_AA64ZFR0_EL1, AES, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEAES), |
| HWCAP_CAP(ID_AA64ZFR0_EL1, AES, PMULL128, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL), |
| HWCAP_CAP(ID_AA64ZFR0_EL1, BitPerm, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM), |
| HWCAP_CAP(ID_AA64ZFR0_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBF16), |
| HWCAP_CAP(ID_AA64ZFR0_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_SVE_EBF16), |
| HWCAP_CAP(ID_AA64ZFR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESHA3), |
| HWCAP_CAP(ID_AA64ZFR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESM4), |
| HWCAP_CAP(ID_AA64ZFR0_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM), |
| HWCAP_CAP(ID_AA64ZFR0_EL1, F32MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM), |
| HWCAP_CAP(ID_AA64ZFR0_EL1, F64MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM), |
| #endif |
| HWCAP_CAP(ID_AA64PFR1_EL1, SSBS, SSBS2, CAP_HWCAP, KERNEL_HWCAP_SSBS), |
| #ifdef CONFIG_ARM64_BTI |
| HWCAP_CAP(ID_AA64PFR1_EL1, BT, IMP, CAP_HWCAP, KERNEL_HWCAP_BTI), |
| #endif |
| #ifdef CONFIG_ARM64_PTR_AUTH |
| HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA), |
| HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG), |
| #endif |
| #ifdef CONFIG_ARM64_MTE |
| HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE2, CAP_HWCAP, KERNEL_HWCAP_MTE), |
| HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE3, CAP_HWCAP, KERNEL_HWCAP_MTE3), |
| #endif /* CONFIG_ARM64_MTE */ |
| HWCAP_CAP(ID_AA64MMFR0_EL1, ECV, IMP, CAP_HWCAP, KERNEL_HWCAP_ECV), |
| HWCAP_CAP(ID_AA64MMFR1_EL1, AFP, IMP, CAP_HWCAP, KERNEL_HWCAP_AFP), |
| HWCAP_CAP(ID_AA64ISAR2_EL1, CSSC, IMP, CAP_HWCAP, KERNEL_HWCAP_CSSC), |
| HWCAP_CAP(ID_AA64ISAR2_EL1, RPRFM, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRFM), |
| HWCAP_CAP(ID_AA64ISAR2_EL1, RPRES, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRES), |
| HWCAP_CAP(ID_AA64ISAR2_EL1, WFxT, IMP, CAP_HWCAP, KERNEL_HWCAP_WFXT), |
| #ifdef CONFIG_ARM64_SME |
| HWCAP_CAP(ID_AA64PFR1_EL1, SME, IMP, CAP_HWCAP, KERNEL_HWCAP_SME), |
| HWCAP_CAP(ID_AA64SMFR0_EL1, FA64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_FA64), |
| HWCAP_CAP(ID_AA64SMFR0_EL1, SMEver, SME2p1, CAP_HWCAP, KERNEL_HWCAP_SME2P1), |
| HWCAP_CAP(ID_AA64SMFR0_EL1, SMEver, SME2, CAP_HWCAP, KERNEL_HWCAP_SME2), |
| HWCAP_CAP(ID_AA64SMFR0_EL1, I16I64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I64), |
| HWCAP_CAP(ID_AA64SMFR0_EL1, F64F64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F64F64), |
| HWCAP_CAP(ID_AA64SMFR0_EL1, I16I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I32), |
| HWCAP_CAP(ID_AA64SMFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16B16), |
| HWCAP_CAP(ID_AA64SMFR0_EL1, F16F16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F16), |
| HWCAP_CAP(ID_AA64SMFR0_EL1, I8I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I8I32), |
| HWCAP_CAP(ID_AA64SMFR0_EL1, F16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F32), |
| HWCAP_CAP(ID_AA64SMFR0_EL1, B16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16F32), |
| HWCAP_CAP(ID_AA64SMFR0_EL1, BI32I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_BI32I32), |
| HWCAP_CAP(ID_AA64SMFR0_EL1, F32F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F32F32), |
| #endif /* CONFIG_ARM64_SME */ |
| {}, |
| }; |
| |
| #ifdef CONFIG_COMPAT |
| static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope) |
| { |
| /* |
| * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available, |
| * in line with that of arm32 as in vfp_init(). We make sure that the |
| * check is future proof, by making sure value is non-zero. |
| */ |
| u32 mvfr1; |
| |
| WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible()); |
| if (scope == SCOPE_SYSTEM) |
| mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1); |
| else |
| mvfr1 = read_sysreg_s(SYS_MVFR1_EL1); |
| |
| return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDSP_SHIFT) && |
| cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDInt_SHIFT) && |
| cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDLS_SHIFT); |
| } |
| #endif |
| |
| static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = { |
| #ifdef CONFIG_COMPAT |
| HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON), |
| HWCAP_CAP(MVFR1_EL1, SIMDFMAC, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4), |
| /* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */ |
| HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP), |
| HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3), |
| HWCAP_CAP(MVFR1_EL1, FPHP, FP16, CAP_COMPAT_HWCAP, COMPAT_HWCAP_FPHP), |
| HWCAP_CAP(MVFR1_EL1, SIMDHP, SIMDHP_FLOAT, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDHP), |
| HWCAP_CAP(ID_ISAR5_EL1, AES, VMULL, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL), |
| HWCAP_CAP(ID_ISAR5_EL1, AES, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES), |
| HWCAP_CAP(ID_ISAR5_EL1, SHA1, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1), |
| HWCAP_CAP(ID_ISAR5_EL1, SHA2, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2), |
| HWCAP_CAP(ID_ISAR5_EL1, CRC32, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32), |
| HWCAP_CAP(ID_ISAR6_EL1, DP, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDDP), |
| HWCAP_CAP(ID_ISAR6_EL1, FHM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDFHM), |
| HWCAP_CAP(ID_ISAR6_EL1, SB, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SB), |
| HWCAP_CAP(ID_ISAR6_EL1, BF16, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDBF16), |
| HWCAP_CAP(ID_ISAR6_EL1, I8MM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_I8MM), |
| HWCAP_CAP(ID_PFR2_EL1, SSBS, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SSBS), |
| #endif |
| {}, |
| }; |
| |
| static void cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap) |
| { |
| switch (cap->hwcap_type) { |
| case CAP_HWCAP: |
| cpu_set_feature(cap->hwcap); |
| break; |
| #ifdef CONFIG_COMPAT |
| case CAP_COMPAT_HWCAP: |
| compat_elf_hwcap |= (u32)cap->hwcap; |
| break; |
| case CAP_COMPAT_HWCAP2: |
| compat_elf_hwcap2 |= (u32)cap->hwcap; |
| break; |
| #endif |
| default: |
| WARN_ON(1); |
| break; |
| } |
| } |
| |
| /* Check if we have a particular HWCAP enabled */ |
| static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap) |
| { |
| bool rc; |
| |
| switch (cap->hwcap_type) { |
| case CAP_HWCAP: |
| rc = cpu_have_feature(cap->hwcap); |
| break; |
| #ifdef CONFIG_COMPAT |
| case CAP_COMPAT_HWCAP: |
| rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0; |
| break; |
| case CAP_COMPAT_HWCAP2: |
| rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0; |
| break; |
| #endif |
| default: |
| WARN_ON(1); |
| rc = false; |
| } |
| |
| return rc; |
| } |
| |
| static void setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps) |
| { |
| /* We support emulation of accesses to CPU ID feature registers */ |
| cpu_set_named_feature(CPUID); |
| for (; hwcaps->matches; hwcaps++) |
| if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps))) |
| cap_set_elf_hwcap(hwcaps); |
| } |
| |
| static void update_cpu_capabilities(u16 scope_mask) |
| { |
| int i; |
| const struct arm64_cpu_capabilities *caps; |
| |
| scope_mask &= ARM64_CPUCAP_SCOPE_MASK; |
| for (i = 0; i < ARM64_NCAPS; i++) { |
| caps = cpu_hwcaps_ptrs[i]; |
| if (!caps || !(caps->type & scope_mask) || |
| cpus_have_cap(caps->capability) || |
| !caps->matches(caps, cpucap_default_scope(caps))) |
| continue; |
| |
| if (caps->desc) |
| pr_info("detected: %s\n", caps->desc); |
| cpus_set_cap(caps->capability); |
| |
| if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU)) |
| set_bit(caps->capability, boot_capabilities); |
| } |
| } |
| |
| /* |
| * Enable all the available capabilities on this CPU. The capabilities |
| * with BOOT_CPU scope are handled separately and hence skipped here. |
| */ |
| static int cpu_enable_non_boot_scope_capabilities(void *__unused) |
| { |
| int i; |
| u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU; |
| |
| for_each_available_cap(i) { |
| const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[i]; |
| |
| if (WARN_ON(!cap)) |
| continue; |
| |
| if (!(cap->type & non_boot_scope)) |
| continue; |
| |
| if (cap->cpu_enable) |
| cap->cpu_enable(cap); |
| } |
| return 0; |
| } |
| |
| /* |
| * Run through the enabled capabilities and enable() it on all active |
| * CPUs |
| */ |
| static void __init enable_cpu_capabilities(u16 scope_mask) |
| { |
| int i; |
| const struct arm64_cpu_capabilities *caps; |
| bool boot_scope; |
| |
| scope_mask &= ARM64_CPUCAP_SCOPE_MASK; |
| boot_scope = !!(scope_mask & SCOPE_BOOT_CPU); |
| |
| for (i = 0; i < ARM64_NCAPS; i++) { |
| unsigned int num; |
| |
| caps = cpu_hwcaps_ptrs[i]; |
| if (!caps || !(caps->type & scope_mask)) |
| continue; |
| num = caps->capability; |
| if (!cpus_have_cap(num)) |
| continue; |
| |
| if (boot_scope && caps->cpu_enable) |
| /* |
| * Capabilities with SCOPE_BOOT_CPU scope are finalised |
| * before any secondary CPU boots. Thus, each secondary |
| * will enable the capability as appropriate via |
| * check_local_cpu_capabilities(). The only exception is |
| * the boot CPU, for which the capability must be |
| * enabled here. This approach avoids costly |
| * stop_machine() calls for this case. |
| */ |
| caps->cpu_enable(caps); |
| } |
| |
| /* |
| * For all non-boot scope capabilities, use stop_machine() |
| * as it schedules the work allowing us to modify PSTATE, |
| * instead of on_each_cpu() which uses an IPI, giving us a |
| * PSTATE that disappears when we return. |
| */ |
| if (!boot_scope) |
| stop_machine(cpu_enable_non_boot_scope_capabilities, |
| NULL, cpu_online_mask); |
| } |
| |
| /* |
| * Run through the list of capabilities to check for conflicts. |
| * If the system has already detected a capability, take necessary |
| * action on this CPU. |
| */ |
| static void verify_local_cpu_caps(u16 scope_mask) |
| { |
| int i; |
| bool cpu_has_cap, system_has_cap; |
| const struct arm64_cpu_capabilities *caps; |
| |
| scope_mask &= ARM64_CPUCAP_SCOPE_MASK; |
| |
| for (i = 0; i < ARM64_NCAPS; i++) { |
| caps = cpu_hwcaps_ptrs[i]; |
| if (!caps || !(caps->type & scope_mask)) |
| continue; |
| |
| cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU); |
| system_has_cap = cpus_have_cap(caps->capability); |
| |
| if (system_has_cap) { |
| /* |
| * Check if the new CPU misses an advertised feature, |
| * which is not safe to miss. |
| */ |
| if (!cpu_has_cap && !cpucap_late_cpu_optional(caps)) |
| break; |
| /* |
| * We have to issue cpu_enable() irrespective of |
| * whether the CPU has it or not, as it is enabeld |
| * system wide. It is upto the call back to take |
| * appropriate action on this CPU. |
| */ |
| if (caps->cpu_enable) |
| caps->cpu_enable(caps); |
| } else { |
| /* |
| * Check if the CPU has this capability if it isn't |
| * safe to have when the system doesn't. |
| */ |
| if (cpu_has_cap && !cpucap_late_cpu_permitted(caps)) |
| break; |
| } |
| } |
| |
| if (i < ARM64_NCAPS) { |
| pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n", |
| smp_processor_id(), caps->capability, |
| caps->desc, system_has_cap, cpu_has_cap); |
| |
| if (cpucap_panic_on_conflict(caps)) |
| cpu_panic_kernel(); |
| else |
| cpu_die_early(); |
| } |
| } |
| |
| /* |
| * Check for CPU features that are used in early boot |
| * based on the Boot CPU value. |
| */ |
| static void check_early_cpu_features(void) |
| { |
| verify_cpu_asid_bits(); |
| |
| verify_local_cpu_caps(SCOPE_BOOT_CPU); |
| } |
| |
| static void |
| __verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps) |
| { |
| |
| for (; caps->matches; caps++) |
| if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) { |
| pr_crit("CPU%d: missing HWCAP: %s\n", |
| smp_processor_id(), caps->desc); |
| cpu_die_early(); |
| } |
| } |
| |
| static void verify_local_elf_hwcaps(void) |
| { |
| __verify_local_elf_hwcaps(arm64_elf_hwcaps); |
| |
| if (id_aa64pfr0_32bit_el0(read_cpuid(ID_AA64PFR0_EL1))) |
| __verify_local_elf_hwcaps(compat_elf_hwcaps); |
| } |
| |
| static void verify_sve_features(void) |
| { |
| u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1); |
| u64 zcr = read_zcr_features(); |
| |
| unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK; |
| unsigned int len = zcr & ZCR_ELx_LEN_MASK; |
| |
| if (len < safe_len || vec_verify_vq_map(ARM64_VEC_SVE)) { |
| pr_crit("CPU%d: SVE: vector length support mismatch\n", |
| smp_processor_id()); |
| cpu_die_early(); |
| } |
| |
| /* Add checks on other ZCR bits here if necessary */ |
| } |
| |
| static void verify_sme_features(void) |
| { |
| u64 safe_smcr = read_sanitised_ftr_reg(SYS_SMCR_EL1); |
| u64 smcr = read_smcr_features(); |
| |
| unsigned int safe_len = safe_smcr & SMCR_ELx_LEN_MASK; |
| unsigned int len = smcr & SMCR_ELx_LEN_MASK; |
| |
| if (len < safe_len || vec_verify_vq_map(ARM64_VEC_SME)) { |
| pr_crit("CPU%d: SME: vector length support mismatch\n", |
| smp_processor_id()); |
| cpu_die_early(); |
| } |
| |
| /* Add checks on other SMCR bits here if necessary */ |
| } |
| |
| static void verify_hyp_capabilities(void) |
| { |
| u64 safe_mmfr1, mmfr0, mmfr1; |
| int parange, ipa_max; |
| unsigned int safe_vmid_bits, vmid_bits; |
| |
| if (!IS_ENABLED(CONFIG_KVM)) |
| return; |
| |
| safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); |
| mmfr0 = read_cpuid(ID_AA64MMFR0_EL1); |
| mmfr1 = read_cpuid(ID_AA64MMFR1_EL1); |
| |
| /* Verify VMID bits */ |
| safe_vmid_bits = get_vmid_bits(safe_mmfr1); |
| vmid_bits = get_vmid_bits(mmfr1); |
| if (vmid_bits < safe_vmid_bits) { |
| pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id()); |
| cpu_die_early(); |
| } |
| |
| /* Verify IPA range */ |
| parange = cpuid_feature_extract_unsigned_field(mmfr0, |
| ID_AA64MMFR0_EL1_PARANGE_SHIFT); |
| ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange); |
| if (ipa_max < get_kvm_ipa_limit()) { |
| pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id()); |
| cpu_die_early(); |
| } |
| } |
| |
| /* |
| * Run through the enabled system capabilities and enable() it on this CPU. |
| * The capabilities were decided based on the available CPUs at the boot time. |
| * Any new CPU should match the system wide status of the capability. If the |
| * new CPU doesn't have a capability which the system now has enabled, we |
| * cannot do anything to fix it up and could cause unexpected failures. So |
| * we park the CPU. |
| */ |
| static void verify_local_cpu_capabilities(void) |
| { |
| /* |
| * The capabilities with SCOPE_BOOT_CPU are checked from |
| * check_early_cpu_features(), as they need to be verified |
| * on all secondary CPUs. |
| */ |
| verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU); |
| verify_local_elf_hwcaps(); |
| |
| if (system_supports_sve()) |
| verify_sve_features(); |
| |
| if (system_supports_sme()) |
| verify_sme_features(); |
| |
| if (is_hyp_mode_available()) |
| verify_hyp_capabilities(); |
| } |
| |
| void check_local_cpu_capabilities(void) |
| { |
| /* |
| * All secondary CPUs should conform to the early CPU features |
| * in use by the kernel based on boot CPU. |
| */ |
| check_early_cpu_features(); |
| |
| /* |
| * If we haven't finalised the system capabilities, this CPU gets |
| * a chance to update the errata work arounds and local features. |
| * Otherwise, this CPU should verify that it has all the system |
| * advertised capabilities. |
| */ |
| if (!system_capabilities_finalized()) |
| update_cpu_capabilities(SCOPE_LOCAL_CPU); |
| else |
| verify_local_cpu_capabilities(); |
| } |
| |
| static void __init setup_boot_cpu_capabilities(void) |
| { |
| /* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */ |
| update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU); |
| /* Enable the SCOPE_BOOT_CPU capabilities alone right away */ |
| enable_cpu_capabilities(SCOPE_BOOT_CPU); |
| } |
| |
| bool this_cpu_has_cap(unsigned int n) |
| { |
| if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) { |
| const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n]; |
| |
| if (cap) |
| return cap->matches(cap, SCOPE_LOCAL_CPU); |
| } |
| |
| return false; |
| } |
| EXPORT_SYMBOL_GPL(this_cpu_has_cap); |
| |
| /* |
| * This helper function is used in a narrow window when, |
| * - The system wide safe registers are set with all the SMP CPUs and, |
| * - The SYSTEM_FEATURE cpu_hwcaps may not have been set. |
| * In all other cases cpus_have_{const_}cap() should be used. |
| */ |
| static bool __maybe_unused __system_matches_cap(unsigned int n) |
| { |
| if (n < ARM64_NCAPS) { |
| const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n]; |
| |
| if (cap) |
| return cap->matches(cap, SCOPE_SYSTEM); |
| } |
| return false; |
| } |
| |
| void cpu_set_feature(unsigned int num) |
| { |
| set_bit(num, elf_hwcap); |
| } |
| |
| bool cpu_have_feature(unsigned int num) |
| { |
| return test_bit(num, elf_hwcap); |
| } |
| EXPORT_SYMBOL_GPL(cpu_have_feature); |
| |
| unsigned long cpu_get_elf_hwcap(void) |
| { |
| /* |
| * We currently only populate the first 32 bits of AT_HWCAP. Please |
| * note that for userspace compatibility we guarantee that bits 62 |
| * and 63 will always be returned as 0. |
| */ |
| return elf_hwcap[0]; |
| } |
| |
| unsigned long cpu_get_elf_hwcap2(void) |
| { |
| return elf_hwcap[1]; |
| } |
| |
| static void __init setup_system_capabilities(void) |
| { |
| /* |
| * We have finalised the system-wide safe feature |
| * registers, finalise the capabilities that depend |
| * on it. Also enable all the available capabilities, |
| * that are not enabled already. |
| */ |
| update_cpu_capabilities(SCOPE_SYSTEM); |
| enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU); |
| } |
| |
| void __init setup_cpu_features(void) |
| { |
| u32 cwg; |
| |
| setup_system_capabilities(); |
| setup_elf_hwcaps(arm64_elf_hwcaps); |
| |
| if (system_supports_32bit_el0()) { |
| setup_elf_hwcaps(compat_elf_hwcaps); |
| elf_hwcap_fixup(); |
| } |
| |
| if (system_uses_ttbr0_pan()) |
| pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n"); |
| |
| sve_setup(); |
| sme_setup(); |
| minsigstksz_setup(); |
| |
| /* |
| * Check for sane CTR_EL0.CWG value. |
| */ |
| cwg = cache_type_cwg(); |
| if (!cwg) |
| pr_warn("No Cache Writeback Granule information, assuming %d\n", |
| ARCH_DMA_MINALIGN); |
| } |
| |
| static int enable_mismatched_32bit_el0(unsigned int cpu) |
| { |
| /* |
| * The first 32-bit-capable CPU we detected and so can no longer |
| * be offlined by userspace. -1 indicates we haven't yet onlined |
| * a 32-bit-capable CPU. |
| */ |
| static int lucky_winner = -1; |
| |
| struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu); |
| bool cpu_32bit = id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0); |
| |
| if (cpu_32bit) { |
| cpumask_set_cpu(cpu, cpu_32bit_el0_mask); |
| static_branch_enable_cpuslocked(&arm64_mismatched_32bit_el0); |
| } |
| |
| if (cpumask_test_cpu(0, cpu_32bit_el0_mask) == cpu_32bit) |
| return 0; |
| |
| if (lucky_winner >= 0) |
| return 0; |
| |
| /* |
| * We've detected a mismatch. We need to keep one of our CPUs with |
| * 32-bit EL0 online so that is_cpu_allowed() doesn't end up rejecting |
| * every CPU in the system for a 32-bit task. |
| */ |
| lucky_winner = cpu_32bit ? cpu : cpumask_any_and(cpu_32bit_el0_mask, |
| cpu_active_mask); |
| get_cpu_device(lucky_winner)->offline_disabled = true; |
| setup_elf_hwcaps(compat_elf_hwcaps); |
| elf_hwcap_fixup(); |
| pr_info("Asymmetric 32-bit EL0 support detected on CPU %u; CPU hot-unplug disabled on CPU %u\n", |
| cpu, lucky_winner); |
| return 0; |
| } |
| |
| static int __init init_32bit_el0_mask(void) |
| { |
| if (!allow_mismatched_32bit_el0) |
| return 0; |
| |
| if (!zalloc_cpumask_var(&cpu_32bit_el0_mask, GFP_KERNEL)) |
| return -ENOMEM; |
| |
| return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, |
| "arm64/mismatched_32bit_el0:online", |
| enable_mismatched_32bit_el0, NULL); |
| } |
| subsys_initcall_sync(init_32bit_el0_mask); |
| |
| static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap) |
| { |
| cpu_replace_ttbr1(lm_alias(swapper_pg_dir), idmap_pg_dir); |
| } |
| |
| /* |
| * We emulate only the following system register space. |
| * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 2 - 7] |
| * See Table C5-6 System instruction encodings for System register accesses, |
| * ARMv8 ARM(ARM DDI 0487A.f) for more details. |
| */ |
| static inline bool __attribute_const__ is_emulated(u32 id) |
| { |
| return (sys_reg_Op0(id) == 0x3 && |
| sys_reg_CRn(id) == 0x0 && |
| sys_reg_Op1(id) == 0x0 && |
| (sys_reg_CRm(id) == 0 || |
| ((sys_reg_CRm(id) >= 2) && (sys_reg_CRm(id) <= 7)))); |
| } |
| |
| /* |
| * With CRm == 0, reg should be one of : |
| * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1. |
| */ |
| static inline int emulate_id_reg(u32 id, u64 *valp) |
| { |
| switch (id) { |
| case SYS_MIDR_EL1: |
| *valp = read_cpuid_id(); |
| break; |
| case SYS_MPIDR_EL1: |
| *valp = SYS_MPIDR_SAFE_VAL; |
| break; |
| case SYS_REVIDR_EL1: |
| /* IMPLEMENTATION DEFINED values are emulated with 0 */ |
| *valp = 0; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int emulate_sys_reg(u32 id, u64 *valp) |
| { |
| struct arm64_ftr_reg *regp; |
| |
| if (!is_emulated(id)) |
| return -EINVAL; |
| |
| if (sys_reg_CRm(id) == 0) |
| return emulate_id_reg(id, valp); |
| |
| regp = get_arm64_ftr_reg_nowarn(id); |
| if (regp) |
| *valp = arm64_ftr_reg_user_value(regp); |
| else |
| /* |
| * The untracked registers are either IMPLEMENTATION DEFINED |
| * (e.g, ID_AFR0_EL1) or reserved RAZ. |
| */ |
| *valp = 0; |
| return 0; |
| } |
| |
| int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt) |
| { |
| int rc; |
| u64 val; |
| |
| rc = emulate_sys_reg(sys_reg, &val); |
| if (!rc) { |
| pt_regs_write_reg(regs, rt, val); |
| arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE); |
| } |
| return rc; |
| } |
| |
| bool try_emulate_mrs(struct pt_regs *regs, u32 insn) |
| { |
| u32 sys_reg, rt; |
| |
| if (compat_user_mode(regs) || !aarch64_insn_is_mrs(insn)) |
| return false; |
| |
| /* |
| * sys_reg values are defined as used in mrs/msr instruction. |
| * shift the imm value to get the encoding. |
| */ |
| sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5; |
| rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn); |
| return do_emulate_mrs(regs, sys_reg, rt) == 0; |
| } |
| |
| enum mitigation_state arm64_get_meltdown_state(void) |
| { |
| if (__meltdown_safe) |
| return SPECTRE_UNAFFECTED; |
| |
| if (arm64_kernel_unmapped_at_el0()) |
| return SPECTRE_MITIGATED; |
| |
| return SPECTRE_VULNERABLE; |
| } |
| |
| ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| switch (arm64_get_meltdown_state()) { |
| case SPECTRE_UNAFFECTED: |
| return sprintf(buf, "Not affected\n"); |
| |
| case SPECTRE_MITIGATED: |
| return sprintf(buf, "Mitigation: PTI\n"); |
| |
| default: |
| return sprintf(buf, "Vulnerable\n"); |
| } |
| } |