blob: 3ac220dafec4a506ac7c2ed993f2baa58043ba6a [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2020 Intel Corporation
* Author: Johannes Berg <johannes@sipsolutions.net>
*/
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/virtio.h>
#include <linux/virtio_config.h>
#include <linux/logic_iomem.h>
#include <linux/irqdomain.h>
#include <linux/virtio_pcidev.h>
#include <linux/virtio-uml.h>
#include <linux/delay.h>
#include <linux/msi.h>
#include <asm/unaligned.h>
#include <irq_kern.h>
#define MAX_DEVICES 8
#define MAX_MSI_VECTORS 32
#define CFG_SPACE_SIZE 4096
/* for MSI-X we have a 32-bit payload */
#define MAX_IRQ_MSG_SIZE (sizeof(struct virtio_pcidev_msg) + sizeof(u32))
#define NUM_IRQ_MSGS 10
#define HANDLE_NO_FREE(ptr) ((void *)((unsigned long)(ptr) | 1))
#define HANDLE_IS_NO_FREE(ptr) ((unsigned long)(ptr) & 1)
struct um_pci_device {
struct virtio_device *vdev;
/* for now just standard BARs */
u8 resptr[PCI_STD_NUM_BARS];
struct virtqueue *cmd_vq, *irq_vq;
#define UM_PCI_STAT_WAITING 0
unsigned long status;
int irq;
};
struct um_pci_device_reg {
struct um_pci_device *dev;
void __iomem *iomem;
};
static struct pci_host_bridge *bridge;
static DEFINE_MUTEX(um_pci_mtx);
static struct um_pci_device_reg um_pci_devices[MAX_DEVICES];
static struct fwnode_handle *um_pci_fwnode;
static struct irq_domain *um_pci_inner_domain;
static struct irq_domain *um_pci_msi_domain;
static unsigned long um_pci_msi_used[BITS_TO_LONGS(MAX_MSI_VECTORS)];
#define UM_VIRT_PCI_MAXDELAY 40000
struct um_pci_message_buffer {
struct virtio_pcidev_msg hdr;
u8 data[8];
};
static struct um_pci_message_buffer __percpu *um_pci_msg_bufs;
static int um_pci_send_cmd(struct um_pci_device *dev,
struct virtio_pcidev_msg *cmd,
unsigned int cmd_size,
const void *extra, unsigned int extra_size,
void *out, unsigned int out_size)
{
struct scatterlist out_sg, extra_sg, in_sg;
struct scatterlist *sgs_list[] = {
[0] = &out_sg,
[1] = extra ? &extra_sg : &in_sg,
[2] = extra ? &in_sg : NULL,
};
struct um_pci_message_buffer *buf;
int delay_count = 0;
int ret, len;
bool posted;
if (WARN_ON(cmd_size < sizeof(*cmd) || cmd_size > sizeof(*buf)))
return -EINVAL;
switch (cmd->op) {
case VIRTIO_PCIDEV_OP_CFG_WRITE:
case VIRTIO_PCIDEV_OP_MMIO_WRITE:
case VIRTIO_PCIDEV_OP_MMIO_MEMSET:
/* in PCI, writes are posted, so don't wait */
posted = !out;
WARN_ON(!posted);
break;
default:
posted = false;
break;
}
buf = get_cpu_var(um_pci_msg_bufs);
if (buf)
memcpy(buf, cmd, cmd_size);
if (posted) {
u8 *ncmd = kmalloc(cmd_size + extra_size, GFP_ATOMIC);
if (ncmd) {
memcpy(ncmd, cmd, cmd_size);
if (extra)
memcpy(ncmd + cmd_size, extra, extra_size);
cmd = (void *)ncmd;
cmd_size += extra_size;
extra = NULL;
extra_size = 0;
} else {
/* try without allocating memory */
posted = false;
cmd = (void *)buf;
}
} else {
cmd = (void *)buf;
}
sg_init_one(&out_sg, cmd, cmd_size);
if (extra)
sg_init_one(&extra_sg, extra, extra_size);
if (out)
sg_init_one(&in_sg, out, out_size);
/* add to internal virtio queue */
ret = virtqueue_add_sgs(dev->cmd_vq, sgs_list,
extra ? 2 : 1,
out ? 1 : 0,
posted ? cmd : HANDLE_NO_FREE(cmd),
GFP_ATOMIC);
if (ret)
goto out;
if (posted) {
virtqueue_kick(dev->cmd_vq);
ret = 0;
goto out;
}
/* kick and poll for getting a response on the queue */
set_bit(UM_PCI_STAT_WAITING, &dev->status);
virtqueue_kick(dev->cmd_vq);
while (1) {
void *completed = virtqueue_get_buf(dev->cmd_vq, &len);
if (completed == HANDLE_NO_FREE(cmd))
break;
if (completed && !HANDLE_IS_NO_FREE(completed))
kfree(completed);
if (WARN_ONCE(virtqueue_is_broken(dev->cmd_vq) ||
++delay_count > UM_VIRT_PCI_MAXDELAY,
"um virt-pci delay: %d", delay_count)) {
ret = -EIO;
break;
}
udelay(1);
}
clear_bit(UM_PCI_STAT_WAITING, &dev->status);
out:
put_cpu_var(um_pci_msg_bufs);
return ret;
}
static unsigned long um_pci_cfgspace_read(void *priv, unsigned int offset,
int size)
{
struct um_pci_device_reg *reg = priv;
struct um_pci_device *dev = reg->dev;
struct virtio_pcidev_msg hdr = {
.op = VIRTIO_PCIDEV_OP_CFG_READ,
.size = size,
.addr = offset,
};
/* buf->data is maximum size - we may only use parts of it */
struct um_pci_message_buffer *buf;
u8 *data;
unsigned long ret = ULONG_MAX;
size_t bytes = sizeof(buf->data);
if (!dev)
return ULONG_MAX;
buf = get_cpu_var(um_pci_msg_bufs);
data = buf->data;
if (buf)
memset(data, 0xff, bytes);
switch (size) {
case 1:
case 2:
case 4:
#ifdef CONFIG_64BIT
case 8:
#endif
break;
default:
WARN(1, "invalid config space read size %d\n", size);
goto out;
}
if (um_pci_send_cmd(dev, &hdr, sizeof(hdr), NULL, 0, data, bytes))
goto out;
switch (size) {
case 1:
ret = data[0];
break;
case 2:
ret = le16_to_cpup((void *)data);
break;
case 4:
ret = le32_to_cpup((void *)data);
break;
#ifdef CONFIG_64BIT
case 8:
ret = le64_to_cpup((void *)data);
break;
#endif
default:
break;
}
out:
put_cpu_var(um_pci_msg_bufs);
return ret;
}
static void um_pci_cfgspace_write(void *priv, unsigned int offset, int size,
unsigned long val)
{
struct um_pci_device_reg *reg = priv;
struct um_pci_device *dev = reg->dev;
struct {
struct virtio_pcidev_msg hdr;
/* maximum size - we may only use parts of it */
u8 data[8];
} msg = {
.hdr = {
.op = VIRTIO_PCIDEV_OP_CFG_WRITE,
.size = size,
.addr = offset,
},
};
if (!dev)
return;
switch (size) {
case 1:
msg.data[0] = (u8)val;
break;
case 2:
put_unaligned_le16(val, (void *)msg.data);
break;
case 4:
put_unaligned_le32(val, (void *)msg.data);
break;
#ifdef CONFIG_64BIT
case 8:
put_unaligned_le64(val, (void *)msg.data);
break;
#endif
default:
WARN(1, "invalid config space write size %d\n", size);
return;
}
WARN_ON(um_pci_send_cmd(dev, &msg.hdr, sizeof(msg), NULL, 0, NULL, 0));
}
static const struct logic_iomem_ops um_pci_device_cfgspace_ops = {
.read = um_pci_cfgspace_read,
.write = um_pci_cfgspace_write,
};
static void um_pci_bar_copy_from(void *priv, void *buffer,
unsigned int offset, int size)
{
u8 *resptr = priv;
struct um_pci_device *dev = container_of(resptr - *resptr,
struct um_pci_device,
resptr[0]);
struct virtio_pcidev_msg hdr = {
.op = VIRTIO_PCIDEV_OP_MMIO_READ,
.bar = *resptr,
.size = size,
.addr = offset,
};
memset(buffer, 0xff, size);
um_pci_send_cmd(dev, &hdr, sizeof(hdr), NULL, 0, buffer, size);
}
static unsigned long um_pci_bar_read(void *priv, unsigned int offset,
int size)
{
/* buf->data is maximum size - we may only use parts of it */
struct um_pci_message_buffer *buf;
u8 *data;
unsigned long ret = ULONG_MAX;
buf = get_cpu_var(um_pci_msg_bufs);
data = buf->data;
switch (size) {
case 1:
case 2:
case 4:
#ifdef CONFIG_64BIT
case 8:
#endif
break;
default:
WARN(1, "invalid config space read size %d\n", size);
goto out;
}
um_pci_bar_copy_from(priv, data, offset, size);
switch (size) {
case 1:
ret = data[0];
break;
case 2:
ret = le16_to_cpup((void *)data);
break;
case 4:
ret = le32_to_cpup((void *)data);
break;
#ifdef CONFIG_64BIT
case 8:
ret = le64_to_cpup((void *)data);
break;
#endif
default:
break;
}
out:
put_cpu_var(um_pci_msg_bufs);
return ret;
}
static void um_pci_bar_copy_to(void *priv, unsigned int offset,
const void *buffer, int size)
{
u8 *resptr = priv;
struct um_pci_device *dev = container_of(resptr - *resptr,
struct um_pci_device,
resptr[0]);
struct virtio_pcidev_msg hdr = {
.op = VIRTIO_PCIDEV_OP_MMIO_WRITE,
.bar = *resptr,
.size = size,
.addr = offset,
};
um_pci_send_cmd(dev, &hdr, sizeof(hdr), buffer, size, NULL, 0);
}
static void um_pci_bar_write(void *priv, unsigned int offset, int size,
unsigned long val)
{
/* maximum size - we may only use parts of it */
u8 data[8];
switch (size) {
case 1:
data[0] = (u8)val;
break;
case 2:
put_unaligned_le16(val, (void *)data);
break;
case 4:
put_unaligned_le32(val, (void *)data);
break;
#ifdef CONFIG_64BIT
case 8:
put_unaligned_le64(val, (void *)data);
break;
#endif
default:
WARN(1, "invalid config space write size %d\n", size);
return;
}
um_pci_bar_copy_to(priv, offset, data, size);
}
static void um_pci_bar_set(void *priv, unsigned int offset, u8 value, int size)
{
u8 *resptr = priv;
struct um_pci_device *dev = container_of(resptr - *resptr,
struct um_pci_device,
resptr[0]);
struct {
struct virtio_pcidev_msg hdr;
u8 data;
} msg = {
.hdr = {
.op = VIRTIO_PCIDEV_OP_CFG_WRITE,
.bar = *resptr,
.size = size,
.addr = offset,
},
.data = value,
};
um_pci_send_cmd(dev, &msg.hdr, sizeof(msg), NULL, 0, NULL, 0);
}
static const struct logic_iomem_ops um_pci_device_bar_ops = {
.read = um_pci_bar_read,
.write = um_pci_bar_write,
.set = um_pci_bar_set,
.copy_from = um_pci_bar_copy_from,
.copy_to = um_pci_bar_copy_to,
};
static void __iomem *um_pci_map_bus(struct pci_bus *bus, unsigned int devfn,
int where)
{
struct um_pci_device_reg *dev;
unsigned int busn = bus->number;
if (busn > 0)
return NULL;
/* not allowing functions for now ... */
if (devfn % 8)
return NULL;
if (devfn / 8 >= ARRAY_SIZE(um_pci_devices))
return NULL;
dev = &um_pci_devices[devfn / 8];
if (!dev)
return NULL;
return (void __iomem *)((unsigned long)dev->iomem + where);
}
static struct pci_ops um_pci_ops = {
.map_bus = um_pci_map_bus,
.read = pci_generic_config_read,
.write = pci_generic_config_write,
};
static void um_pci_rescan(void)
{
pci_lock_rescan_remove();
pci_rescan_bus(bridge->bus);
pci_unlock_rescan_remove();
}
static void um_pci_irq_vq_addbuf(struct virtqueue *vq, void *buf, bool kick)
{
struct scatterlist sg[1];
sg_init_one(sg, buf, MAX_IRQ_MSG_SIZE);
if (virtqueue_add_inbuf(vq, sg, 1, buf, GFP_ATOMIC))
kfree(buf);
else if (kick)
virtqueue_kick(vq);
}
static void um_pci_handle_irq_message(struct virtqueue *vq,
struct virtio_pcidev_msg *msg)
{
struct virtio_device *vdev = vq->vdev;
struct um_pci_device *dev = vdev->priv;
/* we should properly chain interrupts, but on ARCH=um we don't care */
switch (msg->op) {
case VIRTIO_PCIDEV_OP_INT:
generic_handle_irq(dev->irq);
break;
case VIRTIO_PCIDEV_OP_MSI:
/* our MSI message is just the interrupt number */
if (msg->size == sizeof(u32))
generic_handle_irq(le32_to_cpup((void *)msg->data));
else
generic_handle_irq(le16_to_cpup((void *)msg->data));
break;
case VIRTIO_PCIDEV_OP_PME:
/* nothing to do - we already woke up due to the message */
break;
default:
dev_err(&vdev->dev, "unexpected virt-pci message %d\n", msg->op);
break;
}
}
static void um_pci_cmd_vq_cb(struct virtqueue *vq)
{
struct virtio_device *vdev = vq->vdev;
struct um_pci_device *dev = vdev->priv;
void *cmd;
int len;
if (test_bit(UM_PCI_STAT_WAITING, &dev->status))
return;
while ((cmd = virtqueue_get_buf(vq, &len))) {
if (WARN_ON(HANDLE_IS_NO_FREE(cmd)))
continue;
kfree(cmd);
}
}
static void um_pci_irq_vq_cb(struct virtqueue *vq)
{
struct virtio_pcidev_msg *msg;
int len;
while ((msg = virtqueue_get_buf(vq, &len))) {
if (len >= sizeof(*msg))
um_pci_handle_irq_message(vq, msg);
/* recycle the message buffer */
um_pci_irq_vq_addbuf(vq, msg, true);
}
}
static int um_pci_init_vqs(struct um_pci_device *dev)
{
struct virtqueue *vqs[2];
static const char *const names[2] = { "cmd", "irq" };
vq_callback_t *cbs[2] = { um_pci_cmd_vq_cb, um_pci_irq_vq_cb };
int err, i;
err = virtio_find_vqs(dev->vdev, 2, vqs, cbs, names, NULL);
if (err)
return err;
dev->cmd_vq = vqs[0];
dev->irq_vq = vqs[1];
virtio_device_ready(dev->vdev);
for (i = 0; i < NUM_IRQ_MSGS; i++) {
void *msg = kzalloc(MAX_IRQ_MSG_SIZE, GFP_KERNEL);
if (msg)
um_pci_irq_vq_addbuf(dev->irq_vq, msg, false);
}
virtqueue_kick(dev->irq_vq);
return 0;
}
static int um_pci_virtio_probe(struct virtio_device *vdev)
{
struct um_pci_device *dev;
int i, free = -1;
int err = -ENOSPC;
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (!dev)
return -ENOMEM;
dev->vdev = vdev;
vdev->priv = dev;
mutex_lock(&um_pci_mtx);
for (i = 0; i < MAX_DEVICES; i++) {
if (um_pci_devices[i].dev)
continue;
free = i;
break;
}
if (free < 0)
goto error;
err = um_pci_init_vqs(dev);
if (err)
goto error;
dev->irq = irq_alloc_desc(numa_node_id());
if (dev->irq < 0) {
err = dev->irq;
goto err_reset;
}
um_pci_devices[free].dev = dev;
vdev->priv = dev;
mutex_unlock(&um_pci_mtx);
device_set_wakeup_enable(&vdev->dev, true);
/*
* In order to do suspend-resume properly, don't allow VQs
* to be suspended.
*/
virtio_uml_set_no_vq_suspend(vdev, true);
um_pci_rescan();
return 0;
err_reset:
virtio_reset_device(vdev);
vdev->config->del_vqs(vdev);
error:
mutex_unlock(&um_pci_mtx);
kfree(dev);
return err;
}
static void um_pci_virtio_remove(struct virtio_device *vdev)
{
struct um_pci_device *dev = vdev->priv;
int i;
/* Stop all virtqueues */
virtio_reset_device(vdev);
vdev->config->del_vqs(vdev);
device_set_wakeup_enable(&vdev->dev, false);
mutex_lock(&um_pci_mtx);
for (i = 0; i < MAX_DEVICES; i++) {
if (um_pci_devices[i].dev != dev)
continue;
um_pci_devices[i].dev = NULL;
irq_free_desc(dev->irq);
}
mutex_unlock(&um_pci_mtx);
um_pci_rescan();
kfree(dev);
}
static struct virtio_device_id id_table[] = {
{ CONFIG_UML_PCI_OVER_VIRTIO_DEVICE_ID, VIRTIO_DEV_ANY_ID },
{ 0 },
};
MODULE_DEVICE_TABLE(virtio, id_table);
static struct virtio_driver um_pci_virtio_driver = {
.driver.name = "virtio-pci",
.driver.owner = THIS_MODULE,
.id_table = id_table,
.probe = um_pci_virtio_probe,
.remove = um_pci_virtio_remove,
};
static struct resource virt_cfgspace_resource = {
.name = "PCI config space",
.start = 0xf0000000 - MAX_DEVICES * CFG_SPACE_SIZE,
.end = 0xf0000000 - 1,
.flags = IORESOURCE_MEM,
};
static long um_pci_map_cfgspace(unsigned long offset, size_t size,
const struct logic_iomem_ops **ops,
void **priv)
{
if (WARN_ON(size > CFG_SPACE_SIZE || offset % CFG_SPACE_SIZE))
return -EINVAL;
if (offset / CFG_SPACE_SIZE < MAX_DEVICES) {
*ops = &um_pci_device_cfgspace_ops;
*priv = &um_pci_devices[offset / CFG_SPACE_SIZE];
return 0;
}
WARN(1, "cannot map offset 0x%lx/0x%zx\n", offset, size);
return -ENOENT;
}
static const struct logic_iomem_region_ops um_pci_cfgspace_ops = {
.map = um_pci_map_cfgspace,
};
static struct resource virt_iomem_resource = {
.name = "PCI iomem",
.start = 0xf0000000,
.end = 0xffffffff,
.flags = IORESOURCE_MEM,
};
struct um_pci_map_iomem_data {
unsigned long offset;
size_t size;
const struct logic_iomem_ops **ops;
void **priv;
long ret;
};
static int um_pci_map_iomem_walk(struct pci_dev *pdev, void *_data)
{
struct um_pci_map_iomem_data *data = _data;
struct um_pci_device_reg *reg = &um_pci_devices[pdev->devfn / 8];
struct um_pci_device *dev;
int i;
if (!reg->dev)
return 0;
for (i = 0; i < ARRAY_SIZE(dev->resptr); i++) {
struct resource *r = &pdev->resource[i];
if ((r->flags & IORESOURCE_TYPE_BITS) != IORESOURCE_MEM)
continue;
/*
* must be the whole or part of the resource,
* not allowed to only overlap
*/
if (data->offset < r->start || data->offset > r->end)
continue;
if (data->offset + data->size - 1 > r->end)
continue;
dev = reg->dev;
*data->ops = &um_pci_device_bar_ops;
dev->resptr[i] = i;
*data->priv = &dev->resptr[i];
data->ret = data->offset - r->start;
/* no need to continue */
return 1;
}
return 0;
}
static long um_pci_map_iomem(unsigned long offset, size_t size,
const struct logic_iomem_ops **ops,
void **priv)
{
struct um_pci_map_iomem_data data = {
/* we want the full address here */
.offset = offset + virt_iomem_resource.start,
.size = size,
.ops = ops,
.priv = priv,
.ret = -ENOENT,
};
pci_walk_bus(bridge->bus, um_pci_map_iomem_walk, &data);
return data.ret;
}
static const struct logic_iomem_region_ops um_pci_iomem_ops = {
.map = um_pci_map_iomem,
};
static void um_pci_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
{
/*
* This is a very low address and not actually valid 'physical' memory
* in UML, so we can simply map MSI(-X) vectors to there, it cannot be
* legitimately written to by the device in any other way.
* We use the (virtual) IRQ number here as the message to simplify the
* code that receives the message, where for now we simply trust the
* device to send the correct message.
*/
msg->address_hi = 0;
msg->address_lo = 0xa0000;
msg->data = data->irq;
}
static struct irq_chip um_pci_msi_bottom_irq_chip = {
.name = "UM virtio MSI",
.irq_compose_msi_msg = um_pci_compose_msi_msg,
};
static int um_pci_inner_domain_alloc(struct irq_domain *domain,
unsigned int virq, unsigned int nr_irqs,
void *args)
{
unsigned long bit;
WARN_ON(nr_irqs != 1);
mutex_lock(&um_pci_mtx);
bit = find_first_zero_bit(um_pci_msi_used, MAX_MSI_VECTORS);
if (bit >= MAX_MSI_VECTORS) {
mutex_unlock(&um_pci_mtx);
return -ENOSPC;
}
set_bit(bit, um_pci_msi_used);
mutex_unlock(&um_pci_mtx);
irq_domain_set_info(domain, virq, bit, &um_pci_msi_bottom_irq_chip,
domain->host_data, handle_simple_irq,
NULL, NULL);
return 0;
}
static void um_pci_inner_domain_free(struct irq_domain *domain,
unsigned int virq, unsigned int nr_irqs)
{
struct irq_data *d = irq_domain_get_irq_data(domain, virq);
mutex_lock(&um_pci_mtx);
if (!test_bit(d->hwirq, um_pci_msi_used))
pr_err("trying to free unused MSI#%lu\n", d->hwirq);
else
__clear_bit(d->hwirq, um_pci_msi_used);
mutex_unlock(&um_pci_mtx);
}
static const struct irq_domain_ops um_pci_inner_domain_ops = {
.alloc = um_pci_inner_domain_alloc,
.free = um_pci_inner_domain_free,
};
static struct irq_chip um_pci_msi_irq_chip = {
.name = "UM virtio PCIe MSI",
.irq_mask = pci_msi_mask_irq,
.irq_unmask = pci_msi_unmask_irq,
};
static struct msi_domain_info um_pci_msi_domain_info = {
.flags = MSI_FLAG_USE_DEF_DOM_OPS |
MSI_FLAG_USE_DEF_CHIP_OPS |
MSI_FLAG_PCI_MSIX,
.chip = &um_pci_msi_irq_chip,
};
static struct resource busn_resource = {
.name = "PCI busn",
.start = 0,
.end = 0,
.flags = IORESOURCE_BUS,
};
static int um_pci_map_irq(const struct pci_dev *pdev, u8 slot, u8 pin)
{
struct um_pci_device_reg *reg = &um_pci_devices[pdev->devfn / 8];
if (WARN_ON(!reg->dev))
return -EINVAL;
/* Yes, we map all pins to the same IRQ ... doesn't matter for now. */
return reg->dev->irq;
}
void *pci_root_bus_fwnode(struct pci_bus *bus)
{
return um_pci_fwnode;
}
static int __init um_pci_init(void)
{
int err, i;
WARN_ON(logic_iomem_add_region(&virt_cfgspace_resource,
&um_pci_cfgspace_ops));
WARN_ON(logic_iomem_add_region(&virt_iomem_resource,
&um_pci_iomem_ops));
if (WARN(CONFIG_UML_PCI_OVER_VIRTIO_DEVICE_ID < 0,
"No virtio device ID configured for PCI - no PCI support\n"))
return 0;
um_pci_msg_bufs = alloc_percpu(struct um_pci_message_buffer);
if (!um_pci_msg_bufs)
return -ENOMEM;
bridge = pci_alloc_host_bridge(0);
if (!bridge) {
err = -ENOMEM;
goto free;
}
um_pci_fwnode = irq_domain_alloc_named_fwnode("um-pci");
if (!um_pci_fwnode) {
err = -ENOMEM;
goto free;
}
um_pci_inner_domain = __irq_domain_add(um_pci_fwnode, MAX_MSI_VECTORS,
MAX_MSI_VECTORS, 0,
&um_pci_inner_domain_ops, NULL);
if (!um_pci_inner_domain) {
err = -ENOMEM;
goto free;
}
um_pci_msi_domain = pci_msi_create_irq_domain(um_pci_fwnode,
&um_pci_msi_domain_info,
um_pci_inner_domain);
if (!um_pci_msi_domain) {
err = -ENOMEM;
goto free;
}
pci_add_resource(&bridge->windows, &virt_iomem_resource);
pci_add_resource(&bridge->windows, &busn_resource);
bridge->ops = &um_pci_ops;
bridge->map_irq = um_pci_map_irq;
for (i = 0; i < MAX_DEVICES; i++) {
resource_size_t start;
start = virt_cfgspace_resource.start + i * CFG_SPACE_SIZE;
um_pci_devices[i].iomem = ioremap(start, CFG_SPACE_SIZE);
if (WARN(!um_pci_devices[i].iomem, "failed to map %d\n", i)) {
err = -ENOMEM;
goto free;
}
}
err = pci_host_probe(bridge);
if (err)
goto free;
err = register_virtio_driver(&um_pci_virtio_driver);
if (err)
goto free;
return 0;
free:
if (um_pci_inner_domain)
irq_domain_remove(um_pci_inner_domain);
if (um_pci_fwnode)
irq_domain_free_fwnode(um_pci_fwnode);
if (bridge) {
pci_free_resource_list(&bridge->windows);
pci_free_host_bridge(bridge);
}
free_percpu(um_pci_msg_bufs);
return err;
}
module_init(um_pci_init);
static void __exit um_pci_exit(void)
{
unregister_virtio_driver(&um_pci_virtio_driver);
irq_domain_remove(um_pci_msi_domain);
irq_domain_remove(um_pci_inner_domain);
pci_free_resource_list(&bridge->windows);
pci_free_host_bridge(bridge);
free_percpu(um_pci_msg_bufs);
}
module_exit(um_pci_exit);