| // SPDX-License-Identifier: GPL-2.0 OR MIT |
| /* |
| * Copyright 2014-2022 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| */ |
| |
| #include <linux/mm_types.h> |
| #include <linux/slab.h> |
| #include <linux/types.h> |
| #include <linux/sched/signal.h> |
| #include <linux/sched/mm.h> |
| #include <linux/uaccess.h> |
| #include <linux/mman.h> |
| #include <linux/memory.h> |
| #include "kfd_priv.h" |
| #include "kfd_events.h" |
| #include "kfd_iommu.h" |
| #include <linux/device.h> |
| |
| /* |
| * Wrapper around wait_queue_entry_t |
| */ |
| struct kfd_event_waiter { |
| wait_queue_entry_t wait; |
| struct kfd_event *event; /* Event to wait for */ |
| bool activated; /* Becomes true when event is signaled */ |
| }; |
| |
| /* |
| * Each signal event needs a 64-bit signal slot where the signaler will write |
| * a 1 before sending an interrupt. (This is needed because some interrupts |
| * do not contain enough spare data bits to identify an event.) |
| * We get whole pages and map them to the process VA. |
| * Individual signal events use their event_id as slot index. |
| */ |
| struct kfd_signal_page { |
| uint64_t *kernel_address; |
| uint64_t __user *user_address; |
| bool need_to_free_pages; |
| }; |
| |
| static uint64_t *page_slots(struct kfd_signal_page *page) |
| { |
| return page->kernel_address; |
| } |
| |
| static struct kfd_signal_page *allocate_signal_page(struct kfd_process *p) |
| { |
| void *backing_store; |
| struct kfd_signal_page *page; |
| |
| page = kzalloc(sizeof(*page), GFP_KERNEL); |
| if (!page) |
| return NULL; |
| |
| backing_store = (void *) __get_free_pages(GFP_KERNEL, |
| get_order(KFD_SIGNAL_EVENT_LIMIT * 8)); |
| if (!backing_store) |
| goto fail_alloc_signal_store; |
| |
| /* Initialize all events to unsignaled */ |
| memset(backing_store, (uint8_t) UNSIGNALED_EVENT_SLOT, |
| KFD_SIGNAL_EVENT_LIMIT * 8); |
| |
| page->kernel_address = backing_store; |
| page->need_to_free_pages = true; |
| pr_debug("Allocated new event signal page at %p, for process %p\n", |
| page, p); |
| |
| return page; |
| |
| fail_alloc_signal_store: |
| kfree(page); |
| return NULL; |
| } |
| |
| static int allocate_event_notification_slot(struct kfd_process *p, |
| struct kfd_event *ev, |
| const int *restore_id) |
| { |
| int id; |
| |
| if (!p->signal_page) { |
| p->signal_page = allocate_signal_page(p); |
| if (!p->signal_page) |
| return -ENOMEM; |
| /* Oldest user mode expects 256 event slots */ |
| p->signal_mapped_size = 256*8; |
| } |
| |
| if (restore_id) { |
| id = idr_alloc(&p->event_idr, ev, *restore_id, *restore_id + 1, |
| GFP_KERNEL); |
| } else { |
| /* |
| * Compatibility with old user mode: Only use signal slots |
| * user mode has mapped, may be less than |
| * KFD_SIGNAL_EVENT_LIMIT. This also allows future increase |
| * of the event limit without breaking user mode. |
| */ |
| id = idr_alloc(&p->event_idr, ev, 0, p->signal_mapped_size / 8, |
| GFP_KERNEL); |
| } |
| if (id < 0) |
| return id; |
| |
| ev->event_id = id; |
| page_slots(p->signal_page)[id] = UNSIGNALED_EVENT_SLOT; |
| |
| return 0; |
| } |
| |
| /* |
| * Assumes that p->event_mutex or rcu_readlock is held and of course that p is |
| * not going away. |
| */ |
| static struct kfd_event *lookup_event_by_id(struct kfd_process *p, uint32_t id) |
| { |
| return idr_find(&p->event_idr, id); |
| } |
| |
| /** |
| * lookup_signaled_event_by_partial_id - Lookup signaled event from partial ID |
| * @p: Pointer to struct kfd_process |
| * @id: ID to look up |
| * @bits: Number of valid bits in @id |
| * |
| * Finds the first signaled event with a matching partial ID. If no |
| * matching signaled event is found, returns NULL. In that case the |
| * caller should assume that the partial ID is invalid and do an |
| * exhaustive search of all siglaned events. |
| * |
| * If multiple events with the same partial ID signal at the same |
| * time, they will be found one interrupt at a time, not necessarily |
| * in the same order the interrupts occurred. As long as the number of |
| * interrupts is correct, all signaled events will be seen by the |
| * driver. |
| */ |
| static struct kfd_event *lookup_signaled_event_by_partial_id( |
| struct kfd_process *p, uint32_t id, uint32_t bits) |
| { |
| struct kfd_event *ev; |
| |
| if (!p->signal_page || id >= KFD_SIGNAL_EVENT_LIMIT) |
| return NULL; |
| |
| /* Fast path for the common case that @id is not a partial ID |
| * and we only need a single lookup. |
| */ |
| if (bits > 31 || (1U << bits) >= KFD_SIGNAL_EVENT_LIMIT) { |
| if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT) |
| return NULL; |
| |
| return idr_find(&p->event_idr, id); |
| } |
| |
| /* General case for partial IDs: Iterate over all matching IDs |
| * and find the first one that has signaled. |
| */ |
| for (ev = NULL; id < KFD_SIGNAL_EVENT_LIMIT && !ev; id += 1U << bits) { |
| if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT) |
| continue; |
| |
| ev = idr_find(&p->event_idr, id); |
| } |
| |
| return ev; |
| } |
| |
| static int create_signal_event(struct file *devkfd, struct kfd_process *p, |
| struct kfd_event *ev, const int *restore_id) |
| { |
| int ret; |
| |
| if (p->signal_mapped_size && |
| p->signal_event_count == p->signal_mapped_size / 8) { |
| if (!p->signal_event_limit_reached) { |
| pr_debug("Signal event wasn't created because limit was reached\n"); |
| p->signal_event_limit_reached = true; |
| } |
| return -ENOSPC; |
| } |
| |
| ret = allocate_event_notification_slot(p, ev, restore_id); |
| if (ret) { |
| pr_warn("Signal event wasn't created because out of kernel memory\n"); |
| return ret; |
| } |
| |
| p->signal_event_count++; |
| |
| ev->user_signal_address = &p->signal_page->user_address[ev->event_id]; |
| pr_debug("Signal event number %zu created with id %d, address %p\n", |
| p->signal_event_count, ev->event_id, |
| ev->user_signal_address); |
| |
| return 0; |
| } |
| |
| static int create_other_event(struct kfd_process *p, struct kfd_event *ev, const int *restore_id) |
| { |
| int id; |
| |
| if (restore_id) |
| id = idr_alloc(&p->event_idr, ev, *restore_id, *restore_id + 1, |
| GFP_KERNEL); |
| else |
| /* Cast KFD_LAST_NONSIGNAL_EVENT to uint32_t. This allows an |
| * intentional integer overflow to -1 without a compiler |
| * warning. idr_alloc treats a negative value as "maximum |
| * signed integer". |
| */ |
| id = idr_alloc(&p->event_idr, ev, KFD_FIRST_NONSIGNAL_EVENT_ID, |
| (uint32_t)KFD_LAST_NONSIGNAL_EVENT_ID + 1, |
| GFP_KERNEL); |
| |
| if (id < 0) |
| return id; |
| ev->event_id = id; |
| |
| return 0; |
| } |
| |
| int kfd_event_init_process(struct kfd_process *p) |
| { |
| int id; |
| |
| mutex_init(&p->event_mutex); |
| idr_init(&p->event_idr); |
| p->signal_page = NULL; |
| p->signal_event_count = 1; |
| /* Allocate event ID 0. It is used for a fast path to ignore bogus events |
| * that are sent by the CP without a context ID |
| */ |
| id = idr_alloc(&p->event_idr, NULL, 0, 1, GFP_KERNEL); |
| if (id < 0) { |
| idr_destroy(&p->event_idr); |
| mutex_destroy(&p->event_mutex); |
| return id; |
| } |
| return 0; |
| } |
| |
| static void destroy_event(struct kfd_process *p, struct kfd_event *ev) |
| { |
| struct kfd_event_waiter *waiter; |
| |
| /* Wake up pending waiters. They will return failure */ |
| spin_lock(&ev->lock); |
| list_for_each_entry(waiter, &ev->wq.head, wait.entry) |
| WRITE_ONCE(waiter->event, NULL); |
| wake_up_all(&ev->wq); |
| spin_unlock(&ev->lock); |
| |
| if (ev->type == KFD_EVENT_TYPE_SIGNAL || |
| ev->type == KFD_EVENT_TYPE_DEBUG) |
| p->signal_event_count--; |
| |
| idr_remove(&p->event_idr, ev->event_id); |
| kfree_rcu(ev, rcu); |
| } |
| |
| static void destroy_events(struct kfd_process *p) |
| { |
| struct kfd_event *ev; |
| uint32_t id; |
| |
| idr_for_each_entry(&p->event_idr, ev, id) |
| if (ev) |
| destroy_event(p, ev); |
| idr_destroy(&p->event_idr); |
| mutex_destroy(&p->event_mutex); |
| } |
| |
| /* |
| * We assume that the process is being destroyed and there is no need to |
| * unmap the pages or keep bookkeeping data in order. |
| */ |
| static void shutdown_signal_page(struct kfd_process *p) |
| { |
| struct kfd_signal_page *page = p->signal_page; |
| |
| if (page) { |
| if (page->need_to_free_pages) |
| free_pages((unsigned long)page->kernel_address, |
| get_order(KFD_SIGNAL_EVENT_LIMIT * 8)); |
| kfree(page); |
| } |
| } |
| |
| void kfd_event_free_process(struct kfd_process *p) |
| { |
| destroy_events(p); |
| shutdown_signal_page(p); |
| } |
| |
| static bool event_can_be_gpu_signaled(const struct kfd_event *ev) |
| { |
| return ev->type == KFD_EVENT_TYPE_SIGNAL || |
| ev->type == KFD_EVENT_TYPE_DEBUG; |
| } |
| |
| static bool event_can_be_cpu_signaled(const struct kfd_event *ev) |
| { |
| return ev->type == KFD_EVENT_TYPE_SIGNAL; |
| } |
| |
| static int kfd_event_page_set(struct kfd_process *p, void *kernel_address, |
| uint64_t size, uint64_t user_handle) |
| { |
| struct kfd_signal_page *page; |
| |
| if (p->signal_page) |
| return -EBUSY; |
| |
| page = kzalloc(sizeof(*page), GFP_KERNEL); |
| if (!page) |
| return -ENOMEM; |
| |
| /* Initialize all events to unsignaled */ |
| memset(kernel_address, (uint8_t) UNSIGNALED_EVENT_SLOT, |
| KFD_SIGNAL_EVENT_LIMIT * 8); |
| |
| page->kernel_address = kernel_address; |
| |
| p->signal_page = page; |
| p->signal_mapped_size = size; |
| p->signal_handle = user_handle; |
| return 0; |
| } |
| |
| int kfd_kmap_event_page(struct kfd_process *p, uint64_t event_page_offset) |
| { |
| struct kfd_dev *kfd; |
| struct kfd_process_device *pdd; |
| void *mem, *kern_addr; |
| uint64_t size; |
| int err = 0; |
| |
| if (p->signal_page) { |
| pr_err("Event page is already set\n"); |
| return -EINVAL; |
| } |
| |
| pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(event_page_offset)); |
| if (!pdd) { |
| pr_err("Getting device by id failed in %s\n", __func__); |
| return -EINVAL; |
| } |
| kfd = pdd->dev; |
| |
| pdd = kfd_bind_process_to_device(kfd, p); |
| if (IS_ERR(pdd)) |
| return PTR_ERR(pdd); |
| |
| mem = kfd_process_device_translate_handle(pdd, |
| GET_IDR_HANDLE(event_page_offset)); |
| if (!mem) { |
| pr_err("Can't find BO, offset is 0x%llx\n", event_page_offset); |
| return -EINVAL; |
| } |
| |
| err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(mem, &kern_addr, &size); |
| if (err) { |
| pr_err("Failed to map event page to kernel\n"); |
| return err; |
| } |
| |
| err = kfd_event_page_set(p, kern_addr, size, event_page_offset); |
| if (err) { |
| pr_err("Failed to set event page\n"); |
| amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem); |
| return err; |
| } |
| return err; |
| } |
| |
| int kfd_event_create(struct file *devkfd, struct kfd_process *p, |
| uint32_t event_type, bool auto_reset, uint32_t node_id, |
| uint32_t *event_id, uint32_t *event_trigger_data, |
| uint64_t *event_page_offset, uint32_t *event_slot_index) |
| { |
| int ret = 0; |
| struct kfd_event *ev = kzalloc(sizeof(*ev), GFP_KERNEL); |
| |
| if (!ev) |
| return -ENOMEM; |
| |
| ev->type = event_type; |
| ev->auto_reset = auto_reset; |
| ev->signaled = false; |
| |
| spin_lock_init(&ev->lock); |
| init_waitqueue_head(&ev->wq); |
| |
| *event_page_offset = 0; |
| |
| mutex_lock(&p->event_mutex); |
| |
| switch (event_type) { |
| case KFD_EVENT_TYPE_SIGNAL: |
| case KFD_EVENT_TYPE_DEBUG: |
| ret = create_signal_event(devkfd, p, ev, NULL); |
| if (!ret) { |
| *event_page_offset = KFD_MMAP_TYPE_EVENTS; |
| *event_slot_index = ev->event_id; |
| } |
| break; |
| default: |
| ret = create_other_event(p, ev, NULL); |
| break; |
| } |
| |
| if (!ret) { |
| *event_id = ev->event_id; |
| *event_trigger_data = ev->event_id; |
| } else { |
| kfree(ev); |
| } |
| |
| mutex_unlock(&p->event_mutex); |
| |
| return ret; |
| } |
| |
| int kfd_criu_restore_event(struct file *devkfd, |
| struct kfd_process *p, |
| uint8_t __user *user_priv_ptr, |
| uint64_t *priv_data_offset, |
| uint64_t max_priv_data_size) |
| { |
| struct kfd_criu_event_priv_data *ev_priv; |
| struct kfd_event *ev = NULL; |
| int ret = 0; |
| |
| ev_priv = kmalloc(sizeof(*ev_priv), GFP_KERNEL); |
| if (!ev_priv) |
| return -ENOMEM; |
| |
| ev = kzalloc(sizeof(*ev), GFP_KERNEL); |
| if (!ev) { |
| ret = -ENOMEM; |
| goto exit; |
| } |
| |
| if (*priv_data_offset + sizeof(*ev_priv) > max_priv_data_size) { |
| ret = -EINVAL; |
| goto exit; |
| } |
| |
| ret = copy_from_user(ev_priv, user_priv_ptr + *priv_data_offset, sizeof(*ev_priv)); |
| if (ret) { |
| ret = -EFAULT; |
| goto exit; |
| } |
| *priv_data_offset += sizeof(*ev_priv); |
| |
| if (ev_priv->user_handle) { |
| ret = kfd_kmap_event_page(p, ev_priv->user_handle); |
| if (ret) |
| goto exit; |
| } |
| |
| ev->type = ev_priv->type; |
| ev->auto_reset = ev_priv->auto_reset; |
| ev->signaled = ev_priv->signaled; |
| |
| spin_lock_init(&ev->lock); |
| init_waitqueue_head(&ev->wq); |
| |
| mutex_lock(&p->event_mutex); |
| switch (ev->type) { |
| case KFD_EVENT_TYPE_SIGNAL: |
| case KFD_EVENT_TYPE_DEBUG: |
| ret = create_signal_event(devkfd, p, ev, &ev_priv->event_id); |
| break; |
| case KFD_EVENT_TYPE_MEMORY: |
| memcpy(&ev->memory_exception_data, |
| &ev_priv->memory_exception_data, |
| sizeof(struct kfd_hsa_memory_exception_data)); |
| |
| ret = create_other_event(p, ev, &ev_priv->event_id); |
| break; |
| case KFD_EVENT_TYPE_HW_EXCEPTION: |
| memcpy(&ev->hw_exception_data, |
| &ev_priv->hw_exception_data, |
| sizeof(struct kfd_hsa_hw_exception_data)); |
| |
| ret = create_other_event(p, ev, &ev_priv->event_id); |
| break; |
| } |
| mutex_unlock(&p->event_mutex); |
| |
| exit: |
| if (ret) |
| kfree(ev); |
| |
| kfree(ev_priv); |
| |
| return ret; |
| } |
| |
| int kfd_criu_checkpoint_events(struct kfd_process *p, |
| uint8_t __user *user_priv_data, |
| uint64_t *priv_data_offset) |
| { |
| struct kfd_criu_event_priv_data *ev_privs; |
| int i = 0; |
| int ret = 0; |
| struct kfd_event *ev; |
| uint32_t ev_id; |
| |
| uint32_t num_events = kfd_get_num_events(p); |
| |
| if (!num_events) |
| return 0; |
| |
| ev_privs = kvzalloc(num_events * sizeof(*ev_privs), GFP_KERNEL); |
| if (!ev_privs) |
| return -ENOMEM; |
| |
| |
| idr_for_each_entry(&p->event_idr, ev, ev_id) { |
| struct kfd_criu_event_priv_data *ev_priv; |
| |
| /* |
| * Currently, all events have same size of private_data, but the current ioctl's |
| * and CRIU plugin supports private_data of variable sizes |
| */ |
| ev_priv = &ev_privs[i]; |
| |
| ev_priv->object_type = KFD_CRIU_OBJECT_TYPE_EVENT; |
| |
| /* We store the user_handle with the first event */ |
| if (i == 0 && p->signal_page) |
| ev_priv->user_handle = p->signal_handle; |
| |
| ev_priv->event_id = ev->event_id; |
| ev_priv->auto_reset = ev->auto_reset; |
| ev_priv->type = ev->type; |
| ev_priv->signaled = ev->signaled; |
| |
| if (ev_priv->type == KFD_EVENT_TYPE_MEMORY) |
| memcpy(&ev_priv->memory_exception_data, |
| &ev->memory_exception_data, |
| sizeof(struct kfd_hsa_memory_exception_data)); |
| else if (ev_priv->type == KFD_EVENT_TYPE_HW_EXCEPTION) |
| memcpy(&ev_priv->hw_exception_data, |
| &ev->hw_exception_data, |
| sizeof(struct kfd_hsa_hw_exception_data)); |
| |
| pr_debug("Checkpointed event[%d] id = 0x%08x auto_reset = %x type = %x signaled = %x\n", |
| i, |
| ev_priv->event_id, |
| ev_priv->auto_reset, |
| ev_priv->type, |
| ev_priv->signaled); |
| i++; |
| } |
| |
| ret = copy_to_user(user_priv_data + *priv_data_offset, |
| ev_privs, num_events * sizeof(*ev_privs)); |
| if (ret) { |
| pr_err("Failed to copy events priv to user\n"); |
| ret = -EFAULT; |
| } |
| |
| *priv_data_offset += num_events * sizeof(*ev_privs); |
| |
| kvfree(ev_privs); |
| return ret; |
| } |
| |
| int kfd_get_num_events(struct kfd_process *p) |
| { |
| struct kfd_event *ev; |
| uint32_t id; |
| u32 num_events = 0; |
| |
| idr_for_each_entry(&p->event_idr, ev, id) |
| num_events++; |
| |
| return num_events; |
| } |
| |
| /* Assumes that p is current. */ |
| int kfd_event_destroy(struct kfd_process *p, uint32_t event_id) |
| { |
| struct kfd_event *ev; |
| int ret = 0; |
| |
| mutex_lock(&p->event_mutex); |
| |
| ev = lookup_event_by_id(p, event_id); |
| |
| if (ev) |
| destroy_event(p, ev); |
| else |
| ret = -EINVAL; |
| |
| mutex_unlock(&p->event_mutex); |
| return ret; |
| } |
| |
| static void set_event(struct kfd_event *ev) |
| { |
| struct kfd_event_waiter *waiter; |
| |
| /* Auto reset if the list is non-empty and we're waking |
| * someone. waitqueue_active is safe here because we're |
| * protected by the ev->lock, which is also held when |
| * updating the wait queues in kfd_wait_on_events. |
| */ |
| ev->signaled = !ev->auto_reset || !waitqueue_active(&ev->wq); |
| |
| list_for_each_entry(waiter, &ev->wq.head, wait.entry) |
| WRITE_ONCE(waiter->activated, true); |
| |
| wake_up_all(&ev->wq); |
| } |
| |
| /* Assumes that p is current. */ |
| int kfd_set_event(struct kfd_process *p, uint32_t event_id) |
| { |
| int ret = 0; |
| struct kfd_event *ev; |
| |
| rcu_read_lock(); |
| |
| ev = lookup_event_by_id(p, event_id); |
| if (!ev) { |
| ret = -EINVAL; |
| goto unlock_rcu; |
| } |
| spin_lock(&ev->lock); |
| |
| if (event_can_be_cpu_signaled(ev)) |
| set_event(ev); |
| else |
| ret = -EINVAL; |
| |
| spin_unlock(&ev->lock); |
| unlock_rcu: |
| rcu_read_unlock(); |
| return ret; |
| } |
| |
| static void reset_event(struct kfd_event *ev) |
| { |
| ev->signaled = false; |
| } |
| |
| /* Assumes that p is current. */ |
| int kfd_reset_event(struct kfd_process *p, uint32_t event_id) |
| { |
| int ret = 0; |
| struct kfd_event *ev; |
| |
| rcu_read_lock(); |
| |
| ev = lookup_event_by_id(p, event_id); |
| if (!ev) { |
| ret = -EINVAL; |
| goto unlock_rcu; |
| } |
| spin_lock(&ev->lock); |
| |
| if (event_can_be_cpu_signaled(ev)) |
| reset_event(ev); |
| else |
| ret = -EINVAL; |
| |
| spin_unlock(&ev->lock); |
| unlock_rcu: |
| rcu_read_unlock(); |
| return ret; |
| |
| } |
| |
| static void acknowledge_signal(struct kfd_process *p, struct kfd_event *ev) |
| { |
| WRITE_ONCE(page_slots(p->signal_page)[ev->event_id], UNSIGNALED_EVENT_SLOT); |
| } |
| |
| static void set_event_from_interrupt(struct kfd_process *p, |
| struct kfd_event *ev) |
| { |
| if (ev && event_can_be_gpu_signaled(ev)) { |
| acknowledge_signal(p, ev); |
| spin_lock(&ev->lock); |
| set_event(ev); |
| spin_unlock(&ev->lock); |
| } |
| } |
| |
| void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id, |
| uint32_t valid_id_bits) |
| { |
| struct kfd_event *ev = NULL; |
| |
| /* |
| * Because we are called from arbitrary context (workqueue) as opposed |
| * to process context, kfd_process could attempt to exit while we are |
| * running so the lookup function increments the process ref count. |
| */ |
| struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); |
| |
| if (!p) |
| return; /* Presumably process exited. */ |
| |
| rcu_read_lock(); |
| |
| if (valid_id_bits) |
| ev = lookup_signaled_event_by_partial_id(p, partial_id, |
| valid_id_bits); |
| if (ev) { |
| set_event_from_interrupt(p, ev); |
| } else if (p->signal_page) { |
| /* |
| * Partial ID lookup failed. Assume that the event ID |
| * in the interrupt payload was invalid and do an |
| * exhaustive search of signaled events. |
| */ |
| uint64_t *slots = page_slots(p->signal_page); |
| uint32_t id; |
| |
| if (valid_id_bits) |
| pr_debug_ratelimited("Partial ID invalid: %u (%u valid bits)\n", |
| partial_id, valid_id_bits); |
| |
| if (p->signal_event_count < KFD_SIGNAL_EVENT_LIMIT / 64) { |
| /* With relatively few events, it's faster to |
| * iterate over the event IDR |
| */ |
| idr_for_each_entry(&p->event_idr, ev, id) { |
| if (id >= KFD_SIGNAL_EVENT_LIMIT) |
| break; |
| |
| if (READ_ONCE(slots[id]) != UNSIGNALED_EVENT_SLOT) |
| set_event_from_interrupt(p, ev); |
| } |
| } else { |
| /* With relatively many events, it's faster to |
| * iterate over the signal slots and lookup |
| * only signaled events from the IDR. |
| */ |
| for (id = 1; id < KFD_SIGNAL_EVENT_LIMIT; id++) |
| if (READ_ONCE(slots[id]) != UNSIGNALED_EVENT_SLOT) { |
| ev = lookup_event_by_id(p, id); |
| set_event_from_interrupt(p, ev); |
| } |
| } |
| } |
| |
| rcu_read_unlock(); |
| kfd_unref_process(p); |
| } |
| |
| static struct kfd_event_waiter *alloc_event_waiters(uint32_t num_events) |
| { |
| struct kfd_event_waiter *event_waiters; |
| uint32_t i; |
| |
| event_waiters = kmalloc_array(num_events, |
| sizeof(struct kfd_event_waiter), |
| GFP_KERNEL); |
| if (!event_waiters) |
| return NULL; |
| |
| for (i = 0; (event_waiters) && (i < num_events) ; i++) { |
| init_wait(&event_waiters[i].wait); |
| event_waiters[i].activated = false; |
| } |
| |
| return event_waiters; |
| } |
| |
| static int init_event_waiter(struct kfd_process *p, |
| struct kfd_event_waiter *waiter, |
| uint32_t event_id) |
| { |
| struct kfd_event *ev = lookup_event_by_id(p, event_id); |
| |
| if (!ev) |
| return -EINVAL; |
| |
| spin_lock(&ev->lock); |
| waiter->event = ev; |
| waiter->activated = ev->signaled; |
| ev->signaled = ev->signaled && !ev->auto_reset; |
| if (!waiter->activated) |
| add_wait_queue(&ev->wq, &waiter->wait); |
| spin_unlock(&ev->lock); |
| |
| return 0; |
| } |
| |
| /* test_event_condition - Test condition of events being waited for |
| * @all: Return completion only if all events have signaled |
| * @num_events: Number of events to wait for |
| * @event_waiters: Array of event waiters, one per event |
| * |
| * Returns KFD_IOC_WAIT_RESULT_COMPLETE if all (or one) event(s) have |
| * signaled. Returns KFD_IOC_WAIT_RESULT_TIMEOUT if no (or not all) |
| * events have signaled. Returns KFD_IOC_WAIT_RESULT_FAIL if any of |
| * the events have been destroyed. |
| */ |
| static uint32_t test_event_condition(bool all, uint32_t num_events, |
| struct kfd_event_waiter *event_waiters) |
| { |
| uint32_t i; |
| uint32_t activated_count = 0; |
| |
| for (i = 0; i < num_events; i++) { |
| if (!READ_ONCE(event_waiters[i].event)) |
| return KFD_IOC_WAIT_RESULT_FAIL; |
| |
| if (READ_ONCE(event_waiters[i].activated)) { |
| if (!all) |
| return KFD_IOC_WAIT_RESULT_COMPLETE; |
| |
| activated_count++; |
| } |
| } |
| |
| return activated_count == num_events ? |
| KFD_IOC_WAIT_RESULT_COMPLETE : KFD_IOC_WAIT_RESULT_TIMEOUT; |
| } |
| |
| /* |
| * Copy event specific data, if defined. |
| * Currently only memory exception events have additional data to copy to user |
| */ |
| static int copy_signaled_event_data(uint32_t num_events, |
| struct kfd_event_waiter *event_waiters, |
| struct kfd_event_data __user *data) |
| { |
| struct kfd_hsa_memory_exception_data *src; |
| struct kfd_hsa_memory_exception_data __user *dst; |
| struct kfd_event_waiter *waiter; |
| struct kfd_event *event; |
| uint32_t i; |
| |
| for (i = 0; i < num_events; i++) { |
| waiter = &event_waiters[i]; |
| event = waiter->event; |
| if (!event) |
| return -EINVAL; /* event was destroyed */ |
| if (waiter->activated && event->type == KFD_EVENT_TYPE_MEMORY) { |
| dst = &data[i].memory_exception_data; |
| src = &event->memory_exception_data; |
| if (copy_to_user(dst, src, |
| sizeof(struct kfd_hsa_memory_exception_data))) |
| return -EFAULT; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static long user_timeout_to_jiffies(uint32_t user_timeout_ms) |
| { |
| if (user_timeout_ms == KFD_EVENT_TIMEOUT_IMMEDIATE) |
| return 0; |
| |
| if (user_timeout_ms == KFD_EVENT_TIMEOUT_INFINITE) |
| return MAX_SCHEDULE_TIMEOUT; |
| |
| /* |
| * msecs_to_jiffies interprets all values above 2^31-1 as infinite, |
| * but we consider them finite. |
| * This hack is wrong, but nobody is likely to notice. |
| */ |
| user_timeout_ms = min_t(uint32_t, user_timeout_ms, 0x7FFFFFFF); |
| |
| return msecs_to_jiffies(user_timeout_ms) + 1; |
| } |
| |
| static void free_waiters(uint32_t num_events, struct kfd_event_waiter *waiters, |
| bool undo_auto_reset) |
| { |
| uint32_t i; |
| |
| for (i = 0; i < num_events; i++) |
| if (waiters[i].event) { |
| spin_lock(&waiters[i].event->lock); |
| remove_wait_queue(&waiters[i].event->wq, |
| &waiters[i].wait); |
| if (undo_auto_reset && waiters[i].activated && |
| waiters[i].event && waiters[i].event->auto_reset) |
| set_event(waiters[i].event); |
| spin_unlock(&waiters[i].event->lock); |
| } |
| |
| kfree(waiters); |
| } |
| |
| int kfd_wait_on_events(struct kfd_process *p, |
| uint32_t num_events, void __user *data, |
| bool all, uint32_t *user_timeout_ms, |
| uint32_t *wait_result) |
| { |
| struct kfd_event_data __user *events = |
| (struct kfd_event_data __user *) data; |
| uint32_t i; |
| int ret = 0; |
| |
| struct kfd_event_waiter *event_waiters = NULL; |
| long timeout = user_timeout_to_jiffies(*user_timeout_ms); |
| |
| event_waiters = alloc_event_waiters(num_events); |
| if (!event_waiters) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| /* Use p->event_mutex here to protect against concurrent creation and |
| * destruction of events while we initialize event_waiters. |
| */ |
| mutex_lock(&p->event_mutex); |
| |
| for (i = 0; i < num_events; i++) { |
| struct kfd_event_data event_data; |
| |
| if (copy_from_user(&event_data, &events[i], |
| sizeof(struct kfd_event_data))) { |
| ret = -EFAULT; |
| goto out_unlock; |
| } |
| |
| ret = init_event_waiter(p, &event_waiters[i], |
| event_data.event_id); |
| if (ret) |
| goto out_unlock; |
| } |
| |
| /* Check condition once. */ |
| *wait_result = test_event_condition(all, num_events, event_waiters); |
| if (*wait_result == KFD_IOC_WAIT_RESULT_COMPLETE) { |
| ret = copy_signaled_event_data(num_events, |
| event_waiters, events); |
| goto out_unlock; |
| } else if (WARN_ON(*wait_result == KFD_IOC_WAIT_RESULT_FAIL)) { |
| /* This should not happen. Events shouldn't be |
| * destroyed while we're holding the event_mutex |
| */ |
| goto out_unlock; |
| } |
| |
| mutex_unlock(&p->event_mutex); |
| |
| while (true) { |
| if (fatal_signal_pending(current)) { |
| ret = -EINTR; |
| break; |
| } |
| |
| if (signal_pending(current)) { |
| ret = -ERESTARTSYS; |
| if (*user_timeout_ms != KFD_EVENT_TIMEOUT_IMMEDIATE && |
| *user_timeout_ms != KFD_EVENT_TIMEOUT_INFINITE) |
| *user_timeout_ms = jiffies_to_msecs( |
| max(0l, timeout-1)); |
| break; |
| } |
| |
| /* Set task state to interruptible sleep before |
| * checking wake-up conditions. A concurrent wake-up |
| * will put the task back into runnable state. In that |
| * case schedule_timeout will not put the task to |
| * sleep and we'll get a chance to re-check the |
| * updated conditions almost immediately. Otherwise, |
| * this race condition would lead to a soft hang or a |
| * very long sleep. |
| */ |
| set_current_state(TASK_INTERRUPTIBLE); |
| |
| *wait_result = test_event_condition(all, num_events, |
| event_waiters); |
| if (*wait_result != KFD_IOC_WAIT_RESULT_TIMEOUT) |
| break; |
| |
| if (timeout <= 0) |
| break; |
| |
| timeout = schedule_timeout(timeout); |
| } |
| __set_current_state(TASK_RUNNING); |
| |
| mutex_lock(&p->event_mutex); |
| /* copy_signaled_event_data may sleep. So this has to happen |
| * after the task state is set back to RUNNING. |
| * |
| * The event may also have been destroyed after signaling. So |
| * copy_signaled_event_data also must confirm that the event |
| * still exists. Therefore this must be under the p->event_mutex |
| * which is also held when events are destroyed. |
| */ |
| if (!ret && *wait_result == KFD_IOC_WAIT_RESULT_COMPLETE) |
| ret = copy_signaled_event_data(num_events, |
| event_waiters, events); |
| |
| out_unlock: |
| free_waiters(num_events, event_waiters, ret == -ERESTARTSYS); |
| mutex_unlock(&p->event_mutex); |
| out: |
| if (ret) |
| *wait_result = KFD_IOC_WAIT_RESULT_FAIL; |
| else if (*wait_result == KFD_IOC_WAIT_RESULT_FAIL) |
| ret = -EIO; |
| |
| return ret; |
| } |
| |
| int kfd_event_mmap(struct kfd_process *p, struct vm_area_struct *vma) |
| { |
| unsigned long pfn; |
| struct kfd_signal_page *page; |
| int ret; |
| |
| /* check required size doesn't exceed the allocated size */ |
| if (get_order(KFD_SIGNAL_EVENT_LIMIT * 8) < |
| get_order(vma->vm_end - vma->vm_start)) { |
| pr_err("Event page mmap requested illegal size\n"); |
| return -EINVAL; |
| } |
| |
| page = p->signal_page; |
| if (!page) { |
| /* Probably KFD bug, but mmap is user-accessible. */ |
| pr_debug("Signal page could not be found\n"); |
| return -EINVAL; |
| } |
| |
| pfn = __pa(page->kernel_address); |
| pfn >>= PAGE_SHIFT; |
| |
| vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE |
| | VM_DONTDUMP | VM_PFNMAP); |
| |
| pr_debug("Mapping signal page\n"); |
| pr_debug(" start user address == 0x%08lx\n", vma->vm_start); |
| pr_debug(" end user address == 0x%08lx\n", vma->vm_end); |
| pr_debug(" pfn == 0x%016lX\n", pfn); |
| pr_debug(" vm_flags == 0x%08lX\n", vma->vm_flags); |
| pr_debug(" size == 0x%08lX\n", |
| vma->vm_end - vma->vm_start); |
| |
| page->user_address = (uint64_t __user *)vma->vm_start; |
| |
| /* mapping the page to user process */ |
| ret = remap_pfn_range(vma, vma->vm_start, pfn, |
| vma->vm_end - vma->vm_start, vma->vm_page_prot); |
| if (!ret) |
| p->signal_mapped_size = vma->vm_end - vma->vm_start; |
| |
| return ret; |
| } |
| |
| /* |
| * Assumes that p is not going away. |
| */ |
| static void lookup_events_by_type_and_signal(struct kfd_process *p, |
| int type, void *event_data) |
| { |
| struct kfd_hsa_memory_exception_data *ev_data; |
| struct kfd_event *ev; |
| uint32_t id; |
| bool send_signal = true; |
| |
| ev_data = (struct kfd_hsa_memory_exception_data *) event_data; |
| |
| rcu_read_lock(); |
| |
| id = KFD_FIRST_NONSIGNAL_EVENT_ID; |
| idr_for_each_entry_continue(&p->event_idr, ev, id) |
| if (ev->type == type) { |
| send_signal = false; |
| dev_dbg(kfd_device, |
| "Event found: id %X type %d", |
| ev->event_id, ev->type); |
| spin_lock(&ev->lock); |
| set_event(ev); |
| if (ev->type == KFD_EVENT_TYPE_MEMORY && ev_data) |
| ev->memory_exception_data = *ev_data; |
| spin_unlock(&ev->lock); |
| } |
| |
| if (type == KFD_EVENT_TYPE_MEMORY) { |
| dev_warn(kfd_device, |
| "Sending SIGSEGV to process %d (pasid 0x%x)", |
| p->lead_thread->pid, p->pasid); |
| send_sig(SIGSEGV, p->lead_thread, 0); |
| } |
| |
| /* Send SIGTERM no event of type "type" has been found*/ |
| if (send_signal) { |
| if (send_sigterm) { |
| dev_warn(kfd_device, |
| "Sending SIGTERM to process %d (pasid 0x%x)", |
| p->lead_thread->pid, p->pasid); |
| send_sig(SIGTERM, p->lead_thread, 0); |
| } else { |
| dev_err(kfd_device, |
| "Process %d (pasid 0x%x) got unhandled exception", |
| p->lead_thread->pid, p->pasid); |
| } |
| } |
| |
| rcu_read_unlock(); |
| } |
| |
| #ifdef KFD_SUPPORT_IOMMU_V2 |
| void kfd_signal_iommu_event(struct kfd_dev *dev, u32 pasid, |
| unsigned long address, bool is_write_requested, |
| bool is_execute_requested) |
| { |
| struct kfd_hsa_memory_exception_data memory_exception_data; |
| struct vm_area_struct *vma; |
| int user_gpu_id; |
| |
| /* |
| * Because we are called from arbitrary context (workqueue) as opposed |
| * to process context, kfd_process could attempt to exit while we are |
| * running so the lookup function increments the process ref count. |
| */ |
| struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); |
| struct mm_struct *mm; |
| |
| if (!p) |
| return; /* Presumably process exited. */ |
| |
| /* Take a safe reference to the mm_struct, which may otherwise |
| * disappear even while the kfd_process is still referenced. |
| */ |
| mm = get_task_mm(p->lead_thread); |
| if (!mm) { |
| kfd_unref_process(p); |
| return; /* Process is exiting */ |
| } |
| |
| user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id); |
| if (unlikely(user_gpu_id == -EINVAL)) { |
| WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id); |
| return; |
| } |
| memset(&memory_exception_data, 0, sizeof(memory_exception_data)); |
| |
| mmap_read_lock(mm); |
| vma = find_vma(mm, address); |
| |
| memory_exception_data.gpu_id = user_gpu_id; |
| memory_exception_data.va = address; |
| /* Set failure reason */ |
| memory_exception_data.failure.NotPresent = 1; |
| memory_exception_data.failure.NoExecute = 0; |
| memory_exception_data.failure.ReadOnly = 0; |
| if (vma && address >= vma->vm_start) { |
| memory_exception_data.failure.NotPresent = 0; |
| |
| if (is_write_requested && !(vma->vm_flags & VM_WRITE)) |
| memory_exception_data.failure.ReadOnly = 1; |
| else |
| memory_exception_data.failure.ReadOnly = 0; |
| |
| if (is_execute_requested && !(vma->vm_flags & VM_EXEC)) |
| memory_exception_data.failure.NoExecute = 1; |
| else |
| memory_exception_data.failure.NoExecute = 0; |
| } |
| |
| mmap_read_unlock(mm); |
| mmput(mm); |
| |
| pr_debug("notpresent %d, noexecute %d, readonly %d\n", |
| memory_exception_data.failure.NotPresent, |
| memory_exception_data.failure.NoExecute, |
| memory_exception_data.failure.ReadOnly); |
| |
| /* Workaround on Raven to not kill the process when memory is freed |
| * before IOMMU is able to finish processing all the excessive PPRs |
| */ |
| |
| if (KFD_GC_VERSION(dev) != IP_VERSION(9, 1, 0) && |
| KFD_GC_VERSION(dev) != IP_VERSION(9, 2, 2) && |
| KFD_GC_VERSION(dev) != IP_VERSION(9, 3, 0)) |
| lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_MEMORY, |
| &memory_exception_data); |
| |
| kfd_unref_process(p); |
| } |
| #endif /* KFD_SUPPORT_IOMMU_V2 */ |
| |
| void kfd_signal_hw_exception_event(u32 pasid) |
| { |
| /* |
| * Because we are called from arbitrary context (workqueue) as opposed |
| * to process context, kfd_process could attempt to exit while we are |
| * running so the lookup function increments the process ref count. |
| */ |
| struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); |
| |
| if (!p) |
| return; /* Presumably process exited. */ |
| |
| lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_HW_EXCEPTION, NULL); |
| kfd_unref_process(p); |
| } |
| |
| void kfd_signal_vm_fault_event(struct kfd_dev *dev, u32 pasid, |
| struct kfd_vm_fault_info *info) |
| { |
| struct kfd_event *ev; |
| uint32_t id; |
| struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); |
| struct kfd_hsa_memory_exception_data memory_exception_data; |
| int user_gpu_id; |
| |
| if (!p) |
| return; /* Presumably process exited. */ |
| |
| user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id); |
| if (unlikely(user_gpu_id == -EINVAL)) { |
| WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id); |
| return; |
| } |
| |
| memset(&memory_exception_data, 0, sizeof(memory_exception_data)); |
| memory_exception_data.gpu_id = user_gpu_id; |
| memory_exception_data.failure.imprecise = true; |
| /* Set failure reason */ |
| if (info) { |
| memory_exception_data.va = (info->page_addr) << PAGE_SHIFT; |
| memory_exception_data.failure.NotPresent = |
| info->prot_valid ? 1 : 0; |
| memory_exception_data.failure.NoExecute = |
| info->prot_exec ? 1 : 0; |
| memory_exception_data.failure.ReadOnly = |
| info->prot_write ? 1 : 0; |
| memory_exception_data.failure.imprecise = 0; |
| } |
| |
| rcu_read_lock(); |
| |
| id = KFD_FIRST_NONSIGNAL_EVENT_ID; |
| idr_for_each_entry_continue(&p->event_idr, ev, id) |
| if (ev->type == KFD_EVENT_TYPE_MEMORY) { |
| spin_lock(&ev->lock); |
| ev->memory_exception_data = memory_exception_data; |
| set_event(ev); |
| spin_unlock(&ev->lock); |
| } |
| |
| rcu_read_unlock(); |
| kfd_unref_process(p); |
| } |
| |
| void kfd_signal_reset_event(struct kfd_dev *dev) |
| { |
| struct kfd_hsa_hw_exception_data hw_exception_data; |
| struct kfd_hsa_memory_exception_data memory_exception_data; |
| struct kfd_process *p; |
| struct kfd_event *ev; |
| unsigned int temp; |
| uint32_t id, idx; |
| int reset_cause = atomic_read(&dev->sram_ecc_flag) ? |
| KFD_HW_EXCEPTION_ECC : |
| KFD_HW_EXCEPTION_GPU_HANG; |
| |
| /* Whole gpu reset caused by GPU hang and memory is lost */ |
| memset(&hw_exception_data, 0, sizeof(hw_exception_data)); |
| hw_exception_data.memory_lost = 1; |
| hw_exception_data.reset_cause = reset_cause; |
| |
| memset(&memory_exception_data, 0, sizeof(memory_exception_data)); |
| memory_exception_data.ErrorType = KFD_MEM_ERR_SRAM_ECC; |
| memory_exception_data.failure.imprecise = true; |
| |
| idx = srcu_read_lock(&kfd_processes_srcu); |
| hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { |
| int user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id); |
| |
| if (unlikely(user_gpu_id == -EINVAL)) { |
| WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id); |
| continue; |
| } |
| |
| rcu_read_lock(); |
| |
| id = KFD_FIRST_NONSIGNAL_EVENT_ID; |
| idr_for_each_entry_continue(&p->event_idr, ev, id) { |
| if (ev->type == KFD_EVENT_TYPE_HW_EXCEPTION) { |
| spin_lock(&ev->lock); |
| ev->hw_exception_data = hw_exception_data; |
| ev->hw_exception_data.gpu_id = user_gpu_id; |
| set_event(ev); |
| spin_unlock(&ev->lock); |
| } |
| if (ev->type == KFD_EVENT_TYPE_MEMORY && |
| reset_cause == KFD_HW_EXCEPTION_ECC) { |
| spin_lock(&ev->lock); |
| ev->memory_exception_data = memory_exception_data; |
| ev->memory_exception_data.gpu_id = user_gpu_id; |
| set_event(ev); |
| spin_unlock(&ev->lock); |
| } |
| } |
| |
| rcu_read_unlock(); |
| } |
| srcu_read_unlock(&kfd_processes_srcu, idx); |
| } |
| |
| void kfd_signal_poison_consumed_event(struct kfd_dev *dev, u32 pasid) |
| { |
| struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); |
| struct kfd_hsa_memory_exception_data memory_exception_data; |
| struct kfd_hsa_hw_exception_data hw_exception_data; |
| struct kfd_event *ev; |
| uint32_t id = KFD_FIRST_NONSIGNAL_EVENT_ID; |
| int user_gpu_id; |
| |
| if (!p) |
| return; /* Presumably process exited. */ |
| |
| user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id); |
| if (unlikely(user_gpu_id == -EINVAL)) { |
| WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id); |
| return; |
| } |
| |
| memset(&hw_exception_data, 0, sizeof(hw_exception_data)); |
| hw_exception_data.gpu_id = user_gpu_id; |
| hw_exception_data.memory_lost = 1; |
| hw_exception_data.reset_cause = KFD_HW_EXCEPTION_ECC; |
| |
| memset(&memory_exception_data, 0, sizeof(memory_exception_data)); |
| memory_exception_data.ErrorType = KFD_MEM_ERR_POISON_CONSUMED; |
| memory_exception_data.gpu_id = user_gpu_id; |
| memory_exception_data.failure.imprecise = true; |
| |
| rcu_read_lock(); |
| |
| idr_for_each_entry_continue(&p->event_idr, ev, id) { |
| if (ev->type == KFD_EVENT_TYPE_HW_EXCEPTION) { |
| spin_lock(&ev->lock); |
| ev->hw_exception_data = hw_exception_data; |
| set_event(ev); |
| spin_unlock(&ev->lock); |
| } |
| |
| if (ev->type == KFD_EVENT_TYPE_MEMORY) { |
| spin_lock(&ev->lock); |
| ev->memory_exception_data = memory_exception_data; |
| set_event(ev); |
| spin_unlock(&ev->lock); |
| } |
| } |
| |
| rcu_read_unlock(); |
| |
| /* user application will handle SIGBUS signal */ |
| send_sig(SIGBUS, p->lead_thread, 0); |
| |
| kfd_unref_process(p); |
| } |