blob: df787fcf8e86e06e17646d09f26cdb938d51a318 [file] [log] [blame]
/*
* Copyright 2020 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "dm_helpers.h"
#include "core_types.h"
#include "resource.h"
#include "dcn30_hwseq.h"
#include "dccg.h"
#include "dce/dce_hwseq.h"
#include "dcn30_mpc.h"
#include "dcn30_dpp.h"
#include "dcn10/dcn10_cm_common.h"
#include "dcn30_cm_common.h"
#include "reg_helper.h"
#include "abm.h"
#include "clk_mgr.h"
#include "hubp.h"
#include "dchubbub.h"
#include "timing_generator.h"
#include "opp.h"
#include "ipp.h"
#include "mpc.h"
#include "mcif_wb.h"
#include "dc_dmub_srv.h"
#include "link_hwss.h"
#include "dpcd_defs.h"
#include "../dcn20/dcn20_hwseq.h"
#include "dcn30_resource.h"
#include "link.h"
#define DC_LOGGER_INIT(logger)
#define CTX \
hws->ctx
#define REG(reg)\
hws->regs->reg
#define DC_LOGGER \
dc->ctx->logger
#undef FN
#define FN(reg_name, field_name) \
hws->shifts->field_name, hws->masks->field_name
bool dcn30_set_blend_lut(
struct pipe_ctx *pipe_ctx, const struct dc_plane_state *plane_state)
{
struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
bool result = true;
struct pwl_params *blend_lut = NULL;
if (plane_state->blend_tf) {
if (plane_state->blend_tf->type == TF_TYPE_HWPWL)
blend_lut = &plane_state->blend_tf->pwl;
else if (plane_state->blend_tf->type == TF_TYPE_DISTRIBUTED_POINTS) {
cm3_helper_translate_curve_to_hw_format(
plane_state->blend_tf, &dpp_base->regamma_params, false);
blend_lut = &dpp_base->regamma_params;
}
}
result = dpp_base->funcs->dpp_program_blnd_lut(dpp_base, blend_lut);
return result;
}
static bool dcn30_set_mpc_shaper_3dlut(struct pipe_ctx *pipe_ctx,
const struct dc_stream_state *stream)
{
struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
int mpcc_id = pipe_ctx->plane_res.hubp->inst;
struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc;
bool result = false;
int acquired_rmu = 0;
int mpcc_id_projected = 0;
const struct pwl_params *shaper_lut = NULL;
//get the shaper lut params
if (stream->func_shaper) {
if (stream->func_shaper->type == TF_TYPE_HWPWL) {
shaper_lut = &stream->func_shaper->pwl;
} else if (stream->func_shaper->type == TF_TYPE_DISTRIBUTED_POINTS) {
cm_helper_translate_curve_to_hw_format(stream->func_shaper,
&dpp_base->shaper_params, true);
shaper_lut = &dpp_base->shaper_params;
}
}
if (stream->lut3d_func &&
stream->lut3d_func->state.bits.initialized == 1 &&
stream->lut3d_func->state.bits.rmu_idx_valid == 1) {
if (stream->lut3d_func->state.bits.rmu_mux_num == 0)
mpcc_id_projected = stream->lut3d_func->state.bits.mpc_rmu0_mux;
else if (stream->lut3d_func->state.bits.rmu_mux_num == 1)
mpcc_id_projected = stream->lut3d_func->state.bits.mpc_rmu1_mux;
else if (stream->lut3d_func->state.bits.rmu_mux_num == 2)
mpcc_id_projected = stream->lut3d_func->state.bits.mpc_rmu2_mux;
if (mpcc_id_projected != mpcc_id)
BREAK_TO_DEBUGGER();
/* find the reason why logical layer assigned a different
* mpcc_id into acquire_post_bldn_3dlut
*/
acquired_rmu = mpc->funcs->acquire_rmu(mpc, mpcc_id,
stream->lut3d_func->state.bits.rmu_mux_num);
if (acquired_rmu != stream->lut3d_func->state.bits.rmu_mux_num)
BREAK_TO_DEBUGGER();
result = mpc->funcs->program_3dlut(mpc, &stream->lut3d_func->lut_3d,
stream->lut3d_func->state.bits.rmu_mux_num);
result = mpc->funcs->program_shaper(mpc, shaper_lut,
stream->lut3d_func->state.bits.rmu_mux_num);
} else {
// loop through the available mux and release the requested mpcc_id
mpc->funcs->release_rmu(mpc, mpcc_id);
}
return result;
}
bool dcn30_set_input_transfer_func(struct dc *dc,
struct pipe_ctx *pipe_ctx,
const struct dc_plane_state *plane_state)
{
struct dce_hwseq *hws = dc->hwseq;
struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
enum dc_transfer_func_predefined tf;
bool result = true;
struct pwl_params *params = NULL;
if (dpp_base == NULL || plane_state == NULL)
return false;
tf = TRANSFER_FUNCTION_UNITY;
if (plane_state->in_transfer_func &&
plane_state->in_transfer_func->type == TF_TYPE_PREDEFINED)
tf = plane_state->in_transfer_func->tf;
dpp_base->funcs->dpp_set_pre_degam(dpp_base, tf);
if (plane_state->in_transfer_func) {
if (plane_state->in_transfer_func->type == TF_TYPE_HWPWL)
params = &plane_state->in_transfer_func->pwl;
else if (plane_state->in_transfer_func->type == TF_TYPE_DISTRIBUTED_POINTS &&
cm3_helper_translate_curve_to_hw_format(plane_state->in_transfer_func,
&dpp_base->degamma_params, false))
params = &dpp_base->degamma_params;
}
result = dpp_base->funcs->dpp_program_gamcor_lut(dpp_base, params);
if (pipe_ctx->stream_res.opp && pipe_ctx->stream_res.opp->ctx) {
if (dpp_base->funcs->dpp_program_blnd_lut)
hws->funcs.set_blend_lut(pipe_ctx, plane_state);
if (dpp_base->funcs->dpp_program_shaper_lut &&
dpp_base->funcs->dpp_program_3dlut)
hws->funcs.set_shaper_3dlut(pipe_ctx, plane_state);
}
return result;
}
bool dcn30_set_output_transfer_func(struct dc *dc,
struct pipe_ctx *pipe_ctx,
const struct dc_stream_state *stream)
{
int mpcc_id = pipe_ctx->plane_res.hubp->inst;
struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc;
struct pwl_params *params = NULL;
bool ret = false;
/* program OGAM or 3DLUT only for the top pipe*/
if (pipe_ctx->top_pipe == NULL) {
/*program rmu shaper and 3dlut in MPC*/
ret = dcn30_set_mpc_shaper_3dlut(pipe_ctx, stream);
if (ret == false && mpc->funcs->set_output_gamma && stream->out_transfer_func) {
if (stream->out_transfer_func->type == TF_TYPE_HWPWL)
params = &stream->out_transfer_func->pwl;
else if (pipe_ctx->stream->out_transfer_func->type ==
TF_TYPE_DISTRIBUTED_POINTS &&
cm3_helper_translate_curve_to_hw_format(
stream->out_transfer_func,
&mpc->blender_params, false))
params = &mpc->blender_params;
/* there are no ROM LUTs in OUTGAM */
if (stream->out_transfer_func->type == TF_TYPE_PREDEFINED)
BREAK_TO_DEBUGGER();
}
}
mpc->funcs->set_output_gamma(mpc, mpcc_id, params);
return ret;
}
static void dcn30_set_writeback(
struct dc *dc,
struct dc_writeback_info *wb_info,
struct dc_state *context)
{
struct mcif_wb *mcif_wb;
struct mcif_buf_params *mcif_buf_params;
ASSERT(wb_info->dwb_pipe_inst < MAX_DWB_PIPES);
ASSERT(wb_info->wb_enabled);
ASSERT(wb_info->mpcc_inst >= 0);
ASSERT(wb_info->mpcc_inst < dc->res_pool->mpcc_count);
mcif_wb = dc->res_pool->mcif_wb[wb_info->dwb_pipe_inst];
mcif_buf_params = &wb_info->mcif_buf_params;
/* set DWB MPC mux */
dc->res_pool->mpc->funcs->set_dwb_mux(dc->res_pool->mpc,
wb_info->dwb_pipe_inst, wb_info->mpcc_inst);
/* set MCIF_WB buffer and arbitration configuration */
mcif_wb->funcs->config_mcif_buf(mcif_wb, mcif_buf_params, wb_info->dwb_params.dest_height);
mcif_wb->funcs->config_mcif_arb(mcif_wb, &context->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[wb_info->dwb_pipe_inst]);
}
void dcn30_update_writeback(
struct dc *dc,
struct dc_writeback_info *wb_info,
struct dc_state *context)
{
struct dwbc *dwb;
dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst];
DC_LOG_DWB("%s dwb_pipe_inst = %d, mpcc_inst = %d",\
__func__, wb_info->dwb_pipe_inst,\
wb_info->mpcc_inst);
dcn30_set_writeback(dc, wb_info, context);
/* update DWB */
dwb->funcs->update(dwb, &wb_info->dwb_params);
}
bool dcn30_mmhubbub_warmup(
struct dc *dc,
unsigned int num_dwb,
struct dc_writeback_info *wb_info)
{
struct dwbc *dwb;
struct mcif_wb *mcif_wb;
struct mcif_warmup_params warmup_params = {0};
unsigned int i, i_buf;
/*make sure there is no active DWB eanbled */
for (i = 0; i < num_dwb; i++) {
dwb = dc->res_pool->dwbc[wb_info[i].dwb_pipe_inst];
if (dwb->dwb_is_efc_transition || dwb->dwb_is_drc) {
/*can not do warmup while any dwb enabled*/
return false;
}
}
if (wb_info->mcif_warmup_params.p_vmid == 0)
return false;
/*check whether this is new interface: warmup big buffer once*/
if (wb_info->mcif_warmup_params.start_address.quad_part != 0 &&
wb_info->mcif_warmup_params.region_size != 0) {
/*mmhubbub is shared, so it does not matter which MCIF*/
mcif_wb = dc->res_pool->mcif_wb[0];
/*warmup a big chunk of VM buffer at once*/
warmup_params.start_address.quad_part = wb_info->mcif_warmup_params.start_address.quad_part;
warmup_params.address_increment = wb_info->mcif_warmup_params.region_size;
warmup_params.region_size = wb_info->mcif_warmup_params.region_size;
warmup_params.p_vmid = wb_info->mcif_warmup_params.p_vmid;
if (warmup_params.address_increment == 0)
warmup_params.address_increment = dc->dml.soc.vmm_page_size_bytes;
mcif_wb->funcs->warmup_mcif(mcif_wb, &warmup_params);
return true;
}
/*following is the original: warmup each DWB's mcif buffer*/
for (i = 0; i < num_dwb; i++) {
dwb = dc->res_pool->dwbc[wb_info[i].dwb_pipe_inst];
mcif_wb = dc->res_pool->mcif_wb[wb_info[i].dwb_pipe_inst];
/*warmup is for VM mode only*/
if (wb_info[i].mcif_buf_params.p_vmid == 0)
return false;
/* Warmup MCIF_WB */
for (i_buf = 0; i_buf < MCIF_BUF_COUNT; i_buf++) {
warmup_params.start_address.quad_part = wb_info[i].mcif_buf_params.luma_address[i_buf];
warmup_params.address_increment = dc->dml.soc.vmm_page_size_bytes;
warmup_params.region_size = wb_info[i].mcif_buf_params.luma_pitch * wb_info[i].dwb_params.dest_height;
warmup_params.p_vmid = wb_info[i].mcif_buf_params.p_vmid;
mcif_wb->funcs->warmup_mcif(mcif_wb, &warmup_params);
}
}
return true;
}
void dcn30_enable_writeback(
struct dc *dc,
struct dc_writeback_info *wb_info,
struct dc_state *context)
{
struct dwbc *dwb;
struct mcif_wb *mcif_wb;
struct timing_generator *optc;
dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst];
mcif_wb = dc->res_pool->mcif_wb[wb_info->dwb_pipe_inst];
/* set the OPTC source mux */
optc = dc->res_pool->timing_generators[dwb->otg_inst];
DC_LOG_DWB("%s dwb_pipe_inst = %d, mpcc_inst = %d",\
__func__, wb_info->dwb_pipe_inst,\
wb_info->mpcc_inst);
if (IS_DIAG_DC(dc->ctx->dce_environment)) {
/*till diags switch to warmup interface*/
dcn30_mmhubbub_warmup(dc, 1, wb_info);
}
/* Update writeback pipe */
dcn30_set_writeback(dc, wb_info, context);
/* Enable MCIF_WB */
mcif_wb->funcs->enable_mcif(mcif_wb);
/* Enable DWB */
dwb->funcs->enable(dwb, &wb_info->dwb_params);
}
void dcn30_disable_writeback(
struct dc *dc,
unsigned int dwb_pipe_inst)
{
struct dwbc *dwb;
struct mcif_wb *mcif_wb;
ASSERT(dwb_pipe_inst < MAX_DWB_PIPES);
dwb = dc->res_pool->dwbc[dwb_pipe_inst];
mcif_wb = dc->res_pool->mcif_wb[dwb_pipe_inst];
DC_LOG_DWB("%s dwb_pipe_inst = %d",\
__func__, dwb_pipe_inst);
/* disable DWB */
dwb->funcs->disable(dwb);
/* disable MCIF */
mcif_wb->funcs->disable_mcif(mcif_wb);
/* disable MPC DWB mux */
dc->res_pool->mpc->funcs->disable_dwb_mux(dc->res_pool->mpc, dwb_pipe_inst);
}
void dcn30_program_all_writeback_pipes_in_tree(
struct dc *dc,
const struct dc_stream_state *stream,
struct dc_state *context)
{
struct dc_writeback_info wb_info;
struct dwbc *dwb;
struct dc_stream_status *stream_status = NULL;
int i_wb, i_pipe, i_stream;
DC_LOG_DWB("%s", __func__);
ASSERT(stream);
for (i_stream = 0; i_stream < context->stream_count; i_stream++) {
if (context->streams[i_stream] == stream) {
stream_status = &context->stream_status[i_stream];
break;
}
}
ASSERT(stream_status);
ASSERT(stream->num_wb_info <= dc->res_pool->res_cap->num_dwb);
/* For each writeback pipe */
for (i_wb = 0; i_wb < stream->num_wb_info; i_wb++) {
/* copy writeback info to local non-const so mpcc_inst can be set */
wb_info = stream->writeback_info[i_wb];
if (wb_info.wb_enabled) {
/* get the MPCC instance for writeback_source_plane */
wb_info.mpcc_inst = -1;
for (i_pipe = 0; i_pipe < dc->res_pool->pipe_count; i_pipe++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i_pipe];
if (!pipe_ctx->plane_state)
continue;
if (pipe_ctx->plane_state == wb_info.writeback_source_plane) {
wb_info.mpcc_inst = pipe_ctx->plane_res.mpcc_inst;
break;
}
}
if (wb_info.mpcc_inst == -1) {
/* Disable writeback pipe and disconnect from MPCC
* if source plane has been removed
*/
dc->hwss.disable_writeback(dc, wb_info.dwb_pipe_inst);
continue;
}
ASSERT(wb_info.dwb_pipe_inst < dc->res_pool->res_cap->num_dwb);
dwb = dc->res_pool->dwbc[wb_info.dwb_pipe_inst];
if (dwb->funcs->is_enabled(dwb)) {
/* writeback pipe already enabled, only need to update */
dc->hwss.update_writeback(dc, &wb_info, context);
} else {
/* Enable writeback pipe and connect to MPCC */
dc->hwss.enable_writeback(dc, &wb_info, context);
}
} else {
/* Disable writeback pipe and disconnect from MPCC */
dc->hwss.disable_writeback(dc, wb_info.dwb_pipe_inst);
}
}
}
void dcn30_init_hw(struct dc *dc)
{
struct abm **abms = dc->res_pool->multiple_abms;
struct dce_hwseq *hws = dc->hwseq;
struct dc_bios *dcb = dc->ctx->dc_bios;
struct resource_pool *res_pool = dc->res_pool;
int i;
int edp_num;
uint32_t backlight = MAX_BACKLIGHT_LEVEL;
if (dc->clk_mgr && dc->clk_mgr->funcs->init_clocks)
dc->clk_mgr->funcs->init_clocks(dc->clk_mgr);
// Initialize the dccg
if (res_pool->dccg->funcs->dccg_init)
res_pool->dccg->funcs->dccg_init(res_pool->dccg);
if (IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) {
REG_WRITE(REFCLK_CNTL, 0);
REG_UPDATE(DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_ENABLE, 1);
REG_WRITE(DIO_MEM_PWR_CTRL, 0);
if (!dc->debug.disable_clock_gate) {
/* enable all DCN clock gating */
REG_WRITE(DCCG_GATE_DISABLE_CNTL, 0);
REG_WRITE(DCCG_GATE_DISABLE_CNTL2, 0);
REG_UPDATE(DCFCLK_CNTL, DCFCLK_GATE_DIS, 0);
}
//Enable ability to power gate / don't force power on permanently
if (hws->funcs.enable_power_gating_plane)
hws->funcs.enable_power_gating_plane(hws, true);
return;
}
if (!dcb->funcs->is_accelerated_mode(dcb)) {
hws->funcs.bios_golden_init(dc);
hws->funcs.disable_vga(dc->hwseq);
}
if (dc->debug.enable_mem_low_power.bits.dmcu) {
// Force ERAM to shutdown if DMCU is not enabled
if (dc->debug.disable_dmcu || dc->config.disable_dmcu) {
REG_UPDATE(DMU_MEM_PWR_CNTL, DMCU_ERAM_MEM_PWR_FORCE, 3);
}
}
// Set default OPTC memory power states
if (dc->debug.enable_mem_low_power.bits.optc) {
// Shutdown when unassigned and light sleep in VBLANK
REG_SET_2(ODM_MEM_PWR_CTRL3, 0, ODM_MEM_UNASSIGNED_PWR_MODE, 3, ODM_MEM_VBLANK_PWR_MODE, 1);
}
if (dc->ctx->dc_bios->fw_info_valid) {
res_pool->ref_clocks.xtalin_clock_inKhz =
dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) {
if (res_pool->dccg && res_pool->hubbub) {
(res_pool->dccg->funcs->get_dccg_ref_freq)(res_pool->dccg,
dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency,
&res_pool->ref_clocks.dccg_ref_clock_inKhz);
(res_pool->hubbub->funcs->get_dchub_ref_freq)(res_pool->hubbub,
res_pool->ref_clocks.dccg_ref_clock_inKhz,
&res_pool->ref_clocks.dchub_ref_clock_inKhz);
} else {
// Not all ASICs have DCCG sw component
res_pool->ref_clocks.dccg_ref_clock_inKhz =
res_pool->ref_clocks.xtalin_clock_inKhz;
res_pool->ref_clocks.dchub_ref_clock_inKhz =
res_pool->ref_clocks.xtalin_clock_inKhz;
}
}
} else
ASSERT_CRITICAL(false);
for (i = 0; i < dc->link_count; i++) {
/* Power up AND update implementation according to the
* required signal (which may be different from the
* default signal on connector).
*/
struct dc_link *link = dc->links[i];
link->link_enc->funcs->hw_init(link->link_enc);
/* Check for enabled DIG to identify enabled display */
if (link->link_enc->funcs->is_dig_enabled &&
link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
link->link_status.link_active = true;
if (link->link_enc->funcs->fec_is_active &&
link->link_enc->funcs->fec_is_active(link->link_enc))
link->fec_state = dc_link_fec_enabled;
}
}
/* Power gate DSCs */
for (i = 0; i < res_pool->res_cap->num_dsc; i++)
if (hws->funcs.dsc_pg_control != NULL)
hws->funcs.dsc_pg_control(hws, res_pool->dscs[i]->inst, false);
/* we want to turn off all dp displays before doing detection */
link_blank_all_dp_displays(dc);
if (hws->funcs.enable_power_gating_plane)
hws->funcs.enable_power_gating_plane(dc->hwseq, true);
/* If taking control over from VBIOS, we may want to optimize our first
* mode set, so we need to skip powering down pipes until we know which
* pipes we want to use.
* Otherwise, if taking control is not possible, we need to power
* everything down.
*/
if (dcb->funcs->is_accelerated_mode(dcb) || !dc->config.seamless_boot_edp_requested) {
hws->funcs.init_pipes(dc, dc->current_state);
if (dc->res_pool->hubbub->funcs->allow_self_refresh_control)
dc->res_pool->hubbub->funcs->allow_self_refresh_control(dc->res_pool->hubbub,
!dc->res_pool->hubbub->ctx->dc->debug.disable_stutter);
}
/* In headless boot cases, DIG may be turned
* on which causes HW/SW discrepancies.
* To avoid this, power down hardware on boot
* if DIG is turned on and seamless boot not enabled
*/
if (!dc->config.seamless_boot_edp_requested) {
struct dc_link *edp_links[MAX_NUM_EDP];
struct dc_link *edp_link = NULL;
get_edp_links(dc, edp_links, &edp_num);
if (edp_num)
edp_link = edp_links[0];
if (edp_link && edp_link->link_enc->funcs->is_dig_enabled &&
edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc) &&
dc->hwss.edp_backlight_control &&
dc->hwss.power_down &&
dc->hwss.edp_power_control) {
dc->hwss.edp_backlight_control(edp_link, false);
dc->hwss.power_down(dc);
dc->hwss.edp_power_control(edp_link, false);
} else {
for (i = 0; i < dc->link_count; i++) {
struct dc_link *link = dc->links[i];
if (link->link_enc->funcs->is_dig_enabled &&
link->link_enc->funcs->is_dig_enabled(link->link_enc) &&
dc->hwss.power_down) {
dc->hwss.power_down(dc);
break;
}
}
}
}
for (i = 0; i < res_pool->audio_count; i++) {
struct audio *audio = res_pool->audios[i];
audio->funcs->hw_init(audio);
}
for (i = 0; i < dc->link_count; i++) {
struct dc_link *link = dc->links[i];
if (link->panel_cntl)
backlight = link->panel_cntl->funcs->hw_init(link->panel_cntl);
}
for (i = 0; i < dc->res_pool->pipe_count; i++) {
if (abms[i] != NULL)
abms[i]->funcs->abm_init(abms[i], backlight);
}
/* power AFMT HDMI memory TODO: may move to dis/en output save power*/
REG_WRITE(DIO_MEM_PWR_CTRL, 0);
if (!dc->debug.disable_clock_gate) {
/* enable all DCN clock gating */
REG_WRITE(DCCG_GATE_DISABLE_CNTL, 0);
REG_WRITE(DCCG_GATE_DISABLE_CNTL2, 0);
REG_UPDATE(DCFCLK_CNTL, DCFCLK_GATE_DIS, 0);
}
if (!dcb->funcs->is_accelerated_mode(dcb) && dc->res_pool->hubbub->funcs->init_watermarks)
dc->res_pool->hubbub->funcs->init_watermarks(dc->res_pool->hubbub);
if (dc->clk_mgr->funcs->notify_wm_ranges)
dc->clk_mgr->funcs->notify_wm_ranges(dc->clk_mgr);
if (dc->clk_mgr->funcs->set_hard_max_memclk)
dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
if (dc->res_pool->hubbub->funcs->force_pstate_change_control)
dc->res_pool->hubbub->funcs->force_pstate_change_control(
dc->res_pool->hubbub, false, false);
if (dc->res_pool->hubbub->funcs->init_crb)
dc->res_pool->hubbub->funcs->init_crb(dc->res_pool->hubbub);
// Get DMCUB capabilities
dc_dmub_srv_query_caps_cmd(dc->ctx->dmub_srv->dmub);
dc->caps.dmub_caps.psr = dc->ctx->dmub_srv->dmub->feature_caps.psr;
dc->caps.dmub_caps.mclk_sw = dc->ctx->dmub_srv->dmub->feature_caps.fw_assisted_mclk_switch;
}
void dcn30_set_avmute(struct pipe_ctx *pipe_ctx, bool enable)
{
if (pipe_ctx == NULL)
return;
if (dc_is_hdmi_signal(pipe_ctx->stream->signal) && pipe_ctx->stream_res.stream_enc != NULL)
pipe_ctx->stream_res.stream_enc->funcs->set_avmute(
pipe_ctx->stream_res.stream_enc,
enable);
}
void dcn30_update_info_frame(struct pipe_ctx *pipe_ctx)
{
bool is_hdmi_tmds;
bool is_dp;
ASSERT(pipe_ctx->stream);
if (pipe_ctx->stream_res.stream_enc == NULL)
return; /* this is not root pipe */
is_hdmi_tmds = dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal);
is_dp = dc_is_dp_signal(pipe_ctx->stream->signal);
if (!is_hdmi_tmds && !is_dp)
return;
if (is_hdmi_tmds)
pipe_ctx->stream_res.stream_enc->funcs->update_hdmi_info_packets(
pipe_ctx->stream_res.stream_enc,
&pipe_ctx->stream_res.encoder_info_frame);
else {
if (pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets_sdp_line_num)
pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets_sdp_line_num(
pipe_ctx->stream_res.stream_enc,
&pipe_ctx->stream_res.encoder_info_frame);
pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets(
pipe_ctx->stream_res.stream_enc,
&pipe_ctx->stream_res.encoder_info_frame);
}
}
void dcn30_program_dmdata_engine(struct pipe_ctx *pipe_ctx)
{
struct dc_stream_state *stream = pipe_ctx->stream;
struct hubp *hubp = pipe_ctx->plane_res.hubp;
bool enable = false;
struct stream_encoder *stream_enc = pipe_ctx->stream_res.stream_enc;
enum dynamic_metadata_mode mode = dc_is_dp_signal(stream->signal)
? dmdata_dp
: dmdata_hdmi;
/* if using dynamic meta, don't set up generic infopackets */
if (pipe_ctx->stream->dmdata_address.quad_part != 0) {
pipe_ctx->stream_res.encoder_info_frame.hdrsmd.valid = false;
enable = true;
}
if (!hubp)
return;
if (!stream_enc || !stream_enc->funcs->set_dynamic_metadata)
return;
stream_enc->funcs->set_dynamic_metadata(stream_enc, enable,
hubp->inst, mode);
}
bool dcn30_apply_idle_power_optimizations(struct dc *dc, bool enable)
{
union dmub_rb_cmd cmd;
uint32_t tmr_delay = 0, tmr_scale = 0;
struct dc_cursor_attributes cursor_attr;
bool cursor_cache_enable = false;
struct dc_stream_state *stream = NULL;
struct dc_plane_state *plane = NULL;
if (!dc->ctx->dmub_srv)
return false;
if (enable) {
if (dc->current_state) {
int i;
/* First, check no-memory-requests case */
for (i = 0; i < dc->current_state->stream_count; i++) {
if (dc->current_state->stream_status[i].plane_count)
/* Fail eligibility on a visible stream */
break;
}
if (i == dc->current_state->stream_count) {
/* Enable no-memory-requests case */
memset(&cmd, 0, sizeof(cmd));
cmd.mall.header.type = DMUB_CMD__MALL;
cmd.mall.header.sub_type = DMUB_CMD__MALL_ACTION_NO_DF_REQ;
cmd.mall.header.payload_bytes = sizeof(cmd.mall) - sizeof(cmd.mall.header);
dc_dmub_srv_cmd_queue(dc->ctx->dmub_srv, &cmd);
dc_dmub_srv_cmd_execute(dc->ctx->dmub_srv);
return true;
}
stream = dc->current_state->streams[0];
plane = (stream ? dc->current_state->stream_status[0].plane_states[0] : NULL);
if (stream && plane) {
cursor_cache_enable = stream->cursor_position.enable &&
plane->address.grph.cursor_cache_addr.quad_part;
cursor_attr = stream->cursor_attributes;
}
/*
* Second, check MALL eligibility
*
* single display only, single surface only, 8 and 16 bit formats only, no VM,
* do not use MALL for displays that support PSR as they use D0i3.2 in DMCUB FW
*
* TODO: When we implement multi-display, PSR displays will be allowed if there is
* a non-PSR display present, since in that case we can't do D0i3.2
*/
if (dc->current_state->stream_count == 1 &&
stream->link->psr_settings.psr_version == DC_PSR_VERSION_UNSUPPORTED &&
dc->current_state->stream_status[0].plane_count == 1 &&
plane->format <= SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F &&
plane->format >= SURFACE_PIXEL_FORMAT_GRPH_ARGB8888 &&
plane->address.page_table_base.quad_part == 0 &&
dc->hwss.does_plane_fit_in_mall &&
dc->hwss.does_plane_fit_in_mall(dc, plane,
cursor_cache_enable ? &cursor_attr : NULL)) {
unsigned int v_total = stream->adjust.v_total_max ?
stream->adjust.v_total_max : stream->timing.v_total;
unsigned int refresh_hz = div_u64((unsigned long long) stream->timing.pix_clk_100hz *
100LL, (v_total * stream->timing.h_total));
/*
* one frame time in microsec:
* Delay_Us = 1000000 / refresh
* dynamic_delay_us = 1000000 / refresh + 2 * stutter_period
*
* one frame time modified by 'additional timer percent' (p):
* Delay_Us_modified = dynamic_delay_us + dynamic_delay_us * p / 100
* = dynamic_delay_us * (1 + p / 100)
* = (1000000 / refresh + 2 * stutter_period) * (100 + p) / 100
* = (1000000 + 2 * stutter_period * refresh) * (100 + p) / (100 * refresh)
*
* formula for timer duration based on parameters, from regspec:
* dynamic_delay_us = 65.28 * (64 + MallFrameCacheTmrDly) * 2^MallFrameCacheTmrScale
*
* dynamic_delay_us / 65.28 = (64 + MallFrameCacheTmrDly) * 2^MallFrameCacheTmrScale
* (dynamic_delay_us / 65.28) / 2^MallFrameCacheTmrScale = 64 + MallFrameCacheTmrDly
* MallFrameCacheTmrDly = ((dynamic_delay_us / 65.28) / 2^MallFrameCacheTmrScale) - 64
* = (1000000 + 2 * stutter_period * refresh) * (100 + p) / (100 * refresh) / 65.28 / 2^MallFrameCacheTmrScale - 64
* = (1000000 + 2 * stutter_period * refresh) * (100 + p) / (refresh * 6528 * 2^MallFrameCacheTmrScale) - 64
*
* need to round up the result of the division before the subtraction
*/
unsigned int denom = refresh_hz * 6528;
unsigned int stutter_period = dc->current_state->perf_params.stutter_period_us;
tmr_delay = div_u64(((1000000LL + 2 * stutter_period * refresh_hz) *
(100LL + dc->debug.mall_additional_timer_percent) + denom - 1),
denom) - 64LL;
/* In some cases the stutter period is really big (tiny modes) in these
* cases MALL cant be enabled, So skip these cases to avoid a ASSERT()
*
* We can check if stutter_period is more than 1/10th the frame time to
* consider if we can actually meet the range of hysteresis timer
*/
if (stutter_period > 100000/refresh_hz)
return false;
/* scale should be increased until it fits into 6 bits */
while (tmr_delay & ~0x3F) {
tmr_scale++;
if (tmr_scale > 3) {
/* Delay exceeds range of hysteresis timer */
ASSERT(false);
return false;
}
denom *= 2;
tmr_delay = div_u64(((1000000LL + 2 * stutter_period * refresh_hz) *
(100LL + dc->debug.mall_additional_timer_percent) + denom - 1),
denom) - 64LL;
}
/* Copy HW cursor */
if (cursor_cache_enable) {
memset(&cmd, 0, sizeof(cmd));
cmd.mall.header.type = DMUB_CMD__MALL;
cmd.mall.header.sub_type = DMUB_CMD__MALL_ACTION_COPY_CURSOR;
cmd.mall.header.payload_bytes =
sizeof(cmd.mall) - sizeof(cmd.mall.header);
switch (cursor_attr.color_format) {
case CURSOR_MODE_MONO:
cmd.mall.cursor_bpp = 2;
break;
case CURSOR_MODE_COLOR_1BIT_AND:
case CURSOR_MODE_COLOR_PRE_MULTIPLIED_ALPHA:
case CURSOR_MODE_COLOR_UN_PRE_MULTIPLIED_ALPHA:
cmd.mall.cursor_bpp = 32;
break;
case CURSOR_MODE_COLOR_64BIT_FP_PRE_MULTIPLIED:
case CURSOR_MODE_COLOR_64BIT_FP_UN_PRE_MULTIPLIED:
cmd.mall.cursor_bpp = 64;
break;
}
cmd.mall.cursor_copy_src.quad_part = cursor_attr.address.quad_part;
cmd.mall.cursor_copy_dst.quad_part =
(plane->address.grph.cursor_cache_addr.quad_part + 2047) & ~2047;
cmd.mall.cursor_width = cursor_attr.width;
cmd.mall.cursor_height = cursor_attr.height;
cmd.mall.cursor_pitch = cursor_attr.pitch;
dc_dmub_srv_cmd_queue(dc->ctx->dmub_srv, &cmd);
dc_dmub_srv_cmd_execute(dc->ctx->dmub_srv);
dc_dmub_srv_wait_idle(dc->ctx->dmub_srv);
/* Use copied cursor, and it's okay to not switch back */
cursor_attr.address.quad_part = cmd.mall.cursor_copy_dst.quad_part;
dc_stream_set_cursor_attributes(stream, &cursor_attr);
}
/* Enable MALL */
memset(&cmd, 0, sizeof(cmd));
cmd.mall.header.type = DMUB_CMD__MALL;
cmd.mall.header.sub_type = DMUB_CMD__MALL_ACTION_ALLOW;
cmd.mall.header.payload_bytes = sizeof(cmd.mall) - sizeof(cmd.mall.header);
cmd.mall.tmr_delay = tmr_delay;
cmd.mall.tmr_scale = tmr_scale;
cmd.mall.debug_bits = dc->debug.mall_error_as_fatal;
dc_dmub_srv_cmd_queue(dc->ctx->dmub_srv, &cmd);
dc_dmub_srv_cmd_execute(dc->ctx->dmub_srv);
return true;
}
}
/* No applicable optimizations */
return false;
}
/* Disable MALL */
memset(&cmd, 0, sizeof(cmd));
cmd.mall.header.type = DMUB_CMD__MALL;
cmd.mall.header.sub_type = DMUB_CMD__MALL_ACTION_DISALLOW;
cmd.mall.header.payload_bytes =
sizeof(cmd.mall) - sizeof(cmd.mall.header);
dc_dmub_srv_cmd_queue(dc->ctx->dmub_srv, &cmd);
dc_dmub_srv_cmd_execute(dc->ctx->dmub_srv);
dc_dmub_srv_wait_idle(dc->ctx->dmub_srv);
return true;
}
bool dcn30_does_plane_fit_in_mall(struct dc *dc, struct dc_plane_state *plane, struct dc_cursor_attributes *cursor_attr)
{
// add meta size?
unsigned int surface_size = plane->plane_size.surface_pitch * plane->plane_size.surface_size.height *
(plane->format >= SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616 ? 8 : 4);
unsigned int mall_size = dc->caps.mall_size_total;
unsigned int cursor_size = 0;
if (dc->debug.mall_size_override)
mall_size = 1024 * 1024 * dc->debug.mall_size_override;
if (cursor_attr) {
cursor_size = dc->caps.max_cursor_size * dc->caps.max_cursor_size;
switch (cursor_attr->color_format) {
case CURSOR_MODE_MONO:
cursor_size /= 2;
break;
case CURSOR_MODE_COLOR_1BIT_AND:
case CURSOR_MODE_COLOR_PRE_MULTIPLIED_ALPHA:
case CURSOR_MODE_COLOR_UN_PRE_MULTIPLIED_ALPHA:
cursor_size *= 4;
break;
case CURSOR_MODE_COLOR_64BIT_FP_PRE_MULTIPLIED:
case CURSOR_MODE_COLOR_64BIT_FP_UN_PRE_MULTIPLIED:
cursor_size *= 8;
break;
}
}
return (surface_size + cursor_size) < mall_size;
}
void dcn30_hardware_release(struct dc *dc)
{
bool subvp_in_use = false;
uint32_t i;
dc_dmub_srv_p_state_delegate(dc, false, NULL);
dc_dmub_setup_subvp_dmub_command(dc, dc->current_state, false);
/* SubVP treated the same way as FPO. If driver disable and
* we are using a SubVP config, disable and force on DCN side
* to prevent P-State hang on driver enable.
*/
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
if (!pipe->stream)
continue;
if (pipe->stream->mall_stream_config.type == SUBVP_MAIN) {
subvp_in_use = true;
break;
}
}
/* If pstate unsupported, or still supported
* by firmware, force it supported by dcn
*/
if (dc->current_state)
if ((!dc->clk_mgr->clks.p_state_change_support || subvp_in_use ||
dc->current_state->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) &&
dc->res_pool->hubbub->funcs->force_pstate_change_control)
dc->res_pool->hubbub->funcs->force_pstate_change_control(
dc->res_pool->hubbub, true, true);
}
void dcn30_set_disp_pattern_generator(const struct dc *dc,
struct pipe_ctx *pipe_ctx,
enum controller_dp_test_pattern test_pattern,
enum controller_dp_color_space color_space,
enum dc_color_depth color_depth,
const struct tg_color *solid_color,
int width, int height, int offset)
{
pipe_ctx->stream_res.opp->funcs->opp_set_disp_pattern_generator(pipe_ctx->stream_res.opp, test_pattern,
color_space, color_depth, solid_color, width, height, offset);
}
void dcn30_prepare_bandwidth(struct dc *dc,
struct dc_state *context)
{
if (dc->clk_mgr->dc_mode_softmax_enabled)
if (dc->clk_mgr->clks.dramclk_khz <= dc->clk_mgr->bw_params->dc_mode_softmax_memclk * 1000 &&
context->bw_ctx.bw.dcn.clk.dramclk_khz > dc->clk_mgr->bw_params->dc_mode_softmax_memclk * 1000)
dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, dc->clk_mgr->bw_params->clk_table.entries[dc->clk_mgr->bw_params->clk_table.num_entries - 1].memclk_mhz);
dcn20_prepare_bandwidth(dc, context);
}