| // SPDX-License-Identifier: MIT |
| /* |
| * Copyright © 2022 Intel Corporation |
| */ |
| |
| #include "i915_drv.h" |
| |
| #include "intel_gt_mcr.h" |
| #include "intel_gt_print.h" |
| #include "intel_gt_regs.h" |
| |
| /** |
| * DOC: GT Multicast/Replicated (MCR) Register Support |
| * |
| * Some GT registers are designed as "multicast" or "replicated" registers: |
| * multiple instances of the same register share a single MMIO offset. MCR |
| * registers are generally used when the hardware needs to potentially track |
| * independent values of a register per hardware unit (e.g., per-subslice, |
| * per-L3bank, etc.). The specific types of replication that exist vary |
| * per-platform. |
| * |
| * MMIO accesses to MCR registers are controlled according to the settings |
| * programmed in the platform's MCR_SELECTOR register(s). MMIO writes to MCR |
| * registers can be done in either a (i.e., a single write updates all |
| * instances of the register to the same value) or unicast (a write updates only |
| * one specific instance). Reads of MCR registers always operate in a unicast |
| * manner regardless of how the multicast/unicast bit is set in MCR_SELECTOR. |
| * Selection of a specific MCR instance for unicast operations is referred to |
| * as "steering." |
| * |
| * If MCR register operations are steered toward a hardware unit that is |
| * fused off or currently powered down due to power gating, the MMIO operation |
| * is "terminated" by the hardware. Terminated read operations will return a |
| * value of zero and terminated unicast write operations will be silently |
| * ignored. |
| */ |
| |
| #define HAS_MSLICE_STEERING(dev_priv) (INTEL_INFO(dev_priv)->has_mslice_steering) |
| |
| static const char * const intel_steering_types[] = { |
| "L3BANK", |
| "MSLICE", |
| "LNCF", |
| "GAM", |
| "DSS", |
| "OADDRM", |
| "INSTANCE 0", |
| }; |
| |
| static const struct intel_mmio_range icl_l3bank_steering_table[] = { |
| { 0x00B100, 0x00B3FF }, |
| {}, |
| }; |
| |
| /* |
| * Although the bspec lists more "MSLICE" ranges than shown here, some of those |
| * are of a "GAM" subclass that has special rules. Thus we use a separate |
| * GAM table farther down for those. |
| */ |
| static const struct intel_mmio_range xehpsdv_mslice_steering_table[] = { |
| { 0x00DD00, 0x00DDFF }, |
| { 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */ |
| {}, |
| }; |
| |
| static const struct intel_mmio_range xehpsdv_gam_steering_table[] = { |
| { 0x004000, 0x004AFF }, |
| { 0x00C800, 0x00CFFF }, |
| {}, |
| }; |
| |
| static const struct intel_mmio_range xehpsdv_lncf_steering_table[] = { |
| { 0x00B000, 0x00B0FF }, |
| { 0x00D800, 0x00D8FF }, |
| {}, |
| }; |
| |
| static const struct intel_mmio_range dg2_lncf_steering_table[] = { |
| { 0x00B000, 0x00B0FF }, |
| { 0x00D880, 0x00D8FF }, |
| {}, |
| }; |
| |
| /* |
| * We have several types of MCR registers on PVC where steering to (0,0) |
| * will always provide us with a non-terminated value. We'll stick them |
| * all in the same table for simplicity. |
| */ |
| static const struct intel_mmio_range pvc_instance0_steering_table[] = { |
| { 0x004000, 0x004AFF }, /* HALF-BSLICE */ |
| { 0x008800, 0x00887F }, /* CC */ |
| { 0x008A80, 0x008AFF }, /* TILEPSMI */ |
| { 0x00B000, 0x00B0FF }, /* HALF-BSLICE */ |
| { 0x00B100, 0x00B3FF }, /* L3BANK */ |
| { 0x00C800, 0x00CFFF }, /* HALF-BSLICE */ |
| { 0x00D800, 0x00D8FF }, /* HALF-BSLICE */ |
| { 0x00DD00, 0x00DDFF }, /* BSLICE */ |
| { 0x00E900, 0x00E9FF }, /* HALF-BSLICE */ |
| { 0x00EC00, 0x00EEFF }, /* HALF-BSLICE */ |
| { 0x00F000, 0x00FFFF }, /* HALF-BSLICE */ |
| { 0x024180, 0x0241FF }, /* HALF-BSLICE */ |
| {}, |
| }; |
| |
| static const struct intel_mmio_range xelpg_instance0_steering_table[] = { |
| { 0x000B00, 0x000BFF }, /* SQIDI */ |
| { 0x001000, 0x001FFF }, /* SQIDI */ |
| { 0x004000, 0x0048FF }, /* GAM */ |
| { 0x008700, 0x0087FF }, /* SQIDI */ |
| { 0x00B000, 0x00B0FF }, /* NODE */ |
| { 0x00C800, 0x00CFFF }, /* GAM */ |
| { 0x00D880, 0x00D8FF }, /* NODE */ |
| { 0x00DD00, 0x00DDFF }, /* OAAL2 */ |
| {}, |
| }; |
| |
| static const struct intel_mmio_range xelpg_l3bank_steering_table[] = { |
| { 0x00B100, 0x00B3FF }, |
| {}, |
| }; |
| |
| /* DSS steering is used for SLICE ranges as well */ |
| static const struct intel_mmio_range xelpg_dss_steering_table[] = { |
| { 0x005200, 0x0052FF }, /* SLICE */ |
| { 0x005500, 0x007FFF }, /* SLICE */ |
| { 0x008140, 0x00815F }, /* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */ |
| { 0x0094D0, 0x00955F }, /* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */ |
| { 0x009680, 0x0096FF }, /* DSS */ |
| { 0x00D800, 0x00D87F }, /* SLICE */ |
| { 0x00DC00, 0x00DCFF }, /* SLICE */ |
| { 0x00DE80, 0x00E8FF }, /* DSS (0xE000-0xE0FF reserved) */ |
| {}, |
| }; |
| |
| static const struct intel_mmio_range xelpmp_oaddrm_steering_table[] = { |
| { 0x393200, 0x39323F }, |
| { 0x393400, 0x3934FF }, |
| {}, |
| }; |
| |
| void intel_gt_mcr_init(struct intel_gt *gt) |
| { |
| struct drm_i915_private *i915 = gt->i915; |
| unsigned long fuse; |
| int i; |
| |
| spin_lock_init(>->mcr_lock); |
| |
| /* |
| * An mslice is unavailable only if both the meml3 for the slice is |
| * disabled *and* all of the DSS in the slice (quadrant) are disabled. |
| */ |
| if (HAS_MSLICE_STEERING(i915)) { |
| gt->info.mslice_mask = |
| intel_slicemask_from_xehp_dssmask(gt->info.sseu.subslice_mask, |
| GEN_DSS_PER_MSLICE); |
| gt->info.mslice_mask |= |
| (intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) & |
| GEN12_MEML3_EN_MASK); |
| |
| if (!gt->info.mslice_mask) /* should be impossible! */ |
| gt_warn(gt, "mslice mask all zero!\n"); |
| } |
| |
| if (MEDIA_VER(i915) >= 13 && gt->type == GT_MEDIA) { |
| gt->steering_table[OADDRM] = xelpmp_oaddrm_steering_table; |
| } else if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)) { |
| /* Wa_14016747170 */ |
| if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) || |
| IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0)) |
| fuse = REG_FIELD_GET(MTL_GT_L3_EXC_MASK, |
| intel_uncore_read(gt->uncore, |
| MTL_GT_ACTIVITY_FACTOR)); |
| else |
| fuse = REG_FIELD_GET(GT_L3_EXC_MASK, |
| intel_uncore_read(gt->uncore, XEHP_FUSE4)); |
| |
| /* |
| * Despite the register field being named "exclude mask" the |
| * bits actually represent enabled banks (two banks per bit). |
| */ |
| for_each_set_bit(i, &fuse, 3) |
| gt->info.l3bank_mask |= 0x3 << 2 * i; |
| |
| gt->steering_table[INSTANCE0] = xelpg_instance0_steering_table; |
| gt->steering_table[L3BANK] = xelpg_l3bank_steering_table; |
| gt->steering_table[DSS] = xelpg_dss_steering_table; |
| } else if (IS_PONTEVECCHIO(i915)) { |
| gt->steering_table[INSTANCE0] = pvc_instance0_steering_table; |
| } else if (IS_DG2(i915)) { |
| gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table; |
| gt->steering_table[LNCF] = dg2_lncf_steering_table; |
| /* |
| * No need to hook up the GAM table since it has a dedicated |
| * steering control register on DG2 and can use implicit |
| * steering. |
| */ |
| } else if (IS_XEHPSDV(i915)) { |
| gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table; |
| gt->steering_table[LNCF] = xehpsdv_lncf_steering_table; |
| gt->steering_table[GAM] = xehpsdv_gam_steering_table; |
| } else if (GRAPHICS_VER(i915) >= 11 && |
| GRAPHICS_VER_FULL(i915) < IP_VER(12, 50)) { |
| gt->steering_table[L3BANK] = icl_l3bank_steering_table; |
| gt->info.l3bank_mask = |
| ~intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) & |
| GEN10_L3BANK_MASK; |
| if (!gt->info.l3bank_mask) /* should be impossible! */ |
| gt_warn(gt, "L3 bank mask is all zero!\n"); |
| } else if (GRAPHICS_VER(i915) >= 11) { |
| /* |
| * We expect all modern platforms to have at least some |
| * type of steering that needs to be initialized. |
| */ |
| MISSING_CASE(INTEL_INFO(i915)->platform); |
| } |
| } |
| |
| /* |
| * Although the rest of the driver should use MCR-specific functions to |
| * read/write MCR registers, we still use the regular intel_uncore_* functions |
| * internally to implement those, so we need a way for the functions in this |
| * file to "cast" an i915_mcr_reg_t into an i915_reg_t. |
| */ |
| static i915_reg_t mcr_reg_cast(const i915_mcr_reg_t mcr) |
| { |
| i915_reg_t r = { .reg = mcr.reg }; |
| |
| return r; |
| } |
| |
| /* |
| * rw_with_mcr_steering_fw - Access a register with specific MCR steering |
| * @gt: GT to read register from |
| * @reg: register being accessed |
| * @rw_flag: FW_REG_READ for read access or FW_REG_WRITE for write access |
| * @group: group number (documented as "sliceid" on older platforms) |
| * @instance: instance number (documented as "subsliceid" on older platforms) |
| * @value: register value to be written (ignored for read) |
| * |
| * Context: The caller must hold the MCR lock |
| * Return: 0 for write access. register value for read access. |
| * |
| * Caller needs to make sure the relevant forcewake wells are up. |
| */ |
| static u32 rw_with_mcr_steering_fw(struct intel_gt *gt, |
| i915_mcr_reg_t reg, u8 rw_flag, |
| int group, int instance, u32 value) |
| { |
| struct intel_uncore *uncore = gt->uncore; |
| u32 mcr_mask, mcr_ss, mcr, old_mcr, val = 0; |
| |
| lockdep_assert_held(>->mcr_lock); |
| |
| if (GRAPHICS_VER_FULL(uncore->i915) >= IP_VER(12, 70)) { |
| /* |
| * Always leave the hardware in multicast mode when doing reads |
| * (see comment about Wa_22013088509 below) and only change it |
| * to unicast mode when doing writes of a specific instance. |
| * |
| * No need to save old steering reg value. |
| */ |
| intel_uncore_write_fw(uncore, MTL_MCR_SELECTOR, |
| REG_FIELD_PREP(MTL_MCR_GROUPID, group) | |
| REG_FIELD_PREP(MTL_MCR_INSTANCEID, instance) | |
| (rw_flag == FW_REG_READ ? GEN11_MCR_MULTICAST : 0)); |
| } else if (GRAPHICS_VER(uncore->i915) >= 11) { |
| mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK; |
| mcr_ss = GEN11_MCR_SLICE(group) | GEN11_MCR_SUBSLICE(instance); |
| |
| /* |
| * Wa_22013088509 |
| * |
| * The setting of the multicast/unicast bit usually wouldn't |
| * matter for read operations (which always return the value |
| * from a single register instance regardless of how that bit |
| * is set), but some platforms have a workaround requiring us |
| * to remain in multicast mode for reads. There's no real |
| * downside to this, so we'll just go ahead and do so on all |
| * platforms; we'll only clear the multicast bit from the mask |
| * when exlicitly doing a write operation. |
| */ |
| if (rw_flag == FW_REG_WRITE) |
| mcr_mask |= GEN11_MCR_MULTICAST; |
| |
| mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR); |
| old_mcr = mcr; |
| |
| mcr &= ~mcr_mask; |
| mcr |= mcr_ss; |
| intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr); |
| } else { |
| mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK; |
| mcr_ss = GEN8_MCR_SLICE(group) | GEN8_MCR_SUBSLICE(instance); |
| |
| mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR); |
| old_mcr = mcr; |
| |
| mcr &= ~mcr_mask; |
| mcr |= mcr_ss; |
| intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr); |
| } |
| |
| if (rw_flag == FW_REG_READ) |
| val = intel_uncore_read_fw(uncore, mcr_reg_cast(reg)); |
| else |
| intel_uncore_write_fw(uncore, mcr_reg_cast(reg), value); |
| |
| /* |
| * For pre-MTL platforms, we need to restore the old value of the |
| * steering control register to ensure that implicit steering continues |
| * to behave as expected. For MTL and beyond, we need only reinstate |
| * the 'multicast' bit (and only if we did a write that cleared it). |
| */ |
| if (GRAPHICS_VER_FULL(uncore->i915) >= IP_VER(12, 70) && rw_flag == FW_REG_WRITE) |
| intel_uncore_write_fw(uncore, MTL_MCR_SELECTOR, GEN11_MCR_MULTICAST); |
| else if (GRAPHICS_VER_FULL(uncore->i915) < IP_VER(12, 70)) |
| intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, old_mcr); |
| |
| return val; |
| } |
| |
| static u32 rw_with_mcr_steering(struct intel_gt *gt, |
| i915_mcr_reg_t reg, u8 rw_flag, |
| int group, int instance, |
| u32 value) |
| { |
| struct intel_uncore *uncore = gt->uncore; |
| enum forcewake_domains fw_domains; |
| unsigned long flags; |
| u32 val; |
| |
| fw_domains = intel_uncore_forcewake_for_reg(uncore, mcr_reg_cast(reg), |
| rw_flag); |
| fw_domains |= intel_uncore_forcewake_for_reg(uncore, |
| GEN8_MCR_SELECTOR, |
| FW_REG_READ | FW_REG_WRITE); |
| |
| intel_gt_mcr_lock(gt, &flags); |
| spin_lock(&uncore->lock); |
| intel_uncore_forcewake_get__locked(uncore, fw_domains); |
| |
| val = rw_with_mcr_steering_fw(gt, reg, rw_flag, group, instance, value); |
| |
| intel_uncore_forcewake_put__locked(uncore, fw_domains); |
| spin_unlock(&uncore->lock); |
| intel_gt_mcr_unlock(gt, flags); |
| |
| return val; |
| } |
| |
| /** |
| * intel_gt_mcr_lock - Acquire MCR steering lock |
| * @gt: GT structure |
| * @flags: storage to save IRQ flags to |
| * |
| * Performs locking to protect the steering for the duration of an MCR |
| * operation. On MTL and beyond, a hardware lock will also be taken to |
| * serialize access not only for the driver, but also for external hardware and |
| * firmware agents. |
| * |
| * Context: Takes gt->mcr_lock. uncore->lock should *not* be held when this |
| * function is called, although it may be acquired after this |
| * function call. |
| */ |
| void intel_gt_mcr_lock(struct intel_gt *gt, unsigned long *flags) |
| { |
| unsigned long __flags; |
| int err = 0; |
| |
| lockdep_assert_not_held(>->uncore->lock); |
| |
| /* |
| * Starting with MTL, we need to coordinate not only with other |
| * driver threads, but also with hardware/firmware agents. A dedicated |
| * locking register is used. |
| */ |
| if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) |
| err = wait_for(intel_uncore_read_fw(gt->uncore, |
| MTL_STEER_SEMAPHORE) == 0x1, 100); |
| |
| /* |
| * Even on platforms with a hardware lock, we'll continue to grab |
| * a software spinlock too for lockdep purposes. If the hardware lock |
| * was already acquired, there should never be contention on the |
| * software lock. |
| */ |
| spin_lock_irqsave(>->mcr_lock, __flags); |
| |
| *flags = __flags; |
| |
| /* |
| * In theory we should never fail to acquire the HW semaphore; this |
| * would indicate some hardware/firmware is misbehaving and not |
| * releasing it properly. |
| */ |
| if (err == -ETIMEDOUT) { |
| gt_err_ratelimited(gt, "hardware MCR steering semaphore timed out"); |
| add_taint_for_CI(gt->i915, TAINT_WARN); /* CI is now unreliable */ |
| } |
| } |
| |
| /** |
| * intel_gt_mcr_unlock - Release MCR steering lock |
| * @gt: GT structure |
| * @flags: IRQ flags to restore |
| * |
| * Releases the lock acquired by intel_gt_mcr_lock(). |
| * |
| * Context: Releases gt->mcr_lock |
| */ |
| void intel_gt_mcr_unlock(struct intel_gt *gt, unsigned long flags) |
| { |
| spin_unlock_irqrestore(>->mcr_lock, flags); |
| |
| if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) |
| intel_uncore_write_fw(gt->uncore, MTL_STEER_SEMAPHORE, 0x1); |
| } |
| |
| /** |
| * intel_gt_mcr_read - read a specific instance of an MCR register |
| * @gt: GT structure |
| * @reg: the MCR register to read |
| * @group: the MCR group |
| * @instance: the MCR instance |
| * |
| * Context: Takes and releases gt->mcr_lock |
| * |
| * Returns the value read from an MCR register after steering toward a specific |
| * group/instance. |
| */ |
| u32 intel_gt_mcr_read(struct intel_gt *gt, |
| i915_mcr_reg_t reg, |
| int group, int instance) |
| { |
| return rw_with_mcr_steering(gt, reg, FW_REG_READ, group, instance, 0); |
| } |
| |
| /** |
| * intel_gt_mcr_unicast_write - write a specific instance of an MCR register |
| * @gt: GT structure |
| * @reg: the MCR register to write |
| * @value: value to write |
| * @group: the MCR group |
| * @instance: the MCR instance |
| * |
| * Write an MCR register in unicast mode after steering toward a specific |
| * group/instance. |
| * |
| * Context: Calls a function that takes and releases gt->mcr_lock |
| */ |
| void intel_gt_mcr_unicast_write(struct intel_gt *gt, i915_mcr_reg_t reg, u32 value, |
| int group, int instance) |
| { |
| rw_with_mcr_steering(gt, reg, FW_REG_WRITE, group, instance, value); |
| } |
| |
| /** |
| * intel_gt_mcr_multicast_write - write a value to all instances of an MCR register |
| * @gt: GT structure |
| * @reg: the MCR register to write |
| * @value: value to write |
| * |
| * Write an MCR register in multicast mode to update all instances. |
| * |
| * Context: Takes and releases gt->mcr_lock |
| */ |
| void intel_gt_mcr_multicast_write(struct intel_gt *gt, |
| i915_mcr_reg_t reg, u32 value) |
| { |
| unsigned long flags; |
| |
| intel_gt_mcr_lock(gt, &flags); |
| |
| /* |
| * Ensure we have multicast behavior, just in case some non-i915 agent |
| * left the hardware in unicast mode. |
| */ |
| if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) |
| intel_uncore_write_fw(gt->uncore, MTL_MCR_SELECTOR, GEN11_MCR_MULTICAST); |
| |
| intel_uncore_write(gt->uncore, mcr_reg_cast(reg), value); |
| |
| intel_gt_mcr_unlock(gt, flags); |
| } |
| |
| /** |
| * intel_gt_mcr_multicast_write_fw - write a value to all instances of an MCR register |
| * @gt: GT structure |
| * @reg: the MCR register to write |
| * @value: value to write |
| * |
| * Write an MCR register in multicast mode to update all instances. This |
| * function assumes the caller is already holding any necessary forcewake |
| * domains; use intel_gt_mcr_multicast_write() in cases where forcewake should |
| * be obtained automatically. |
| * |
| * Context: The caller must hold gt->mcr_lock. |
| */ |
| void intel_gt_mcr_multicast_write_fw(struct intel_gt *gt, i915_mcr_reg_t reg, u32 value) |
| { |
| lockdep_assert_held(>->mcr_lock); |
| |
| /* |
| * Ensure we have multicast behavior, just in case some non-i915 agent |
| * left the hardware in unicast mode. |
| */ |
| if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) |
| intel_uncore_write_fw(gt->uncore, MTL_MCR_SELECTOR, GEN11_MCR_MULTICAST); |
| |
| intel_uncore_write_fw(gt->uncore, mcr_reg_cast(reg), value); |
| } |
| |
| /** |
| * intel_gt_mcr_multicast_rmw - Performs a multicast RMW operations |
| * @gt: GT structure |
| * @reg: the MCR register to read and write |
| * @clear: bits to clear during RMW |
| * @set: bits to set during RMW |
| * |
| * Performs a read-modify-write on an MCR register in a multicast manner. |
| * This operation only makes sense on MCR registers where all instances are |
| * expected to have the same value. The read will target any non-terminated |
| * instance and the write will be applied to all instances. |
| * |
| * This function assumes the caller is already holding any necessary forcewake |
| * domains; use intel_gt_mcr_multicast_rmw() in cases where forcewake should |
| * be obtained automatically. |
| * |
| * Context: Calls functions that take and release gt->mcr_lock |
| * |
| * Returns the old (unmodified) value read. |
| */ |
| u32 intel_gt_mcr_multicast_rmw(struct intel_gt *gt, i915_mcr_reg_t reg, |
| u32 clear, u32 set) |
| { |
| u32 val = intel_gt_mcr_read_any(gt, reg); |
| |
| intel_gt_mcr_multicast_write(gt, reg, (val & ~clear) | set); |
| |
| return val; |
| } |
| |
| /* |
| * reg_needs_read_steering - determine whether a register read requires |
| * explicit steering |
| * @gt: GT structure |
| * @reg: the register to check steering requirements for |
| * @type: type of multicast steering to check |
| * |
| * Determines whether @reg needs explicit steering of a specific type for |
| * reads. |
| * |
| * Returns false if @reg does not belong to a register range of the given |
| * steering type, or if the default (subslice-based) steering IDs are suitable |
| * for @type steering too. |
| */ |
| static bool reg_needs_read_steering(struct intel_gt *gt, |
| i915_mcr_reg_t reg, |
| enum intel_steering_type type) |
| { |
| const u32 offset = i915_mmio_reg_offset(reg); |
| const struct intel_mmio_range *entry; |
| |
| if (likely(!gt->steering_table[type])) |
| return false; |
| |
| for (entry = gt->steering_table[type]; entry->end; entry++) { |
| if (offset >= entry->start && offset <= entry->end) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* |
| * get_nonterminated_steering - determines valid IDs for a class of MCR steering |
| * @gt: GT structure |
| * @type: multicast register type |
| * @group: Group ID returned |
| * @instance: Instance ID returned |
| * |
| * Determines group and instance values that will steer reads of the specified |
| * MCR class to a non-terminated instance. |
| */ |
| static void get_nonterminated_steering(struct intel_gt *gt, |
| enum intel_steering_type type, |
| u8 *group, u8 *instance) |
| { |
| u32 dss; |
| |
| switch (type) { |
| case L3BANK: |
| *group = 0; /* unused */ |
| *instance = __ffs(gt->info.l3bank_mask); |
| break; |
| case MSLICE: |
| GEM_WARN_ON(!HAS_MSLICE_STEERING(gt->i915)); |
| *group = __ffs(gt->info.mslice_mask); |
| *instance = 0; /* unused */ |
| break; |
| case LNCF: |
| /* |
| * An LNCF is always present if its mslice is present, so we |
| * can safely just steer to LNCF 0 in all cases. |
| */ |
| GEM_WARN_ON(!HAS_MSLICE_STEERING(gt->i915)); |
| *group = __ffs(gt->info.mslice_mask) << 1; |
| *instance = 0; /* unused */ |
| break; |
| case GAM: |
| *group = IS_DG2(gt->i915) ? 1 : 0; |
| *instance = 0; |
| break; |
| case DSS: |
| dss = intel_sseu_find_first_xehp_dss(>->info.sseu, 0, 0); |
| *group = dss / GEN_DSS_PER_GSLICE; |
| *instance = dss % GEN_DSS_PER_GSLICE; |
| break; |
| case INSTANCE0: |
| /* |
| * There are a lot of MCR types for which instance (0, 0) |
| * will always provide a non-terminated value. |
| */ |
| *group = 0; |
| *instance = 0; |
| break; |
| case OADDRM: |
| if ((VDBOX_MASK(gt) | VEBOX_MASK(gt) | gt->info.sfc_mask) & BIT(0)) |
| *group = 0; |
| else |
| *group = 1; |
| *instance = 0; |
| break; |
| default: |
| MISSING_CASE(type); |
| *group = 0; |
| *instance = 0; |
| } |
| } |
| |
| /** |
| * intel_gt_mcr_get_nonterminated_steering - find group/instance values that |
| * will steer a register to a non-terminated instance |
| * @gt: GT structure |
| * @reg: register for which the steering is required |
| * @group: return variable for group steering |
| * @instance: return variable for instance steering |
| * |
| * This function returns a group/instance pair that is guaranteed to work for |
| * read steering of the given register. Note that a value will be returned even |
| * if the register is not replicated and therefore does not actually require |
| * steering. |
| */ |
| void intel_gt_mcr_get_nonterminated_steering(struct intel_gt *gt, |
| i915_mcr_reg_t reg, |
| u8 *group, u8 *instance) |
| { |
| int type; |
| |
| for (type = 0; type < NUM_STEERING_TYPES; type++) { |
| if (reg_needs_read_steering(gt, reg, type)) { |
| get_nonterminated_steering(gt, type, group, instance); |
| return; |
| } |
| } |
| |
| *group = gt->default_steering.groupid; |
| *instance = gt->default_steering.instanceid; |
| } |
| |
| /** |
| * intel_gt_mcr_read_any_fw - reads one instance of an MCR register |
| * @gt: GT structure |
| * @reg: register to read |
| * |
| * Reads a GT MCR register. The read will be steered to a non-terminated |
| * instance (i.e., one that isn't fused off or powered down by power gating). |
| * This function assumes the caller is already holding any necessary forcewake |
| * domains; use intel_gt_mcr_read_any() in cases where forcewake should be |
| * obtained automatically. |
| * |
| * Context: The caller must hold gt->mcr_lock. |
| * |
| * Returns the value from a non-terminated instance of @reg. |
| */ |
| u32 intel_gt_mcr_read_any_fw(struct intel_gt *gt, i915_mcr_reg_t reg) |
| { |
| int type; |
| u8 group, instance; |
| |
| lockdep_assert_held(>->mcr_lock); |
| |
| for (type = 0; type < NUM_STEERING_TYPES; type++) { |
| if (reg_needs_read_steering(gt, reg, type)) { |
| get_nonterminated_steering(gt, type, &group, &instance); |
| return rw_with_mcr_steering_fw(gt, reg, |
| FW_REG_READ, |
| group, instance, 0); |
| } |
| } |
| |
| return intel_uncore_read_fw(gt->uncore, mcr_reg_cast(reg)); |
| } |
| |
| /** |
| * intel_gt_mcr_read_any - reads one instance of an MCR register |
| * @gt: GT structure |
| * @reg: register to read |
| * |
| * Reads a GT MCR register. The read will be steered to a non-terminated |
| * instance (i.e., one that isn't fused off or powered down by power gating). |
| * |
| * Context: Calls a function that takes and releases gt->mcr_lock. |
| * |
| * Returns the value from a non-terminated instance of @reg. |
| */ |
| u32 intel_gt_mcr_read_any(struct intel_gt *gt, i915_mcr_reg_t reg) |
| { |
| int type; |
| u8 group, instance; |
| |
| for (type = 0; type < NUM_STEERING_TYPES; type++) { |
| if (reg_needs_read_steering(gt, reg, type)) { |
| get_nonterminated_steering(gt, type, &group, &instance); |
| return rw_with_mcr_steering(gt, reg, |
| FW_REG_READ, |
| group, instance, 0); |
| } |
| } |
| |
| return intel_uncore_read(gt->uncore, mcr_reg_cast(reg)); |
| } |
| |
| static void report_steering_type(struct drm_printer *p, |
| struct intel_gt *gt, |
| enum intel_steering_type type, |
| bool dump_table) |
| { |
| const struct intel_mmio_range *entry; |
| u8 group, instance; |
| |
| BUILD_BUG_ON(ARRAY_SIZE(intel_steering_types) != NUM_STEERING_TYPES); |
| |
| if (!gt->steering_table[type]) { |
| drm_printf(p, "%s steering: uses default steering\n", |
| intel_steering_types[type]); |
| return; |
| } |
| |
| get_nonterminated_steering(gt, type, &group, &instance); |
| drm_printf(p, "%s steering: group=0x%x, instance=0x%x\n", |
| intel_steering_types[type], group, instance); |
| |
| if (!dump_table) |
| return; |
| |
| for (entry = gt->steering_table[type]; entry->end; entry++) |
| drm_printf(p, "\t0x%06x - 0x%06x\n", entry->start, entry->end); |
| } |
| |
| void intel_gt_mcr_report_steering(struct drm_printer *p, struct intel_gt *gt, |
| bool dump_table) |
| { |
| /* |
| * Starting with MTL we no longer have default steering; |
| * all ranges are explicitly steered. |
| */ |
| if (GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 70)) |
| drm_printf(p, "Default steering: group=0x%x, instance=0x%x\n", |
| gt->default_steering.groupid, |
| gt->default_steering.instanceid); |
| |
| if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) { |
| for (int i = 0; i < NUM_STEERING_TYPES; i++) |
| if (gt->steering_table[i]) |
| report_steering_type(p, gt, i, dump_table); |
| } else if (IS_PONTEVECCHIO(gt->i915)) { |
| report_steering_type(p, gt, INSTANCE0, dump_table); |
| } else if (HAS_MSLICE_STEERING(gt->i915)) { |
| report_steering_type(p, gt, MSLICE, dump_table); |
| report_steering_type(p, gt, LNCF, dump_table); |
| } |
| } |
| |
| /** |
| * intel_gt_mcr_get_ss_steering - returns the group/instance steering for a SS |
| * @gt: GT structure |
| * @dss: DSS ID to obtain steering for |
| * @group: pointer to storage for steering group ID |
| * @instance: pointer to storage for steering instance ID |
| * |
| * Returns the steering IDs (via the @group and @instance parameters) that |
| * correspond to a specific subslice/DSS ID. |
| */ |
| void intel_gt_mcr_get_ss_steering(struct intel_gt *gt, unsigned int dss, |
| unsigned int *group, unsigned int *instance) |
| { |
| if (IS_PONTEVECCHIO(gt->i915)) { |
| *group = dss / GEN_DSS_PER_CSLICE; |
| *instance = dss % GEN_DSS_PER_CSLICE; |
| } else if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 50)) { |
| *group = dss / GEN_DSS_PER_GSLICE; |
| *instance = dss % GEN_DSS_PER_GSLICE; |
| } else { |
| *group = dss / GEN_MAX_SS_PER_HSW_SLICE; |
| *instance = dss % GEN_MAX_SS_PER_HSW_SLICE; |
| return; |
| } |
| } |
| |
| /** |
| * intel_gt_mcr_wait_for_reg - wait until MCR register matches expected state |
| * @gt: GT structure |
| * @reg: the register to read |
| * @mask: mask to apply to register value |
| * @value: value to wait for |
| * @fast_timeout_us: fast timeout in microsecond for atomic/tight wait |
| * @slow_timeout_ms: slow timeout in millisecond |
| * |
| * This routine waits until the target register @reg contains the expected |
| * @value after applying the @mask, i.e. it waits until :: |
| * |
| * (intel_gt_mcr_read_any_fw(gt, reg) & mask) == value |
| * |
| * Otherwise, the wait will timeout after @slow_timeout_ms milliseconds. |
| * For atomic context @slow_timeout_ms must be zero and @fast_timeout_us |
| * must be not larger than 20,0000 microseconds. |
| * |
| * This function is basically an MCR-friendly version of |
| * __intel_wait_for_register_fw(). Generally this function will only be used |
| * on GAM registers which are a bit special --- although they're MCR registers, |
| * reads (e.g., waiting for status updates) are always directed to the primary |
| * instance. |
| * |
| * Note that this routine assumes the caller holds forcewake asserted, it is |
| * not suitable for very long waits. |
| * |
| * Context: Calls a function that takes and releases gt->mcr_lock |
| * Return: 0 if the register matches the desired condition, or -ETIMEDOUT. |
| */ |
| int intel_gt_mcr_wait_for_reg(struct intel_gt *gt, |
| i915_mcr_reg_t reg, |
| u32 mask, |
| u32 value, |
| unsigned int fast_timeout_us, |
| unsigned int slow_timeout_ms) |
| { |
| int ret; |
| |
| lockdep_assert_not_held(>->mcr_lock); |
| |
| #define done ((intel_gt_mcr_read_any(gt, reg) & mask) == value) |
| |
| /* Catch any overuse of this function */ |
| might_sleep_if(slow_timeout_ms); |
| GEM_BUG_ON(fast_timeout_us > 20000); |
| GEM_BUG_ON(!fast_timeout_us && !slow_timeout_ms); |
| |
| ret = -ETIMEDOUT; |
| if (fast_timeout_us && fast_timeout_us <= 20000) |
| ret = _wait_for_atomic(done, fast_timeout_us, 0); |
| if (ret && slow_timeout_ms) |
| ret = wait_for(done, slow_timeout_ms); |
| |
| return ret; |
| #undef done |
| } |