| /* | 
 |  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. | 
 |  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) | 
 |  * | 
 |  * Right now, I am very wasteful with the buffers.  I allocate memory | 
 |  * pages and then divide them into 2K frame buffers.  This way I know I | 
 |  * have buffers large enough to hold one frame within one buffer descriptor. | 
 |  * Once I get this working, I will use 64 or 128 byte CPM buffers, which | 
 |  * will be much more memory efficient and will easily handle lots of | 
 |  * small packets. | 
 |  * | 
 |  * Much better multiple PHY support by Magnus Damm. | 
 |  * Copyright (c) 2000 Ericsson Radio Systems AB. | 
 |  * | 
 |  * Support for FEC controller of ColdFire processors. | 
 |  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com) | 
 |  * | 
 |  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be) | 
 |  * Copyright (c) 2004-2006 Macq Electronique SA. | 
 |  */ | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/string.h> | 
 | #include <linux/ptrace.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/ioport.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/init.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/netdevice.h> | 
 | #include <linux/etherdevice.h> | 
 | #include <linux/skbuff.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/workqueue.h> | 
 | #include <linux/bitops.h> | 
 | #include <linux/io.h> | 
 | #include <linux/irq.h> | 
 | #include <linux/clk.h> | 
 | #include <linux/platform_device.h> | 
 | #include <linux/phy.h> | 
 | #include <linux/fec.h> | 
 |  | 
 | #include <asm/cacheflush.h> | 
 |  | 
 | #ifndef CONFIG_ARCH_MXC | 
 | #include <asm/coldfire.h> | 
 | #include <asm/mcfsim.h> | 
 | #endif | 
 |  | 
 | #include "fec.h" | 
 |  | 
 | #ifdef CONFIG_ARCH_MXC | 
 | #include <mach/hardware.h> | 
 | #define FEC_ALIGNMENT	0xf | 
 | #else | 
 | #define FEC_ALIGNMENT	0x3 | 
 | #endif | 
 |  | 
 | /* | 
 |  * Define the fixed address of the FEC hardware. | 
 |  */ | 
 | #if defined(CONFIG_M5272) | 
 |  | 
 | static unsigned char	fec_mac_default[] = { | 
 | 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
 | }; | 
 |  | 
 | /* | 
 |  * Some hardware gets it MAC address out of local flash memory. | 
 |  * if this is non-zero then assume it is the address to get MAC from. | 
 |  */ | 
 | #if defined(CONFIG_NETtel) | 
 | #define	FEC_FLASHMAC	0xf0006006 | 
 | #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) | 
 | #define	FEC_FLASHMAC	0xf0006000 | 
 | #elif defined(CONFIG_CANCam) | 
 | #define	FEC_FLASHMAC	0xf0020000 | 
 | #elif defined (CONFIG_M5272C3) | 
 | #define	FEC_FLASHMAC	(0xffe04000 + 4) | 
 | #elif defined(CONFIG_MOD5272) | 
 | #define FEC_FLASHMAC 	0xffc0406b | 
 | #else | 
 | #define	FEC_FLASHMAC	0 | 
 | #endif | 
 | #endif /* CONFIG_M5272 */ | 
 |  | 
 | /* The number of Tx and Rx buffers.  These are allocated from the page | 
 |  * pool.  The code may assume these are power of two, so it it best | 
 |  * to keep them that size. | 
 |  * We don't need to allocate pages for the transmitter.  We just use | 
 |  * the skbuffer directly. | 
 |  */ | 
 | #define FEC_ENET_RX_PAGES	8 | 
 | #define FEC_ENET_RX_FRSIZE	2048 | 
 | #define FEC_ENET_RX_FRPPG	(PAGE_SIZE / FEC_ENET_RX_FRSIZE) | 
 | #define RX_RING_SIZE		(FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES) | 
 | #define FEC_ENET_TX_FRSIZE	2048 | 
 | #define FEC_ENET_TX_FRPPG	(PAGE_SIZE / FEC_ENET_TX_FRSIZE) | 
 | #define TX_RING_SIZE		16	/* Must be power of two */ | 
 | #define TX_RING_MOD_MASK	15	/*   for this to work */ | 
 |  | 
 | #if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE) | 
 | #error "FEC: descriptor ring size constants too large" | 
 | #endif | 
 |  | 
 | /* Interrupt events/masks. */ | 
 | #define FEC_ENET_HBERR	((uint)0x80000000)	/* Heartbeat error */ | 
 | #define FEC_ENET_BABR	((uint)0x40000000)	/* Babbling receiver */ | 
 | #define FEC_ENET_BABT	((uint)0x20000000)	/* Babbling transmitter */ | 
 | #define FEC_ENET_GRA	((uint)0x10000000)	/* Graceful stop complete */ | 
 | #define FEC_ENET_TXF	((uint)0x08000000)	/* Full frame transmitted */ | 
 | #define FEC_ENET_TXB	((uint)0x04000000)	/* A buffer was transmitted */ | 
 | #define FEC_ENET_RXF	((uint)0x02000000)	/* Full frame received */ | 
 | #define FEC_ENET_RXB	((uint)0x01000000)	/* A buffer was received */ | 
 | #define FEC_ENET_MII	((uint)0x00800000)	/* MII interrupt */ | 
 | #define FEC_ENET_EBERR	((uint)0x00400000)	/* SDMA bus error */ | 
 |  | 
 | /* The FEC stores dest/src/type, data, and checksum for receive packets. | 
 |  */ | 
 | #define PKT_MAXBUF_SIZE		1518 | 
 | #define PKT_MINBUF_SIZE		64 | 
 | #define PKT_MAXBLR_SIZE		1520 | 
 |  | 
 |  | 
 | /* | 
 |  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame | 
 |  * size bits. Other FEC hardware does not, so we need to take that into | 
 |  * account when setting it. | 
 |  */ | 
 | #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ | 
 |     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARCH_MXC) | 
 | #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16) | 
 | #else | 
 | #define	OPT_FRAME_SIZE	0 | 
 | #endif | 
 |  | 
 | /* The FEC buffer descriptors track the ring buffers.  The rx_bd_base and | 
 |  * tx_bd_base always point to the base of the buffer descriptors.  The | 
 |  * cur_rx and cur_tx point to the currently available buffer. | 
 |  * The dirty_tx tracks the current buffer that is being sent by the | 
 |  * controller.  The cur_tx and dirty_tx are equal under both completely | 
 |  * empty and completely full conditions.  The empty/ready indicator in | 
 |  * the buffer descriptor determines the actual condition. | 
 |  */ | 
 | struct fec_enet_private { | 
 | 	/* Hardware registers of the FEC device */ | 
 | 	void __iomem *hwp; | 
 |  | 
 | 	struct net_device *netdev; | 
 |  | 
 | 	struct clk *clk; | 
 |  | 
 | 	/* The saved address of a sent-in-place packet/buffer, for skfree(). */ | 
 | 	unsigned char *tx_bounce[TX_RING_SIZE]; | 
 | 	struct	sk_buff* tx_skbuff[TX_RING_SIZE]; | 
 | 	struct	sk_buff* rx_skbuff[RX_RING_SIZE]; | 
 | 	ushort	skb_cur; | 
 | 	ushort	skb_dirty; | 
 |  | 
 | 	/* CPM dual port RAM relative addresses */ | 
 | 	dma_addr_t	bd_dma; | 
 | 	/* Address of Rx and Tx buffers */ | 
 | 	struct bufdesc	*rx_bd_base; | 
 | 	struct bufdesc	*tx_bd_base; | 
 | 	/* The next free ring entry */ | 
 | 	struct bufdesc	*cur_rx, *cur_tx;  | 
 | 	/* The ring entries to be free()ed */ | 
 | 	struct bufdesc	*dirty_tx; | 
 |  | 
 | 	uint	tx_full; | 
 | 	/* hold while accessing the HW like ringbuffer for tx/rx but not MAC */ | 
 | 	spinlock_t hw_lock; | 
 |  | 
 | 	struct  platform_device *pdev; | 
 |  | 
 | 	int	opened; | 
 |  | 
 | 	/* Phylib and MDIO interface */ | 
 | 	struct  mii_bus *mii_bus; | 
 | 	struct  phy_device *phy_dev; | 
 | 	int     mii_timeout; | 
 | 	uint    phy_speed; | 
 | 	phy_interface_t	phy_interface; | 
 | 	int	index; | 
 | 	int	link; | 
 | 	int	full_duplex; | 
 | }; | 
 |  | 
 | static irqreturn_t fec_enet_interrupt(int irq, void * dev_id); | 
 | static void fec_enet_tx(struct net_device *dev); | 
 | static void fec_enet_rx(struct net_device *dev); | 
 | static int fec_enet_close(struct net_device *dev); | 
 | static void fec_restart(struct net_device *dev, int duplex); | 
 | static void fec_stop(struct net_device *dev); | 
 |  | 
 | /* FEC MII MMFR bits definition */ | 
 | #define FEC_MMFR_ST		(1 << 30) | 
 | #define FEC_MMFR_OP_READ	(2 << 28) | 
 | #define FEC_MMFR_OP_WRITE	(1 << 28) | 
 | #define FEC_MMFR_PA(v)		((v & 0x1f) << 23) | 
 | #define FEC_MMFR_RA(v)		((v & 0x1f) << 18) | 
 | #define FEC_MMFR_TA		(2 << 16) | 
 | #define FEC_MMFR_DATA(v)	(v & 0xffff) | 
 |  | 
 | #define FEC_MII_TIMEOUT		10000 | 
 |  | 
 | /* Transmitter timeout */ | 
 | #define TX_TIMEOUT (2 * HZ) | 
 |  | 
 | static int | 
 | fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	struct bufdesc *bdp; | 
 | 	void *bufaddr; | 
 | 	unsigned short	status; | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (!fep->link) { | 
 | 		/* Link is down or autonegotiation is in progress. */ | 
 | 		return NETDEV_TX_BUSY; | 
 | 	} | 
 |  | 
 | 	spin_lock_irqsave(&fep->hw_lock, flags); | 
 | 	/* Fill in a Tx ring entry */ | 
 | 	bdp = fep->cur_tx; | 
 |  | 
 | 	status = bdp->cbd_sc; | 
 |  | 
 | 	if (status & BD_ENET_TX_READY) { | 
 | 		/* Ooops.  All transmit buffers are full.  Bail out. | 
 | 		 * This should not happen, since dev->tbusy should be set. | 
 | 		 */ | 
 | 		printk("%s: tx queue full!.\n", dev->name); | 
 | 		spin_unlock_irqrestore(&fep->hw_lock, flags); | 
 | 		return NETDEV_TX_BUSY; | 
 | 	} | 
 |  | 
 | 	/* Clear all of the status flags */ | 
 | 	status &= ~BD_ENET_TX_STATS; | 
 |  | 
 | 	/* Set buffer length and buffer pointer */ | 
 | 	bufaddr = skb->data; | 
 | 	bdp->cbd_datlen = skb->len; | 
 |  | 
 | 	/* | 
 | 	 * On some FEC implementations data must be aligned on | 
 | 	 * 4-byte boundaries. Use bounce buffers to copy data | 
 | 	 * and get it aligned. Ugh. | 
 | 	 */ | 
 | 	if (((unsigned long) bufaddr) & FEC_ALIGNMENT) { | 
 | 		unsigned int index; | 
 | 		index = bdp - fep->tx_bd_base; | 
 | 		memcpy(fep->tx_bounce[index], (void *)skb->data, skb->len); | 
 | 		bufaddr = fep->tx_bounce[index]; | 
 | 	} | 
 |  | 
 | 	/* Save skb pointer */ | 
 | 	fep->tx_skbuff[fep->skb_cur] = skb; | 
 |  | 
 | 	dev->stats.tx_bytes += skb->len; | 
 | 	fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK; | 
 |  | 
 | 	/* Push the data cache so the CPM does not get stale memory | 
 | 	 * data. | 
 | 	 */ | 
 | 	bdp->cbd_bufaddr = dma_map_single(&dev->dev, bufaddr, | 
 | 			FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE); | 
 |  | 
 | 	/* Send it on its way.  Tell FEC it's ready, interrupt when done, | 
 | 	 * it's the last BD of the frame, and to put the CRC on the end. | 
 | 	 */ | 
 | 	status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR | 
 | 			| BD_ENET_TX_LAST | BD_ENET_TX_TC); | 
 | 	bdp->cbd_sc = status; | 
 |  | 
 | 	/* Trigger transmission start */ | 
 | 	writel(0, fep->hwp + FEC_X_DES_ACTIVE); | 
 |  | 
 | 	/* If this was the last BD in the ring, start at the beginning again. */ | 
 | 	if (status & BD_ENET_TX_WRAP) | 
 | 		bdp = fep->tx_bd_base; | 
 | 	else | 
 | 		bdp++; | 
 |  | 
 | 	if (bdp == fep->dirty_tx) { | 
 | 		fep->tx_full = 1; | 
 | 		netif_stop_queue(dev); | 
 | 	} | 
 |  | 
 | 	fep->cur_tx = bdp; | 
 |  | 
 | 	spin_unlock_irqrestore(&fep->hw_lock, flags); | 
 |  | 
 | 	return NETDEV_TX_OK; | 
 | } | 
 |  | 
 | static void | 
 | fec_timeout(struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 |  | 
 | 	dev->stats.tx_errors++; | 
 |  | 
 | 	fec_restart(dev, fep->full_duplex); | 
 | 	netif_wake_queue(dev); | 
 | } | 
 |  | 
 | static irqreturn_t | 
 | fec_enet_interrupt(int irq, void * dev_id) | 
 | { | 
 | 	struct	net_device *dev = dev_id; | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	uint	int_events; | 
 | 	irqreturn_t ret = IRQ_NONE; | 
 |  | 
 | 	do { | 
 | 		int_events = readl(fep->hwp + FEC_IEVENT); | 
 | 		writel(int_events, fep->hwp + FEC_IEVENT); | 
 |  | 
 | 		if (int_events & FEC_ENET_RXF) { | 
 | 			ret = IRQ_HANDLED; | 
 | 			fec_enet_rx(dev); | 
 | 		} | 
 |  | 
 | 		/* Transmit OK, or non-fatal error. Update the buffer | 
 | 		 * descriptors. FEC handles all errors, we just discover | 
 | 		 * them as part of the transmit process. | 
 | 		 */ | 
 | 		if (int_events & FEC_ENET_TXF) { | 
 | 			ret = IRQ_HANDLED; | 
 | 			fec_enet_tx(dev); | 
 | 		} | 
 | 	} while (int_events); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 |  | 
 | static void | 
 | fec_enet_tx(struct net_device *dev) | 
 | { | 
 | 	struct	fec_enet_private *fep; | 
 | 	struct bufdesc *bdp; | 
 | 	unsigned short status; | 
 | 	struct	sk_buff	*skb; | 
 |  | 
 | 	fep = netdev_priv(dev); | 
 | 	spin_lock(&fep->hw_lock); | 
 | 	bdp = fep->dirty_tx; | 
 |  | 
 | 	while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) { | 
 | 		if (bdp == fep->cur_tx && fep->tx_full == 0) | 
 | 			break; | 
 |  | 
 | 		dma_unmap_single(&dev->dev, bdp->cbd_bufaddr, FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE); | 
 | 		bdp->cbd_bufaddr = 0; | 
 |  | 
 | 		skb = fep->tx_skbuff[fep->skb_dirty]; | 
 | 		/* Check for errors. */ | 
 | 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC | | 
 | 				   BD_ENET_TX_RL | BD_ENET_TX_UN | | 
 | 				   BD_ENET_TX_CSL)) { | 
 | 			dev->stats.tx_errors++; | 
 | 			if (status & BD_ENET_TX_HB)  /* No heartbeat */ | 
 | 				dev->stats.tx_heartbeat_errors++; | 
 | 			if (status & BD_ENET_TX_LC)  /* Late collision */ | 
 | 				dev->stats.tx_window_errors++; | 
 | 			if (status & BD_ENET_TX_RL)  /* Retrans limit */ | 
 | 				dev->stats.tx_aborted_errors++; | 
 | 			if (status & BD_ENET_TX_UN)  /* Underrun */ | 
 | 				dev->stats.tx_fifo_errors++; | 
 | 			if (status & BD_ENET_TX_CSL) /* Carrier lost */ | 
 | 				dev->stats.tx_carrier_errors++; | 
 | 		} else { | 
 | 			dev->stats.tx_packets++; | 
 | 		} | 
 |  | 
 | 		if (status & BD_ENET_TX_READY) | 
 | 			printk("HEY! Enet xmit interrupt and TX_READY.\n"); | 
 |  | 
 | 		/* Deferred means some collisions occurred during transmit, | 
 | 		 * but we eventually sent the packet OK. | 
 | 		 */ | 
 | 		if (status & BD_ENET_TX_DEF) | 
 | 			dev->stats.collisions++; | 
 |  | 
 | 		/* Free the sk buffer associated with this last transmit */ | 
 | 		dev_kfree_skb_any(skb); | 
 | 		fep->tx_skbuff[fep->skb_dirty] = NULL; | 
 | 		fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK; | 
 |  | 
 | 		/* Update pointer to next buffer descriptor to be transmitted */ | 
 | 		if (status & BD_ENET_TX_WRAP) | 
 | 			bdp = fep->tx_bd_base; | 
 | 		else | 
 | 			bdp++; | 
 |  | 
 | 		/* Since we have freed up a buffer, the ring is no longer full | 
 | 		 */ | 
 | 		if (fep->tx_full) { | 
 | 			fep->tx_full = 0; | 
 | 			if (netif_queue_stopped(dev)) | 
 | 				netif_wake_queue(dev); | 
 | 		} | 
 | 	} | 
 | 	fep->dirty_tx = bdp; | 
 | 	spin_unlock(&fep->hw_lock); | 
 | } | 
 |  | 
 |  | 
 | /* During a receive, the cur_rx points to the current incoming buffer. | 
 |  * When we update through the ring, if the next incoming buffer has | 
 |  * not been given to the system, we just set the empty indicator, | 
 |  * effectively tossing the packet. | 
 |  */ | 
 | static void | 
 | fec_enet_rx(struct net_device *dev) | 
 | { | 
 | 	struct	fec_enet_private *fep = netdev_priv(dev); | 
 | 	struct bufdesc *bdp; | 
 | 	unsigned short status; | 
 | 	struct	sk_buff	*skb; | 
 | 	ushort	pkt_len; | 
 | 	__u8 *data; | 
 |  | 
 | #ifdef CONFIG_M532x | 
 | 	flush_cache_all(); | 
 | #endif | 
 |  | 
 | 	spin_lock(&fep->hw_lock); | 
 |  | 
 | 	/* First, grab all of the stats for the incoming packet. | 
 | 	 * These get messed up if we get called due to a busy condition. | 
 | 	 */ | 
 | 	bdp = fep->cur_rx; | 
 |  | 
 | 	while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) { | 
 |  | 
 | 		/* Since we have allocated space to hold a complete frame, | 
 | 		 * the last indicator should be set. | 
 | 		 */ | 
 | 		if ((status & BD_ENET_RX_LAST) == 0) | 
 | 			printk("FEC ENET: rcv is not +last\n"); | 
 |  | 
 | 		if (!fep->opened) | 
 | 			goto rx_processing_done; | 
 |  | 
 | 		/* Check for errors. */ | 
 | 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | | 
 | 			   BD_ENET_RX_CR | BD_ENET_RX_OV)) { | 
 | 			dev->stats.rx_errors++; | 
 | 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) { | 
 | 				/* Frame too long or too short. */ | 
 | 				dev->stats.rx_length_errors++; | 
 | 			} | 
 | 			if (status & BD_ENET_RX_NO)	/* Frame alignment */ | 
 | 				dev->stats.rx_frame_errors++; | 
 | 			if (status & BD_ENET_RX_CR)	/* CRC Error */ | 
 | 				dev->stats.rx_crc_errors++; | 
 | 			if (status & BD_ENET_RX_OV)	/* FIFO overrun */ | 
 | 				dev->stats.rx_fifo_errors++; | 
 | 		} | 
 |  | 
 | 		/* Report late collisions as a frame error. | 
 | 		 * On this error, the BD is closed, but we don't know what we | 
 | 		 * have in the buffer.  So, just drop this frame on the floor. | 
 | 		 */ | 
 | 		if (status & BD_ENET_RX_CL) { | 
 | 			dev->stats.rx_errors++; | 
 | 			dev->stats.rx_frame_errors++; | 
 | 			goto rx_processing_done; | 
 | 		} | 
 |  | 
 | 		/* Process the incoming frame. */ | 
 | 		dev->stats.rx_packets++; | 
 | 		pkt_len = bdp->cbd_datlen; | 
 | 		dev->stats.rx_bytes += pkt_len; | 
 | 		data = (__u8*)__va(bdp->cbd_bufaddr); | 
 |  | 
 | 	        dma_unmap_single(NULL, bdp->cbd_bufaddr, bdp->cbd_datlen, | 
 |         			DMA_FROM_DEVICE); | 
 |  | 
 | 		/* This does 16 byte alignment, exactly what we need. | 
 | 		 * The packet length includes FCS, but we don't want to | 
 | 		 * include that when passing upstream as it messes up | 
 | 		 * bridging applications. | 
 | 		 */ | 
 | 		skb = dev_alloc_skb(pkt_len - 4 + NET_IP_ALIGN); | 
 |  | 
 | 		if (unlikely(!skb)) { | 
 | 			printk("%s: Memory squeeze, dropping packet.\n", | 
 | 					dev->name); | 
 | 			dev->stats.rx_dropped++; | 
 | 		} else { | 
 | 			skb_reserve(skb, NET_IP_ALIGN); | 
 | 			skb_put(skb, pkt_len - 4);	/* Make room */ | 
 | 			skb_copy_to_linear_data(skb, data, pkt_len - 4); | 
 | 			skb->protocol = eth_type_trans(skb, dev); | 
 | 			netif_rx(skb); | 
 | 		} | 
 |  | 
 |         	bdp->cbd_bufaddr = dma_map_single(NULL, data, bdp->cbd_datlen, | 
 | 			DMA_FROM_DEVICE); | 
 | rx_processing_done: | 
 | 		/* Clear the status flags for this buffer */ | 
 | 		status &= ~BD_ENET_RX_STATS; | 
 |  | 
 | 		/* Mark the buffer empty */ | 
 | 		status |= BD_ENET_RX_EMPTY; | 
 | 		bdp->cbd_sc = status; | 
 |  | 
 | 		/* Update BD pointer to next entry */ | 
 | 		if (status & BD_ENET_RX_WRAP) | 
 | 			bdp = fep->rx_bd_base; | 
 | 		else | 
 | 			bdp++; | 
 | 		/* Doing this here will keep the FEC running while we process | 
 | 		 * incoming frames.  On a heavily loaded network, we should be | 
 | 		 * able to keep up at the expense of system resources. | 
 | 		 */ | 
 | 		writel(0, fep->hwp + FEC_R_DES_ACTIVE); | 
 | 	} | 
 | 	fep->cur_rx = bdp; | 
 |  | 
 | 	spin_unlock(&fep->hw_lock); | 
 | } | 
 |  | 
 | /* ------------------------------------------------------------------------- */ | 
 | #ifdef CONFIG_M5272 | 
 | static void __inline__ fec_get_mac(struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	unsigned char *iap, tmpaddr[ETH_ALEN]; | 
 |  | 
 | 	if (FEC_FLASHMAC) { | 
 | 		/* | 
 | 		 * Get MAC address from FLASH. | 
 | 		 * If it is all 1's or 0's, use the default. | 
 | 		 */ | 
 | 		iap = (unsigned char *)FEC_FLASHMAC; | 
 | 		if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) && | 
 | 		    (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0)) | 
 | 			iap = fec_mac_default; | 
 | 		if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) && | 
 | 		    (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff)) | 
 | 			iap = fec_mac_default; | 
 | 	} else { | 
 | 		*((unsigned long *) &tmpaddr[0]) = readl(fep->hwp + FEC_ADDR_LOW); | 
 | 		*((unsigned short *) &tmpaddr[4]) = (readl(fep->hwp + FEC_ADDR_HIGH) >> 16); | 
 | 		iap = &tmpaddr[0]; | 
 | 	} | 
 |  | 
 | 	memcpy(dev->dev_addr, iap, ETH_ALEN); | 
 |  | 
 | 	/* Adjust MAC if using default MAC address */ | 
 | 	if (iap == fec_mac_default) | 
 | 		 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index; | 
 | } | 
 | #endif | 
 |  | 
 | /* ------------------------------------------------------------------------- */ | 
 |  | 
 | /* | 
 |  * Phy section | 
 |  */ | 
 | static void fec_enet_adjust_link(struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	struct phy_device *phy_dev = fep->phy_dev; | 
 | 	unsigned long flags; | 
 |  | 
 | 	int status_change = 0; | 
 |  | 
 | 	spin_lock_irqsave(&fep->hw_lock, flags); | 
 |  | 
 | 	/* Prevent a state halted on mii error */ | 
 | 	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) { | 
 | 		phy_dev->state = PHY_RESUMING; | 
 | 		goto spin_unlock; | 
 | 	} | 
 |  | 
 | 	/* Duplex link change */ | 
 | 	if (phy_dev->link) { | 
 | 		if (fep->full_duplex != phy_dev->duplex) { | 
 | 			fec_restart(dev, phy_dev->duplex); | 
 | 			status_change = 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Link on or off change */ | 
 | 	if (phy_dev->link != fep->link) { | 
 | 		fep->link = phy_dev->link; | 
 | 		if (phy_dev->link) | 
 | 			fec_restart(dev, phy_dev->duplex); | 
 | 		else | 
 | 			fec_stop(dev); | 
 | 		status_change = 1; | 
 | 	} | 
 |  | 
 | spin_unlock: | 
 | 	spin_unlock_irqrestore(&fep->hw_lock, flags); | 
 |  | 
 | 	if (status_change) | 
 | 		phy_print_status(phy_dev); | 
 | } | 
 |  | 
 | /* | 
 |  * NOTE: a MII transaction is during around 25 us, so polling it... | 
 |  */ | 
 | static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum) | 
 | { | 
 | 	struct fec_enet_private *fep = bus->priv; | 
 | 	int timeout = FEC_MII_TIMEOUT; | 
 |  | 
 | 	fep->mii_timeout = 0; | 
 |  | 
 | 	/* clear MII end of transfer bit*/ | 
 | 	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); | 
 |  | 
 | 	/* start a read op */ | 
 | 	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ | | 
 | 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) | | 
 | 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); | 
 |  | 
 | 	/* wait for end of transfer */ | 
 | 	while (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_MII)) { | 
 | 		cpu_relax(); | 
 | 		if (timeout-- < 0) { | 
 | 			fep->mii_timeout = 1; | 
 | 			printk(KERN_ERR "FEC: MDIO read timeout\n"); | 
 | 			return -ETIMEDOUT; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* return value */ | 
 | 	return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); | 
 | } | 
 |  | 
 | static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum, | 
 | 			   u16 value) | 
 | { | 
 | 	struct fec_enet_private *fep = bus->priv; | 
 | 	int timeout = FEC_MII_TIMEOUT; | 
 |  | 
 | 	fep->mii_timeout = 0; | 
 |  | 
 | 	/* clear MII end of transfer bit*/ | 
 | 	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); | 
 |  | 
 | 	/* start a read op */ | 
 | 	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ | | 
 | 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) | | 
 | 		FEC_MMFR_TA | FEC_MMFR_DATA(value), | 
 | 		fep->hwp + FEC_MII_DATA); | 
 |  | 
 | 	/* wait for end of transfer */ | 
 | 	while (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_MII)) { | 
 | 		cpu_relax(); | 
 | 		if (timeout-- < 0) { | 
 | 			fep->mii_timeout = 1; | 
 | 			printk(KERN_ERR "FEC: MDIO write timeout\n"); | 
 | 			return -ETIMEDOUT; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int fec_enet_mdio_reset(struct mii_bus *bus) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int fec_enet_mii_probe(struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	struct phy_device *phy_dev = NULL; | 
 | 	int phy_addr; | 
 |  | 
 | 	fep->phy_dev = NULL; | 
 |  | 
 | 	/* find the first phy */ | 
 | 	for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) { | 
 | 		if (fep->mii_bus->phy_map[phy_addr]) { | 
 | 			phy_dev = fep->mii_bus->phy_map[phy_addr]; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!phy_dev) { | 
 | 		printk(KERN_ERR "%s: no PHY found\n", dev->name); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	/* attach the mac to the phy */ | 
 | 	phy_dev = phy_connect(dev, dev_name(&phy_dev->dev), | 
 | 			     &fec_enet_adjust_link, 0, | 
 | 			     PHY_INTERFACE_MODE_MII); | 
 | 	if (IS_ERR(phy_dev)) { | 
 | 		printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name); | 
 | 		return PTR_ERR(phy_dev); | 
 | 	} | 
 |  | 
 | 	/* mask with MAC supported features */ | 
 | 	phy_dev->supported &= PHY_BASIC_FEATURES; | 
 | 	phy_dev->advertising = phy_dev->supported; | 
 |  | 
 | 	fep->phy_dev = phy_dev; | 
 | 	fep->link = 0; | 
 | 	fep->full_duplex = 0; | 
 |  | 
 | 	printk(KERN_INFO "%s: Freescale FEC PHY driver [%s] " | 
 | 		"(mii_bus:phy_addr=%s, irq=%d)\n", dev->name, | 
 | 		fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev), | 
 | 		fep->phy_dev->irq); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int fec_enet_mii_init(struct platform_device *pdev) | 
 | { | 
 | 	struct net_device *dev = platform_get_drvdata(pdev); | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	int err = -ENXIO, i; | 
 |  | 
 | 	fep->mii_timeout = 0; | 
 |  | 
 | 	/* | 
 | 	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed) | 
 | 	 */ | 
 | 	fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk), 5000000) << 1; | 
 | 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); | 
 |  | 
 | 	fep->mii_bus = mdiobus_alloc(); | 
 | 	if (fep->mii_bus == NULL) { | 
 | 		err = -ENOMEM; | 
 | 		goto err_out; | 
 | 	} | 
 |  | 
 | 	fep->mii_bus->name = "fec_enet_mii_bus"; | 
 | 	fep->mii_bus->read = fec_enet_mdio_read; | 
 | 	fep->mii_bus->write = fec_enet_mdio_write; | 
 | 	fep->mii_bus->reset = fec_enet_mdio_reset; | 
 | 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%x", pdev->id); | 
 | 	fep->mii_bus->priv = fep; | 
 | 	fep->mii_bus->parent = &pdev->dev; | 
 |  | 
 | 	fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL); | 
 | 	if (!fep->mii_bus->irq) { | 
 | 		err = -ENOMEM; | 
 | 		goto err_out_free_mdiobus; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < PHY_MAX_ADDR; i++) | 
 | 		fep->mii_bus->irq[i] = PHY_POLL; | 
 |  | 
 | 	platform_set_drvdata(dev, fep->mii_bus); | 
 |  | 
 | 	if (mdiobus_register(fep->mii_bus)) | 
 | 		goto err_out_free_mdio_irq; | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_out_free_mdio_irq: | 
 | 	kfree(fep->mii_bus->irq); | 
 | err_out_free_mdiobus: | 
 | 	mdiobus_free(fep->mii_bus); | 
 | err_out: | 
 | 	return err; | 
 | } | 
 |  | 
 | static void fec_enet_mii_remove(struct fec_enet_private *fep) | 
 | { | 
 | 	if (fep->phy_dev) | 
 | 		phy_disconnect(fep->phy_dev); | 
 | 	mdiobus_unregister(fep->mii_bus); | 
 | 	kfree(fep->mii_bus->irq); | 
 | 	mdiobus_free(fep->mii_bus); | 
 | } | 
 |  | 
 | static int fec_enet_get_settings(struct net_device *dev, | 
 | 				  struct ethtool_cmd *cmd) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	struct phy_device *phydev = fep->phy_dev; | 
 |  | 
 | 	if (!phydev) | 
 | 		return -ENODEV; | 
 |  | 
 | 	return phy_ethtool_gset(phydev, cmd); | 
 | } | 
 |  | 
 | static int fec_enet_set_settings(struct net_device *dev, | 
 | 				 struct ethtool_cmd *cmd) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	struct phy_device *phydev = fep->phy_dev; | 
 |  | 
 | 	if (!phydev) | 
 | 		return -ENODEV; | 
 |  | 
 | 	return phy_ethtool_sset(phydev, cmd); | 
 | } | 
 |  | 
 | static void fec_enet_get_drvinfo(struct net_device *dev, | 
 | 				 struct ethtool_drvinfo *info) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 |  | 
 | 	strcpy(info->driver, fep->pdev->dev.driver->name); | 
 | 	strcpy(info->version, "Revision: 1.0"); | 
 | 	strcpy(info->bus_info, dev_name(&dev->dev)); | 
 | } | 
 |  | 
 | static struct ethtool_ops fec_enet_ethtool_ops = { | 
 | 	.get_settings		= fec_enet_get_settings, | 
 | 	.set_settings		= fec_enet_set_settings, | 
 | 	.get_drvinfo		= fec_enet_get_drvinfo, | 
 | 	.get_link		= ethtool_op_get_link, | 
 | }; | 
 |  | 
 | static int fec_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	struct phy_device *phydev = fep->phy_dev; | 
 |  | 
 | 	if (!netif_running(dev)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!phydev) | 
 | 		return -ENODEV; | 
 |  | 
 | 	return phy_mii_ioctl(phydev, if_mii(rq), cmd); | 
 | } | 
 |  | 
 | static void fec_enet_free_buffers(struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	int i; | 
 | 	struct sk_buff *skb; | 
 | 	struct bufdesc	*bdp; | 
 |  | 
 | 	bdp = fep->rx_bd_base; | 
 | 	for (i = 0; i < RX_RING_SIZE; i++) { | 
 | 		skb = fep->rx_skbuff[i]; | 
 |  | 
 | 		if (bdp->cbd_bufaddr) | 
 | 			dma_unmap_single(&dev->dev, bdp->cbd_bufaddr, | 
 | 					FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE); | 
 | 		if (skb) | 
 | 			dev_kfree_skb(skb); | 
 | 		bdp++; | 
 | 	} | 
 |  | 
 | 	bdp = fep->tx_bd_base; | 
 | 	for (i = 0; i < TX_RING_SIZE; i++) | 
 | 		kfree(fep->tx_bounce[i]); | 
 | } | 
 |  | 
 | static int fec_enet_alloc_buffers(struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	int i; | 
 | 	struct sk_buff *skb; | 
 | 	struct bufdesc	*bdp; | 
 |  | 
 | 	bdp = fep->rx_bd_base; | 
 | 	for (i = 0; i < RX_RING_SIZE; i++) { | 
 | 		skb = dev_alloc_skb(FEC_ENET_RX_FRSIZE); | 
 | 		if (!skb) { | 
 | 			fec_enet_free_buffers(dev); | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 		fep->rx_skbuff[i] = skb; | 
 |  | 
 | 		bdp->cbd_bufaddr = dma_map_single(&dev->dev, skb->data, | 
 | 				FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE); | 
 | 		bdp->cbd_sc = BD_ENET_RX_EMPTY; | 
 | 		bdp++; | 
 | 	} | 
 |  | 
 | 	/* Set the last buffer to wrap. */ | 
 | 	bdp--; | 
 | 	bdp->cbd_sc |= BD_SC_WRAP; | 
 |  | 
 | 	bdp = fep->tx_bd_base; | 
 | 	for (i = 0; i < TX_RING_SIZE; i++) { | 
 | 		fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL); | 
 |  | 
 | 		bdp->cbd_sc = 0; | 
 | 		bdp->cbd_bufaddr = 0; | 
 | 		bdp++; | 
 | 	} | 
 |  | 
 | 	/* Set the last buffer to wrap. */ | 
 | 	bdp--; | 
 | 	bdp->cbd_sc |= BD_SC_WRAP; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | fec_enet_open(struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	int ret; | 
 |  | 
 | 	/* I should reset the ring buffers here, but I don't yet know | 
 | 	 * a simple way to do that. | 
 | 	 */ | 
 |  | 
 | 	ret = fec_enet_alloc_buffers(dev); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* Probe and connect to PHY when open the interface */ | 
 | 	ret = fec_enet_mii_probe(dev); | 
 | 	if (ret) { | 
 | 		fec_enet_free_buffers(dev); | 
 | 		return ret; | 
 | 	} | 
 | 	phy_start(fep->phy_dev); | 
 | 	netif_start_queue(dev); | 
 | 	fep->opened = 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | fec_enet_close(struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 |  | 
 | 	/* Don't know what to do yet. */ | 
 | 	fep->opened = 0; | 
 | 	netif_stop_queue(dev); | 
 | 	fec_stop(dev); | 
 |  | 
 | 	if (fep->phy_dev) | 
 | 		phy_disconnect(fep->phy_dev); | 
 |  | 
 |         fec_enet_free_buffers(dev); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Set or clear the multicast filter for this adaptor. | 
 |  * Skeleton taken from sunlance driver. | 
 |  * The CPM Ethernet implementation allows Multicast as well as individual | 
 |  * MAC address filtering.  Some of the drivers check to make sure it is | 
 |  * a group multicast address, and discard those that are not.  I guess I | 
 |  * will do the same for now, but just remove the test if you want | 
 |  * individual filtering as well (do the upper net layers want or support | 
 |  * this kind of feature?). | 
 |  */ | 
 |  | 
 | #define HASH_BITS	6		/* #bits in hash */ | 
 | #define CRC32_POLY	0xEDB88320 | 
 |  | 
 | static void set_multicast_list(struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	struct netdev_hw_addr *ha; | 
 | 	unsigned int i, bit, data, crc, tmp; | 
 | 	unsigned char hash; | 
 |  | 
 | 	if (dev->flags & IFF_PROMISC) { | 
 | 		tmp = readl(fep->hwp + FEC_R_CNTRL); | 
 | 		tmp |= 0x8; | 
 | 		writel(tmp, fep->hwp + FEC_R_CNTRL); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	tmp = readl(fep->hwp + FEC_R_CNTRL); | 
 | 	tmp &= ~0x8; | 
 | 	writel(tmp, fep->hwp + FEC_R_CNTRL); | 
 |  | 
 | 	if (dev->flags & IFF_ALLMULTI) { | 
 | 		/* Catch all multicast addresses, so set the | 
 | 		 * filter to all 1's | 
 | 		 */ | 
 | 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); | 
 | 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW); | 
 |  | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Clear filter and add the addresses in hash register | 
 | 	 */ | 
 | 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); | 
 | 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW); | 
 |  | 
 | 	netdev_for_each_mc_addr(ha, dev) { | 
 | 		/* Only support group multicast for now */ | 
 | 		if (!(ha->addr[0] & 1)) | 
 | 			continue; | 
 |  | 
 | 		/* calculate crc32 value of mac address */ | 
 | 		crc = 0xffffffff; | 
 |  | 
 | 		for (i = 0; i < dev->addr_len; i++) { | 
 | 			data = ha->addr[i]; | 
 | 			for (bit = 0; bit < 8; bit++, data >>= 1) { | 
 | 				crc = (crc >> 1) ^ | 
 | 				(((crc ^ data) & 1) ? CRC32_POLY : 0); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* only upper 6 bits (HASH_BITS) are used | 
 | 		 * which point to specific bit in he hash registers | 
 | 		 */ | 
 | 		hash = (crc >> (32 - HASH_BITS)) & 0x3f; | 
 |  | 
 | 		if (hash > 31) { | 
 | 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH); | 
 | 			tmp |= 1 << (hash - 32); | 
 | 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); | 
 | 		} else { | 
 | 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW); | 
 | 			tmp |= 1 << hash; | 
 | 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* Set a MAC change in hardware. */ | 
 | static int | 
 | fec_set_mac_address(struct net_device *dev, void *p) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	struct sockaddr *addr = p; | 
 |  | 
 | 	if (!is_valid_ether_addr(addr->sa_data)) | 
 | 		return -EADDRNOTAVAIL; | 
 |  | 
 | 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); | 
 |  | 
 | 	writel(dev->dev_addr[3] | (dev->dev_addr[2] << 8) | | 
 | 		(dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24), | 
 | 		fep->hwp + FEC_ADDR_LOW); | 
 | 	writel((dev->dev_addr[5] << 16) | (dev->dev_addr[4] << 24), | 
 | 		fep->hwp + FEC_ADDR_HIGH); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct net_device_ops fec_netdev_ops = { | 
 | 	.ndo_open		= fec_enet_open, | 
 | 	.ndo_stop		= fec_enet_close, | 
 | 	.ndo_start_xmit		= fec_enet_start_xmit, | 
 | 	.ndo_set_multicast_list = set_multicast_list, | 
 | 	.ndo_change_mtu		= eth_change_mtu, | 
 | 	.ndo_validate_addr	= eth_validate_addr, | 
 | 	.ndo_tx_timeout		= fec_timeout, | 
 | 	.ndo_set_mac_address	= fec_set_mac_address, | 
 | 	.ndo_do_ioctl           = fec_enet_ioctl, | 
 | }; | 
 |  | 
 |  /* | 
 |   * XXX:  We need to clean up on failure exits here. | 
 |   * | 
 |   * index is only used in legacy code | 
 |   */ | 
 | static int fec_enet_init(struct net_device *dev, int index) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	struct bufdesc *cbd_base; | 
 | 	struct bufdesc *bdp; | 
 | 	int i; | 
 |  | 
 | 	/* Allocate memory for buffer descriptors. */ | 
 | 	cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma, | 
 | 			GFP_KERNEL); | 
 | 	if (!cbd_base) { | 
 | 		printk("FEC: allocate descriptor memory failed?\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	spin_lock_init(&fep->hw_lock); | 
 |  | 
 | 	fep->index = index; | 
 | 	fep->hwp = (void __iomem *)dev->base_addr; | 
 | 	fep->netdev = dev; | 
 |  | 
 | 	/* Set the Ethernet address */ | 
 | #ifdef CONFIG_M5272 | 
 | 	fec_get_mac(dev); | 
 | #else | 
 | 	{ | 
 | 		unsigned long l; | 
 | 		l = readl(fep->hwp + FEC_ADDR_LOW); | 
 | 		dev->dev_addr[0] = (unsigned char)((l & 0xFF000000) >> 24); | 
 | 		dev->dev_addr[1] = (unsigned char)((l & 0x00FF0000) >> 16); | 
 | 		dev->dev_addr[2] = (unsigned char)((l & 0x0000FF00) >> 8); | 
 | 		dev->dev_addr[3] = (unsigned char)((l & 0x000000FF) >> 0); | 
 | 		l = readl(fep->hwp + FEC_ADDR_HIGH); | 
 | 		dev->dev_addr[4] = (unsigned char)((l & 0xFF000000) >> 24); | 
 | 		dev->dev_addr[5] = (unsigned char)((l & 0x00FF0000) >> 16); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	/* Set receive and transmit descriptor base. */ | 
 | 	fep->rx_bd_base = cbd_base; | 
 | 	fep->tx_bd_base = cbd_base + RX_RING_SIZE; | 
 |  | 
 | 	/* The FEC Ethernet specific entries in the device structure */ | 
 | 	dev->watchdog_timeo = TX_TIMEOUT; | 
 | 	dev->netdev_ops = &fec_netdev_ops; | 
 | 	dev->ethtool_ops = &fec_enet_ethtool_ops; | 
 |  | 
 | 	/* Initialize the receive buffer descriptors. */ | 
 | 	bdp = fep->rx_bd_base; | 
 | 	for (i = 0; i < RX_RING_SIZE; i++) { | 
 |  | 
 | 		/* Initialize the BD for every fragment in the page. */ | 
 | 		bdp->cbd_sc = 0; | 
 | 		bdp++; | 
 | 	} | 
 |  | 
 | 	/* Set the last buffer to wrap */ | 
 | 	bdp--; | 
 | 	bdp->cbd_sc |= BD_SC_WRAP; | 
 |  | 
 | 	/* ...and the same for transmit */ | 
 | 	bdp = fep->tx_bd_base; | 
 | 	for (i = 0; i < TX_RING_SIZE; i++) { | 
 |  | 
 | 		/* Initialize the BD for every fragment in the page. */ | 
 | 		bdp->cbd_sc = 0; | 
 | 		bdp->cbd_bufaddr = 0; | 
 | 		bdp++; | 
 | 	} | 
 |  | 
 | 	/* Set the last buffer to wrap */ | 
 | 	bdp--; | 
 | 	bdp->cbd_sc |= BD_SC_WRAP; | 
 |  | 
 | 	fec_restart(dev, 0); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* This function is called to start or restart the FEC during a link | 
 |  * change.  This only happens when switching between half and full | 
 |  * duplex. | 
 |  */ | 
 | static void | 
 | fec_restart(struct net_device *dev, int duplex) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 | 	int i; | 
 |  | 
 | 	/* Whack a reset.  We should wait for this. */ | 
 | 	writel(1, fep->hwp + FEC_ECNTRL); | 
 | 	udelay(10); | 
 |  | 
 | 	/* Clear any outstanding interrupt. */ | 
 | 	writel(0xffc00000, fep->hwp + FEC_IEVENT); | 
 |  | 
 | 	/* Reset all multicast.	*/ | 
 | 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); | 
 | 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW); | 
 | #ifndef CONFIG_M5272 | 
 | 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH); | 
 | 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW); | 
 | #endif | 
 |  | 
 | 	/* Set maximum receive buffer size. */ | 
 | 	writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE); | 
 |  | 
 | 	/* Set receive and transmit descriptor base. */ | 
 | 	writel(fep->bd_dma, fep->hwp + FEC_R_DES_START); | 
 | 	writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc) * RX_RING_SIZE, | 
 | 			fep->hwp + FEC_X_DES_START); | 
 |  | 
 | 	fep->dirty_tx = fep->cur_tx = fep->tx_bd_base; | 
 | 	fep->cur_rx = fep->rx_bd_base; | 
 |  | 
 | 	/* Reset SKB transmit buffers. */ | 
 | 	fep->skb_cur = fep->skb_dirty = 0; | 
 | 	for (i = 0; i <= TX_RING_MOD_MASK; i++) { | 
 | 		if (fep->tx_skbuff[i]) { | 
 | 			dev_kfree_skb_any(fep->tx_skbuff[i]); | 
 | 			fep->tx_skbuff[i] = NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Enable MII mode */ | 
 | 	if (duplex) { | 
 | 		/* MII enable / FD enable */ | 
 | 		writel(OPT_FRAME_SIZE | 0x04, fep->hwp + FEC_R_CNTRL); | 
 | 		writel(0x04, fep->hwp + FEC_X_CNTRL); | 
 | 	} else { | 
 | 		/* MII enable / No Rcv on Xmit */ | 
 | 		writel(OPT_FRAME_SIZE | 0x06, fep->hwp + FEC_R_CNTRL); | 
 | 		writel(0x0, fep->hwp + FEC_X_CNTRL); | 
 | 	} | 
 | 	fep->full_duplex = duplex; | 
 |  | 
 | 	/* Set MII speed */ | 
 | 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); | 
 |  | 
 | #ifdef FEC_MIIGSK_ENR | 
 | 	if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) { | 
 | 		/* disable the gasket and wait */ | 
 | 		writel(0, fep->hwp + FEC_MIIGSK_ENR); | 
 | 		while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4) | 
 | 			udelay(1); | 
 |  | 
 | 		/* configure the gasket: RMII, 50 MHz, no loopback, no echo */ | 
 | 		writel(1, fep->hwp + FEC_MIIGSK_CFGR); | 
 |  | 
 | 		/* re-enable the gasket */ | 
 | 		writel(2, fep->hwp + FEC_MIIGSK_ENR); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	/* And last, enable the transmit and receive processing */ | 
 | 	writel(2, fep->hwp + FEC_ECNTRL); | 
 | 	writel(0, fep->hwp + FEC_R_DES_ACTIVE); | 
 |  | 
 | 	/* Enable interrupts we wish to service */ | 
 | 	writel(FEC_ENET_TXF | FEC_ENET_RXF, fep->hwp + FEC_IMASK); | 
 | } | 
 |  | 
 | static void | 
 | fec_stop(struct net_device *dev) | 
 | { | 
 | 	struct fec_enet_private *fep = netdev_priv(dev); | 
 |  | 
 | 	/* We cannot expect a graceful transmit stop without link !!! */ | 
 | 	if (fep->link) { | 
 | 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */ | 
 | 		udelay(10); | 
 | 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA)) | 
 | 			printk("fec_stop : Graceful transmit stop did not complete !\n"); | 
 | 	} | 
 |  | 
 | 	/* Whack a reset.  We should wait for this. */ | 
 | 	writel(1, fep->hwp + FEC_ECNTRL); | 
 | 	udelay(10); | 
 |  | 
 | 	/* Clear outstanding MII command interrupts. */ | 
 | 	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); | 
 |  | 
 | 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); | 
 | } | 
 |  | 
 | static int __devinit | 
 | fec_probe(struct platform_device *pdev) | 
 | { | 
 | 	struct fec_enet_private *fep; | 
 | 	struct fec_platform_data *pdata; | 
 | 	struct net_device *ndev; | 
 | 	int i, irq, ret = 0; | 
 | 	struct resource *r; | 
 |  | 
 | 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0); | 
 | 	if (!r) | 
 | 		return -ENXIO; | 
 |  | 
 | 	r = request_mem_region(r->start, resource_size(r), pdev->name); | 
 | 	if (!r) | 
 | 		return -EBUSY; | 
 |  | 
 | 	/* Init network device */ | 
 | 	ndev = alloc_etherdev(sizeof(struct fec_enet_private)); | 
 | 	if (!ndev) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	SET_NETDEV_DEV(ndev, &pdev->dev); | 
 |  | 
 | 	/* setup board info structure */ | 
 | 	fep = netdev_priv(ndev); | 
 | 	memset(fep, 0, sizeof(*fep)); | 
 |  | 
 | 	ndev->base_addr = (unsigned long)ioremap(r->start, resource_size(r)); | 
 | 	fep->pdev = pdev; | 
 |  | 
 | 	if (!ndev->base_addr) { | 
 | 		ret = -ENOMEM; | 
 | 		goto failed_ioremap; | 
 | 	} | 
 |  | 
 | 	platform_set_drvdata(pdev, ndev); | 
 |  | 
 | 	pdata = pdev->dev.platform_data; | 
 | 	if (pdata) | 
 | 		fep->phy_interface = pdata->phy; | 
 |  | 
 | 	/* This device has up to three irqs on some platforms */ | 
 | 	for (i = 0; i < 3; i++) { | 
 | 		irq = platform_get_irq(pdev, i); | 
 | 		if (i && irq < 0) | 
 | 			break; | 
 | 		ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev); | 
 | 		if (ret) { | 
 | 			while (i >= 0) { | 
 | 				irq = platform_get_irq(pdev, i); | 
 | 				free_irq(irq, ndev); | 
 | 				i--; | 
 | 			} | 
 | 			goto failed_irq; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	fep->clk = clk_get(&pdev->dev, "fec_clk"); | 
 | 	if (IS_ERR(fep->clk)) { | 
 | 		ret = PTR_ERR(fep->clk); | 
 | 		goto failed_clk; | 
 | 	} | 
 | 	clk_enable(fep->clk); | 
 |  | 
 | 	ret = fec_enet_init(ndev, 0); | 
 | 	if (ret) | 
 | 		goto failed_init; | 
 |  | 
 | 	ret = fec_enet_mii_init(pdev); | 
 | 	if (ret) | 
 | 		goto failed_mii_init; | 
 |  | 
 | 	ret = register_netdev(ndev); | 
 | 	if (ret) | 
 | 		goto failed_register; | 
 |  | 
 | 	return 0; | 
 |  | 
 | failed_register: | 
 | 	fec_enet_mii_remove(fep); | 
 | failed_mii_init: | 
 | failed_init: | 
 | 	clk_disable(fep->clk); | 
 | 	clk_put(fep->clk); | 
 | failed_clk: | 
 | 	for (i = 0; i < 3; i++) { | 
 | 		irq = platform_get_irq(pdev, i); | 
 | 		if (irq > 0) | 
 | 			free_irq(irq, ndev); | 
 | 	} | 
 | failed_irq: | 
 | 	iounmap((void __iomem *)ndev->base_addr); | 
 | failed_ioremap: | 
 | 	free_netdev(ndev); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int __devexit | 
 | fec_drv_remove(struct platform_device *pdev) | 
 | { | 
 | 	struct net_device *ndev = platform_get_drvdata(pdev); | 
 | 	struct fec_enet_private *fep = netdev_priv(ndev); | 
 |  | 
 | 	platform_set_drvdata(pdev, NULL); | 
 |  | 
 | 	fec_stop(ndev); | 
 | 	fec_enet_mii_remove(fep); | 
 | 	clk_disable(fep->clk); | 
 | 	clk_put(fep->clk); | 
 | 	iounmap((void __iomem *)ndev->base_addr); | 
 | 	unregister_netdev(ndev); | 
 | 	free_netdev(ndev); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | fec_suspend(struct platform_device *dev, pm_message_t state) | 
 | { | 
 | 	struct net_device *ndev = platform_get_drvdata(dev); | 
 | 	struct fec_enet_private *fep; | 
 |  | 
 | 	if (ndev) { | 
 | 		fep = netdev_priv(ndev); | 
 | 		if (netif_running(ndev)) | 
 | 			fec_enet_close(ndev); | 
 | 		clk_disable(fep->clk); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | fec_resume(struct platform_device *dev) | 
 | { | 
 | 	struct net_device *ndev = platform_get_drvdata(dev); | 
 | 	struct fec_enet_private *fep; | 
 |  | 
 | 	if (ndev) { | 
 | 		fep = netdev_priv(ndev); | 
 | 		clk_enable(fep->clk); | 
 | 		if (netif_running(ndev)) | 
 | 			fec_enet_open(ndev); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct platform_driver fec_driver = { | 
 | 	.driver	= { | 
 | 		.name    = "fec", | 
 | 		.owner	 = THIS_MODULE, | 
 | 	}, | 
 | 	.probe   = fec_probe, | 
 | 	.remove  = __devexit_p(fec_drv_remove), | 
 | 	.suspend = fec_suspend, | 
 | 	.resume  = fec_resume, | 
 | }; | 
 |  | 
 | static int __init | 
 | fec_enet_module_init(void) | 
 | { | 
 | 	printk(KERN_INFO "FEC Ethernet Driver\n"); | 
 |  | 
 | 	return platform_driver_register(&fec_driver); | 
 | } | 
 |  | 
 | static void __exit | 
 | fec_enet_cleanup(void) | 
 | { | 
 | 	platform_driver_unregister(&fec_driver); | 
 | } | 
 |  | 
 | module_exit(fec_enet_cleanup); | 
 | module_init(fec_enet_module_init); | 
 |  | 
 | MODULE_LICENSE("GPL"); |