| /* SPDX-License-Identifier: GPL-2.0 |
| * |
| * page_pool.c |
| * Author: Jesper Dangaard Brouer <netoptimizer@brouer.com> |
| * Copyright (C) 2016 Red Hat, Inc. |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/device.h> |
| |
| #include <net/page_pool.h> |
| #include <net/xdp.h> |
| |
| #include <linux/dma-direction.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/page-flags.h> |
| #include <linux/mm.h> /* for __put_page() */ |
| #include <linux/poison.h> |
| |
| #include <trace/events/page_pool.h> |
| |
| #define DEFER_TIME (msecs_to_jiffies(1000)) |
| #define DEFER_WARN_INTERVAL (60 * HZ) |
| |
| #define BIAS_MAX LONG_MAX |
| |
| static int page_pool_init(struct page_pool *pool, |
| const struct page_pool_params *params) |
| { |
| unsigned int ring_qsize = 1024; /* Default */ |
| |
| memcpy(&pool->p, params, sizeof(pool->p)); |
| |
| /* Validate only known flags were used */ |
| if (pool->p.flags & ~(PP_FLAG_ALL)) |
| return -EINVAL; |
| |
| if (pool->p.pool_size) |
| ring_qsize = pool->p.pool_size; |
| |
| /* Sanity limit mem that can be pinned down */ |
| if (ring_qsize > 32768) |
| return -E2BIG; |
| |
| /* DMA direction is either DMA_FROM_DEVICE or DMA_BIDIRECTIONAL. |
| * DMA_BIDIRECTIONAL is for allowing page used for DMA sending, |
| * which is the XDP_TX use-case. |
| */ |
| if (pool->p.flags & PP_FLAG_DMA_MAP) { |
| /* DMA-mapping is not supported on 32-bit systems with |
| * 64-bit DMA mapping. |
| */ |
| if (sizeof(dma_addr_t) > sizeof(unsigned long)) |
| return -EOPNOTSUPP; |
| |
| if ((pool->p.dma_dir != DMA_FROM_DEVICE) && |
| (pool->p.dma_dir != DMA_BIDIRECTIONAL)) |
| return -EINVAL; |
| } |
| |
| if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) { |
| /* In order to request DMA-sync-for-device the page |
| * needs to be mapped |
| */ |
| if (!(pool->p.flags & PP_FLAG_DMA_MAP)) |
| return -EINVAL; |
| |
| if (!pool->p.max_len) |
| return -EINVAL; |
| |
| /* pool->p.offset has to be set according to the address |
| * offset used by the DMA engine to start copying rx data |
| */ |
| } |
| |
| if (ptr_ring_init(&pool->ring, ring_qsize, GFP_KERNEL) < 0) |
| return -ENOMEM; |
| |
| atomic_set(&pool->pages_state_release_cnt, 0); |
| |
| /* Driver calling page_pool_create() also call page_pool_destroy() */ |
| refcount_set(&pool->user_cnt, 1); |
| |
| if (pool->p.flags & PP_FLAG_DMA_MAP) |
| get_device(pool->p.dev); |
| |
| return 0; |
| } |
| |
| struct page_pool *page_pool_create(const struct page_pool_params *params) |
| { |
| struct page_pool *pool; |
| int err; |
| |
| pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, params->nid); |
| if (!pool) |
| return ERR_PTR(-ENOMEM); |
| |
| err = page_pool_init(pool, params); |
| if (err < 0) { |
| pr_warn("%s() gave up with errno %d\n", __func__, err); |
| kfree(pool); |
| return ERR_PTR(err); |
| } |
| |
| return pool; |
| } |
| EXPORT_SYMBOL(page_pool_create); |
| |
| static void page_pool_return_page(struct page_pool *pool, struct page *page); |
| |
| noinline |
| static struct page *page_pool_refill_alloc_cache(struct page_pool *pool) |
| { |
| struct ptr_ring *r = &pool->ring; |
| struct page *page; |
| int pref_nid; /* preferred NUMA node */ |
| |
| /* Quicker fallback, avoid locks when ring is empty */ |
| if (__ptr_ring_empty(r)) |
| return NULL; |
| |
| /* Softirq guarantee CPU and thus NUMA node is stable. This, |
| * assumes CPU refilling driver RX-ring will also run RX-NAPI. |
| */ |
| #ifdef CONFIG_NUMA |
| pref_nid = (pool->p.nid == NUMA_NO_NODE) ? numa_mem_id() : pool->p.nid; |
| #else |
| /* Ignore pool->p.nid setting if !CONFIG_NUMA, helps compiler */ |
| pref_nid = numa_mem_id(); /* will be zero like page_to_nid() */ |
| #endif |
| |
| /* Slower-path: Get pages from locked ring queue */ |
| spin_lock(&r->consumer_lock); |
| |
| /* Refill alloc array, but only if NUMA match */ |
| do { |
| page = __ptr_ring_consume(r); |
| if (unlikely(!page)) |
| break; |
| |
| if (likely(page_to_nid(page) == pref_nid)) { |
| pool->alloc.cache[pool->alloc.count++] = page; |
| } else { |
| /* NUMA mismatch; |
| * (1) release 1 page to page-allocator and |
| * (2) break out to fallthrough to alloc_pages_node. |
| * This limit stress on page buddy alloactor. |
| */ |
| page_pool_return_page(pool, page); |
| page = NULL; |
| break; |
| } |
| } while (pool->alloc.count < PP_ALLOC_CACHE_REFILL); |
| |
| /* Return last page */ |
| if (likely(pool->alloc.count > 0)) |
| page = pool->alloc.cache[--pool->alloc.count]; |
| |
| spin_unlock(&r->consumer_lock); |
| return page; |
| } |
| |
| /* fast path */ |
| static struct page *__page_pool_get_cached(struct page_pool *pool) |
| { |
| struct page *page; |
| |
| /* Caller MUST guarantee safe non-concurrent access, e.g. softirq */ |
| if (likely(pool->alloc.count)) { |
| /* Fast-path */ |
| page = pool->alloc.cache[--pool->alloc.count]; |
| } else { |
| page = page_pool_refill_alloc_cache(pool); |
| } |
| |
| return page; |
| } |
| |
| static void page_pool_dma_sync_for_device(struct page_pool *pool, |
| struct page *page, |
| unsigned int dma_sync_size) |
| { |
| dma_addr_t dma_addr = page_pool_get_dma_addr(page); |
| |
| dma_sync_size = min(dma_sync_size, pool->p.max_len); |
| dma_sync_single_range_for_device(pool->p.dev, dma_addr, |
| pool->p.offset, dma_sync_size, |
| pool->p.dma_dir); |
| } |
| |
| static bool page_pool_dma_map(struct page_pool *pool, struct page *page) |
| { |
| dma_addr_t dma; |
| |
| /* Setup DMA mapping: use 'struct page' area for storing DMA-addr |
| * since dma_addr_t can be either 32 or 64 bits and does not always fit |
| * into page private data (i.e 32bit cpu with 64bit DMA caps) |
| * This mapping is kept for lifetime of page, until leaving pool. |
| */ |
| dma = dma_map_page_attrs(pool->p.dev, page, 0, |
| (PAGE_SIZE << pool->p.order), |
| pool->p.dma_dir, DMA_ATTR_SKIP_CPU_SYNC); |
| if (dma_mapping_error(pool->p.dev, dma)) |
| return false; |
| |
| page_pool_set_dma_addr(page, dma); |
| |
| if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) |
| page_pool_dma_sync_for_device(pool, page, pool->p.max_len); |
| |
| return true; |
| } |
| |
| static void page_pool_set_pp_info(struct page_pool *pool, |
| struct page *page) |
| { |
| page->pp = pool; |
| page->pp_magic |= PP_SIGNATURE; |
| } |
| |
| static void page_pool_clear_pp_info(struct page *page) |
| { |
| page->pp_magic = 0; |
| page->pp = NULL; |
| } |
| |
| static struct page *__page_pool_alloc_page_order(struct page_pool *pool, |
| gfp_t gfp) |
| { |
| struct page *page; |
| |
| gfp |= __GFP_COMP; |
| page = alloc_pages_node(pool->p.nid, gfp, pool->p.order); |
| if (unlikely(!page)) |
| return NULL; |
| |
| if ((pool->p.flags & PP_FLAG_DMA_MAP) && |
| unlikely(!page_pool_dma_map(pool, page))) { |
| put_page(page); |
| return NULL; |
| } |
| |
| page_pool_set_pp_info(pool, page); |
| |
| /* Track how many pages are held 'in-flight' */ |
| pool->pages_state_hold_cnt++; |
| trace_page_pool_state_hold(pool, page, pool->pages_state_hold_cnt); |
| return page; |
| } |
| |
| /* slow path */ |
| noinline |
| static struct page *__page_pool_alloc_pages_slow(struct page_pool *pool, |
| gfp_t gfp) |
| { |
| const int bulk = PP_ALLOC_CACHE_REFILL; |
| unsigned int pp_flags = pool->p.flags; |
| unsigned int pp_order = pool->p.order; |
| struct page *page; |
| int i, nr_pages; |
| |
| /* Don't support bulk alloc for high-order pages */ |
| if (unlikely(pp_order)) |
| return __page_pool_alloc_page_order(pool, gfp); |
| |
| /* Unnecessary as alloc cache is empty, but guarantees zero count */ |
| if (unlikely(pool->alloc.count > 0)) |
| return pool->alloc.cache[--pool->alloc.count]; |
| |
| /* Mark empty alloc.cache slots "empty" for alloc_pages_bulk_array */ |
| memset(&pool->alloc.cache, 0, sizeof(void *) * bulk); |
| |
| nr_pages = alloc_pages_bulk_array(gfp, bulk, pool->alloc.cache); |
| if (unlikely(!nr_pages)) |
| return NULL; |
| |
| /* Pages have been filled into alloc.cache array, but count is zero and |
| * page element have not been (possibly) DMA mapped. |
| */ |
| for (i = 0; i < nr_pages; i++) { |
| page = pool->alloc.cache[i]; |
| if ((pp_flags & PP_FLAG_DMA_MAP) && |
| unlikely(!page_pool_dma_map(pool, page))) { |
| put_page(page); |
| continue; |
| } |
| |
| page_pool_set_pp_info(pool, page); |
| pool->alloc.cache[pool->alloc.count++] = page; |
| /* Track how many pages are held 'in-flight' */ |
| pool->pages_state_hold_cnt++; |
| trace_page_pool_state_hold(pool, page, |
| pool->pages_state_hold_cnt); |
| } |
| |
| /* Return last page */ |
| if (likely(pool->alloc.count > 0)) |
| page = pool->alloc.cache[--pool->alloc.count]; |
| else |
| page = NULL; |
| |
| /* When page just alloc'ed is should/must have refcnt 1. */ |
| return page; |
| } |
| |
| /* For using page_pool replace: alloc_pages() API calls, but provide |
| * synchronization guarantee for allocation side. |
| */ |
| struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp) |
| { |
| struct page *page; |
| |
| /* Fast-path: Get a page from cache */ |
| page = __page_pool_get_cached(pool); |
| if (page) |
| return page; |
| |
| /* Slow-path: cache empty, do real allocation */ |
| page = __page_pool_alloc_pages_slow(pool, gfp); |
| return page; |
| } |
| EXPORT_SYMBOL(page_pool_alloc_pages); |
| |
| /* Calculate distance between two u32 values, valid if distance is below 2^(31) |
| * https://en.wikipedia.org/wiki/Serial_number_arithmetic#General_Solution |
| */ |
| #define _distance(a, b) (s32)((a) - (b)) |
| |
| static s32 page_pool_inflight(struct page_pool *pool) |
| { |
| u32 release_cnt = atomic_read(&pool->pages_state_release_cnt); |
| u32 hold_cnt = READ_ONCE(pool->pages_state_hold_cnt); |
| s32 inflight; |
| |
| inflight = _distance(hold_cnt, release_cnt); |
| |
| trace_page_pool_release(pool, inflight, hold_cnt, release_cnt); |
| WARN(inflight < 0, "Negative(%d) inflight packet-pages", inflight); |
| |
| return inflight; |
| } |
| |
| /* Disconnects a page (from a page_pool). API users can have a need |
| * to disconnect a page (from a page_pool), to allow it to be used as |
| * a regular page (that will eventually be returned to the normal |
| * page-allocator via put_page). |
| */ |
| void page_pool_release_page(struct page_pool *pool, struct page *page) |
| { |
| dma_addr_t dma; |
| int count; |
| |
| if (!(pool->p.flags & PP_FLAG_DMA_MAP)) |
| /* Always account for inflight pages, even if we didn't |
| * map them |
| */ |
| goto skip_dma_unmap; |
| |
| dma = page_pool_get_dma_addr(page); |
| |
| /* When page is unmapped, it cannot be returned to our pool */ |
| dma_unmap_page_attrs(pool->p.dev, dma, |
| PAGE_SIZE << pool->p.order, pool->p.dma_dir, |
| DMA_ATTR_SKIP_CPU_SYNC); |
| page_pool_set_dma_addr(page, 0); |
| skip_dma_unmap: |
| page_pool_clear_pp_info(page); |
| |
| /* This may be the last page returned, releasing the pool, so |
| * it is not safe to reference pool afterwards. |
| */ |
| count = atomic_inc_return_relaxed(&pool->pages_state_release_cnt); |
| trace_page_pool_state_release(pool, page, count); |
| } |
| EXPORT_SYMBOL(page_pool_release_page); |
| |
| /* Return a page to the page allocator, cleaning up our state */ |
| static void page_pool_return_page(struct page_pool *pool, struct page *page) |
| { |
| page_pool_release_page(pool, page); |
| |
| put_page(page); |
| /* An optimization would be to call __free_pages(page, pool->p.order) |
| * knowing page is not part of page-cache (thus avoiding a |
| * __page_cache_release() call). |
| */ |
| } |
| |
| static bool page_pool_recycle_in_ring(struct page_pool *pool, struct page *page) |
| { |
| int ret; |
| /* BH protection not needed if current is serving softirq */ |
| if (in_serving_softirq()) |
| ret = ptr_ring_produce(&pool->ring, page); |
| else |
| ret = ptr_ring_produce_bh(&pool->ring, page); |
| |
| return (ret == 0) ? true : false; |
| } |
| |
| /* Only allow direct recycling in special circumstances, into the |
| * alloc side cache. E.g. during RX-NAPI processing for XDP_DROP use-case. |
| * |
| * Caller must provide appropriate safe context. |
| */ |
| static bool page_pool_recycle_in_cache(struct page *page, |
| struct page_pool *pool) |
| { |
| if (unlikely(pool->alloc.count == PP_ALLOC_CACHE_SIZE)) |
| return false; |
| |
| /* Caller MUST have verified/know (page_ref_count(page) == 1) */ |
| pool->alloc.cache[pool->alloc.count++] = page; |
| return true; |
| } |
| |
| /* If the page refcnt == 1, this will try to recycle the page. |
| * if PP_FLAG_DMA_SYNC_DEV is set, we'll try to sync the DMA area for |
| * the configured size min(dma_sync_size, pool->max_len). |
| * If the page refcnt != 1, then the page will be returned to memory |
| * subsystem. |
| */ |
| static __always_inline struct page * |
| __page_pool_put_page(struct page_pool *pool, struct page *page, |
| unsigned int dma_sync_size, bool allow_direct) |
| { |
| /* It is not the last user for the page frag case */ |
| if (pool->p.flags & PP_FLAG_PAGE_FRAG && |
| page_pool_atomic_sub_frag_count_return(page, 1)) |
| return NULL; |
| |
| /* This allocator is optimized for the XDP mode that uses |
| * one-frame-per-page, but have fallbacks that act like the |
| * regular page allocator APIs. |
| * |
| * refcnt == 1 means page_pool owns page, and can recycle it. |
| * |
| * page is NOT reusable when allocated when system is under |
| * some pressure. (page_is_pfmemalloc) |
| */ |
| if (likely(page_ref_count(page) == 1 && !page_is_pfmemalloc(page))) { |
| /* Read barrier done in page_ref_count / READ_ONCE */ |
| |
| if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) |
| page_pool_dma_sync_for_device(pool, page, |
| dma_sync_size); |
| |
| if (allow_direct && in_serving_softirq() && |
| page_pool_recycle_in_cache(page, pool)) |
| return NULL; |
| |
| /* Page found as candidate for recycling */ |
| return page; |
| } |
| /* Fallback/non-XDP mode: API user have elevated refcnt. |
| * |
| * Many drivers split up the page into fragments, and some |
| * want to keep doing this to save memory and do refcnt based |
| * recycling. Support this use case too, to ease drivers |
| * switching between XDP/non-XDP. |
| * |
| * In-case page_pool maintains the DMA mapping, API user must |
| * call page_pool_put_page once. In this elevated refcnt |
| * case, the DMA is unmapped/released, as driver is likely |
| * doing refcnt based recycle tricks, meaning another process |
| * will be invoking put_page. |
| */ |
| /* Do not replace this with page_pool_return_page() */ |
| page_pool_release_page(pool, page); |
| put_page(page); |
| |
| return NULL; |
| } |
| |
| void page_pool_put_page(struct page_pool *pool, struct page *page, |
| unsigned int dma_sync_size, bool allow_direct) |
| { |
| page = __page_pool_put_page(pool, page, dma_sync_size, allow_direct); |
| if (page && !page_pool_recycle_in_ring(pool, page)) { |
| /* Cache full, fallback to free pages */ |
| page_pool_return_page(pool, page); |
| } |
| } |
| EXPORT_SYMBOL(page_pool_put_page); |
| |
| /* Caller must not use data area after call, as this function overwrites it */ |
| void page_pool_put_page_bulk(struct page_pool *pool, void **data, |
| int count) |
| { |
| int i, bulk_len = 0; |
| |
| for (i = 0; i < count; i++) { |
| struct page *page = virt_to_head_page(data[i]); |
| |
| page = __page_pool_put_page(pool, page, -1, false); |
| /* Approved for bulk recycling in ptr_ring cache */ |
| if (page) |
| data[bulk_len++] = page; |
| } |
| |
| if (unlikely(!bulk_len)) |
| return; |
| |
| /* Bulk producer into ptr_ring page_pool cache */ |
| page_pool_ring_lock(pool); |
| for (i = 0; i < bulk_len; i++) { |
| if (__ptr_ring_produce(&pool->ring, data[i])) |
| break; /* ring full */ |
| } |
| page_pool_ring_unlock(pool); |
| |
| /* Hopefully all pages was return into ptr_ring */ |
| if (likely(i == bulk_len)) |
| return; |
| |
| /* ptr_ring cache full, free remaining pages outside producer lock |
| * since put_page() with refcnt == 1 can be an expensive operation |
| */ |
| for (; i < bulk_len; i++) |
| page_pool_return_page(pool, data[i]); |
| } |
| EXPORT_SYMBOL(page_pool_put_page_bulk); |
| |
| static struct page *page_pool_drain_frag(struct page_pool *pool, |
| struct page *page) |
| { |
| long drain_count = BIAS_MAX - pool->frag_users; |
| |
| /* Some user is still using the page frag */ |
| if (likely(page_pool_atomic_sub_frag_count_return(page, |
| drain_count))) |
| return NULL; |
| |
| if (page_ref_count(page) == 1 && !page_is_pfmemalloc(page)) { |
| if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) |
| page_pool_dma_sync_for_device(pool, page, -1); |
| |
| return page; |
| } |
| |
| page_pool_return_page(pool, page); |
| return NULL; |
| } |
| |
| static void page_pool_free_frag(struct page_pool *pool) |
| { |
| long drain_count = BIAS_MAX - pool->frag_users; |
| struct page *page = pool->frag_page; |
| |
| pool->frag_page = NULL; |
| |
| if (!page || |
| page_pool_atomic_sub_frag_count_return(page, drain_count)) |
| return; |
| |
| page_pool_return_page(pool, page); |
| } |
| |
| struct page *page_pool_alloc_frag(struct page_pool *pool, |
| unsigned int *offset, |
| unsigned int size, gfp_t gfp) |
| { |
| unsigned int max_size = PAGE_SIZE << pool->p.order; |
| struct page *page = pool->frag_page; |
| |
| if (WARN_ON(!(pool->p.flags & PP_FLAG_PAGE_FRAG) || |
| size > max_size)) |
| return NULL; |
| |
| size = ALIGN(size, dma_get_cache_alignment()); |
| *offset = pool->frag_offset; |
| |
| if (page && *offset + size > max_size) { |
| page = page_pool_drain_frag(pool, page); |
| if (page) |
| goto frag_reset; |
| } |
| |
| if (!page) { |
| page = page_pool_alloc_pages(pool, gfp); |
| if (unlikely(!page)) { |
| pool->frag_page = NULL; |
| return NULL; |
| } |
| |
| pool->frag_page = page; |
| |
| frag_reset: |
| pool->frag_users = 1; |
| *offset = 0; |
| pool->frag_offset = size; |
| page_pool_set_frag_count(page, BIAS_MAX); |
| return page; |
| } |
| |
| pool->frag_users++; |
| pool->frag_offset = *offset + size; |
| return page; |
| } |
| EXPORT_SYMBOL(page_pool_alloc_frag); |
| |
| static void page_pool_empty_ring(struct page_pool *pool) |
| { |
| struct page *page; |
| |
| /* Empty recycle ring */ |
| while ((page = ptr_ring_consume_bh(&pool->ring))) { |
| /* Verify the refcnt invariant of cached pages */ |
| if (!(page_ref_count(page) == 1)) |
| pr_crit("%s() page_pool refcnt %d violation\n", |
| __func__, page_ref_count(page)); |
| |
| page_pool_return_page(pool, page); |
| } |
| } |
| |
| static void page_pool_free(struct page_pool *pool) |
| { |
| if (pool->disconnect) |
| pool->disconnect(pool); |
| |
| ptr_ring_cleanup(&pool->ring, NULL); |
| |
| if (pool->p.flags & PP_FLAG_DMA_MAP) |
| put_device(pool->p.dev); |
| |
| kfree(pool); |
| } |
| |
| static void page_pool_empty_alloc_cache_once(struct page_pool *pool) |
| { |
| struct page *page; |
| |
| if (pool->destroy_cnt) |
| return; |
| |
| /* Empty alloc cache, assume caller made sure this is |
| * no-longer in use, and page_pool_alloc_pages() cannot be |
| * call concurrently. |
| */ |
| while (pool->alloc.count) { |
| page = pool->alloc.cache[--pool->alloc.count]; |
| page_pool_return_page(pool, page); |
| } |
| } |
| |
| static void page_pool_scrub(struct page_pool *pool) |
| { |
| page_pool_empty_alloc_cache_once(pool); |
| pool->destroy_cnt++; |
| |
| /* No more consumers should exist, but producers could still |
| * be in-flight. |
| */ |
| page_pool_empty_ring(pool); |
| } |
| |
| static int page_pool_release(struct page_pool *pool) |
| { |
| int inflight; |
| |
| page_pool_scrub(pool); |
| inflight = page_pool_inflight(pool); |
| if (!inflight) |
| page_pool_free(pool); |
| |
| return inflight; |
| } |
| |
| static void page_pool_release_retry(struct work_struct *wq) |
| { |
| struct delayed_work *dwq = to_delayed_work(wq); |
| struct page_pool *pool = container_of(dwq, typeof(*pool), release_dw); |
| int inflight; |
| |
| inflight = page_pool_release(pool); |
| if (!inflight) |
| return; |
| |
| /* Periodic warning */ |
| if (time_after_eq(jiffies, pool->defer_warn)) { |
| int sec = (s32)((u32)jiffies - (u32)pool->defer_start) / HZ; |
| |
| pr_warn("%s() stalled pool shutdown %d inflight %d sec\n", |
| __func__, inflight, sec); |
| pool->defer_warn = jiffies + DEFER_WARN_INTERVAL; |
| } |
| |
| /* Still not ready to be disconnected, retry later */ |
| schedule_delayed_work(&pool->release_dw, DEFER_TIME); |
| } |
| |
| void page_pool_use_xdp_mem(struct page_pool *pool, void (*disconnect)(void *)) |
| { |
| refcount_inc(&pool->user_cnt); |
| pool->disconnect = disconnect; |
| } |
| |
| void page_pool_destroy(struct page_pool *pool) |
| { |
| if (!pool) |
| return; |
| |
| if (!page_pool_put(pool)) |
| return; |
| |
| page_pool_free_frag(pool); |
| |
| if (!page_pool_release(pool)) |
| return; |
| |
| pool->defer_start = jiffies; |
| pool->defer_warn = jiffies + DEFER_WARN_INTERVAL; |
| |
| INIT_DELAYED_WORK(&pool->release_dw, page_pool_release_retry); |
| schedule_delayed_work(&pool->release_dw, DEFER_TIME); |
| } |
| EXPORT_SYMBOL(page_pool_destroy); |
| |
| /* Caller must provide appropriate safe context, e.g. NAPI. */ |
| void page_pool_update_nid(struct page_pool *pool, int new_nid) |
| { |
| struct page *page; |
| |
| trace_page_pool_update_nid(pool, new_nid); |
| pool->p.nid = new_nid; |
| |
| /* Flush pool alloc cache, as refill will check NUMA node */ |
| while (pool->alloc.count) { |
| page = pool->alloc.cache[--pool->alloc.count]; |
| page_pool_return_page(pool, page); |
| } |
| } |
| EXPORT_SYMBOL(page_pool_update_nid); |
| |
| bool page_pool_return_skb_page(struct page *page) |
| { |
| struct page_pool *pp; |
| |
| page = compound_head(page); |
| |
| /* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation |
| * in order to preserve any existing bits, such as bit 0 for the |
| * head page of compound page and bit 1 for pfmemalloc page, so |
| * mask those bits for freeing side when doing below checking, |
| * and page_is_pfmemalloc() is checked in __page_pool_put_page() |
| * to avoid recycling the pfmemalloc page. |
| */ |
| if (unlikely((page->pp_magic & ~0x3UL) != PP_SIGNATURE)) |
| return false; |
| |
| pp = page->pp; |
| |
| /* Driver set this to memory recycling info. Reset it on recycle. |
| * This will *not* work for NIC using a split-page memory model. |
| * The page will be returned to the pool here regardless of the |
| * 'flipped' fragment being in use or not. |
| */ |
| page_pool_put_full_page(pp, page, false); |
| |
| return true; |
| } |
| EXPORT_SYMBOL(page_pool_return_skb_page); |