| // SPDX-License-Identifier: GPL-2.0 |
| |
| #include <linux/jiffies.h> |
| #include <linux/kernel.h> |
| #include <linux/ktime.h> |
| #include <linux/list.h> |
| #include <linux/math64.h> |
| #include <linux/sizes.h> |
| #include <linux/workqueue.h> |
| #include "ctree.h" |
| #include "block-group.h" |
| #include "discard.h" |
| #include "free-space-cache.h" |
| #include "fs.h" |
| |
| /* |
| * This contains the logic to handle async discard. |
| * |
| * Async discard manages trimming of free space outside of transaction commit. |
| * Discarding is done by managing the block_groups on a LRU list based on free |
| * space recency. Two passes are used to first prioritize discarding extents |
| * and then allow for trimming in the bitmap the best opportunity to coalesce. |
| * The block_groups are maintained on multiple lists to allow for multiple |
| * passes with different discard filter requirements. A delayed work item is |
| * used to manage discarding with timeout determined by a max of the delay |
| * incurred by the iops rate limit, the byte rate limit, and the max delay of |
| * BTRFS_DISCARD_MAX_DELAY. |
| * |
| * Note, this only keeps track of block_groups that are explicitly for data. |
| * Mixed block_groups are not supported. |
| * |
| * The first list is special to manage discarding of fully free block groups. |
| * This is necessary because we issue a final trim for a full free block group |
| * after forgetting it. When a block group becomes unused, instead of directly |
| * being added to the unused_bgs list, we add it to this first list. Then |
| * from there, if it becomes fully discarded, we place it onto the unused_bgs |
| * list. |
| * |
| * The in-memory free space cache serves as the backing state for discard. |
| * Consequently this means there is no persistence. We opt to load all the |
| * block groups in as not discarded, so the mount case degenerates to the |
| * crashing case. |
| * |
| * As the free space cache uses bitmaps, there exists a tradeoff between |
| * ease/efficiency for find_free_extent() and the accuracy of discard state. |
| * Here we opt to let untrimmed regions merge with everything while only letting |
| * trimmed regions merge with other trimmed regions. This can cause |
| * overtrimming, but the coalescing benefit seems to be worth it. Additionally, |
| * bitmap state is tracked as a whole. If we're able to fully trim a bitmap, |
| * the trimmed flag is set on the bitmap. Otherwise, if an allocation comes in, |
| * this resets the state and we will retry trimming the whole bitmap. This is a |
| * tradeoff between discard state accuracy and the cost of accounting. |
| */ |
| |
| /* This is an initial delay to give some chance for block reuse */ |
| #define BTRFS_DISCARD_DELAY (120ULL * NSEC_PER_SEC) |
| #define BTRFS_DISCARD_UNUSED_DELAY (10ULL * NSEC_PER_SEC) |
| |
| /* Target completion latency of discarding all discardable extents */ |
| #define BTRFS_DISCARD_TARGET_MSEC (6 * 60 * 60UL * MSEC_PER_SEC) |
| #define BTRFS_DISCARD_MIN_DELAY_MSEC (1UL) |
| #define BTRFS_DISCARD_MAX_DELAY_MSEC (1000UL) |
| #define BTRFS_DISCARD_MAX_IOPS (10U) |
| |
| /* Monotonically decreasing minimum length filters after index 0 */ |
| static int discard_minlen[BTRFS_NR_DISCARD_LISTS] = { |
| 0, |
| BTRFS_ASYNC_DISCARD_MAX_FILTER, |
| BTRFS_ASYNC_DISCARD_MIN_FILTER |
| }; |
| |
| static struct list_head *get_discard_list(struct btrfs_discard_ctl *discard_ctl, |
| struct btrfs_block_group *block_group) |
| { |
| return &discard_ctl->discard_list[block_group->discard_index]; |
| } |
| |
| static void __add_to_discard_list(struct btrfs_discard_ctl *discard_ctl, |
| struct btrfs_block_group *block_group) |
| { |
| lockdep_assert_held(&discard_ctl->lock); |
| if (!btrfs_run_discard_work(discard_ctl)) |
| return; |
| |
| if (list_empty(&block_group->discard_list) || |
| block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED) { |
| if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED) |
| block_group->discard_index = BTRFS_DISCARD_INDEX_START; |
| block_group->discard_eligible_time = (ktime_get_ns() + |
| BTRFS_DISCARD_DELAY); |
| block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR; |
| } |
| if (list_empty(&block_group->discard_list)) |
| btrfs_get_block_group(block_group); |
| |
| list_move_tail(&block_group->discard_list, |
| get_discard_list(discard_ctl, block_group)); |
| } |
| |
| static void add_to_discard_list(struct btrfs_discard_ctl *discard_ctl, |
| struct btrfs_block_group *block_group) |
| { |
| if (!btrfs_is_block_group_data_only(block_group)) |
| return; |
| |
| spin_lock(&discard_ctl->lock); |
| __add_to_discard_list(discard_ctl, block_group); |
| spin_unlock(&discard_ctl->lock); |
| } |
| |
| static void add_to_discard_unused_list(struct btrfs_discard_ctl *discard_ctl, |
| struct btrfs_block_group *block_group) |
| { |
| bool queued; |
| |
| spin_lock(&discard_ctl->lock); |
| |
| queued = !list_empty(&block_group->discard_list); |
| |
| if (!btrfs_run_discard_work(discard_ctl)) { |
| spin_unlock(&discard_ctl->lock); |
| return; |
| } |
| |
| list_del_init(&block_group->discard_list); |
| |
| block_group->discard_index = BTRFS_DISCARD_INDEX_UNUSED; |
| block_group->discard_eligible_time = (ktime_get_ns() + |
| BTRFS_DISCARD_UNUSED_DELAY); |
| block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR; |
| if (!queued) |
| btrfs_get_block_group(block_group); |
| list_add_tail(&block_group->discard_list, |
| &discard_ctl->discard_list[BTRFS_DISCARD_INDEX_UNUSED]); |
| |
| spin_unlock(&discard_ctl->lock); |
| } |
| |
| static bool remove_from_discard_list(struct btrfs_discard_ctl *discard_ctl, |
| struct btrfs_block_group *block_group) |
| { |
| bool running = false; |
| bool queued = false; |
| |
| spin_lock(&discard_ctl->lock); |
| |
| if (block_group == discard_ctl->block_group) { |
| running = true; |
| discard_ctl->block_group = NULL; |
| } |
| |
| block_group->discard_eligible_time = 0; |
| queued = !list_empty(&block_group->discard_list); |
| list_del_init(&block_group->discard_list); |
| /* |
| * If the block group is currently running in the discard workfn, we |
| * don't want to deref it, since it's still being used by the workfn. |
| * The workfn will notice this case and deref the block group when it is |
| * finished. |
| */ |
| if (queued && !running) |
| btrfs_put_block_group(block_group); |
| |
| spin_unlock(&discard_ctl->lock); |
| |
| return running; |
| } |
| |
| /* |
| * Find block_group that's up next for discarding. |
| * |
| * @discard_ctl: discard control |
| * @now: current time |
| * |
| * Iterate over the discard lists to find the next block_group up for |
| * discarding checking the discard_eligible_time of block_group. |
| */ |
| static struct btrfs_block_group *find_next_block_group( |
| struct btrfs_discard_ctl *discard_ctl, |
| u64 now) |
| { |
| struct btrfs_block_group *ret_block_group = NULL, *block_group; |
| int i; |
| |
| for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) { |
| struct list_head *discard_list = &discard_ctl->discard_list[i]; |
| |
| if (!list_empty(discard_list)) { |
| block_group = list_first_entry(discard_list, |
| struct btrfs_block_group, |
| discard_list); |
| |
| if (!ret_block_group) |
| ret_block_group = block_group; |
| |
| if (ret_block_group->discard_eligible_time < now) |
| break; |
| |
| if (ret_block_group->discard_eligible_time > |
| block_group->discard_eligible_time) |
| ret_block_group = block_group; |
| } |
| } |
| |
| return ret_block_group; |
| } |
| |
| /* |
| * Look up next block group and set it for use. |
| * |
| * @discard_ctl: discard control |
| * @discard_state: the discard_state of the block_group after state management |
| * @discard_index: the discard_index of the block_group after state management |
| * @now: time when discard was invoked, in ns |
| * |
| * Wrap find_next_block_group() and set the block_group to be in use. |
| * @discard_state's control flow is managed here. Variables related to |
| * @discard_state are reset here as needed (eg. @discard_cursor). @discard_state |
| * and @discard_index are remembered as it may change while we're discarding, |
| * but we want the discard to execute in the context determined here. |
| */ |
| static struct btrfs_block_group *peek_discard_list( |
| struct btrfs_discard_ctl *discard_ctl, |
| enum btrfs_discard_state *discard_state, |
| int *discard_index, u64 now) |
| { |
| struct btrfs_block_group *block_group; |
| |
| spin_lock(&discard_ctl->lock); |
| again: |
| block_group = find_next_block_group(discard_ctl, now); |
| |
| if (block_group && now >= block_group->discard_eligible_time) { |
| if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED && |
| block_group->used != 0) { |
| if (btrfs_is_block_group_data_only(block_group)) { |
| __add_to_discard_list(discard_ctl, block_group); |
| } else { |
| list_del_init(&block_group->discard_list); |
| btrfs_put_block_group(block_group); |
| } |
| goto again; |
| } |
| if (block_group->discard_state == BTRFS_DISCARD_RESET_CURSOR) { |
| block_group->discard_cursor = block_group->start; |
| block_group->discard_state = BTRFS_DISCARD_EXTENTS; |
| } |
| discard_ctl->block_group = block_group; |
| } |
| if (block_group) { |
| *discard_state = block_group->discard_state; |
| *discard_index = block_group->discard_index; |
| } |
| spin_unlock(&discard_ctl->lock); |
| |
| return block_group; |
| } |
| |
| /* |
| * Update a block group's filters. |
| * |
| * @block_group: block group of interest |
| * @bytes: recently freed region size after coalescing |
| * |
| * Async discard maintains multiple lists with progressively smaller filters |
| * to prioritize discarding based on size. Should a free space that matches |
| * a larger filter be returned to the free_space_cache, prioritize that discard |
| * by moving @block_group to the proper filter. |
| */ |
| void btrfs_discard_check_filter(struct btrfs_block_group *block_group, |
| u64 bytes) |
| { |
| struct btrfs_discard_ctl *discard_ctl; |
| |
| if (!block_group || |
| !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC)) |
| return; |
| |
| discard_ctl = &block_group->fs_info->discard_ctl; |
| |
| if (block_group->discard_index > BTRFS_DISCARD_INDEX_START && |
| bytes >= discard_minlen[block_group->discard_index - 1]) { |
| int i; |
| |
| remove_from_discard_list(discard_ctl, block_group); |
| |
| for (i = BTRFS_DISCARD_INDEX_START; i < BTRFS_NR_DISCARD_LISTS; |
| i++) { |
| if (bytes >= discard_minlen[i]) { |
| block_group->discard_index = i; |
| add_to_discard_list(discard_ctl, block_group); |
| break; |
| } |
| } |
| } |
| } |
| |
| /* |
| * Move a block group along the discard lists. |
| * |
| * @discard_ctl: discard control |
| * @block_group: block_group of interest |
| * |
| * Increment @block_group's discard_index. If it falls of the list, let it be. |
| * Otherwise add it back to the appropriate list. |
| */ |
| static void btrfs_update_discard_index(struct btrfs_discard_ctl *discard_ctl, |
| struct btrfs_block_group *block_group) |
| { |
| block_group->discard_index++; |
| if (block_group->discard_index == BTRFS_NR_DISCARD_LISTS) { |
| block_group->discard_index = 1; |
| return; |
| } |
| |
| add_to_discard_list(discard_ctl, block_group); |
| } |
| |
| /* |
| * Remove a block_group from the discard lists. |
| * |
| * @discard_ctl: discard control |
| * @block_group: block_group of interest |
| * |
| * Remove @block_group from the discard lists. If necessary, wait on the |
| * current work and then reschedule the delayed work. |
| */ |
| void btrfs_discard_cancel_work(struct btrfs_discard_ctl *discard_ctl, |
| struct btrfs_block_group *block_group) |
| { |
| if (remove_from_discard_list(discard_ctl, block_group)) { |
| cancel_delayed_work_sync(&discard_ctl->work); |
| btrfs_discard_schedule_work(discard_ctl, true); |
| } |
| } |
| |
| /* |
| * Handles queuing the block_groups. |
| * |
| * @discard_ctl: discard control |
| * @block_group: block_group of interest |
| * |
| * Maintain the LRU order of the discard lists. |
| */ |
| void btrfs_discard_queue_work(struct btrfs_discard_ctl *discard_ctl, |
| struct btrfs_block_group *block_group) |
| { |
| if (!block_group || !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC)) |
| return; |
| |
| if (block_group->used == 0) |
| add_to_discard_unused_list(discard_ctl, block_group); |
| else |
| add_to_discard_list(discard_ctl, block_group); |
| |
| if (!delayed_work_pending(&discard_ctl->work)) |
| btrfs_discard_schedule_work(discard_ctl, false); |
| } |
| |
| static void __btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl, |
| u64 now, bool override) |
| { |
| struct btrfs_block_group *block_group; |
| |
| if (!btrfs_run_discard_work(discard_ctl)) |
| return; |
| if (!override && delayed_work_pending(&discard_ctl->work)) |
| return; |
| |
| block_group = find_next_block_group(discard_ctl, now); |
| if (block_group) { |
| u64 delay = discard_ctl->delay_ms * NSEC_PER_MSEC; |
| u32 kbps_limit = READ_ONCE(discard_ctl->kbps_limit); |
| |
| /* |
| * A single delayed workqueue item is responsible for |
| * discarding, so we can manage the bytes rate limit by keeping |
| * track of the previous discard. |
| */ |
| if (kbps_limit && discard_ctl->prev_discard) { |
| u64 bps_limit = ((u64)kbps_limit) * SZ_1K; |
| u64 bps_delay = div64_u64(discard_ctl->prev_discard * |
| NSEC_PER_SEC, bps_limit); |
| |
| delay = max(delay, bps_delay); |
| } |
| |
| /* |
| * This timeout is to hopefully prevent immediate discarding |
| * in a recently allocated block group. |
| */ |
| if (now < block_group->discard_eligible_time) { |
| u64 bg_timeout = block_group->discard_eligible_time - now; |
| |
| delay = max(delay, bg_timeout); |
| } |
| |
| if (override && discard_ctl->prev_discard) { |
| u64 elapsed = now - discard_ctl->prev_discard_time; |
| |
| if (delay > elapsed) |
| delay -= elapsed; |
| else |
| delay = 0; |
| } |
| |
| mod_delayed_work(discard_ctl->discard_workers, |
| &discard_ctl->work, nsecs_to_jiffies(delay)); |
| } |
| } |
| |
| /* |
| * Responsible for scheduling the discard work. |
| * |
| * @discard_ctl: discard control |
| * @override: override the current timer |
| * |
| * Discards are issued by a delayed workqueue item. @override is used to |
| * update the current delay as the baseline delay interval is reevaluated on |
| * transaction commit. This is also maxed with any other rate limit. |
| */ |
| void btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl, |
| bool override) |
| { |
| const u64 now = ktime_get_ns(); |
| |
| spin_lock(&discard_ctl->lock); |
| __btrfs_discard_schedule_work(discard_ctl, now, override); |
| spin_unlock(&discard_ctl->lock); |
| } |
| |
| /* |
| * Determine next step of a block_group. |
| * |
| * @discard_ctl: discard control |
| * @block_group: block_group of interest |
| * |
| * Determine the next step for a block group after it's finished going through |
| * a pass on a discard list. If it is unused and fully trimmed, we can mark it |
| * unused and send it to the unused_bgs path. Otherwise, pass it onto the |
| * appropriate filter list or let it fall off. |
| */ |
| static void btrfs_finish_discard_pass(struct btrfs_discard_ctl *discard_ctl, |
| struct btrfs_block_group *block_group) |
| { |
| remove_from_discard_list(discard_ctl, block_group); |
| |
| if (block_group->used == 0) { |
| if (btrfs_is_free_space_trimmed(block_group)) |
| btrfs_mark_bg_unused(block_group); |
| else |
| add_to_discard_unused_list(discard_ctl, block_group); |
| } else { |
| btrfs_update_discard_index(discard_ctl, block_group); |
| } |
| } |
| |
| /* |
| * Discard work queue callback |
| * |
| * @work: work |
| * |
| * Find the next block_group to start discarding and then discard a single |
| * region. It does this in a two-pass fashion: first extents and second |
| * bitmaps. Completely discarded block groups are sent to the unused_bgs path. |
| */ |
| static void btrfs_discard_workfn(struct work_struct *work) |
| { |
| struct btrfs_discard_ctl *discard_ctl; |
| struct btrfs_block_group *block_group; |
| enum btrfs_discard_state discard_state; |
| int discard_index = 0; |
| u64 trimmed = 0; |
| u64 minlen = 0; |
| u64 now = ktime_get_ns(); |
| |
| discard_ctl = container_of(work, struct btrfs_discard_ctl, work.work); |
| |
| block_group = peek_discard_list(discard_ctl, &discard_state, |
| &discard_index, now); |
| if (!block_group || !btrfs_run_discard_work(discard_ctl)) |
| return; |
| if (now < block_group->discard_eligible_time) { |
| btrfs_discard_schedule_work(discard_ctl, false); |
| return; |
| } |
| |
| /* Perform discarding */ |
| minlen = discard_minlen[discard_index]; |
| |
| if (discard_state == BTRFS_DISCARD_BITMAPS) { |
| u64 maxlen = 0; |
| |
| /* |
| * Use the previous levels minimum discard length as the max |
| * length filter. In the case something is added to make a |
| * region go beyond the max filter, the entire bitmap is set |
| * back to BTRFS_TRIM_STATE_UNTRIMMED. |
| */ |
| if (discard_index != BTRFS_DISCARD_INDEX_UNUSED) |
| maxlen = discard_minlen[discard_index - 1]; |
| |
| btrfs_trim_block_group_bitmaps(block_group, &trimmed, |
| block_group->discard_cursor, |
| btrfs_block_group_end(block_group), |
| minlen, maxlen, true); |
| discard_ctl->discard_bitmap_bytes += trimmed; |
| } else { |
| btrfs_trim_block_group_extents(block_group, &trimmed, |
| block_group->discard_cursor, |
| btrfs_block_group_end(block_group), |
| minlen, true); |
| discard_ctl->discard_extent_bytes += trimmed; |
| } |
| |
| /* Determine next steps for a block_group */ |
| if (block_group->discard_cursor >= btrfs_block_group_end(block_group)) { |
| if (discard_state == BTRFS_DISCARD_BITMAPS) { |
| btrfs_finish_discard_pass(discard_ctl, block_group); |
| } else { |
| block_group->discard_cursor = block_group->start; |
| spin_lock(&discard_ctl->lock); |
| if (block_group->discard_state != |
| BTRFS_DISCARD_RESET_CURSOR) |
| block_group->discard_state = |
| BTRFS_DISCARD_BITMAPS; |
| spin_unlock(&discard_ctl->lock); |
| } |
| } |
| |
| now = ktime_get_ns(); |
| spin_lock(&discard_ctl->lock); |
| discard_ctl->prev_discard = trimmed; |
| discard_ctl->prev_discard_time = now; |
| /* |
| * If the block group was removed from the discard list while it was |
| * running in this workfn, then we didn't deref it, since this function |
| * still owned that reference. But we set the discard_ctl->block_group |
| * back to NULL, so we can use that condition to know that now we need |
| * to deref the block_group. |
| */ |
| if (discard_ctl->block_group == NULL) |
| btrfs_put_block_group(block_group); |
| discard_ctl->block_group = NULL; |
| __btrfs_discard_schedule_work(discard_ctl, now, false); |
| spin_unlock(&discard_ctl->lock); |
| } |
| |
| /* |
| * Determine if async discard should be running. |
| * |
| * @discard_ctl: discard control |
| * |
| * Check if the file system is writeable and BTRFS_FS_DISCARD_RUNNING is set. |
| */ |
| bool btrfs_run_discard_work(struct btrfs_discard_ctl *discard_ctl) |
| { |
| struct btrfs_fs_info *fs_info = container_of(discard_ctl, |
| struct btrfs_fs_info, |
| discard_ctl); |
| |
| return (!(fs_info->sb->s_flags & SB_RDONLY) && |
| test_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags)); |
| } |
| |
| /* |
| * Recalculate the base delay. |
| * |
| * @discard_ctl: discard control |
| * |
| * Recalculate the base delay which is based off the total number of |
| * discardable_extents. Clamp this between the lower_limit (iops_limit or 1ms) |
| * and the upper_limit (BTRFS_DISCARD_MAX_DELAY_MSEC). |
| */ |
| void btrfs_discard_calc_delay(struct btrfs_discard_ctl *discard_ctl) |
| { |
| s32 discardable_extents; |
| s64 discardable_bytes; |
| u32 iops_limit; |
| unsigned long delay; |
| |
| discardable_extents = atomic_read(&discard_ctl->discardable_extents); |
| if (!discardable_extents) |
| return; |
| |
| spin_lock(&discard_ctl->lock); |
| |
| /* |
| * The following is to fix a potential -1 discrepancy that we're not |
| * sure how to reproduce. But given that this is the only place that |
| * utilizes these numbers and this is only called by from |
| * btrfs_finish_extent_commit() which is synchronized, we can correct |
| * here. |
| */ |
| if (discardable_extents < 0) |
| atomic_add(-discardable_extents, |
| &discard_ctl->discardable_extents); |
| |
| discardable_bytes = atomic64_read(&discard_ctl->discardable_bytes); |
| if (discardable_bytes < 0) |
| atomic64_add(-discardable_bytes, |
| &discard_ctl->discardable_bytes); |
| |
| if (discardable_extents <= 0) { |
| spin_unlock(&discard_ctl->lock); |
| return; |
| } |
| |
| iops_limit = READ_ONCE(discard_ctl->iops_limit); |
| if (iops_limit) |
| delay = MSEC_PER_SEC / iops_limit; |
| else |
| delay = BTRFS_DISCARD_TARGET_MSEC / discardable_extents; |
| |
| delay = clamp(delay, BTRFS_DISCARD_MIN_DELAY_MSEC, |
| BTRFS_DISCARD_MAX_DELAY_MSEC); |
| discard_ctl->delay_ms = delay; |
| |
| spin_unlock(&discard_ctl->lock); |
| } |
| |
| /* |
| * Propagate discard counters. |
| * |
| * @block_group: block_group of interest |
| * |
| * Propagate deltas of counters up to the discard_ctl. It maintains a current |
| * counter and a previous counter passing the delta up to the global stat. |
| * Then the current counter value becomes the previous counter value. |
| */ |
| void btrfs_discard_update_discardable(struct btrfs_block_group *block_group) |
| { |
| struct btrfs_free_space_ctl *ctl; |
| struct btrfs_discard_ctl *discard_ctl; |
| s32 extents_delta; |
| s64 bytes_delta; |
| |
| if (!block_group || |
| !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC) || |
| !btrfs_is_block_group_data_only(block_group)) |
| return; |
| |
| ctl = block_group->free_space_ctl; |
| discard_ctl = &block_group->fs_info->discard_ctl; |
| |
| lockdep_assert_held(&ctl->tree_lock); |
| extents_delta = ctl->discardable_extents[BTRFS_STAT_CURR] - |
| ctl->discardable_extents[BTRFS_STAT_PREV]; |
| if (extents_delta) { |
| atomic_add(extents_delta, &discard_ctl->discardable_extents); |
| ctl->discardable_extents[BTRFS_STAT_PREV] = |
| ctl->discardable_extents[BTRFS_STAT_CURR]; |
| } |
| |
| bytes_delta = ctl->discardable_bytes[BTRFS_STAT_CURR] - |
| ctl->discardable_bytes[BTRFS_STAT_PREV]; |
| if (bytes_delta) { |
| atomic64_add(bytes_delta, &discard_ctl->discardable_bytes); |
| ctl->discardable_bytes[BTRFS_STAT_PREV] = |
| ctl->discardable_bytes[BTRFS_STAT_CURR]; |
| } |
| } |
| |
| /* |
| * Punt unused_bgs list to discard lists. |
| * |
| * @fs_info: fs_info of interest |
| * |
| * The unused_bgs list needs to be punted to the discard lists because the |
| * order of operations is changed. In the normal synchronous discard path, the |
| * block groups are trimmed via a single large trim in transaction commit. This |
| * is ultimately what we are trying to avoid with asynchronous discard. Thus, |
| * it must be done before going down the unused_bgs path. |
| */ |
| void btrfs_discard_punt_unused_bgs_list(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_block_group *block_group, *next; |
| |
| spin_lock(&fs_info->unused_bgs_lock); |
| /* We enabled async discard, so punt all to the queue */ |
| list_for_each_entry_safe(block_group, next, &fs_info->unused_bgs, |
| bg_list) { |
| list_del_init(&block_group->bg_list); |
| btrfs_discard_queue_work(&fs_info->discard_ctl, block_group); |
| /* |
| * This put is for the get done by btrfs_mark_bg_unused. |
| * Queueing discard incremented it for discard's reference. |
| */ |
| btrfs_put_block_group(block_group); |
| } |
| spin_unlock(&fs_info->unused_bgs_lock); |
| } |
| |
| /* |
| * Purge discard lists. |
| * |
| * @discard_ctl: discard control |
| * |
| * If we are disabling async discard, we may have intercepted block groups that |
| * are completely free and ready for the unused_bgs path. As discarding will |
| * now happen in transaction commit or not at all, we can safely mark the |
| * corresponding block groups as unused and they will be sent on their merry |
| * way to the unused_bgs list. |
| */ |
| static void btrfs_discard_purge_list(struct btrfs_discard_ctl *discard_ctl) |
| { |
| struct btrfs_block_group *block_group, *next; |
| int i; |
| |
| spin_lock(&discard_ctl->lock); |
| for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) { |
| list_for_each_entry_safe(block_group, next, |
| &discard_ctl->discard_list[i], |
| discard_list) { |
| list_del_init(&block_group->discard_list); |
| spin_unlock(&discard_ctl->lock); |
| if (block_group->used == 0) |
| btrfs_mark_bg_unused(block_group); |
| spin_lock(&discard_ctl->lock); |
| btrfs_put_block_group(block_group); |
| } |
| } |
| spin_unlock(&discard_ctl->lock); |
| } |
| |
| void btrfs_discard_resume(struct btrfs_fs_info *fs_info) |
| { |
| if (!btrfs_test_opt(fs_info, DISCARD_ASYNC)) { |
| btrfs_discard_cleanup(fs_info); |
| return; |
| } |
| |
| btrfs_discard_punt_unused_bgs_list(fs_info); |
| |
| set_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags); |
| } |
| |
| void btrfs_discard_stop(struct btrfs_fs_info *fs_info) |
| { |
| clear_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags); |
| } |
| |
| void btrfs_discard_init(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_discard_ctl *discard_ctl = &fs_info->discard_ctl; |
| int i; |
| |
| spin_lock_init(&discard_ctl->lock); |
| INIT_DELAYED_WORK(&discard_ctl->work, btrfs_discard_workfn); |
| |
| for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) |
| INIT_LIST_HEAD(&discard_ctl->discard_list[i]); |
| |
| discard_ctl->prev_discard = 0; |
| discard_ctl->prev_discard_time = 0; |
| atomic_set(&discard_ctl->discardable_extents, 0); |
| atomic64_set(&discard_ctl->discardable_bytes, 0); |
| discard_ctl->max_discard_size = BTRFS_ASYNC_DISCARD_DEFAULT_MAX_SIZE; |
| discard_ctl->delay_ms = BTRFS_DISCARD_MAX_DELAY_MSEC; |
| discard_ctl->iops_limit = BTRFS_DISCARD_MAX_IOPS; |
| discard_ctl->kbps_limit = 0; |
| discard_ctl->discard_extent_bytes = 0; |
| discard_ctl->discard_bitmap_bytes = 0; |
| atomic64_set(&discard_ctl->discard_bytes_saved, 0); |
| } |
| |
| void btrfs_discard_cleanup(struct btrfs_fs_info *fs_info) |
| { |
| btrfs_discard_stop(fs_info); |
| cancel_delayed_work_sync(&fs_info->discard_ctl.work); |
| btrfs_discard_purge_list(&fs_info->discard_ctl); |
| } |