blob: ef5f84a144c35d7ad449a9b173367929ce9fdf2e [file] [log] [blame]
/*
* Copyright 2019 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Author: AMD
*/
#ifdef CONFIG_DRM_AMD_DC_DSC_SUPPORT
#include "dc.h"
#include "core_types.h"
#include "dsc.h"
#include <drm/drm_dp_helper.h>
/* This module's internal functions */
static bool dsc_buff_block_size_from_dpcd(int dpcd_buff_block_size, int *buff_block_size)
{
switch (dpcd_buff_block_size) {
case DP_DSC_RC_BUF_BLK_SIZE_1:
*buff_block_size = 1024;
break;
case DP_DSC_RC_BUF_BLK_SIZE_4:
*buff_block_size = 4 * 1024;
break;
case DP_DSC_RC_BUF_BLK_SIZE_16:
*buff_block_size = 16 * 1024;
break;
case DP_DSC_RC_BUF_BLK_SIZE_64:
*buff_block_size = 64 * 1024;
break;
default: {
dm_error("%s: DPCD DSC buffer size not recognized.\n", __func__);
return false;
}
}
return true;
}
static bool dsc_line_buff_depth_from_dpcd(int dpcd_line_buff_bit_depth, int *line_buff_bit_depth)
{
if (0 <= dpcd_line_buff_bit_depth && dpcd_line_buff_bit_depth <= 7)
*line_buff_bit_depth = dpcd_line_buff_bit_depth + 9;
else if (dpcd_line_buff_bit_depth == 8)
*line_buff_bit_depth = 8;
else {
dm_error("%s: DPCD DSC buffer depth not recognized.\n", __func__);
return false;
}
return true;
}
static bool dsc_throughput_from_dpcd(int dpcd_throughput, int *throughput)
{
switch (dpcd_throughput) {
case DP_DSC_THROUGHPUT_MODE_0_UPSUPPORTED:
*throughput = 0;
break;
case DP_DSC_THROUGHPUT_MODE_0_170:
*throughput = 170;
break;
case DP_DSC_THROUGHPUT_MODE_0_340:
*throughput = 340;
break;
case DP_DSC_THROUGHPUT_MODE_0_400:
*throughput = 400;
break;
case DP_DSC_THROUGHPUT_MODE_0_450:
*throughput = 450;
break;
case DP_DSC_THROUGHPUT_MODE_0_500:
*throughput = 500;
break;
case DP_DSC_THROUGHPUT_MODE_0_550:
*throughput = 550;
break;
case DP_DSC_THROUGHPUT_MODE_0_600:
*throughput = 600;
break;
case DP_DSC_THROUGHPUT_MODE_0_650:
*throughput = 650;
break;
case DP_DSC_THROUGHPUT_MODE_0_700:
*throughput = 700;
break;
case DP_DSC_THROUGHPUT_MODE_0_750:
*throughput = 750;
break;
case DP_DSC_THROUGHPUT_MODE_0_800:
*throughput = 800;
break;
case DP_DSC_THROUGHPUT_MODE_0_850:
*throughput = 850;
break;
case DP_DSC_THROUGHPUT_MODE_0_900:
*throughput = 900;
break;
case DP_DSC_THROUGHPUT_MODE_0_950:
*throughput = 950;
break;
case DP_DSC_THROUGHPUT_MODE_0_1000:
*throughput = 1000;
break;
default: {
dm_error("%s: DPCD DSC throughput mode not recognized.\n", __func__);
return false;
}
}
return true;
}
static bool dsc_bpp_increment_div_from_dpcd(int bpp_increment_dpcd, uint32_t *bpp_increment_div)
{
switch (bpp_increment_dpcd) {
case 0:
*bpp_increment_div = 16;
break;
case 1:
*bpp_increment_div = 8;
break;
case 2:
*bpp_increment_div = 4;
break;
case 3:
*bpp_increment_div = 2;
break;
case 4:
*bpp_increment_div = 1;
break;
default: {
dm_error("%s: DPCD DSC bits-per-pixel increment not recognized.\n", __func__);
return false;
}
}
return true;
}
static void get_dsc_enc_caps(
const struct dc *dc,
struct dsc_enc_caps *dsc_enc_caps,
int pixel_clock_100Hz)
{
// This is a static HW query, so we can use any DSC
struct display_stream_compressor *dsc = dc->res_pool->dscs[0];
memset(dsc_enc_caps, 0, sizeof(struct dsc_enc_caps));
if (dsc)
dsc->funcs->dsc_get_enc_caps(dsc_enc_caps, pixel_clock_100Hz);
}
/* Returns 'false' if no intersection was found for at least one capablity.
* It also implicitly validates some sink caps against invalid value of zero.
*/
static bool intersect_dsc_caps(
const struct dsc_dec_dpcd_caps *dsc_sink_caps,
const struct dsc_enc_caps *dsc_enc_caps,
enum dc_pixel_encoding pixel_encoding,
struct dsc_enc_caps *dsc_common_caps)
{
int32_t max_slices;
int32_t total_sink_throughput;
memset(dsc_common_caps, 0, sizeof(struct dsc_enc_caps));
dsc_common_caps->dsc_version = min(dsc_sink_caps->dsc_version, dsc_enc_caps->dsc_version);
if (!dsc_common_caps->dsc_version)
return false;
dsc_common_caps->slice_caps.bits.NUM_SLICES_1 = dsc_sink_caps->slice_caps1.bits.NUM_SLICES_1 && dsc_enc_caps->slice_caps.bits.NUM_SLICES_1;
dsc_common_caps->slice_caps.bits.NUM_SLICES_2 = dsc_sink_caps->slice_caps1.bits.NUM_SLICES_2 && dsc_enc_caps->slice_caps.bits.NUM_SLICES_2;
dsc_common_caps->slice_caps.bits.NUM_SLICES_4 = dsc_sink_caps->slice_caps1.bits.NUM_SLICES_4 && dsc_enc_caps->slice_caps.bits.NUM_SLICES_4;
dsc_common_caps->slice_caps.bits.NUM_SLICES_8 = dsc_sink_caps->slice_caps1.bits.NUM_SLICES_8 && dsc_enc_caps->slice_caps.bits.NUM_SLICES_8;
if (!dsc_common_caps->slice_caps.raw)
return false;
dsc_common_caps->lb_bit_depth = min(dsc_sink_caps->lb_bit_depth, dsc_enc_caps->lb_bit_depth);
if (!dsc_common_caps->lb_bit_depth)
return false;
dsc_common_caps->is_block_pred_supported = dsc_sink_caps->is_block_pred_supported && dsc_enc_caps->is_block_pred_supported;
dsc_common_caps->color_formats.raw = dsc_sink_caps->color_formats.raw & dsc_enc_caps->color_formats.raw;
if (!dsc_common_caps->color_formats.raw)
return false;
dsc_common_caps->color_depth.raw = dsc_sink_caps->color_depth.raw & dsc_enc_caps->color_depth.raw;
if (!dsc_common_caps->color_depth.raw)
return false;
max_slices = 0;
if (dsc_common_caps->slice_caps.bits.NUM_SLICES_1)
max_slices = 1;
if (dsc_common_caps->slice_caps.bits.NUM_SLICES_2)
max_slices = 2;
if (dsc_common_caps->slice_caps.bits.NUM_SLICES_4)
max_slices = 4;
total_sink_throughput = max_slices * dsc_sink_caps->throughput_mode_0_mps;
if (pixel_encoding == PIXEL_ENCODING_YCBCR422 || pixel_encoding == PIXEL_ENCODING_YCBCR420)
total_sink_throughput = max_slices * dsc_sink_caps->throughput_mode_1_mps;
dsc_common_caps->max_total_throughput_mps = min(total_sink_throughput, dsc_enc_caps->max_total_throughput_mps);
dsc_common_caps->max_slice_width = min(dsc_sink_caps->max_slice_width, dsc_enc_caps->max_slice_width);
if (!dsc_common_caps->max_slice_width)
return false;
dsc_common_caps->bpp_increment_div = min(dsc_sink_caps->bpp_increment_div, dsc_enc_caps->bpp_increment_div);
// TODO DSC: Remove this workaround for N422 and 420 once it's fixed, or move it to get_dsc_encoder_caps()
if (pixel_encoding == PIXEL_ENCODING_YCBCR422 || pixel_encoding == PIXEL_ENCODING_YCBCR420)
dsc_common_caps->bpp_increment_div = min(dsc_common_caps->bpp_increment_div, (uint32_t)8);
return true;
}
struct dc_dsc_policy {
bool use_min_slices_h;
int max_slices_h; // Maximum available if 0
int num_slices_v;
int max_target_bpp;
int min_target_bpp; // Minimum target bits per pixel
};
static inline uint32_t dsc_div_by_10_round_up(uint32_t value)
{
return (value + 9) / 10;
}
static inline uint32_t calc_dsc_bpp_x16(uint32_t stream_bandwidth_kbps, uint32_t pix_clk_100hz, uint32_t bpp_increment_div)
{
uint32_t dsc_target_bpp_x16;
float f_dsc_target_bpp;
float f_stream_bandwidth_100bps = stream_bandwidth_kbps * 10.0f;
uint32_t precision = bpp_increment_div; // bpp_increment_div is actually precision
f_dsc_target_bpp = f_stream_bandwidth_100bps / pix_clk_100hz;
// Round down to the nearest precision stop to bring it into DSC spec range
dsc_target_bpp_x16 = (uint32_t)(f_dsc_target_bpp * precision);
dsc_target_bpp_x16 = (dsc_target_bpp_x16 * 16) / precision;
return dsc_target_bpp_x16;
}
const struct dc_dsc_policy dsc_policy = {
.use_min_slices_h = true, // DSC Policy: Use minimum number of slices that fits the pixel clock
.max_slices_h = 0, // DSC Policy: Use max available slices (in our case 4 for or 8, depending on the mode)
/* DSC Policy: Number of vertical slices set to 2 for no particular reason.
* Seems small enough to not affect the quality too much, while still providing some error
* propagation control (which may also help debugging).
*/
.num_slices_v = 16,
.max_target_bpp = 16,
.min_target_bpp = 8,
};
/* Get DSC bandwidth range based on [min_bpp, max_bpp] target bitrate range, and timing's pixel clock
* and uncompressed bandwidth.
*/
static void get_dsc_bandwidth_range(
const uint32_t min_bpp,
const uint32_t max_bpp,
const struct dsc_enc_caps *dsc_caps,
const struct dc_crtc_timing *timing,
struct dc_dsc_bw_range *range)
{
/* native stream bandwidth */
range->stream_kbps = dc_bandwidth_in_kbps_from_timing(timing);
/* max dsc target bpp */
range->max_kbps = dsc_div_by_10_round_up(max_bpp * timing->pix_clk_100hz);
range->max_target_bpp_x16 = max_bpp * 16;
if (range->max_kbps > range->stream_kbps) {
/* max dsc target bpp is capped to native bandwidth */
range->max_kbps = range->stream_kbps;
range->max_target_bpp_x16 = calc_dsc_bpp_x16(range->stream_kbps, timing->pix_clk_100hz, dsc_caps->bpp_increment_div);
}
/* min dsc target bpp */
range->min_kbps = dsc_div_by_10_round_up(min_bpp * timing->pix_clk_100hz);
range->min_target_bpp_x16 = min_bpp * 16;
if (range->min_kbps > range->max_kbps) {
/* min dsc target bpp is capped to max dsc bandwidth*/
range->min_kbps = range->max_kbps;
range->min_target_bpp_x16 = range->max_target_bpp_x16;
}
}
/* Decides if DSC should be used and calculates target bpp if it should, applying DSC policy.
*
* Returns:
* - 'true' if DSC was required by policy and was successfully applied
* - 'false' if DSC was not necessary (e.g. if uncompressed stream fits 'target_bandwidth_kbps'),
* or if it couldn't be applied based on DSC policy.
*/
static bool decide_dsc_target_bpp_x16(
const struct dc_dsc_policy *policy,
const struct dsc_enc_caps *dsc_common_caps,
const int target_bandwidth_kbps,
const struct dc_crtc_timing *timing,
int *target_bpp_x16)
{
bool should_use_dsc = false;
struct dc_dsc_bw_range range;
memset(&range, 0, sizeof(range));
get_dsc_bandwidth_range(policy->min_target_bpp, policy->max_target_bpp,
dsc_common_caps, timing, &range);
if (target_bandwidth_kbps >= range.stream_kbps) {
/* enough bandwidth without dsc */
*target_bpp_x16 = 0;
should_use_dsc = false;
} else if (target_bandwidth_kbps >= range.max_kbps) {
/* use max target bpp allowed */
*target_bpp_x16 = range.max_target_bpp_x16;
should_use_dsc = true;
} else if (target_bandwidth_kbps >= range.min_kbps) {
/* use target bpp that can take entire target bandwidth */
*target_bpp_x16 = calc_dsc_bpp_x16(target_bandwidth_kbps, timing->pix_clk_100hz, dsc_common_caps->bpp_increment_div);
should_use_dsc = true;
} else {
/* not enough bandwidth to fulfill minimum requirement */
*target_bpp_x16 = 0;
should_use_dsc = false;
}
return should_use_dsc;
}
#define MIN_AVAILABLE_SLICES_SIZE 4
static int get_available_dsc_slices(union dsc_enc_slice_caps slice_caps, int *available_slices)
{
int idx = 0;
memset(available_slices, -1, MIN_AVAILABLE_SLICES_SIZE);
if (slice_caps.bits.NUM_SLICES_1)
available_slices[idx++] = 1;
if (slice_caps.bits.NUM_SLICES_2)
available_slices[idx++] = 2;
if (slice_caps.bits.NUM_SLICES_4)
available_slices[idx++] = 4;
if (slice_caps.bits.NUM_SLICES_8)
available_slices[idx++] = 8;
return idx;
}
static int get_max_dsc_slices(union dsc_enc_slice_caps slice_caps)
{
int max_slices = 0;
int available_slices[MIN_AVAILABLE_SLICES_SIZE];
int end_idx = get_available_dsc_slices(slice_caps, &available_slices[0]);
if (end_idx > 0)
max_slices = available_slices[end_idx - 1];
return max_slices;
}
// Increment sice number in available sice numbers stops if possible, or just increment if not
static int inc_num_slices(union dsc_enc_slice_caps slice_caps, int num_slices)
{
// Get next bigger num slices available in common caps
int available_slices[MIN_AVAILABLE_SLICES_SIZE];
int end_idx;
int i;
int new_num_slices = num_slices;
end_idx = get_available_dsc_slices(slice_caps, &available_slices[0]);
if (end_idx == 0) {
// No available slices found
new_num_slices++;
return new_num_slices;
}
// Numbers of slices found - get the next bigger number
for (i = 0; i < end_idx; i++) {
if (new_num_slices < available_slices[i]) {
new_num_slices = available_slices[i];
break;
}
}
if (new_num_slices == num_slices) // No biger number of slices found
new_num_slices++;
return new_num_slices;
}
// Decrement sice number in available sice numbers stops if possible, or just decrement if not. Stop at zero.
static int dec_num_slices(union dsc_enc_slice_caps slice_caps, int num_slices)
{
// Get next bigger num slices available in common caps
int available_slices[MIN_AVAILABLE_SLICES_SIZE];
int end_idx;
int i;
int new_num_slices = num_slices;
end_idx = get_available_dsc_slices(slice_caps, &available_slices[0]);
if (end_idx == 0 && new_num_slices > 0) {
// No numbers of slices found
new_num_slices++;
return new_num_slices;
}
// Numbers of slices found - get the next smaller number
for (i = end_idx - 1; i >= 0; i--) {
if (new_num_slices > available_slices[i]) {
new_num_slices = available_slices[i];
break;
}
}
if (new_num_slices == num_slices) {
// No smaller number of slices found
new_num_slices--;
if (new_num_slices < 0)
new_num_slices = 0;
}
return new_num_slices;
}
// Choose next bigger number of slices if the requested number of slices is not available
static int fit_num_slices_up(union dsc_enc_slice_caps slice_caps, int num_slices)
{
// Get next bigger num slices available in common caps
int available_slices[MIN_AVAILABLE_SLICES_SIZE];
int end_idx;
int i;
int new_num_slices = num_slices;
end_idx = get_available_dsc_slices(slice_caps, &available_slices[0]);
if (end_idx == 0) {
// No available slices found
new_num_slices++;
return new_num_slices;
}
// Numbers of slices found - get the equal or next bigger number
for (i = 0; i < end_idx; i++) {
if (new_num_slices <= available_slices[i]) {
new_num_slices = available_slices[i];
break;
}
}
return new_num_slices;
}
/* Attempts to set DSC configuration for the stream, applying DSC policy.
* Returns 'true' if successful or 'false' if not.
*
* Parameters:
*
* dsc_sink_caps - DSC sink decoder capabilities (from DPCD)
*
* dsc_enc_caps - DSC encoder capabilities
*
* target_bandwidth_kbps - Target bandwidth to fit the stream into.
* If 0, do not calculate target bpp.
*
* timing - The stream timing to fit into 'target_bandwidth_kbps' or apply
* maximum compression to, if 'target_badwidth == 0'
*
* dsc_cfg - DSC configuration to use if it was possible to come up with
* one for the given inputs.
* The target bitrate after DSC can be calculated by multiplying
* dsc_cfg.bits_per_pixel (in U6.4 format) by pixel rate, e.g.
*
* dsc_stream_bitrate_kbps = (int)ceil(timing->pix_clk_khz * dsc_cfg.bits_per_pixel / 16.0);
*/
static bool setup_dsc_config(
const struct dsc_dec_dpcd_caps *dsc_sink_caps,
const struct dsc_enc_caps *dsc_enc_caps,
int target_bandwidth_kbps,
const struct dc_crtc_timing *timing,
struct dc_dsc_config *dsc_cfg)
{
struct dsc_enc_caps dsc_common_caps;
int max_slices_h;
int min_slices_h;
int num_slices_h;
int pic_width;
int slice_width;
int target_bpp;
int sink_per_slice_throughput_mps;
int branch_max_throughput_mps = 0;
bool is_dsc_possible = false;
int num_slices_v;
int pic_height;
memset(dsc_cfg, 0, sizeof(struct dc_dsc_config));
pic_width = timing->h_addressable + timing->h_border_left + timing->h_border_right;
pic_height = timing->v_addressable + timing->v_border_top + timing->v_border_bottom;
if (!dsc_sink_caps->is_dsc_supported)
goto done;
if (dsc_sink_caps->branch_max_line_width && dsc_sink_caps->branch_max_line_width < pic_width)
goto done;
// Intersect decoder with encoder DSC caps and validate DSC settings
is_dsc_possible = intersect_dsc_caps(dsc_sink_caps, dsc_enc_caps, timing->pixel_encoding, &dsc_common_caps);
if (!is_dsc_possible)
goto done;
if (target_bandwidth_kbps > 0) {
is_dsc_possible = decide_dsc_target_bpp_x16(&dsc_policy, &dsc_common_caps, target_bandwidth_kbps, timing, &target_bpp);
dsc_cfg->bits_per_pixel = target_bpp;
}
if (!is_dsc_possible)
goto done;
sink_per_slice_throughput_mps = 0;
// Validate available DSC settings against the mode timing
// Validate color format (and pick up the throughput values)
dsc_cfg->ycbcr422_simple = false;
switch (timing->pixel_encoding) {
case PIXEL_ENCODING_RGB:
is_dsc_possible = (bool)dsc_common_caps.color_formats.bits.RGB;
sink_per_slice_throughput_mps = dsc_sink_caps->throughput_mode_0_mps;
branch_max_throughput_mps = dsc_sink_caps->branch_overall_throughput_0_mps;
break;
case PIXEL_ENCODING_YCBCR444:
is_dsc_possible = (bool)dsc_common_caps.color_formats.bits.YCBCR_444;
sink_per_slice_throughput_mps = dsc_sink_caps->throughput_mode_0_mps;
branch_max_throughput_mps = dsc_sink_caps->branch_overall_throughput_0_mps;
break;
case PIXEL_ENCODING_YCBCR422:
is_dsc_possible = (bool)dsc_common_caps.color_formats.bits.YCBCR_NATIVE_422;
sink_per_slice_throughput_mps = dsc_sink_caps->throughput_mode_1_mps;
branch_max_throughput_mps = dsc_sink_caps->branch_overall_throughput_1_mps;
if (!is_dsc_possible) {
is_dsc_possible = (bool)dsc_common_caps.color_formats.bits.YCBCR_SIMPLE_422;
dsc_cfg->ycbcr422_simple = is_dsc_possible;
sink_per_slice_throughput_mps = dsc_sink_caps->throughput_mode_0_mps;
}
break;
case PIXEL_ENCODING_YCBCR420:
is_dsc_possible = (bool)dsc_common_caps.color_formats.bits.YCBCR_NATIVE_420;
sink_per_slice_throughput_mps = dsc_sink_caps->throughput_mode_1_mps;
branch_max_throughput_mps = dsc_sink_caps->branch_overall_throughput_1_mps;
break;
default:
is_dsc_possible = false;
}
// Validate branch's maximum throughput
if (branch_max_throughput_mps && dsc_div_by_10_round_up(timing->pix_clk_100hz) > branch_max_throughput_mps * 1000)
is_dsc_possible = false;
if (!is_dsc_possible)
goto done;
// Color depth
switch (timing->display_color_depth) {
case COLOR_DEPTH_888:
is_dsc_possible = (bool)dsc_common_caps.color_depth.bits.COLOR_DEPTH_8_BPC;
break;
case COLOR_DEPTH_101010:
is_dsc_possible = (bool)dsc_common_caps.color_depth.bits.COLOR_DEPTH_10_BPC;
break;
case COLOR_DEPTH_121212:
is_dsc_possible = (bool)dsc_common_caps.color_depth.bits.COLOR_DEPTH_12_BPC;
break;
default:
is_dsc_possible = false;
}
if (!is_dsc_possible)
goto done;
// DSC slicing
max_slices_h = get_max_dsc_slices(dsc_common_caps.slice_caps);
while (max_slices_h > 0) {
if (pic_width % max_slices_h == 0)
break;
max_slices_h = dec_num_slices(dsc_common_caps.slice_caps, max_slices_h);
}
is_dsc_possible = (dsc_common_caps.max_slice_width > 0);
if (!is_dsc_possible)
goto done;
min_slices_h = pic_width / dsc_common_caps.max_slice_width;
if (pic_width % dsc_common_caps.max_slice_width)
min_slices_h++;
min_slices_h = fit_num_slices_up(dsc_common_caps.slice_caps, min_slices_h);
while (min_slices_h <= max_slices_h) {
int pix_clk_per_slice_khz = dsc_div_by_10_round_up(timing->pix_clk_100hz) / min_slices_h;
if (pix_clk_per_slice_khz <= sink_per_slice_throughput_mps * 1000)
break;
min_slices_h = inc_num_slices(dsc_common_caps.slice_caps, min_slices_h);
}
if (pic_width % min_slices_h != 0)
min_slices_h = 0; // DSC TODO: Maybe try increasing the number of slices first?
is_dsc_possible = (min_slices_h <= max_slices_h);
if (!is_dsc_possible)
goto done;
if (dsc_policy.use_min_slices_h) {
if (min_slices_h > 0)
num_slices_h = min_slices_h;
else if (max_slices_h > 0) { // Fall back to max slices if min slices is not working out
if (dsc_policy.max_slices_h)
num_slices_h = min(dsc_policy.max_slices_h, max_slices_h);
else
num_slices_h = max_slices_h;
} else
is_dsc_possible = false;
} else {
if (max_slices_h > 0) {
if (dsc_policy.max_slices_h)
num_slices_h = min(dsc_policy.max_slices_h, max_slices_h);
else
num_slices_h = max_slices_h;
} else if (min_slices_h > 0) // Fall back to min slices if max slices is not possible
num_slices_h = min_slices_h;
else
is_dsc_possible = false;
}
if (!is_dsc_possible)
goto done;
dsc_cfg->num_slices_h = num_slices_h;
slice_width = pic_width / num_slices_h;
// Vertical number of slices: start from policy and pick the first one that height is divisible by.
// For 4:2:0 make sure the slice height is divisible by 2 as well.
num_slices_v = dsc_policy.num_slices_v;
if (num_slices_v < 1)
num_slices_v = 1;
while (num_slices_v >= 1) {
if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR420) {
int slice_height = pic_height / num_slices_v;
if (pic_height % num_slices_v == 0 && slice_height % 2 == 0)
break;
} else if (pic_height % num_slices_v == 0)
break;
num_slices_v--;
}
dsc_cfg->num_slices_v = num_slices_v;
is_dsc_possible = slice_width <= dsc_common_caps.max_slice_width;
if (!is_dsc_possible)
goto done;
// Final decission: can we do DSC or not?
if (is_dsc_possible) {
// Fill out the rest of DSC settings
dsc_cfg->block_pred_enable = dsc_common_caps.is_block_pred_supported;
dsc_cfg->linebuf_depth = dsc_common_caps.lb_bit_depth;
dsc_cfg->version_minor = (dsc_common_caps.dsc_version & 0xf0) >> 4;
}
done:
if (!is_dsc_possible)
memset(dsc_cfg, 0, sizeof(struct dc_dsc_config));
return is_dsc_possible;
}
bool dc_dsc_parse_dsc_dpcd(const uint8_t *dpcd_dsc_basic_data, const uint8_t *dpcd_dsc_ext_data, struct dsc_dec_dpcd_caps *dsc_sink_caps)
{
if (!dpcd_dsc_basic_data)
return false;
dsc_sink_caps->is_dsc_supported = (dpcd_dsc_basic_data[DP_DSC_SUPPORT - DP_DSC_SUPPORT] & DP_DSC_DECOMPRESSION_IS_SUPPORTED) != 0;
if (!dsc_sink_caps->is_dsc_supported)
return false;
dsc_sink_caps->dsc_version = dpcd_dsc_basic_data[DP_DSC_REV - DP_DSC_SUPPORT];
{
int buff_block_size;
int buff_size;
if (!dsc_buff_block_size_from_dpcd(dpcd_dsc_basic_data[DP_DSC_RC_BUF_BLK_SIZE - DP_DSC_SUPPORT], &buff_block_size))
return false;
buff_size = dpcd_dsc_basic_data[DP_DSC_RC_BUF_SIZE - DP_DSC_SUPPORT] + 1;
dsc_sink_caps->rc_buffer_size = buff_size * buff_block_size;
}
dsc_sink_caps->slice_caps1.raw = dpcd_dsc_basic_data[DP_DSC_SLICE_CAP_1 - DP_DSC_SUPPORT];
if (!dsc_line_buff_depth_from_dpcd(dpcd_dsc_basic_data[DP_DSC_LINE_BUF_BIT_DEPTH - DP_DSC_SUPPORT], &dsc_sink_caps->lb_bit_depth))
return false;
dsc_sink_caps->is_block_pred_supported =
(dpcd_dsc_basic_data[DP_DSC_BLK_PREDICTION_SUPPORT - DP_DSC_SUPPORT] & DP_DSC_BLK_PREDICTION_IS_SUPPORTED) != 0;
dsc_sink_caps->edp_max_bits_per_pixel =
dpcd_dsc_basic_data[DP_DSC_MAX_BITS_PER_PIXEL_LOW - DP_DSC_SUPPORT] |
dpcd_dsc_basic_data[DP_DSC_MAX_BITS_PER_PIXEL_HI - DP_DSC_SUPPORT] << 8;
dsc_sink_caps->color_formats.raw = dpcd_dsc_basic_data[DP_DSC_DEC_COLOR_FORMAT_CAP - DP_DSC_SUPPORT];
dsc_sink_caps->color_depth.raw = dpcd_dsc_basic_data[DP_DSC_DEC_COLOR_DEPTH_CAP - DP_DSC_SUPPORT];
{
int dpcd_throughput = dpcd_dsc_basic_data[DP_DSC_PEAK_THROUGHPUT - DP_DSC_SUPPORT];
if (!dsc_throughput_from_dpcd(dpcd_throughput & DP_DSC_THROUGHPUT_MODE_0_MASK, &dsc_sink_caps->throughput_mode_0_mps))
return false;
dpcd_throughput = (dpcd_throughput & DP_DSC_THROUGHPUT_MODE_1_MASK) >> DP_DSC_THROUGHPUT_MODE_1_SHIFT;
if (!dsc_throughput_from_dpcd(dpcd_throughput, &dsc_sink_caps->throughput_mode_1_mps))
return false;
}
dsc_sink_caps->max_slice_width = dpcd_dsc_basic_data[DP_DSC_MAX_SLICE_WIDTH - DP_DSC_SUPPORT] * 320;
dsc_sink_caps->slice_caps2.raw = dpcd_dsc_basic_data[DP_DSC_SLICE_CAP_2 - DP_DSC_SUPPORT];
if (!dsc_bpp_increment_div_from_dpcd(dpcd_dsc_basic_data[DP_DSC_BITS_PER_PIXEL_INC - DP_DSC_SUPPORT], &dsc_sink_caps->bpp_increment_div))
return false;
/* Extended caps */
if (dpcd_dsc_ext_data == NULL) { // Extended DPCD DSC data can be null, e.g. because it doesn't apply to SST
dsc_sink_caps->branch_overall_throughput_0_mps = 0;
dsc_sink_caps->branch_overall_throughput_1_mps = 0;
dsc_sink_caps->branch_max_line_width = 0;
return true;
}
dsc_sink_caps->branch_overall_throughput_0_mps = dpcd_dsc_ext_data[DP_DSC_BRANCH_OVERALL_THROUGHPUT_0 - DP_DSC_BRANCH_OVERALL_THROUGHPUT_0];
if (dsc_sink_caps->branch_overall_throughput_0_mps == 0)
dsc_sink_caps->branch_overall_throughput_0_mps = 0;
else if (dsc_sink_caps->branch_overall_throughput_0_mps == 1)
dsc_sink_caps->branch_overall_throughput_0_mps = 680;
else {
dsc_sink_caps->branch_overall_throughput_0_mps *= 50;
dsc_sink_caps->branch_overall_throughput_0_mps += 600;
}
dsc_sink_caps->branch_overall_throughput_1_mps = dpcd_dsc_ext_data[DP_DSC_BRANCH_OVERALL_THROUGHPUT_1 - DP_DSC_BRANCH_OVERALL_THROUGHPUT_0];
if (dsc_sink_caps->branch_overall_throughput_1_mps == 0)
dsc_sink_caps->branch_overall_throughput_1_mps = 0;
else if (dsc_sink_caps->branch_overall_throughput_1_mps == 1)
dsc_sink_caps->branch_overall_throughput_1_mps = 680;
else {
dsc_sink_caps->branch_overall_throughput_1_mps *= 50;
dsc_sink_caps->branch_overall_throughput_1_mps += 600;
}
dsc_sink_caps->branch_max_line_width = dpcd_dsc_ext_data[DP_DSC_BRANCH_MAX_LINE_WIDTH - DP_DSC_BRANCH_OVERALL_THROUGHPUT_0] * 320;
ASSERT(dsc_sink_caps->branch_max_line_width == 0 || dsc_sink_caps->branch_max_line_width >= 5120);
return true;
}
/* If DSC is possbile, get DSC bandwidth range based on [min_bpp, max_bpp] target bitrate range and
* timing's pixel clock and uncompressed bandwidth.
* If DSC is not possible, leave '*range' untouched.
*/
bool dc_dsc_compute_bandwidth_range(
const struct dc *dc,
const uint32_t min_bpp,
const uint32_t max_bpp,
const struct dsc_dec_dpcd_caps *dsc_sink_caps,
const struct dc_crtc_timing *timing,
struct dc_dsc_bw_range *range)
{
bool is_dsc_possible = false;
struct dsc_enc_caps dsc_enc_caps;
struct dsc_enc_caps dsc_common_caps;
struct dc_dsc_config config;
get_dsc_enc_caps(dc, &dsc_enc_caps, timing->pix_clk_100hz);
is_dsc_possible = intersect_dsc_caps(dsc_sink_caps, &dsc_enc_caps,
timing->pixel_encoding, &dsc_common_caps);
if (is_dsc_possible)
is_dsc_possible = setup_dsc_config(dsc_sink_caps,
&dsc_enc_caps,
0,
timing, &config);
if (is_dsc_possible)
get_dsc_bandwidth_range(min_bpp, max_bpp, &dsc_common_caps, timing, range);
return is_dsc_possible;
}
bool dc_dsc_compute_config(
const struct dc *dc,
const struct dsc_dec_dpcd_caps *dsc_sink_caps,
uint32_t target_bandwidth_kbps,
const struct dc_crtc_timing *timing,
struct dc_dsc_config *dsc_cfg)
{
bool is_dsc_possible = false;
struct dsc_enc_caps dsc_enc_caps;
get_dsc_enc_caps(dc, &dsc_enc_caps, timing->pix_clk_100hz);
is_dsc_possible = setup_dsc_config(dsc_sink_caps,
&dsc_enc_caps,
target_bandwidth_kbps,
timing, dsc_cfg);
return is_dsc_possible;
}
#endif /* CONFIG_DRM_AMD_DC_DSC_SUPPORT */