| /* |
| * Copyright 2019 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| */ |
| |
| #include "pp_debug.h" |
| #include <linux/firmware.h> |
| #include "amdgpu.h" |
| #include "amdgpu_smu.h" |
| #include "atomfirmware.h" |
| #include "amdgpu_atomfirmware.h" |
| #include "smu_v11_0.h" |
| #include "smu11_driver_if.h" |
| #include "soc15_common.h" |
| #include "atom.h" |
| #include "power_state.h" |
| #include "vega20_ppt.h" |
| #include "vega20_pptable.h" |
| #include "vega20_ppsmc.h" |
| #include "nbio/nbio_7_4_sh_mask.h" |
| #include "asic_reg/thm/thm_11_0_2_offset.h" |
| #include "asic_reg/thm/thm_11_0_2_sh_mask.h" |
| |
| #define smnPCIE_LC_SPEED_CNTL 0x11140290 |
| #define smnPCIE_LC_LINK_WIDTH_CNTL 0x11140288 |
| |
| #define CTF_OFFSET_EDGE 5 |
| #define CTF_OFFSET_HOTSPOT 5 |
| #define CTF_OFFSET_HBM 5 |
| |
| #define MSG_MAP(msg) \ |
| [SMU_MSG_##msg] = PPSMC_MSG_##msg |
| |
| #define SMC_DPM_FEATURE (FEATURE_DPM_PREFETCHER_MASK | \ |
| FEATURE_DPM_GFXCLK_MASK | \ |
| FEATURE_DPM_UCLK_MASK | \ |
| FEATURE_DPM_SOCCLK_MASK | \ |
| FEATURE_DPM_UVD_MASK | \ |
| FEATURE_DPM_VCE_MASK | \ |
| FEATURE_DPM_MP0CLK_MASK | \ |
| FEATURE_DPM_LINK_MASK | \ |
| FEATURE_DPM_DCEFCLK_MASK) |
| |
| static int vega20_message_map[SMU_MSG_MAX_COUNT] = { |
| MSG_MAP(TestMessage), |
| MSG_MAP(GetSmuVersion), |
| MSG_MAP(GetDriverIfVersion), |
| MSG_MAP(SetAllowedFeaturesMaskLow), |
| MSG_MAP(SetAllowedFeaturesMaskHigh), |
| MSG_MAP(EnableAllSmuFeatures), |
| MSG_MAP(DisableAllSmuFeatures), |
| MSG_MAP(EnableSmuFeaturesLow), |
| MSG_MAP(EnableSmuFeaturesHigh), |
| MSG_MAP(DisableSmuFeaturesLow), |
| MSG_MAP(DisableSmuFeaturesHigh), |
| MSG_MAP(GetEnabledSmuFeaturesLow), |
| MSG_MAP(GetEnabledSmuFeaturesHigh), |
| MSG_MAP(SetWorkloadMask), |
| MSG_MAP(SetPptLimit), |
| MSG_MAP(SetDriverDramAddrHigh), |
| MSG_MAP(SetDriverDramAddrLow), |
| MSG_MAP(SetToolsDramAddrHigh), |
| MSG_MAP(SetToolsDramAddrLow), |
| MSG_MAP(TransferTableSmu2Dram), |
| MSG_MAP(TransferTableDram2Smu), |
| MSG_MAP(UseDefaultPPTable), |
| MSG_MAP(UseBackupPPTable), |
| MSG_MAP(RunBtc), |
| MSG_MAP(RequestI2CBus), |
| MSG_MAP(ReleaseI2CBus), |
| MSG_MAP(SetFloorSocVoltage), |
| MSG_MAP(SoftReset), |
| MSG_MAP(StartBacoMonitor), |
| MSG_MAP(CancelBacoMonitor), |
| MSG_MAP(EnterBaco), |
| MSG_MAP(SetSoftMinByFreq), |
| MSG_MAP(SetSoftMaxByFreq), |
| MSG_MAP(SetHardMinByFreq), |
| MSG_MAP(SetHardMaxByFreq), |
| MSG_MAP(GetMinDpmFreq), |
| MSG_MAP(GetMaxDpmFreq), |
| MSG_MAP(GetDpmFreqByIndex), |
| MSG_MAP(GetDpmClockFreq), |
| MSG_MAP(GetSsVoltageByDpm), |
| MSG_MAP(SetMemoryChannelConfig), |
| MSG_MAP(SetGeminiMode), |
| MSG_MAP(SetGeminiApertureHigh), |
| MSG_MAP(SetGeminiApertureLow), |
| MSG_MAP(SetMinLinkDpmByIndex), |
| MSG_MAP(OverridePcieParameters), |
| MSG_MAP(OverDriveSetPercentage), |
| MSG_MAP(SetMinDeepSleepDcefclk), |
| MSG_MAP(ReenableAcDcInterrupt), |
| MSG_MAP(NotifyPowerSource), |
| MSG_MAP(SetUclkFastSwitch), |
| MSG_MAP(SetUclkDownHyst), |
| MSG_MAP(GetCurrentRpm), |
| MSG_MAP(SetVideoFps), |
| MSG_MAP(SetTjMax), |
| MSG_MAP(SetFanTemperatureTarget), |
| MSG_MAP(PrepareMp1ForUnload), |
| MSG_MAP(DramLogSetDramAddrHigh), |
| MSG_MAP(DramLogSetDramAddrLow), |
| MSG_MAP(DramLogSetDramSize), |
| MSG_MAP(SetFanMaxRpm), |
| MSG_MAP(SetFanMinPwm), |
| MSG_MAP(ConfigureGfxDidt), |
| MSG_MAP(NumOfDisplays), |
| MSG_MAP(RemoveMargins), |
| MSG_MAP(ReadSerialNumTop32), |
| MSG_MAP(ReadSerialNumBottom32), |
| MSG_MAP(SetSystemVirtualDramAddrHigh), |
| MSG_MAP(SetSystemVirtualDramAddrLow), |
| MSG_MAP(WaflTest), |
| MSG_MAP(SetFclkGfxClkRatio), |
| MSG_MAP(AllowGfxOff), |
| MSG_MAP(DisallowGfxOff), |
| MSG_MAP(GetPptLimit), |
| MSG_MAP(GetDcModeMaxDpmFreq), |
| MSG_MAP(GetDebugData), |
| MSG_MAP(SetXgmiMode), |
| MSG_MAP(RunAfllBtc), |
| MSG_MAP(ExitBaco), |
| MSG_MAP(PrepareMp1ForReset), |
| MSG_MAP(PrepareMp1ForShutdown), |
| MSG_MAP(SetMGpuFanBoostLimitRpm), |
| MSG_MAP(GetAVFSVoltageByDpm), |
| }; |
| |
| static int vega20_clk_map[SMU_CLK_COUNT] = { |
| CLK_MAP(GFXCLK, PPCLK_GFXCLK), |
| CLK_MAP(VCLK, PPCLK_VCLK), |
| CLK_MAP(DCLK, PPCLK_DCLK), |
| CLK_MAP(ECLK, PPCLK_ECLK), |
| CLK_MAP(SOCCLK, PPCLK_SOCCLK), |
| CLK_MAP(UCLK, PPCLK_UCLK), |
| CLK_MAP(DCEFCLK, PPCLK_DCEFCLK), |
| CLK_MAP(DISPCLK, PPCLK_DISPCLK), |
| CLK_MAP(PIXCLK, PPCLK_PIXCLK), |
| CLK_MAP(PHYCLK, PPCLK_PHYCLK), |
| CLK_MAP(FCLK, PPCLK_FCLK), |
| }; |
| |
| static int vega20_feature_mask_map[SMU_FEATURE_COUNT] = { |
| FEA_MAP(DPM_PREFETCHER), |
| FEA_MAP(DPM_GFXCLK), |
| FEA_MAP(DPM_UCLK), |
| FEA_MAP(DPM_SOCCLK), |
| FEA_MAP(DPM_UVD), |
| FEA_MAP(DPM_VCE), |
| FEA_MAP(ULV), |
| FEA_MAP(DPM_MP0CLK), |
| FEA_MAP(DPM_LINK), |
| FEA_MAP(DPM_DCEFCLK), |
| FEA_MAP(DS_GFXCLK), |
| FEA_MAP(DS_SOCCLK), |
| FEA_MAP(DS_LCLK), |
| FEA_MAP(PPT), |
| FEA_MAP(TDC), |
| FEA_MAP(THERMAL), |
| FEA_MAP(GFX_PER_CU_CG), |
| FEA_MAP(RM), |
| FEA_MAP(DS_DCEFCLK), |
| FEA_MAP(ACDC), |
| FEA_MAP(VR0HOT), |
| FEA_MAP(VR1HOT), |
| FEA_MAP(FW_CTF), |
| FEA_MAP(LED_DISPLAY), |
| FEA_MAP(FAN_CONTROL), |
| FEA_MAP(GFX_EDC), |
| FEA_MAP(GFXOFF), |
| FEA_MAP(CG), |
| FEA_MAP(DPM_FCLK), |
| FEA_MAP(DS_FCLK), |
| FEA_MAP(DS_MP1CLK), |
| FEA_MAP(DS_MP0CLK), |
| FEA_MAP(XGMI), |
| }; |
| |
| static int vega20_table_map[SMU_TABLE_COUNT] = { |
| TAB_MAP(PPTABLE), |
| TAB_MAP(WATERMARKS), |
| TAB_MAP(AVFS), |
| TAB_MAP(AVFS_PSM_DEBUG), |
| TAB_MAP(AVFS_FUSE_OVERRIDE), |
| TAB_MAP(PMSTATUSLOG), |
| TAB_MAP(SMU_METRICS), |
| TAB_MAP(DRIVER_SMU_CONFIG), |
| TAB_MAP(ACTIVITY_MONITOR_COEFF), |
| TAB_MAP(OVERDRIVE), |
| }; |
| |
| static int vega20_pwr_src_map[SMU_POWER_SOURCE_COUNT] = { |
| PWR_MAP(AC), |
| PWR_MAP(DC), |
| }; |
| |
| static int vega20_workload_map[] = { |
| WORKLOAD_MAP(PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT, WORKLOAD_DEFAULT_BIT), |
| WORKLOAD_MAP(PP_SMC_POWER_PROFILE_FULLSCREEN3D, WORKLOAD_PPLIB_FULL_SCREEN_3D_BIT), |
| WORKLOAD_MAP(PP_SMC_POWER_PROFILE_POWERSAVING, WORKLOAD_PPLIB_POWER_SAVING_BIT), |
| WORKLOAD_MAP(PP_SMC_POWER_PROFILE_VIDEO, WORKLOAD_PPLIB_VIDEO_BIT), |
| WORKLOAD_MAP(PP_SMC_POWER_PROFILE_VR, WORKLOAD_PPLIB_VR_BIT), |
| WORKLOAD_MAP(PP_SMC_POWER_PROFILE_COMPUTE, WORKLOAD_PPLIB_CUSTOM_BIT), |
| WORKLOAD_MAP(PP_SMC_POWER_PROFILE_CUSTOM, WORKLOAD_PPLIB_CUSTOM_BIT), |
| }; |
| |
| static int vega20_get_smu_table_index(struct smu_context *smc, uint32_t index) |
| { |
| int val; |
| if (index >= SMU_TABLE_COUNT) |
| return -EINVAL; |
| |
| val = vega20_table_map[index]; |
| if (val >= TABLE_COUNT) |
| return -EINVAL; |
| |
| return val; |
| } |
| |
| static int vega20_get_pwr_src_index(struct smu_context *smc, uint32_t index) |
| { |
| int val; |
| if (index >= SMU_POWER_SOURCE_COUNT) |
| return -EINVAL; |
| |
| val = vega20_pwr_src_map[index]; |
| if (val >= POWER_SOURCE_COUNT) |
| return -EINVAL; |
| |
| return val; |
| } |
| |
| static int vega20_get_smu_feature_index(struct smu_context *smc, uint32_t index) |
| { |
| int val; |
| if (index >= SMU_FEATURE_COUNT) |
| return -EINVAL; |
| |
| val = vega20_feature_mask_map[index]; |
| if (val > 64) |
| return -EINVAL; |
| |
| return val; |
| } |
| |
| static int vega20_get_smu_clk_index(struct smu_context *smc, uint32_t index) |
| { |
| int val; |
| if (index >= SMU_CLK_COUNT) |
| return -EINVAL; |
| |
| val = vega20_clk_map[index]; |
| if (val >= PPCLK_COUNT) |
| return -EINVAL; |
| |
| return val; |
| } |
| |
| static int vega20_get_smu_msg_index(struct smu_context *smc, uint32_t index) |
| { |
| int val; |
| |
| if (index >= SMU_MSG_MAX_COUNT) |
| return -EINVAL; |
| |
| val = vega20_message_map[index]; |
| if (val > PPSMC_Message_Count) |
| return -EINVAL; |
| |
| return val; |
| } |
| |
| static int vega20_get_workload_type(struct smu_context *smu, enum PP_SMC_POWER_PROFILE profile) |
| { |
| int val; |
| if (profile > PP_SMC_POWER_PROFILE_CUSTOM) |
| return -EINVAL; |
| |
| val = vega20_workload_map[profile]; |
| |
| return val; |
| } |
| |
| static int vega20_tables_init(struct smu_context *smu, struct smu_table *tables) |
| { |
| struct smu_table_context *smu_table = &smu->smu_table; |
| |
| SMU_TABLE_INIT(tables, SMU_TABLE_PPTABLE, sizeof(PPTable_t), |
| PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); |
| SMU_TABLE_INIT(tables, SMU_TABLE_WATERMARKS, sizeof(Watermarks_t), |
| PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); |
| SMU_TABLE_INIT(tables, SMU_TABLE_SMU_METRICS, sizeof(SmuMetrics_t), |
| PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); |
| SMU_TABLE_INIT(tables, SMU_TABLE_OVERDRIVE, sizeof(OverDriveTable_t), |
| PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); |
| SMU_TABLE_INIT(tables, SMU_TABLE_PMSTATUSLOG, SMU11_TOOL_SIZE, |
| PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); |
| SMU_TABLE_INIT(tables, SMU_TABLE_ACTIVITY_MONITOR_COEFF, |
| sizeof(DpmActivityMonitorCoeffInt_t), PAGE_SIZE, |
| AMDGPU_GEM_DOMAIN_VRAM); |
| |
| smu_table->metrics_table = kzalloc(sizeof(SmuMetrics_t), GFP_KERNEL); |
| if (!smu_table->metrics_table) |
| return -ENOMEM; |
| smu_table->metrics_time = 0; |
| |
| return 0; |
| } |
| |
| static int vega20_allocate_dpm_context(struct smu_context *smu) |
| { |
| struct smu_dpm_context *smu_dpm = &smu->smu_dpm; |
| |
| if (smu_dpm->dpm_context) |
| return -EINVAL; |
| |
| smu_dpm->dpm_context = kzalloc(sizeof(struct vega20_dpm_table), |
| GFP_KERNEL); |
| if (!smu_dpm->dpm_context) |
| return -ENOMEM; |
| |
| if (smu_dpm->golden_dpm_context) |
| return -EINVAL; |
| |
| smu_dpm->golden_dpm_context = kzalloc(sizeof(struct vega20_dpm_table), |
| GFP_KERNEL); |
| if (!smu_dpm->golden_dpm_context) |
| return -ENOMEM; |
| |
| smu_dpm->dpm_context_size = sizeof(struct vega20_dpm_table); |
| |
| smu_dpm->dpm_current_power_state = kzalloc(sizeof(struct smu_power_state), |
| GFP_KERNEL); |
| if (!smu_dpm->dpm_current_power_state) |
| return -ENOMEM; |
| |
| smu_dpm->dpm_request_power_state = kzalloc(sizeof(struct smu_power_state), |
| GFP_KERNEL); |
| if (!smu_dpm->dpm_request_power_state) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| static int vega20_setup_od8_information(struct smu_context *smu) |
| { |
| ATOM_Vega20_POWERPLAYTABLE *powerplay_table = NULL; |
| struct smu_table_context *table_context = &smu->smu_table; |
| struct vega20_od8_settings *od8_settings = (struct vega20_od8_settings *)smu->od_settings; |
| |
| uint32_t od_feature_count, od_feature_array_size, |
| od_setting_count, od_setting_array_size; |
| |
| if (!table_context->power_play_table) |
| return -EINVAL; |
| |
| powerplay_table = table_context->power_play_table; |
| |
| if (powerplay_table->OverDrive8Table.ucODTableRevision == 1) { |
| /* Setup correct ODFeatureCount, and store ODFeatureArray from |
| * powerplay table to od_feature_capabilities */ |
| od_feature_count = |
| (le32_to_cpu(powerplay_table->OverDrive8Table.ODFeatureCount) > |
| ATOM_VEGA20_ODFEATURE_COUNT) ? |
| ATOM_VEGA20_ODFEATURE_COUNT : |
| le32_to_cpu(powerplay_table->OverDrive8Table.ODFeatureCount); |
| |
| od_feature_array_size = sizeof(uint8_t) * od_feature_count; |
| |
| if (od8_settings->od_feature_capabilities) |
| return -EINVAL; |
| |
| od8_settings->od_feature_capabilities = kmemdup(&powerplay_table->OverDrive8Table.ODFeatureCapabilities, |
| od_feature_array_size, |
| GFP_KERNEL); |
| if (!od8_settings->od_feature_capabilities) |
| return -ENOMEM; |
| |
| /* Setup correct ODSettingCount, and store ODSettingArray from |
| * powerplay table to od_settings_max and od_setting_min */ |
| od_setting_count = |
| (le32_to_cpu(powerplay_table->OverDrive8Table.ODSettingCount) > |
| ATOM_VEGA20_ODSETTING_COUNT) ? |
| ATOM_VEGA20_ODSETTING_COUNT : |
| le32_to_cpu(powerplay_table->OverDrive8Table.ODSettingCount); |
| |
| od_setting_array_size = sizeof(uint32_t) * od_setting_count; |
| |
| if (od8_settings->od_settings_max) |
| return -EINVAL; |
| |
| od8_settings->od_settings_max = kmemdup(&powerplay_table->OverDrive8Table.ODSettingsMax, |
| od_setting_array_size, |
| GFP_KERNEL); |
| |
| if (!od8_settings->od_settings_max) { |
| kfree(od8_settings->od_feature_capabilities); |
| od8_settings->od_feature_capabilities = NULL; |
| return -ENOMEM; |
| } |
| |
| if (od8_settings->od_settings_min) |
| return -EINVAL; |
| |
| od8_settings->od_settings_min = kmemdup(&powerplay_table->OverDrive8Table.ODSettingsMin, |
| od_setting_array_size, |
| GFP_KERNEL); |
| |
| if (!od8_settings->od_settings_min) { |
| kfree(od8_settings->od_feature_capabilities); |
| od8_settings->od_feature_capabilities = NULL; |
| kfree(od8_settings->od_settings_max); |
| od8_settings->od_settings_max = NULL; |
| return -ENOMEM; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int vega20_store_powerplay_table(struct smu_context *smu) |
| { |
| ATOM_Vega20_POWERPLAYTABLE *powerplay_table = NULL; |
| struct smu_table_context *table_context = &smu->smu_table; |
| |
| if (!table_context->power_play_table) |
| return -EINVAL; |
| |
| powerplay_table = table_context->power_play_table; |
| |
| memcpy(table_context->driver_pptable, &powerplay_table->smcPPTable, |
| sizeof(PPTable_t)); |
| |
| table_context->thermal_controller_type = powerplay_table->ucThermalControllerType; |
| table_context->TDPODLimit = le32_to_cpu(powerplay_table->OverDrive8Table.ODSettingsMax[ATOM_VEGA20_ODSETTING_POWERPERCENTAGE]); |
| |
| return 0; |
| } |
| |
| static int vega20_append_powerplay_table(struct smu_context *smu) |
| { |
| struct smu_table_context *table_context = &smu->smu_table; |
| PPTable_t *smc_pptable = table_context->driver_pptable; |
| struct atom_smc_dpm_info_v4_4 *smc_dpm_table; |
| int index, i, ret; |
| |
| index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, |
| smc_dpm_info); |
| |
| ret = smu_get_atom_data_table(smu, index, NULL, NULL, NULL, |
| (uint8_t **)&smc_dpm_table); |
| if (ret) |
| return ret; |
| |
| smc_pptable->MaxVoltageStepGfx = smc_dpm_table->maxvoltagestepgfx; |
| smc_pptable->MaxVoltageStepSoc = smc_dpm_table->maxvoltagestepsoc; |
| |
| smc_pptable->VddGfxVrMapping = smc_dpm_table->vddgfxvrmapping; |
| smc_pptable->VddSocVrMapping = smc_dpm_table->vddsocvrmapping; |
| smc_pptable->VddMem0VrMapping = smc_dpm_table->vddmem0vrmapping; |
| smc_pptable->VddMem1VrMapping = smc_dpm_table->vddmem1vrmapping; |
| |
| smc_pptable->GfxUlvPhaseSheddingMask = smc_dpm_table->gfxulvphasesheddingmask; |
| smc_pptable->SocUlvPhaseSheddingMask = smc_dpm_table->soculvphasesheddingmask; |
| smc_pptable->ExternalSensorPresent = smc_dpm_table->externalsensorpresent; |
| |
| smc_pptable->GfxMaxCurrent = smc_dpm_table->gfxmaxcurrent; |
| smc_pptable->GfxOffset = smc_dpm_table->gfxoffset; |
| smc_pptable->Padding_TelemetryGfx = smc_dpm_table->padding_telemetrygfx; |
| |
| smc_pptable->SocMaxCurrent = smc_dpm_table->socmaxcurrent; |
| smc_pptable->SocOffset = smc_dpm_table->socoffset; |
| smc_pptable->Padding_TelemetrySoc = smc_dpm_table->padding_telemetrysoc; |
| |
| smc_pptable->Mem0MaxCurrent = smc_dpm_table->mem0maxcurrent; |
| smc_pptable->Mem0Offset = smc_dpm_table->mem0offset; |
| smc_pptable->Padding_TelemetryMem0 = smc_dpm_table->padding_telemetrymem0; |
| |
| smc_pptable->Mem1MaxCurrent = smc_dpm_table->mem1maxcurrent; |
| smc_pptable->Mem1Offset = smc_dpm_table->mem1offset; |
| smc_pptable->Padding_TelemetryMem1 = smc_dpm_table->padding_telemetrymem1; |
| |
| smc_pptable->AcDcGpio = smc_dpm_table->acdcgpio; |
| smc_pptable->AcDcPolarity = smc_dpm_table->acdcpolarity; |
| smc_pptable->VR0HotGpio = smc_dpm_table->vr0hotgpio; |
| smc_pptable->VR0HotPolarity = smc_dpm_table->vr0hotpolarity; |
| |
| smc_pptable->VR1HotGpio = smc_dpm_table->vr1hotgpio; |
| smc_pptable->VR1HotPolarity = smc_dpm_table->vr1hotpolarity; |
| smc_pptable->Padding1 = smc_dpm_table->padding1; |
| smc_pptable->Padding2 = smc_dpm_table->padding2; |
| |
| smc_pptable->LedPin0 = smc_dpm_table->ledpin0; |
| smc_pptable->LedPin1 = smc_dpm_table->ledpin1; |
| smc_pptable->LedPin2 = smc_dpm_table->ledpin2; |
| |
| smc_pptable->PllGfxclkSpreadEnabled = smc_dpm_table->pllgfxclkspreadenabled; |
| smc_pptable->PllGfxclkSpreadPercent = smc_dpm_table->pllgfxclkspreadpercent; |
| smc_pptable->PllGfxclkSpreadFreq = smc_dpm_table->pllgfxclkspreadfreq; |
| |
| smc_pptable->UclkSpreadEnabled = 0; |
| smc_pptable->UclkSpreadPercent = smc_dpm_table->uclkspreadpercent; |
| smc_pptable->UclkSpreadFreq = smc_dpm_table->uclkspreadfreq; |
| |
| smc_pptable->FclkSpreadEnabled = smc_dpm_table->fclkspreadenabled; |
| smc_pptable->FclkSpreadPercent = smc_dpm_table->fclkspreadpercent; |
| smc_pptable->FclkSpreadFreq = smc_dpm_table->fclkspreadfreq; |
| |
| smc_pptable->FllGfxclkSpreadEnabled = smc_dpm_table->fllgfxclkspreadenabled; |
| smc_pptable->FllGfxclkSpreadPercent = smc_dpm_table->fllgfxclkspreadpercent; |
| smc_pptable->FllGfxclkSpreadFreq = smc_dpm_table->fllgfxclkspreadfreq; |
| |
| for (i = 0; i < I2C_CONTROLLER_NAME_COUNT; i++) { |
| smc_pptable->I2cControllers[i].Enabled = |
| smc_dpm_table->i2ccontrollers[i].enabled; |
| smc_pptable->I2cControllers[i].SlaveAddress = |
| smc_dpm_table->i2ccontrollers[i].slaveaddress; |
| smc_pptable->I2cControllers[i].ControllerPort = |
| smc_dpm_table->i2ccontrollers[i].controllerport; |
| smc_pptable->I2cControllers[i].ThermalThrottler = |
| smc_dpm_table->i2ccontrollers[i].thermalthrottler; |
| smc_pptable->I2cControllers[i].I2cProtocol = |
| smc_dpm_table->i2ccontrollers[i].i2cprotocol; |
| smc_pptable->I2cControllers[i].I2cSpeed = |
| smc_dpm_table->i2ccontrollers[i].i2cspeed; |
| } |
| |
| return 0; |
| } |
| |
| static int vega20_check_powerplay_table(struct smu_context *smu) |
| { |
| ATOM_Vega20_POWERPLAYTABLE *powerplay_table = NULL; |
| struct smu_table_context *table_context = &smu->smu_table; |
| |
| powerplay_table = table_context->power_play_table; |
| |
| if (powerplay_table->sHeader.format_revision < ATOM_VEGA20_TABLE_REVISION_VEGA20) { |
| pr_err("Unsupported PPTable format!"); |
| return -EINVAL; |
| } |
| |
| if (!powerplay_table->sHeader.structuresize) { |
| pr_err("Invalid PowerPlay Table!"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int vega20_run_btc_afll(struct smu_context *smu) |
| { |
| return smu_send_smc_msg(smu, SMU_MSG_RunAfllBtc); |
| } |
| |
| #define FEATURE_MASK(feature) (1ULL << feature) |
| static int |
| vega20_get_allowed_feature_mask(struct smu_context *smu, |
| uint32_t *feature_mask, uint32_t num) |
| { |
| if (num > 2) |
| return -EINVAL; |
| |
| memset(feature_mask, 0, sizeof(uint32_t) * num); |
| |
| *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DPM_PREFETCHER_BIT) |
| | FEATURE_MASK(FEATURE_DPM_GFXCLK_BIT) |
| | FEATURE_MASK(FEATURE_DPM_UCLK_BIT) |
| | FEATURE_MASK(FEATURE_DPM_SOCCLK_BIT) |
| | FEATURE_MASK(FEATURE_DPM_UVD_BIT) |
| | FEATURE_MASK(FEATURE_DPM_VCE_BIT) |
| | FEATURE_MASK(FEATURE_ULV_BIT) |
| | FEATURE_MASK(FEATURE_DPM_MP0CLK_BIT) |
| | FEATURE_MASK(FEATURE_DPM_LINK_BIT) |
| | FEATURE_MASK(FEATURE_DPM_DCEFCLK_BIT) |
| | FEATURE_MASK(FEATURE_PPT_BIT) |
| | FEATURE_MASK(FEATURE_TDC_BIT) |
| | FEATURE_MASK(FEATURE_THERMAL_BIT) |
| | FEATURE_MASK(FEATURE_GFX_PER_CU_CG_BIT) |
| | FEATURE_MASK(FEATURE_RM_BIT) |
| | FEATURE_MASK(FEATURE_ACDC_BIT) |
| | FEATURE_MASK(FEATURE_VR0HOT_BIT) |
| | FEATURE_MASK(FEATURE_VR1HOT_BIT) |
| | FEATURE_MASK(FEATURE_FW_CTF_BIT) |
| | FEATURE_MASK(FEATURE_LED_DISPLAY_BIT) |
| | FEATURE_MASK(FEATURE_FAN_CONTROL_BIT) |
| | FEATURE_MASK(FEATURE_GFX_EDC_BIT) |
| | FEATURE_MASK(FEATURE_GFXOFF_BIT) |
| | FEATURE_MASK(FEATURE_CG_BIT) |
| | FEATURE_MASK(FEATURE_DPM_FCLK_BIT) |
| | FEATURE_MASK(FEATURE_XGMI_BIT); |
| return 0; |
| } |
| |
| static enum |
| amd_pm_state_type vega20_get_current_power_state(struct smu_context *smu) |
| { |
| enum amd_pm_state_type pm_type; |
| struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm); |
| |
| if (!smu_dpm_ctx->dpm_context || |
| !smu_dpm_ctx->dpm_current_power_state) |
| return -EINVAL; |
| |
| mutex_lock(&(smu->mutex)); |
| switch (smu_dpm_ctx->dpm_current_power_state->classification.ui_label) { |
| case SMU_STATE_UI_LABEL_BATTERY: |
| pm_type = POWER_STATE_TYPE_BATTERY; |
| break; |
| case SMU_STATE_UI_LABEL_BALLANCED: |
| pm_type = POWER_STATE_TYPE_BALANCED; |
| break; |
| case SMU_STATE_UI_LABEL_PERFORMANCE: |
| pm_type = POWER_STATE_TYPE_PERFORMANCE; |
| break; |
| default: |
| if (smu_dpm_ctx->dpm_current_power_state->classification.flags & SMU_STATE_CLASSIFICATION_FLAG_BOOT) |
| pm_type = POWER_STATE_TYPE_INTERNAL_BOOT; |
| else |
| pm_type = POWER_STATE_TYPE_DEFAULT; |
| break; |
| } |
| mutex_unlock(&(smu->mutex)); |
| |
| return pm_type; |
| } |
| |
| static int |
| vega20_set_single_dpm_table(struct smu_context *smu, |
| struct vega20_single_dpm_table *single_dpm_table, |
| PPCLK_e clk_id) |
| { |
| int ret = 0; |
| uint32_t i, num_of_levels = 0, clk; |
| |
| ret = smu_send_smc_msg_with_param(smu, |
| SMU_MSG_GetDpmFreqByIndex, |
| (clk_id << 16 | 0xFF)); |
| if (ret) { |
| pr_err("[GetNumOfDpmLevel] failed to get dpm levels!"); |
| return ret; |
| } |
| |
| smu_read_smc_arg(smu, &num_of_levels); |
| if (!num_of_levels) { |
| pr_err("[GetNumOfDpmLevel] number of clk levels is invalid!"); |
| return -EINVAL; |
| } |
| |
| single_dpm_table->count = num_of_levels; |
| |
| for (i = 0; i < num_of_levels; i++) { |
| ret = smu_send_smc_msg_with_param(smu, |
| SMU_MSG_GetDpmFreqByIndex, |
| (clk_id << 16 | i)); |
| if (ret) { |
| pr_err("[GetDpmFreqByIndex] failed to get dpm freq by index!"); |
| return ret; |
| } |
| smu_read_smc_arg(smu, &clk); |
| if (!clk) { |
| pr_err("[GetDpmFreqByIndex] clk value is invalid!"); |
| return -EINVAL; |
| } |
| single_dpm_table->dpm_levels[i].value = clk; |
| single_dpm_table->dpm_levels[i].enabled = true; |
| } |
| return 0; |
| } |
| |
| static void vega20_init_single_dpm_state(struct vega20_dpm_state *dpm_state) |
| { |
| dpm_state->soft_min_level = 0x0; |
| dpm_state->soft_max_level = 0xffff; |
| dpm_state->hard_min_level = 0x0; |
| dpm_state->hard_max_level = 0xffff; |
| } |
| |
| static int vega20_set_default_dpm_table(struct smu_context *smu) |
| { |
| int ret; |
| |
| struct smu_dpm_context *smu_dpm = &smu->smu_dpm; |
| struct vega20_dpm_table *dpm_table = NULL; |
| struct vega20_single_dpm_table *single_dpm_table; |
| |
| dpm_table = smu_dpm->dpm_context; |
| |
| /* socclk */ |
| single_dpm_table = &(dpm_table->soc_table); |
| |
| if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) { |
| ret = vega20_set_single_dpm_table(smu, single_dpm_table, |
| PPCLK_SOCCLK); |
| if (ret) { |
| pr_err("[SetupDefaultDpmTable] failed to get socclk dpm levels!"); |
| return ret; |
| } |
| } else { |
| single_dpm_table->count = 1; |
| single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.socclk / 100; |
| } |
| vega20_init_single_dpm_state(&(single_dpm_table->dpm_state)); |
| |
| /* gfxclk */ |
| single_dpm_table = &(dpm_table->gfx_table); |
| |
| if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT)) { |
| ret = vega20_set_single_dpm_table(smu, single_dpm_table, |
| PPCLK_GFXCLK); |
| if (ret) { |
| pr_err("[SetupDefaultDpmTable] failed to get gfxclk dpm levels!"); |
| return ret; |
| } |
| } else { |
| single_dpm_table->count = 1; |
| single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.gfxclk / 100; |
| } |
| vega20_init_single_dpm_state(&(single_dpm_table->dpm_state)); |
| |
| /* memclk */ |
| single_dpm_table = &(dpm_table->mem_table); |
| |
| if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) { |
| ret = vega20_set_single_dpm_table(smu, single_dpm_table, |
| PPCLK_UCLK); |
| if (ret) { |
| pr_err("[SetupDefaultDpmTable] failed to get memclk dpm levels!"); |
| return ret; |
| } |
| } else { |
| single_dpm_table->count = 1; |
| single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.uclk / 100; |
| } |
| vega20_init_single_dpm_state(&(single_dpm_table->dpm_state)); |
| |
| /* eclk */ |
| single_dpm_table = &(dpm_table->eclk_table); |
| |
| if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_VCE_BIT)) { |
| ret = vega20_set_single_dpm_table(smu, single_dpm_table, PPCLK_ECLK); |
| if (ret) { |
| pr_err("[SetupDefaultDpmTable] failed to get eclk dpm levels!"); |
| return ret; |
| } |
| } else { |
| single_dpm_table->count = 1; |
| single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.eclk / 100; |
| } |
| vega20_init_single_dpm_state(&(single_dpm_table->dpm_state)); |
| |
| /* vclk */ |
| single_dpm_table = &(dpm_table->vclk_table); |
| |
| if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UVD_BIT)) { |
| ret = vega20_set_single_dpm_table(smu, single_dpm_table, PPCLK_VCLK); |
| if (ret) { |
| pr_err("[SetupDefaultDpmTable] failed to get vclk dpm levels!"); |
| return ret; |
| } |
| } else { |
| single_dpm_table->count = 1; |
| single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.vclk / 100; |
| } |
| vega20_init_single_dpm_state(&(single_dpm_table->dpm_state)); |
| |
| /* dclk */ |
| single_dpm_table = &(dpm_table->dclk_table); |
| |
| if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UVD_BIT)) { |
| ret = vega20_set_single_dpm_table(smu, single_dpm_table, PPCLK_DCLK); |
| if (ret) { |
| pr_err("[SetupDefaultDpmTable] failed to get dclk dpm levels!"); |
| return ret; |
| } |
| } else { |
| single_dpm_table->count = 1; |
| single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.dclk / 100; |
| } |
| vega20_init_single_dpm_state(&(single_dpm_table->dpm_state)); |
| |
| /* dcefclk */ |
| single_dpm_table = &(dpm_table->dcef_table); |
| |
| if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) { |
| ret = vega20_set_single_dpm_table(smu, single_dpm_table, |
| PPCLK_DCEFCLK); |
| if (ret) { |
| pr_err("[SetupDefaultDpmTable] failed to get dcefclk dpm levels!"); |
| return ret; |
| } |
| } else { |
| single_dpm_table->count = 1; |
| single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.dcefclk / 100; |
| } |
| vega20_init_single_dpm_state(&(single_dpm_table->dpm_state)); |
| |
| /* pixclk */ |
| single_dpm_table = &(dpm_table->pixel_table); |
| |
| if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) { |
| ret = vega20_set_single_dpm_table(smu, single_dpm_table, |
| PPCLK_PIXCLK); |
| if (ret) { |
| pr_err("[SetupDefaultDpmTable] failed to get pixclk dpm levels!"); |
| return ret; |
| } |
| } else { |
| single_dpm_table->count = 0; |
| } |
| vega20_init_single_dpm_state(&(single_dpm_table->dpm_state)); |
| |
| /* dispclk */ |
| single_dpm_table = &(dpm_table->display_table); |
| |
| if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) { |
| ret = vega20_set_single_dpm_table(smu, single_dpm_table, |
| PPCLK_DISPCLK); |
| if (ret) { |
| pr_err("[SetupDefaultDpmTable] failed to get dispclk dpm levels!"); |
| return ret; |
| } |
| } else { |
| single_dpm_table->count = 0; |
| } |
| vega20_init_single_dpm_state(&(single_dpm_table->dpm_state)); |
| |
| /* phyclk */ |
| single_dpm_table = &(dpm_table->phy_table); |
| |
| if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) { |
| ret = vega20_set_single_dpm_table(smu, single_dpm_table, |
| PPCLK_PHYCLK); |
| if (ret) { |
| pr_err("[SetupDefaultDpmTable] failed to get phyclk dpm levels!"); |
| return ret; |
| } |
| } else { |
| single_dpm_table->count = 0; |
| } |
| vega20_init_single_dpm_state(&(single_dpm_table->dpm_state)); |
| |
| /* fclk */ |
| single_dpm_table = &(dpm_table->fclk_table); |
| |
| if (smu_feature_is_enabled(smu,FEATURE_DPM_FCLK_BIT)) { |
| ret = vega20_set_single_dpm_table(smu, single_dpm_table, |
| PPCLK_FCLK); |
| if (ret) { |
| pr_err("[SetupDefaultDpmTable] failed to get fclk dpm levels!"); |
| return ret; |
| } |
| } else { |
| single_dpm_table->count = 0; |
| } |
| vega20_init_single_dpm_state(&(single_dpm_table->dpm_state)); |
| |
| memcpy(smu_dpm->golden_dpm_context, dpm_table, |
| sizeof(struct vega20_dpm_table)); |
| |
| return 0; |
| } |
| |
| static int vega20_populate_umd_state_clk(struct smu_context *smu) |
| { |
| struct smu_dpm_context *smu_dpm = &smu->smu_dpm; |
| struct vega20_dpm_table *dpm_table = NULL; |
| struct vega20_single_dpm_table *gfx_table = NULL; |
| struct vega20_single_dpm_table *mem_table = NULL; |
| |
| dpm_table = smu_dpm->dpm_context; |
| gfx_table = &(dpm_table->gfx_table); |
| mem_table = &(dpm_table->mem_table); |
| |
| smu->pstate_sclk = gfx_table->dpm_levels[0].value; |
| smu->pstate_mclk = mem_table->dpm_levels[0].value; |
| |
| if (gfx_table->count > VEGA20_UMD_PSTATE_GFXCLK_LEVEL && |
| mem_table->count > VEGA20_UMD_PSTATE_MCLK_LEVEL) { |
| smu->pstate_sclk = gfx_table->dpm_levels[VEGA20_UMD_PSTATE_GFXCLK_LEVEL].value; |
| smu->pstate_mclk = mem_table->dpm_levels[VEGA20_UMD_PSTATE_MCLK_LEVEL].value; |
| } |
| |
| smu->pstate_sclk = smu->pstate_sclk * 100; |
| smu->pstate_mclk = smu->pstate_mclk * 100; |
| |
| return 0; |
| } |
| |
| static int vega20_get_clk_table(struct smu_context *smu, |
| struct pp_clock_levels_with_latency *clocks, |
| struct vega20_single_dpm_table *dpm_table) |
| { |
| int i, count; |
| |
| count = (dpm_table->count > MAX_NUM_CLOCKS) ? MAX_NUM_CLOCKS : dpm_table->count; |
| clocks->num_levels = count; |
| |
| for (i = 0; i < count; i++) { |
| clocks->data[i].clocks_in_khz = |
| dpm_table->dpm_levels[i].value * 1000; |
| clocks->data[i].latency_in_us = 0; |
| } |
| |
| return 0; |
| } |
| |
| static int vega20_print_clk_levels(struct smu_context *smu, |
| enum smu_clk_type type, char *buf) |
| { |
| int i, now, size = 0; |
| int ret = 0; |
| uint32_t gen_speed, lane_width; |
| struct amdgpu_device *adev = smu->adev; |
| struct pp_clock_levels_with_latency clocks; |
| struct vega20_single_dpm_table *single_dpm_table; |
| struct smu_table_context *table_context = &smu->smu_table; |
| struct smu_dpm_context *smu_dpm = &smu->smu_dpm; |
| struct vega20_dpm_table *dpm_table = NULL; |
| struct vega20_od8_settings *od8_settings = |
| (struct vega20_od8_settings *)smu->od_settings; |
| OverDriveTable_t *od_table = |
| (OverDriveTable_t *)(table_context->overdrive_table); |
| PPTable_t *pptable = (PPTable_t *)table_context->driver_pptable; |
| |
| dpm_table = smu_dpm->dpm_context; |
| |
| switch (type) { |
| case SMU_SCLK: |
| ret = smu_get_current_clk_freq(smu, SMU_GFXCLK, &now); |
| if (ret) { |
| pr_err("Attempt to get current gfx clk Failed!"); |
| return ret; |
| } |
| |
| single_dpm_table = &(dpm_table->gfx_table); |
| ret = vega20_get_clk_table(smu, &clocks, single_dpm_table); |
| if (ret) { |
| pr_err("Attempt to get gfx clk levels Failed!"); |
| return ret; |
| } |
| |
| for (i = 0; i < clocks.num_levels; i++) |
| size += sprintf(buf + size, "%d: %uMhz %s\n", i, |
| clocks.data[i].clocks_in_khz / 1000, |
| (clocks.data[i].clocks_in_khz == now * 10) |
| ? "*" : ""); |
| break; |
| |
| case SMU_MCLK: |
| ret = smu_get_current_clk_freq(smu, SMU_UCLK, &now); |
| if (ret) { |
| pr_err("Attempt to get current mclk Failed!"); |
| return ret; |
| } |
| |
| single_dpm_table = &(dpm_table->mem_table); |
| ret = vega20_get_clk_table(smu, &clocks, single_dpm_table); |
| if (ret) { |
| pr_err("Attempt to get memory clk levels Failed!"); |
| return ret; |
| } |
| |
| for (i = 0; i < clocks.num_levels; i++) |
| size += sprintf(buf + size, "%d: %uMhz %s\n", |
| i, clocks.data[i].clocks_in_khz / 1000, |
| (clocks.data[i].clocks_in_khz == now * 10) |
| ? "*" : ""); |
| break; |
| |
| case SMU_SOCCLK: |
| ret = smu_get_current_clk_freq(smu, SMU_SOCCLK, &now); |
| if (ret) { |
| pr_err("Attempt to get current socclk Failed!"); |
| return ret; |
| } |
| |
| single_dpm_table = &(dpm_table->soc_table); |
| ret = vega20_get_clk_table(smu, &clocks, single_dpm_table); |
| if (ret) { |
| pr_err("Attempt to get socclk levels Failed!"); |
| return ret; |
| } |
| |
| for (i = 0; i < clocks.num_levels; i++) |
| size += sprintf(buf + size, "%d: %uMhz %s\n", |
| i, clocks.data[i].clocks_in_khz / 1000, |
| (clocks.data[i].clocks_in_khz == now * 10) |
| ? "*" : ""); |
| break; |
| |
| case SMU_FCLK: |
| ret = smu_get_current_clk_freq(smu, SMU_FCLK, &now); |
| if (ret) { |
| pr_err("Attempt to get current fclk Failed!"); |
| return ret; |
| } |
| |
| single_dpm_table = &(dpm_table->fclk_table); |
| for (i = 0; i < single_dpm_table->count; i++) |
| size += sprintf(buf + size, "%d: %uMhz %s\n", |
| i, single_dpm_table->dpm_levels[i].value, |
| (single_dpm_table->dpm_levels[i].value == now / 100) |
| ? "*" : ""); |
| break; |
| |
| case SMU_DCEFCLK: |
| ret = smu_get_current_clk_freq(smu, SMU_DCEFCLK, &now); |
| if (ret) { |
| pr_err("Attempt to get current dcefclk Failed!"); |
| return ret; |
| } |
| |
| single_dpm_table = &(dpm_table->dcef_table); |
| ret = vega20_get_clk_table(smu, &clocks, single_dpm_table); |
| if (ret) { |
| pr_err("Attempt to get dcefclk levels Failed!"); |
| return ret; |
| } |
| |
| for (i = 0; i < clocks.num_levels; i++) |
| size += sprintf(buf + size, "%d: %uMhz %s\n", |
| i, clocks.data[i].clocks_in_khz / 1000, |
| (clocks.data[i].clocks_in_khz == now * 10) ? "*" : ""); |
| break; |
| |
| case SMU_PCIE: |
| gen_speed = (RREG32_PCIE(smnPCIE_LC_SPEED_CNTL) & |
| PSWUSP0_PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE_MASK) |
| >> PSWUSP0_PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE__SHIFT; |
| lane_width = (RREG32_PCIE(smnPCIE_LC_LINK_WIDTH_CNTL) & |
| PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD_MASK) |
| >> PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD__SHIFT; |
| for (i = 0; i < NUM_LINK_LEVELS; i++) |
| size += sprintf(buf + size, "%d: %s %s %dMhz %s\n", i, |
| (pptable->PcieGenSpeed[i] == 0) ? "2.5GT/s," : |
| (pptable->PcieGenSpeed[i] == 1) ? "5.0GT/s," : |
| (pptable->PcieGenSpeed[i] == 2) ? "8.0GT/s," : |
| (pptable->PcieGenSpeed[i] == 3) ? "16.0GT/s," : "", |
| (pptable->PcieLaneCount[i] == 1) ? "x1" : |
| (pptable->PcieLaneCount[i] == 2) ? "x2" : |
| (pptable->PcieLaneCount[i] == 3) ? "x4" : |
| (pptable->PcieLaneCount[i] == 4) ? "x8" : |
| (pptable->PcieLaneCount[i] == 5) ? "x12" : |
| (pptable->PcieLaneCount[i] == 6) ? "x16" : "", |
| pptable->LclkFreq[i], |
| (gen_speed == pptable->PcieGenSpeed[i]) && |
| (lane_width == pptable->PcieLaneCount[i]) ? |
| "*" : ""); |
| break; |
| |
| case SMU_OD_SCLK: |
| if (od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].feature_id && |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].feature_id) { |
| size = sprintf(buf, "%s:\n", "OD_SCLK"); |
| size += sprintf(buf + size, "0: %10uMhz\n", |
| od_table->GfxclkFmin); |
| size += sprintf(buf + size, "1: %10uMhz\n", |
| od_table->GfxclkFmax); |
| } |
| |
| break; |
| |
| case SMU_OD_MCLK: |
| if (od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].feature_id) { |
| size = sprintf(buf, "%s:\n", "OD_MCLK"); |
| size += sprintf(buf + size, "1: %10uMhz\n", |
| od_table->UclkFmax); |
| } |
| |
| break; |
| |
| case SMU_OD_VDDC_CURVE: |
| if (od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].feature_id && |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].feature_id && |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].feature_id && |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].feature_id && |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].feature_id && |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].feature_id) { |
| size = sprintf(buf, "%s:\n", "OD_VDDC_CURVE"); |
| size += sprintf(buf + size, "0: %10uMhz %10dmV\n", |
| od_table->GfxclkFreq1, |
| od_table->GfxclkVolt1 / VOLTAGE_SCALE); |
| size += sprintf(buf + size, "1: %10uMhz %10dmV\n", |
| od_table->GfxclkFreq2, |
| od_table->GfxclkVolt2 / VOLTAGE_SCALE); |
| size += sprintf(buf + size, "2: %10uMhz %10dmV\n", |
| od_table->GfxclkFreq3, |
| od_table->GfxclkVolt3 / VOLTAGE_SCALE); |
| } |
| |
| break; |
| |
| case SMU_OD_RANGE: |
| size = sprintf(buf, "%s:\n", "OD_RANGE"); |
| |
| if (od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].feature_id && |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].feature_id) { |
| size += sprintf(buf + size, "SCLK: %7uMhz %10uMhz\n", |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].min_value, |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].max_value); |
| } |
| |
| if (od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].feature_id) { |
| single_dpm_table = &(dpm_table->mem_table); |
| ret = vega20_get_clk_table(smu, &clocks, single_dpm_table); |
| if (ret) { |
| pr_err("Attempt to get memory clk levels Failed!"); |
| return ret; |
| } |
| |
| size += sprintf(buf + size, "MCLK: %7uMhz %10uMhz\n", |
| clocks.data[0].clocks_in_khz / 1000, |
| od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].max_value); |
| } |
| |
| if (od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].feature_id && |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].feature_id && |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].feature_id && |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].feature_id && |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].feature_id && |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].feature_id) { |
| size += sprintf(buf + size, "VDDC_CURVE_SCLK[0]: %7uMhz %10uMhz\n", |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].min_value, |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].max_value); |
| size += sprintf(buf + size, "VDDC_CURVE_VOLT[0]: %7dmV %11dmV\n", |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].min_value, |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].max_value); |
| size += sprintf(buf + size, "VDDC_CURVE_SCLK[1]: %7uMhz %10uMhz\n", |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].min_value, |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].max_value); |
| size += sprintf(buf + size, "VDDC_CURVE_VOLT[1]: %7dmV %11dmV\n", |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].min_value, |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].max_value); |
| size += sprintf(buf + size, "VDDC_CURVE_SCLK[2]: %7uMhz %10uMhz\n", |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].min_value, |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].max_value); |
| size += sprintf(buf + size, "VDDC_CURVE_VOLT[2]: %7dmV %11dmV\n", |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].min_value, |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].max_value); |
| } |
| |
| break; |
| |
| default: |
| break; |
| } |
| return size; |
| } |
| |
| static int vega20_upload_dpm_level(struct smu_context *smu, bool max, |
| uint32_t feature_mask) |
| { |
| struct vega20_dpm_table *dpm_table; |
| struct vega20_single_dpm_table *single_dpm_table; |
| uint32_t freq; |
| int ret = 0; |
| |
| dpm_table = smu->smu_dpm.dpm_context; |
| |
| if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT) && |
| (feature_mask & FEATURE_DPM_GFXCLK_MASK)) { |
| single_dpm_table = &(dpm_table->gfx_table); |
| freq = max ? single_dpm_table->dpm_state.soft_max_level : |
| single_dpm_table->dpm_state.soft_min_level; |
| ret = smu_send_smc_msg_with_param(smu, |
| (max ? SMU_MSG_SetSoftMaxByFreq : SMU_MSG_SetSoftMinByFreq), |
| (PPCLK_GFXCLK << 16) | (freq & 0xffff)); |
| if (ret) { |
| pr_err("Failed to set soft %s gfxclk !\n", |
| max ? "max" : "min"); |
| return ret; |
| } |
| } |
| |
| if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT) && |
| (feature_mask & FEATURE_DPM_UCLK_MASK)) { |
| single_dpm_table = &(dpm_table->mem_table); |
| freq = max ? single_dpm_table->dpm_state.soft_max_level : |
| single_dpm_table->dpm_state.soft_min_level; |
| ret = smu_send_smc_msg_with_param(smu, |
| (max ? SMU_MSG_SetSoftMaxByFreq : SMU_MSG_SetSoftMinByFreq), |
| (PPCLK_UCLK << 16) | (freq & 0xffff)); |
| if (ret) { |
| pr_err("Failed to set soft %s memclk !\n", |
| max ? "max" : "min"); |
| return ret; |
| } |
| } |
| |
| if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT) && |
| (feature_mask & FEATURE_DPM_SOCCLK_MASK)) { |
| single_dpm_table = &(dpm_table->soc_table); |
| freq = max ? single_dpm_table->dpm_state.soft_max_level : |
| single_dpm_table->dpm_state.soft_min_level; |
| ret = smu_send_smc_msg_with_param(smu, |
| (max ? SMU_MSG_SetSoftMaxByFreq : SMU_MSG_SetSoftMinByFreq), |
| (PPCLK_SOCCLK << 16) | (freq & 0xffff)); |
| if (ret) { |
| pr_err("Failed to set soft %s socclk !\n", |
| max ? "max" : "min"); |
| return ret; |
| } |
| } |
| |
| if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_FCLK_BIT) && |
| (feature_mask & FEATURE_DPM_FCLK_MASK)) { |
| single_dpm_table = &(dpm_table->fclk_table); |
| freq = max ? single_dpm_table->dpm_state.soft_max_level : |
| single_dpm_table->dpm_state.soft_min_level; |
| ret = smu_send_smc_msg_with_param(smu, |
| (max ? SMU_MSG_SetSoftMaxByFreq : SMU_MSG_SetSoftMinByFreq), |
| (PPCLK_FCLK << 16) | (freq & 0xffff)); |
| if (ret) { |
| pr_err("Failed to set soft %s fclk !\n", |
| max ? "max" : "min"); |
| return ret; |
| } |
| } |
| |
| if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) && |
| (feature_mask & FEATURE_DPM_DCEFCLK_MASK)) { |
| single_dpm_table = &(dpm_table->dcef_table); |
| freq = single_dpm_table->dpm_state.hard_min_level; |
| if (!max) { |
| ret = smu_send_smc_msg_with_param(smu, |
| SMU_MSG_SetHardMinByFreq, |
| (PPCLK_DCEFCLK << 16) | (freq & 0xffff)); |
| if (ret) { |
| pr_err("Failed to set hard min dcefclk !\n"); |
| return ret; |
| } |
| } |
| } |
| |
| return ret; |
| } |
| |
| static int vega20_force_clk_levels(struct smu_context *smu, |
| enum smu_clk_type clk_type, uint32_t mask) |
| { |
| struct vega20_dpm_table *dpm_table; |
| struct vega20_single_dpm_table *single_dpm_table; |
| uint32_t soft_min_level, soft_max_level, hard_min_level; |
| struct smu_dpm_context *smu_dpm = &smu->smu_dpm; |
| int ret = 0; |
| |
| if (smu_dpm->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) { |
| pr_info("force clock level is for dpm manual mode only.\n"); |
| return -EINVAL; |
| } |
| |
| mutex_lock(&(smu->mutex)); |
| |
| soft_min_level = mask ? (ffs(mask) - 1) : 0; |
| soft_max_level = mask ? (fls(mask) - 1) : 0; |
| |
| dpm_table = smu->smu_dpm.dpm_context; |
| |
| switch (clk_type) { |
| case SMU_SCLK: |
| single_dpm_table = &(dpm_table->gfx_table); |
| |
| if (soft_max_level >= single_dpm_table->count) { |
| pr_err("Clock level specified %d is over max allowed %d\n", |
| soft_max_level, single_dpm_table->count - 1); |
| ret = -EINVAL; |
| break; |
| } |
| |
| single_dpm_table->dpm_state.soft_min_level = |
| single_dpm_table->dpm_levels[soft_min_level].value; |
| single_dpm_table->dpm_state.soft_max_level = |
| single_dpm_table->dpm_levels[soft_max_level].value; |
| |
| ret = vega20_upload_dpm_level(smu, false, FEATURE_DPM_GFXCLK_MASK); |
| if (ret) { |
| pr_err("Failed to upload boot level to lowest!\n"); |
| break; |
| } |
| |
| ret = vega20_upload_dpm_level(smu, true, FEATURE_DPM_GFXCLK_MASK); |
| if (ret) |
| pr_err("Failed to upload dpm max level to highest!\n"); |
| |
| break; |
| |
| case SMU_MCLK: |
| single_dpm_table = &(dpm_table->mem_table); |
| |
| if (soft_max_level >= single_dpm_table->count) { |
| pr_err("Clock level specified %d is over max allowed %d\n", |
| soft_max_level, single_dpm_table->count - 1); |
| ret = -EINVAL; |
| break; |
| } |
| |
| single_dpm_table->dpm_state.soft_min_level = |
| single_dpm_table->dpm_levels[soft_min_level].value; |
| single_dpm_table->dpm_state.soft_max_level = |
| single_dpm_table->dpm_levels[soft_max_level].value; |
| |
| ret = vega20_upload_dpm_level(smu, false, FEATURE_DPM_UCLK_MASK); |
| if (ret) { |
| pr_err("Failed to upload boot level to lowest!\n"); |
| break; |
| } |
| |
| ret = vega20_upload_dpm_level(smu, true, FEATURE_DPM_UCLK_MASK); |
| if (ret) |
| pr_err("Failed to upload dpm max level to highest!\n"); |
| |
| break; |
| |
| case SMU_SOCCLK: |
| single_dpm_table = &(dpm_table->soc_table); |
| |
| if (soft_max_level >= single_dpm_table->count) { |
| pr_err("Clock level specified %d is over max allowed %d\n", |
| soft_max_level, single_dpm_table->count - 1); |
| ret = -EINVAL; |
| break; |
| } |
| |
| single_dpm_table->dpm_state.soft_min_level = |
| single_dpm_table->dpm_levels[soft_min_level].value; |
| single_dpm_table->dpm_state.soft_max_level = |
| single_dpm_table->dpm_levels[soft_max_level].value; |
| |
| ret = vega20_upload_dpm_level(smu, false, FEATURE_DPM_SOCCLK_MASK); |
| if (ret) { |
| pr_err("Failed to upload boot level to lowest!\n"); |
| break; |
| } |
| |
| ret = vega20_upload_dpm_level(smu, true, FEATURE_DPM_SOCCLK_MASK); |
| if (ret) |
| pr_err("Failed to upload dpm max level to highest!\n"); |
| |
| break; |
| |
| case SMU_FCLK: |
| single_dpm_table = &(dpm_table->fclk_table); |
| |
| if (soft_max_level >= single_dpm_table->count) { |
| pr_err("Clock level specified %d is over max allowed %d\n", |
| soft_max_level, single_dpm_table->count - 1); |
| ret = -EINVAL; |
| break; |
| } |
| |
| single_dpm_table->dpm_state.soft_min_level = |
| single_dpm_table->dpm_levels[soft_min_level].value; |
| single_dpm_table->dpm_state.soft_max_level = |
| single_dpm_table->dpm_levels[soft_max_level].value; |
| |
| ret = vega20_upload_dpm_level(smu, false, FEATURE_DPM_FCLK_MASK); |
| if (ret) { |
| pr_err("Failed to upload boot level to lowest!\n"); |
| break; |
| } |
| |
| ret = vega20_upload_dpm_level(smu, true, FEATURE_DPM_FCLK_MASK); |
| if (ret) |
| pr_err("Failed to upload dpm max level to highest!\n"); |
| |
| break; |
| |
| case SMU_DCEFCLK: |
| hard_min_level = soft_min_level; |
| single_dpm_table = &(dpm_table->dcef_table); |
| |
| if (hard_min_level >= single_dpm_table->count) { |
| pr_err("Clock level specified %d is over max allowed %d\n", |
| hard_min_level, single_dpm_table->count - 1); |
| ret = -EINVAL; |
| break; |
| } |
| |
| single_dpm_table->dpm_state.hard_min_level = |
| single_dpm_table->dpm_levels[hard_min_level].value; |
| |
| ret = vega20_upload_dpm_level(smu, false, FEATURE_DPM_DCEFCLK_MASK); |
| if (ret) |
| pr_err("Failed to upload boot level to lowest!\n"); |
| |
| break; |
| |
| case SMU_PCIE: |
| if (soft_min_level >= NUM_LINK_LEVELS || |
| soft_max_level >= NUM_LINK_LEVELS) { |
| ret = -EINVAL; |
| break; |
| } |
| |
| ret = smu_send_smc_msg_with_param(smu, |
| SMU_MSG_SetMinLinkDpmByIndex, soft_min_level); |
| if (ret) |
| pr_err("Failed to set min link dpm level!\n"); |
| |
| break; |
| |
| default: |
| break; |
| } |
| |
| mutex_unlock(&(smu->mutex)); |
| return ret; |
| } |
| |
| static int vega20_get_clock_by_type_with_latency(struct smu_context *smu, |
| enum smu_clk_type clk_type, |
| struct pp_clock_levels_with_latency *clocks) |
| { |
| int ret; |
| struct vega20_single_dpm_table *single_dpm_table; |
| struct smu_dpm_context *smu_dpm = &smu->smu_dpm; |
| struct vega20_dpm_table *dpm_table = NULL; |
| |
| dpm_table = smu_dpm->dpm_context; |
| |
| mutex_lock(&smu->mutex); |
| |
| switch (clk_type) { |
| case SMU_GFXCLK: |
| single_dpm_table = &(dpm_table->gfx_table); |
| ret = vega20_get_clk_table(smu, clocks, single_dpm_table); |
| break; |
| case SMU_MCLK: |
| single_dpm_table = &(dpm_table->mem_table); |
| ret = vega20_get_clk_table(smu, clocks, single_dpm_table); |
| break; |
| case SMU_DCEFCLK: |
| single_dpm_table = &(dpm_table->dcef_table); |
| ret = vega20_get_clk_table(smu, clocks, single_dpm_table); |
| break; |
| case SMU_SOCCLK: |
| single_dpm_table = &(dpm_table->soc_table); |
| ret = vega20_get_clk_table(smu, clocks, single_dpm_table); |
| break; |
| default: |
| ret = -EINVAL; |
| } |
| |
| mutex_unlock(&smu->mutex); |
| return ret; |
| } |
| |
| static int vega20_overdrive_get_gfx_clk_base_voltage(struct smu_context *smu, |
| uint32_t *voltage, |
| uint32_t freq) |
| { |
| int ret; |
| |
| ret = smu_send_smc_msg_with_param(smu, |
| SMU_MSG_GetAVFSVoltageByDpm, |
| ((AVFS_CURVE << 24) | (OD8_HOTCURVE_TEMPERATURE << 16) | freq)); |
| if (ret) { |
| pr_err("[GetBaseVoltage] failed to get GFXCLK AVFS voltage from SMU!"); |
| return ret; |
| } |
| |
| smu_read_smc_arg(smu, voltage); |
| *voltage = *voltage / VOLTAGE_SCALE; |
| |
| return 0; |
| } |
| |
| static int vega20_set_default_od8_setttings(struct smu_context *smu) |
| { |
| struct smu_table_context *table_context = &smu->smu_table; |
| OverDriveTable_t *od_table = (OverDriveTable_t *)(table_context->overdrive_table); |
| struct vega20_od8_settings *od8_settings = NULL; |
| PPTable_t *smc_pptable = table_context->driver_pptable; |
| int i, ret; |
| |
| if (smu->od_settings) |
| return -EINVAL; |
| |
| od8_settings = kzalloc(sizeof(struct vega20_od8_settings), GFP_KERNEL); |
| |
| if (!od8_settings) |
| return -ENOMEM; |
| |
| smu->od_settings = (void *)od8_settings; |
| |
| ret = vega20_setup_od8_information(smu); |
| if (ret) { |
| pr_err("Retrieve board OD limits failed!\n"); |
| return ret; |
| } |
| |
| if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) { |
| if (od8_settings->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_GFXCLK_LIMITS] && |
| od8_settings->od_settings_max[OD8_SETTING_GFXCLK_FMAX] > 0 && |
| od8_settings->od_settings_min[OD8_SETTING_GFXCLK_FMIN] > 0 && |
| (od8_settings->od_settings_max[OD8_SETTING_GFXCLK_FMAX] >= |
| od8_settings->od_settings_min[OD8_SETTING_GFXCLK_FMIN])) { |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].feature_id = |
| OD8_GFXCLK_LIMITS; |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].feature_id = |
| OD8_GFXCLK_LIMITS; |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].default_value = |
| od_table->GfxclkFmin; |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].default_value = |
| od_table->GfxclkFmax; |
| } |
| |
| if (od8_settings->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_GFXCLK_CURVE] && |
| (od8_settings->od_settings_min[OD8_SETTING_GFXCLK_VOLTAGE1] >= |
| smc_pptable->MinVoltageGfx / VOLTAGE_SCALE) && |
| (od8_settings->od_settings_max[OD8_SETTING_GFXCLK_VOLTAGE3] <= |
| smc_pptable->MaxVoltageGfx / VOLTAGE_SCALE) && |
| (od8_settings->od_settings_min[OD8_SETTING_GFXCLK_VOLTAGE1] <= |
| od8_settings->od_settings_max[OD8_SETTING_GFXCLK_VOLTAGE3])) { |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].feature_id = |
| OD8_GFXCLK_CURVE; |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].feature_id = |
| OD8_GFXCLK_CURVE; |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].feature_id = |
| OD8_GFXCLK_CURVE; |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].feature_id = |
| OD8_GFXCLK_CURVE; |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].feature_id = |
| OD8_GFXCLK_CURVE; |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].feature_id = |
| OD8_GFXCLK_CURVE; |
| |
| od_table->GfxclkFreq1 = od_table->GfxclkFmin; |
| od_table->GfxclkFreq2 = (od_table->GfxclkFmin + od_table->GfxclkFmax) / 2; |
| od_table->GfxclkFreq3 = od_table->GfxclkFmax; |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].default_value = |
| od_table->GfxclkFreq1; |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].default_value = |
| od_table->GfxclkFreq2; |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].default_value = |
| od_table->GfxclkFreq3; |
| |
| ret = vega20_overdrive_get_gfx_clk_base_voltage(smu, |
| &od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].default_value, |
| od_table->GfxclkFreq1); |
| if (ret) |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].default_value = 0; |
| od_table->GfxclkVolt1 = |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].default_value |
| * VOLTAGE_SCALE; |
| ret = vega20_overdrive_get_gfx_clk_base_voltage(smu, |
| &od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].default_value, |
| od_table->GfxclkFreq2); |
| if (ret) |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].default_value = 0; |
| od_table->GfxclkVolt2 = |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].default_value |
| * VOLTAGE_SCALE; |
| ret = vega20_overdrive_get_gfx_clk_base_voltage(smu, |
| &od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].default_value, |
| od_table->GfxclkFreq3); |
| if (ret) |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].default_value = 0; |
| od_table->GfxclkVolt3 = |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].default_value |
| * VOLTAGE_SCALE; |
| } |
| } |
| |
| if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) { |
| if (od8_settings->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_UCLK_MAX] && |
| od8_settings->od_settings_min[OD8_SETTING_UCLK_FMAX] > 0 && |
| od8_settings->od_settings_max[OD8_SETTING_UCLK_FMAX] > 0 && |
| (od8_settings->od_settings_max[OD8_SETTING_UCLK_FMAX] >= |
| od8_settings->od_settings_min[OD8_SETTING_UCLK_FMAX])) { |
| od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].feature_id = |
| OD8_UCLK_MAX; |
| od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].default_value = |
| od_table->UclkFmax; |
| } |
| } |
| |
| if (od8_settings->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_POWER_LIMIT] && |
| od8_settings->od_settings_min[OD8_SETTING_POWER_PERCENTAGE] > 0 && |
| od8_settings->od_settings_min[OD8_SETTING_POWER_PERCENTAGE] <= 100 && |
| od8_settings->od_settings_max[OD8_SETTING_POWER_PERCENTAGE] > 0 && |
| od8_settings->od_settings_max[OD8_SETTING_POWER_PERCENTAGE] <= 100) { |
| od8_settings->od8_settings_array[OD8_SETTING_POWER_PERCENTAGE].feature_id = |
| OD8_POWER_LIMIT; |
| od8_settings->od8_settings_array[OD8_SETTING_POWER_PERCENTAGE].default_value = |
| od_table->OverDrivePct; |
| } |
| |
| if (smu_feature_is_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT)) { |
| if (od8_settings->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_FAN_ACOUSTIC_LIMIT] && |
| od8_settings->od_settings_min[OD8_SETTING_FAN_ACOUSTIC_LIMIT] > 0 && |
| od8_settings->od_settings_max[OD8_SETTING_FAN_ACOUSTIC_LIMIT] > 0 && |
| (od8_settings->od_settings_max[OD8_SETTING_FAN_ACOUSTIC_LIMIT] >= |
| od8_settings->od_settings_min[OD8_SETTING_FAN_ACOUSTIC_LIMIT])) { |
| od8_settings->od8_settings_array[OD8_SETTING_FAN_ACOUSTIC_LIMIT].feature_id = |
| OD8_ACOUSTIC_LIMIT_SCLK; |
| od8_settings->od8_settings_array[OD8_SETTING_FAN_ACOUSTIC_LIMIT].default_value = |
| od_table->FanMaximumRpm; |
| } |
| |
| if (od8_settings->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_FAN_SPEED_MIN] && |
| od8_settings->od_settings_min[OD8_SETTING_FAN_MIN_SPEED] > 0 && |
| od8_settings->od_settings_max[OD8_SETTING_FAN_MIN_SPEED] > 0 && |
| (od8_settings->od_settings_max[OD8_SETTING_FAN_MIN_SPEED] >= |
| od8_settings->od_settings_min[OD8_SETTING_FAN_MIN_SPEED])) { |
| od8_settings->od8_settings_array[OD8_SETTING_FAN_MIN_SPEED].feature_id = |
| OD8_FAN_SPEED_MIN; |
| od8_settings->od8_settings_array[OD8_SETTING_FAN_MIN_SPEED].default_value = |
| od_table->FanMinimumPwm * smc_pptable->FanMaximumRpm / 100; |
| } |
| } |
| |
| if (smu_feature_is_enabled(smu, SMU_FEATURE_THERMAL_BIT)) { |
| if (od8_settings->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_TEMPERATURE_FAN] && |
| od8_settings->od_settings_min[OD8_SETTING_FAN_TARGET_TEMP] > 0 && |
| od8_settings->od_settings_max[OD8_SETTING_FAN_TARGET_TEMP] > 0 && |
| (od8_settings->od_settings_max[OD8_SETTING_FAN_TARGET_TEMP] >= |
| od8_settings->od_settings_min[OD8_SETTING_FAN_TARGET_TEMP])) { |
| od8_settings->od8_settings_array[OD8_SETTING_FAN_TARGET_TEMP].feature_id = |
| OD8_TEMPERATURE_FAN; |
| od8_settings->od8_settings_array[OD8_SETTING_FAN_TARGET_TEMP].default_value = |
| od_table->FanTargetTemperature; |
| } |
| |
| if (od8_settings->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_TEMPERATURE_SYSTEM] && |
| od8_settings->od_settings_min[OD8_SETTING_OPERATING_TEMP_MAX] > 0 && |
| od8_settings->od_settings_max[OD8_SETTING_OPERATING_TEMP_MAX] > 0 && |
| (od8_settings->od_settings_max[OD8_SETTING_OPERATING_TEMP_MAX] >= |
| od8_settings->od_settings_min[OD8_SETTING_OPERATING_TEMP_MAX])) { |
| od8_settings->od8_settings_array[OD8_SETTING_OPERATING_TEMP_MAX].feature_id = |
| OD8_TEMPERATURE_SYSTEM; |
| od8_settings->od8_settings_array[OD8_SETTING_OPERATING_TEMP_MAX].default_value = |
| od_table->MaxOpTemp; |
| } |
| } |
| |
| for (i = 0; i < OD8_SETTING_COUNT; i++) { |
| if (od8_settings->od8_settings_array[i].feature_id) { |
| od8_settings->od8_settings_array[i].min_value = |
| od8_settings->od_settings_min[i]; |
| od8_settings->od8_settings_array[i].max_value = |
| od8_settings->od_settings_max[i]; |
| od8_settings->od8_settings_array[i].current_value = |
| od8_settings->od8_settings_array[i].default_value; |
| } else { |
| od8_settings->od8_settings_array[i].min_value = 0; |
| od8_settings->od8_settings_array[i].max_value = 0; |
| od8_settings->od8_settings_array[i].current_value = 0; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int vega20_get_metrics_table(struct smu_context *smu, |
| SmuMetrics_t *metrics_table) |
| { |
| struct smu_table_context *smu_table= &smu->smu_table; |
| int ret = 0; |
| |
| if (!smu_table->metrics_time || time_after(jiffies, smu_table->metrics_time + HZ / 1000)) { |
| ret = smu_update_table(smu, SMU_TABLE_SMU_METRICS, 0, |
| (void *)smu_table->metrics_table, false); |
| if (ret) { |
| pr_info("Failed to export SMU metrics table!\n"); |
| return ret; |
| } |
| smu_table->metrics_time = jiffies; |
| } |
| |
| memcpy(metrics_table, smu_table->metrics_table, sizeof(SmuMetrics_t)); |
| |
| return ret; |
| } |
| |
| static int vega20_set_default_od_settings(struct smu_context *smu, |
| bool initialize) |
| { |
| struct smu_table_context *table_context = &smu->smu_table; |
| int ret; |
| |
| if (initialize) { |
| if (table_context->overdrive_table) |
| return -EINVAL; |
| |
| table_context->overdrive_table = kzalloc(sizeof(OverDriveTable_t), GFP_KERNEL); |
| |
| if (!table_context->overdrive_table) |
| return -ENOMEM; |
| |
| ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE, 0, |
| table_context->overdrive_table, false); |
| if (ret) { |
| pr_err("Failed to export over drive table!\n"); |
| return ret; |
| } |
| |
| ret = vega20_set_default_od8_setttings(smu); |
| if (ret) |
| return ret; |
| } |
| |
| ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE, 0, |
| table_context->overdrive_table, true); |
| if (ret) { |
| pr_err("Failed to import over drive table!\n"); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int vega20_get_od_percentage(struct smu_context *smu, |
| enum smu_clk_type clk_type) |
| { |
| struct smu_dpm_context *smu_dpm = &smu->smu_dpm; |
| struct vega20_dpm_table *dpm_table = NULL; |
| struct vega20_dpm_table *golden_table = NULL; |
| struct vega20_single_dpm_table *single_dpm_table; |
| struct vega20_single_dpm_table *golden_dpm_table; |
| int value, golden_value; |
| |
| dpm_table = smu_dpm->dpm_context; |
| golden_table = smu_dpm->golden_dpm_context; |
| |
| switch (clk_type) { |
| case SMU_OD_SCLK: |
| single_dpm_table = &(dpm_table->gfx_table); |
| golden_dpm_table = &(golden_table->gfx_table); |
| break; |
| case SMU_OD_MCLK: |
| single_dpm_table = &(dpm_table->mem_table); |
| golden_dpm_table = &(golden_table->mem_table); |
| break; |
| default: |
| return -EINVAL; |
| break; |
| } |
| |
| value = single_dpm_table->dpm_levels[single_dpm_table->count - 1].value; |
| golden_value = golden_dpm_table->dpm_levels[golden_dpm_table->count - 1].value; |
| |
| value -= golden_value; |
| value = DIV_ROUND_UP(value * 100, golden_value); |
| |
| return value; |
| } |
| |
| static int vega20_get_power_profile_mode(struct smu_context *smu, char *buf) |
| { |
| DpmActivityMonitorCoeffInt_t activity_monitor; |
| uint32_t i, size = 0; |
| uint16_t workload_type = 0; |
| static const char *profile_name[] = { |
| "BOOTUP_DEFAULT", |
| "3D_FULL_SCREEN", |
| "POWER_SAVING", |
| "VIDEO", |
| "VR", |
| "COMPUTE", |
| "CUSTOM"}; |
| static const char *title[] = { |
| "PROFILE_INDEX(NAME)", |
| "CLOCK_TYPE(NAME)", |
| "FPS", |
| "UseRlcBusy", |
| "MinActiveFreqType", |
| "MinActiveFreq", |
| "BoosterFreqType", |
| "BoosterFreq", |
| "PD_Data_limit_c", |
| "PD_Data_error_coeff", |
| "PD_Data_error_rate_coeff"}; |
| int result = 0; |
| |
| if (!smu->pm_enabled || !buf) |
| return -EINVAL; |
| |
| size += sprintf(buf + size, "%16s %s %s %s %s %s %s %s %s %s %s\n", |
| title[0], title[1], title[2], title[3], title[4], title[5], |
| title[6], title[7], title[8], title[9], title[10]); |
| |
| for (i = 0; i <= PP_SMC_POWER_PROFILE_CUSTOM; i++) { |
| /* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */ |
| workload_type = smu_workload_get_type(smu, i); |
| result = smu_update_table(smu, |
| SMU_TABLE_ACTIVITY_MONITOR_COEFF, workload_type, |
| (void *)(&activity_monitor), false); |
| if (result) { |
| pr_err("[%s] Failed to get activity monitor!", __func__); |
| return result; |
| } |
| |
| size += sprintf(buf + size, "%2d %14s%s:\n", |
| i, profile_name[i], (i == smu->power_profile_mode) ? "*" : " "); |
| |
| size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n", |
| " ", |
| 0, |
| "GFXCLK", |
| activity_monitor.Gfx_FPS, |
| activity_monitor.Gfx_UseRlcBusy, |
| activity_monitor.Gfx_MinActiveFreqType, |
| activity_monitor.Gfx_MinActiveFreq, |
| activity_monitor.Gfx_BoosterFreqType, |
| activity_monitor.Gfx_BoosterFreq, |
| activity_monitor.Gfx_PD_Data_limit_c, |
| activity_monitor.Gfx_PD_Data_error_coeff, |
| activity_monitor.Gfx_PD_Data_error_rate_coeff); |
| |
| size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n", |
| " ", |
| 1, |
| "SOCCLK", |
| activity_monitor.Soc_FPS, |
| activity_monitor.Soc_UseRlcBusy, |
| activity_monitor.Soc_MinActiveFreqType, |
| activity_monitor.Soc_MinActiveFreq, |
| activity_monitor.Soc_BoosterFreqType, |
| activity_monitor.Soc_BoosterFreq, |
| activity_monitor.Soc_PD_Data_limit_c, |
| activity_monitor.Soc_PD_Data_error_coeff, |
| activity_monitor.Soc_PD_Data_error_rate_coeff); |
| |
| size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n", |
| " ", |
| 2, |
| "UCLK", |
| activity_monitor.Mem_FPS, |
| activity_monitor.Mem_UseRlcBusy, |
| activity_monitor.Mem_MinActiveFreqType, |
| activity_monitor.Mem_MinActiveFreq, |
| activity_monitor.Mem_BoosterFreqType, |
| activity_monitor.Mem_BoosterFreq, |
| activity_monitor.Mem_PD_Data_limit_c, |
| activity_monitor.Mem_PD_Data_error_coeff, |
| activity_monitor.Mem_PD_Data_error_rate_coeff); |
| |
| size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n", |
| " ", |
| 3, |
| "FCLK", |
| activity_monitor.Fclk_FPS, |
| activity_monitor.Fclk_UseRlcBusy, |
| activity_monitor.Fclk_MinActiveFreqType, |
| activity_monitor.Fclk_MinActiveFreq, |
| activity_monitor.Fclk_BoosterFreqType, |
| activity_monitor.Fclk_BoosterFreq, |
| activity_monitor.Fclk_PD_Data_limit_c, |
| activity_monitor.Fclk_PD_Data_error_coeff, |
| activity_monitor.Fclk_PD_Data_error_rate_coeff); |
| } |
| |
| return size; |
| } |
| |
| static int vega20_set_power_profile_mode(struct smu_context *smu, long *input, uint32_t size) |
| { |
| DpmActivityMonitorCoeffInt_t activity_monitor; |
| int workload_type = 0, ret = 0; |
| |
| smu->power_profile_mode = input[size]; |
| |
| if (!smu->pm_enabled) |
| return ret; |
| if (smu->power_profile_mode > PP_SMC_POWER_PROFILE_CUSTOM) { |
| pr_err("Invalid power profile mode %d\n", smu->power_profile_mode); |
| return -EINVAL; |
| } |
| |
| if (smu->power_profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) { |
| ret = smu_update_table(smu, |
| SMU_TABLE_ACTIVITY_MONITOR_COEFF, WORKLOAD_PPLIB_CUSTOM_BIT, |
| (void *)(&activity_monitor), false); |
| if (ret) { |
| pr_err("[%s] Failed to get activity monitor!", __func__); |
| return ret; |
| } |
| |
| switch (input[0]) { |
| case 0: /* Gfxclk */ |
| activity_monitor.Gfx_FPS = input[1]; |
| activity_monitor.Gfx_UseRlcBusy = input[2]; |
| activity_monitor.Gfx_MinActiveFreqType = input[3]; |
| activity_monitor.Gfx_MinActiveFreq = input[4]; |
| activity_monitor.Gfx_BoosterFreqType = input[5]; |
| activity_monitor.Gfx_BoosterFreq = input[6]; |
| activity_monitor.Gfx_PD_Data_limit_c = input[7]; |
| activity_monitor.Gfx_PD_Data_error_coeff = input[8]; |
| activity_monitor.Gfx_PD_Data_error_rate_coeff = input[9]; |
| break; |
| case 1: /* Socclk */ |
| activity_monitor.Soc_FPS = input[1]; |
| activity_monitor.Soc_UseRlcBusy = input[2]; |
| activity_monitor.Soc_MinActiveFreqType = input[3]; |
| activity_monitor.Soc_MinActiveFreq = input[4]; |
| activity_monitor.Soc_BoosterFreqType = input[5]; |
| activity_monitor.Soc_BoosterFreq = input[6]; |
| activity_monitor.Soc_PD_Data_limit_c = input[7]; |
| activity_monitor.Soc_PD_Data_error_coeff = input[8]; |
| activity_monitor.Soc_PD_Data_error_rate_coeff = input[9]; |
| break; |
| case 2: /* Uclk */ |
| activity_monitor.Mem_FPS = input[1]; |
| activity_monitor.Mem_UseRlcBusy = input[2]; |
| activity_monitor.Mem_MinActiveFreqType = input[3]; |
| activity_monitor.Mem_MinActiveFreq = input[4]; |
| activity_monitor.Mem_BoosterFreqType = input[5]; |
| activity_monitor.Mem_BoosterFreq = input[6]; |
| activity_monitor.Mem_PD_Data_limit_c = input[7]; |
| activity_monitor.Mem_PD_Data_error_coeff = input[8]; |
| activity_monitor.Mem_PD_Data_error_rate_coeff = input[9]; |
| break; |
| case 3: /* Fclk */ |
| activity_monitor.Fclk_FPS = input[1]; |
| activity_monitor.Fclk_UseRlcBusy = input[2]; |
| activity_monitor.Fclk_MinActiveFreqType = input[3]; |
| activity_monitor.Fclk_MinActiveFreq = input[4]; |
| activity_monitor.Fclk_BoosterFreqType = input[5]; |
| activity_monitor.Fclk_BoosterFreq = input[6]; |
| activity_monitor.Fclk_PD_Data_limit_c = input[7]; |
| activity_monitor.Fclk_PD_Data_error_coeff = input[8]; |
| activity_monitor.Fclk_PD_Data_error_rate_coeff = input[9]; |
| break; |
| } |
| |
| ret = smu_update_table(smu, |
| SMU_TABLE_ACTIVITY_MONITOR_COEFF, WORKLOAD_PPLIB_CUSTOM_BIT, |
| (void *)(&activity_monitor), true); |
| if (ret) { |
| pr_err("[%s] Failed to set activity monitor!", __func__); |
| return ret; |
| } |
| } |
| |
| /* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */ |
| workload_type = smu_workload_get_type(smu, smu->power_profile_mode); |
| smu_send_smc_msg_with_param(smu, SMU_MSG_SetWorkloadMask, |
| 1 << workload_type); |
| |
| return ret; |
| } |
| |
| static int |
| vega20_get_profiling_clk_mask(struct smu_context *smu, |
| enum amd_dpm_forced_level level, |
| uint32_t *sclk_mask, |
| uint32_t *mclk_mask, |
| uint32_t *soc_mask) |
| { |
| struct vega20_dpm_table *dpm_table = (struct vega20_dpm_table *)smu->smu_dpm.dpm_context; |
| struct vega20_single_dpm_table *gfx_dpm_table; |
| struct vega20_single_dpm_table *mem_dpm_table; |
| struct vega20_single_dpm_table *soc_dpm_table; |
| |
| if (!smu->smu_dpm.dpm_context) |
| return -EINVAL; |
| |
| gfx_dpm_table = &dpm_table->gfx_table; |
| mem_dpm_table = &dpm_table->mem_table; |
| soc_dpm_table = &dpm_table->soc_table; |
| |
| *sclk_mask = 0; |
| *mclk_mask = 0; |
| *soc_mask = 0; |
| |
| if (gfx_dpm_table->count > VEGA20_UMD_PSTATE_GFXCLK_LEVEL && |
| mem_dpm_table->count > VEGA20_UMD_PSTATE_MCLK_LEVEL && |
| soc_dpm_table->count > VEGA20_UMD_PSTATE_SOCCLK_LEVEL) { |
| *sclk_mask = VEGA20_UMD_PSTATE_GFXCLK_LEVEL; |
| *mclk_mask = VEGA20_UMD_PSTATE_MCLK_LEVEL; |
| *soc_mask = VEGA20_UMD_PSTATE_SOCCLK_LEVEL; |
| } |
| |
| if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) { |
| *sclk_mask = 0; |
| } else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) { |
| *mclk_mask = 0; |
| } else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { |
| *sclk_mask = gfx_dpm_table->count - 1; |
| *mclk_mask = mem_dpm_table->count - 1; |
| *soc_mask = soc_dpm_table->count - 1; |
| } |
| |
| return 0; |
| } |
| |
| static int |
| vega20_set_uclk_to_highest_dpm_level(struct smu_context *smu, |
| struct vega20_single_dpm_table *dpm_table) |
| { |
| int ret = 0; |
| struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm); |
| if (!smu_dpm_ctx->dpm_context) |
| return -EINVAL; |
| |
| if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) { |
| if (dpm_table->count <= 0) { |
| pr_err("[%s] Dpm table has no entry!", __func__); |
| return -EINVAL; |
| } |
| |
| if (dpm_table->count > NUM_UCLK_DPM_LEVELS) { |
| pr_err("[%s] Dpm table has too many entries!", __func__); |
| return -EINVAL; |
| } |
| |
| dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| ret = smu_send_smc_msg_with_param(smu, |
| SMU_MSG_SetHardMinByFreq, |
| (PPCLK_UCLK << 16) | dpm_table->dpm_state.hard_min_level); |
| if (ret) { |
| pr_err("[%s] Set hard min uclk failed!", __func__); |
| return ret; |
| } |
| } |
| |
| return ret; |
| } |
| |
| static int vega20_pre_display_config_changed(struct smu_context *smu) |
| { |
| int ret = 0; |
| struct vega20_dpm_table *dpm_table = smu->smu_dpm.dpm_context; |
| |
| if (!smu->smu_dpm.dpm_context) |
| return -EINVAL; |
| |
| smu_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays, 0); |
| ret = vega20_set_uclk_to_highest_dpm_level(smu, |
| &dpm_table->mem_table); |
| if (ret) |
| pr_err("Failed to set uclk to highest dpm level"); |
| return ret; |
| } |
| |
| static int vega20_display_config_changed(struct smu_context *smu) |
| { |
| int ret = 0; |
| |
| if ((smu->watermarks_bitmap & WATERMARKS_EXIST) && |
| !(smu->watermarks_bitmap & WATERMARKS_LOADED)) { |
| ret = smu_write_watermarks_table(smu); |
| if (ret) { |
| pr_err("Failed to update WMTABLE!"); |
| return ret; |
| } |
| smu->watermarks_bitmap |= WATERMARKS_LOADED; |
| } |
| |
| if ((smu->watermarks_bitmap & WATERMARKS_EXIST) && |
| smu_feature_is_supported(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) && |
| smu_feature_is_supported(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) { |
| smu_send_smc_msg_with_param(smu, |
| SMU_MSG_NumOfDisplays, |
| smu->display_config->num_display); |
| } |
| |
| return ret; |
| } |
| |
| static int vega20_apply_clocks_adjust_rules(struct smu_context *smu) |
| { |
| struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm); |
| struct vega20_dpm_table *dpm_ctx = (struct vega20_dpm_table *)(smu_dpm_ctx->dpm_context); |
| struct vega20_single_dpm_table *dpm_table; |
| bool vblank_too_short = false; |
| bool disable_mclk_switching; |
| uint32_t i, latency; |
| |
| disable_mclk_switching = ((1 < smu->display_config->num_display) && |
| !smu->display_config->multi_monitor_in_sync) || vblank_too_short; |
| latency = smu->display_config->dce_tolerable_mclk_in_active_latency; |
| |
| /* gfxclk */ |
| dpm_table = &(dpm_ctx->gfx_table); |
| dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; |
| dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value; |
| dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| |
| if (VEGA20_UMD_PSTATE_GFXCLK_LEVEL < dpm_table->count) { |
| dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_GFXCLK_LEVEL].value; |
| dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_GFXCLK_LEVEL].value; |
| } |
| |
| if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) { |
| dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; |
| dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[0].value; |
| } |
| |
| if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { |
| dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| } |
| |
| /* memclk */ |
| dpm_table = &(dpm_ctx->mem_table); |
| dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; |
| dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value; |
| dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| |
| if (VEGA20_UMD_PSTATE_MCLK_LEVEL < dpm_table->count) { |
| dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_MCLK_LEVEL].value; |
| dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_MCLK_LEVEL].value; |
| } |
| |
| if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) { |
| dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; |
| dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[0].value; |
| } |
| |
| if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { |
| dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| } |
| |
| /* honour DAL's UCLK Hardmin */ |
| if (dpm_table->dpm_state.hard_min_level < (smu->display_config->min_mem_set_clock / 100)) |
| dpm_table->dpm_state.hard_min_level = smu->display_config->min_mem_set_clock / 100; |
| |
| /* Hardmin is dependent on displayconfig */ |
| if (disable_mclk_switching) { |
| dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| for (i = 0; i < smu_dpm_ctx->mclk_latency_table->count - 1; i++) { |
| if (smu_dpm_ctx->mclk_latency_table->entries[i].latency <= latency) { |
| if (dpm_table->dpm_levels[i].value >= (smu->display_config->min_mem_set_clock / 100)) { |
| dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[i].value; |
| break; |
| } |
| } |
| } |
| } |
| |
| if (smu->display_config->nb_pstate_switch_disable) |
| dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| |
| /* vclk */ |
| dpm_table = &(dpm_ctx->vclk_table); |
| dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; |
| dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value; |
| dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| |
| if (VEGA20_UMD_PSTATE_UVDCLK_LEVEL < dpm_table->count) { |
| dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_UVDCLK_LEVEL].value; |
| dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_UVDCLK_LEVEL].value; |
| } |
| |
| if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { |
| dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| } |
| |
| /* dclk */ |
| dpm_table = &(dpm_ctx->dclk_table); |
| dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; |
| dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value; |
| dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| |
| if (VEGA20_UMD_PSTATE_UVDCLK_LEVEL < dpm_table->count) { |
| dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_UVDCLK_LEVEL].value; |
| dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_UVDCLK_LEVEL].value; |
| } |
| |
| if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { |
| dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| } |
| |
| /* socclk */ |
| dpm_table = &(dpm_ctx->soc_table); |
| dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; |
| dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value; |
| dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| |
| if (VEGA20_UMD_PSTATE_SOCCLK_LEVEL < dpm_table->count) { |
| dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_SOCCLK_LEVEL].value; |
| dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_SOCCLK_LEVEL].value; |
| } |
| |
| if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { |
| dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| } |
| |
| /* eclk */ |
| dpm_table = &(dpm_ctx->eclk_table); |
| dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; |
| dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value; |
| dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| |
| if (VEGA20_UMD_PSTATE_VCEMCLK_LEVEL < dpm_table->count) { |
| dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_VCEMCLK_LEVEL].value; |
| dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_VCEMCLK_LEVEL].value; |
| } |
| |
| if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { |
| dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; |
| } |
| return 0; |
| } |
| |
| static int |
| vega20_notify_smc_dispaly_config(struct smu_context *smu) |
| { |
| struct vega20_dpm_table *dpm_table = smu->smu_dpm.dpm_context; |
| struct vega20_single_dpm_table *memtable = &dpm_table->mem_table; |
| struct smu_clocks min_clocks = {0}; |
| struct pp_display_clock_request clock_req; |
| int ret = 0; |
| |
| min_clocks.dcef_clock = smu->display_config->min_dcef_set_clk; |
| min_clocks.dcef_clock_in_sr = smu->display_config->min_dcef_deep_sleep_set_clk; |
| min_clocks.memory_clock = smu->display_config->min_mem_set_clock; |
| |
| if (smu_feature_is_supported(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) { |
| clock_req.clock_type = amd_pp_dcef_clock; |
| clock_req.clock_freq_in_khz = min_clocks.dcef_clock * 10; |
| if (!smu->funcs->display_clock_voltage_request(smu, &clock_req)) { |
| if (smu_feature_is_supported(smu, SMU_FEATURE_DS_DCEFCLK_BIT)) { |
| ret = smu_send_smc_msg_with_param(smu, |
| SMU_MSG_SetMinDeepSleepDcefclk, |
| min_clocks.dcef_clock_in_sr/100); |
| if (ret) { |
| pr_err("Attempt to set divider for DCEFCLK Failed!"); |
| return ret; |
| } |
| } |
| } else { |
| pr_info("Attempt to set Hard Min for DCEFCLK Failed!"); |
| } |
| } |
| |
| if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) { |
| memtable->dpm_state.hard_min_level = min_clocks.memory_clock/100; |
| ret = smu_send_smc_msg_with_param(smu, |
| SMU_MSG_SetHardMinByFreq, |
| (PPCLK_UCLK << 16) | memtable->dpm_state.hard_min_level); |
| if (ret) { |
| pr_err("[%s] Set hard min uclk failed!", __func__); |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static uint32_t vega20_find_lowest_dpm_level(struct vega20_single_dpm_table *table) |
| { |
| uint32_t i; |
| |
| for (i = 0; i < table->count; i++) { |
| if (table->dpm_levels[i].enabled) |
| break; |
| } |
| if (i >= table->count) { |
| i = 0; |
| table->dpm_levels[i].enabled = true; |
| } |
| |
| return i; |
| } |
| |
| static uint32_t vega20_find_highest_dpm_level(struct vega20_single_dpm_table *table) |
| { |
| int i = 0; |
| |
| if (!table) { |
| pr_err("[%s] DPM Table does not exist!", __func__); |
| return 0; |
| } |
| if (table->count <= 0) { |
| pr_err("[%s] DPM Table has no entry!", __func__); |
| return 0; |
| } |
| if (table->count > MAX_REGULAR_DPM_NUMBER) { |
| pr_err("[%s] DPM Table has too many entries!", __func__); |
| return MAX_REGULAR_DPM_NUMBER - 1; |
| } |
| |
| for (i = table->count - 1; i >= 0; i--) { |
| if (table->dpm_levels[i].enabled) |
| break; |
| } |
| if (i < 0) { |
| i = 0; |
| table->dpm_levels[i].enabled = true; |
| } |
| |
| return i; |
| } |
| |
| static int vega20_force_dpm_limit_value(struct smu_context *smu, bool highest) |
| { |
| uint32_t soft_level; |
| int ret = 0; |
| struct vega20_dpm_table *dpm_table = |
| (struct vega20_dpm_table *)smu->smu_dpm.dpm_context; |
| |
| if (highest) |
| soft_level = vega20_find_highest_dpm_level(&(dpm_table->gfx_table)); |
| else |
| soft_level = vega20_find_lowest_dpm_level(&(dpm_table->gfx_table)); |
| |
| dpm_table->gfx_table.dpm_state.soft_min_level = |
| dpm_table->gfx_table.dpm_state.soft_max_level = |
| dpm_table->gfx_table.dpm_levels[soft_level].value; |
| |
| if (highest) |
| soft_level = vega20_find_highest_dpm_level(&(dpm_table->mem_table)); |
| else |
| soft_level = vega20_find_lowest_dpm_level(&(dpm_table->mem_table)); |
| |
| dpm_table->mem_table.dpm_state.soft_min_level = |
| dpm_table->mem_table.dpm_state.soft_max_level = |
| dpm_table->mem_table.dpm_levels[soft_level].value; |
| |
| if (highest) |
| soft_level = vega20_find_highest_dpm_level(&(dpm_table->soc_table)); |
| else |
| soft_level = vega20_find_lowest_dpm_level(&(dpm_table->soc_table)); |
| |
| dpm_table->soc_table.dpm_state.soft_min_level = |
| dpm_table->soc_table.dpm_state.soft_max_level = |
| dpm_table->soc_table.dpm_levels[soft_level].value; |
| |
| ret = vega20_upload_dpm_level(smu, false, 0xFFFFFFFF); |
| if (ret) { |
| pr_err("Failed to upload boot level to %s!\n", |
| highest ? "highest" : "lowest"); |
| return ret; |
| } |
| |
| ret = vega20_upload_dpm_level(smu, true, 0xFFFFFFFF); |
| if (ret) { |
| pr_err("Failed to upload dpm max level to %s!\n!", |
| highest ? "highest" : "lowest"); |
| return ret; |
| } |
| |
| return ret; |
| } |
| |
| static int vega20_unforce_dpm_levels(struct smu_context *smu) |
| { |
| uint32_t soft_min_level, soft_max_level; |
| int ret = 0; |
| struct vega20_dpm_table *dpm_table = |
| (struct vega20_dpm_table *)smu->smu_dpm.dpm_context; |
| |
| soft_min_level = vega20_find_lowest_dpm_level(&(dpm_table->gfx_table)); |
| soft_max_level = vega20_find_highest_dpm_level(&(dpm_table->gfx_table)); |
| dpm_table->gfx_table.dpm_state.soft_min_level = |
| dpm_table->gfx_table.dpm_levels[soft_min_level].value; |
| dpm_table->gfx_table.dpm_state.soft_max_level = |
| dpm_table->gfx_table.dpm_levels[soft_max_level].value; |
| |
| soft_min_level = vega20_find_lowest_dpm_level(&(dpm_table->mem_table)); |
| soft_max_level = vega20_find_highest_dpm_level(&(dpm_table->mem_table)); |
| dpm_table->mem_table.dpm_state.soft_min_level = |
| dpm_table->gfx_table.dpm_levels[soft_min_level].value; |
| dpm_table->mem_table.dpm_state.soft_max_level = |
| dpm_table->gfx_table.dpm_levels[soft_max_level].value; |
| |
| soft_min_level = vega20_find_lowest_dpm_level(&(dpm_table->soc_table)); |
| soft_max_level = vega20_find_highest_dpm_level(&(dpm_table->soc_table)); |
| dpm_table->soc_table.dpm_state.soft_min_level = |
| dpm_table->soc_table.dpm_levels[soft_min_level].value; |
| dpm_table->soc_table.dpm_state.soft_max_level = |
| dpm_table->soc_table.dpm_levels[soft_max_level].value; |
| |
| ret = vega20_upload_dpm_level(smu, false, 0xFFFFFFFF); |
| if (ret) { |
| pr_err("Failed to upload DPM Bootup Levels!"); |
| return ret; |
| } |
| |
| ret = vega20_upload_dpm_level(smu, true, 0xFFFFFFFF); |
| if (ret) { |
| pr_err("Failed to upload DPM Max Levels!"); |
| return ret; |
| } |
| |
| return ret; |
| } |
| |
| static int vega20_update_specified_od8_value(struct smu_context *smu, |
| uint32_t index, |
| uint32_t value) |
| { |
| struct smu_table_context *table_context = &smu->smu_table; |
| OverDriveTable_t *od_table = |
| (OverDriveTable_t *)(table_context->overdrive_table); |
| struct vega20_od8_settings *od8_settings = |
| (struct vega20_od8_settings *)smu->od_settings; |
| |
| switch (index) { |
| case OD8_SETTING_GFXCLK_FMIN: |
| od_table->GfxclkFmin = (uint16_t)value; |
| break; |
| |
| case OD8_SETTING_GFXCLK_FMAX: |
| if (value < od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].min_value || |
| value > od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].max_value) |
| return -EINVAL; |
| od_table->GfxclkFmax = (uint16_t)value; |
| break; |
| |
| case OD8_SETTING_GFXCLK_FREQ1: |
| od_table->GfxclkFreq1 = (uint16_t)value; |
| break; |
| |
| case OD8_SETTING_GFXCLK_VOLTAGE1: |
| od_table->GfxclkVolt1 = (uint16_t)value; |
| break; |
| |
| case OD8_SETTING_GFXCLK_FREQ2: |
| od_table->GfxclkFreq2 = (uint16_t)value; |
| break; |
| |
| case OD8_SETTING_GFXCLK_VOLTAGE2: |
| od_table->GfxclkVolt2 = (uint16_t)value; |
| break; |
| |
| case OD8_SETTING_GFXCLK_FREQ3: |
| od_table->GfxclkFreq3 = (uint16_t)value; |
| break; |
| |
| case OD8_SETTING_GFXCLK_VOLTAGE3: |
| od_table->GfxclkVolt3 = (uint16_t)value; |
| break; |
| |
| case OD8_SETTING_UCLK_FMAX: |
| if (value < od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].min_value || |
| value > od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].max_value) |
| return -EINVAL; |
| od_table->UclkFmax = (uint16_t)value; |
| break; |
| |
| case OD8_SETTING_POWER_PERCENTAGE: |
| od_table->OverDrivePct = (int16_t)value; |
| break; |
| |
| case OD8_SETTING_FAN_ACOUSTIC_LIMIT: |
| od_table->FanMaximumRpm = (uint16_t)value; |
| break; |
| |
| case OD8_SETTING_FAN_MIN_SPEED: |
| od_table->FanMinimumPwm = (uint16_t)value; |
| break; |
| |
| case OD8_SETTING_FAN_TARGET_TEMP: |
| od_table->FanTargetTemperature = (uint16_t)value; |
| break; |
| |
| case OD8_SETTING_OPERATING_TEMP_MAX: |
| od_table->MaxOpTemp = (uint16_t)value; |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static int vega20_update_od8_settings(struct smu_context *smu, |
| uint32_t index, |
| uint32_t value) |
| { |
| struct smu_table_context *table_context = &smu->smu_table; |
| int ret; |
| |
| ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE, 0, |
| table_context->overdrive_table, false); |
| if (ret) { |
| pr_err("Failed to export over drive table!\n"); |
| return ret; |
| } |
| |
| ret = vega20_update_specified_od8_value(smu, index, value); |
| if (ret) |
| return ret; |
| |
| ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE, 0, |
| table_context->overdrive_table, true); |
| if (ret) { |
| pr_err("Failed to import over drive table!\n"); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int vega20_set_od_percentage(struct smu_context *smu, |
| enum smu_clk_type clk_type, |
| uint32_t value) |
| { |
| struct smu_dpm_context *smu_dpm = &smu->smu_dpm; |
| struct vega20_dpm_table *dpm_table = NULL; |
| struct vega20_dpm_table *golden_table = NULL; |
| struct vega20_single_dpm_table *single_dpm_table; |
| struct vega20_single_dpm_table *golden_dpm_table; |
| uint32_t od_clk, index; |
| int ret = 0; |
| int feature_enabled; |
| PPCLK_e clk_id; |
| |
| mutex_lock(&(smu->mutex)); |
| |
| dpm_table = smu_dpm->dpm_context; |
| golden_table = smu_dpm->golden_dpm_context; |
| |
| switch (clk_type) { |
| case SMU_OD_SCLK: |
| single_dpm_table = &(dpm_table->gfx_table); |
| golden_dpm_table = &(golden_table->gfx_table); |
| feature_enabled = smu_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT); |
| clk_id = PPCLK_GFXCLK; |
| index = OD8_SETTING_GFXCLK_FMAX; |
| break; |
| case SMU_OD_MCLK: |
| single_dpm_table = &(dpm_table->mem_table); |
| golden_dpm_table = &(golden_table->mem_table); |
| feature_enabled = smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT); |
| clk_id = PPCLK_UCLK; |
| index = OD8_SETTING_UCLK_FMAX; |
| break; |
| default: |
| ret = -EINVAL; |
| break; |
| } |
| |
| if (ret) |
| goto set_od_failed; |
| |
| od_clk = golden_dpm_table->dpm_levels[golden_dpm_table->count - 1].value * value; |
| od_clk /= 100; |
| od_clk += golden_dpm_table->dpm_levels[golden_dpm_table->count - 1].value; |
| |
| ret = vega20_update_od8_settings(smu, index, od_clk); |
| if (ret) { |
| pr_err("[Setoverdrive] failed to set od clk!\n"); |
| goto set_od_failed; |
| } |
| |
| if (feature_enabled) { |
| ret = vega20_set_single_dpm_table(smu, single_dpm_table, |
| clk_id); |
| if (ret) { |
| pr_err("[Setoverdrive] failed to refresh dpm table!\n"); |
| goto set_od_failed; |
| } |
| } else { |
| single_dpm_table->count = 1; |
| single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.gfxclk / 100; |
| } |
| |
| ret = smu_handle_task(smu, smu_dpm->dpm_level, |
| AMD_PP_TASK_READJUST_POWER_STATE); |
| |
| set_od_failed: |
| mutex_unlock(&(smu->mutex)); |
| |
| return ret; |
| } |
| |
| static int vega20_odn_edit_dpm_table(struct smu_context *smu, |
| enum PP_OD_DPM_TABLE_COMMAND type, |
| long *input, uint32_t size) |
| { |
| struct smu_table_context *table_context = &smu->smu_table; |
| OverDriveTable_t *od_table = |
| (OverDriveTable_t *)(table_context->overdrive_table); |
| struct smu_dpm_context *smu_dpm = &smu->smu_dpm; |
| struct vega20_dpm_table *dpm_table = NULL; |
| struct vega20_single_dpm_table *single_dpm_table; |
| struct vega20_od8_settings *od8_settings = |
| (struct vega20_od8_settings *)smu->od_settings; |
| struct pp_clock_levels_with_latency clocks; |
| int32_t input_index, input_clk, input_vol, i; |
| int od8_id; |
| int ret = 0; |
| |
| dpm_table = smu_dpm->dpm_context; |
| |
| if (!input) { |
| pr_warn("NULL user input for clock and voltage\n"); |
| return -EINVAL; |
| } |
| |
| switch (type) { |
| case PP_OD_EDIT_SCLK_VDDC_TABLE: |
| if (!(od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].feature_id && |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].feature_id)) { |
| pr_info("Sclk min/max frequency overdrive not supported\n"); |
| return -EOPNOTSUPP; |
| } |
| |
| for (i = 0; i < size; i += 2) { |
| if (i + 2 > size) { |
| pr_info("invalid number of input parameters %d\n", size); |
| return -EINVAL; |
| } |
| |
| input_index = input[i]; |
| input_clk = input[i + 1]; |
| |
| if (input_index != 0 && input_index != 1) { |
| pr_info("Invalid index %d\n", input_index); |
| pr_info("Support min/max sclk frequency settingonly which index by 0/1\n"); |
| return -EINVAL; |
| } |
| |
| if (input_clk < od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].min_value || |
| input_clk > od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].max_value) { |
| pr_info("clock freq %d is not within allowed range [%d - %d]\n", |
| input_clk, |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].min_value, |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].max_value); |
| return -EINVAL; |
| } |
| |
| if (input_index == 0 && od_table->GfxclkFmin != input_clk) { |
| od_table->GfxclkFmin = input_clk; |
| od8_settings->od_gfxclk_update = true; |
| } else if (input_index == 1 && od_table->GfxclkFmax != input_clk) { |
| od_table->GfxclkFmax = input_clk; |
| od8_settings->od_gfxclk_update = true; |
| } |
| } |
| |
| break; |
| |
| case PP_OD_EDIT_MCLK_VDDC_TABLE: |
| if (!od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].feature_id) { |
| pr_info("Mclk max frequency overdrive not supported\n"); |
| return -EOPNOTSUPP; |
| } |
| |
| single_dpm_table = &(dpm_table->mem_table); |
| ret = vega20_get_clk_table(smu, &clocks, single_dpm_table); |
| if (ret) { |
| pr_err("Attempt to get memory clk levels Failed!"); |
| return ret; |
| } |
| |
| for (i = 0; i < size; i += 2) { |
| if (i + 2 > size) { |
| pr_info("invalid number of input parameters %d\n", |
| size); |
| return -EINVAL; |
| } |
| |
| input_index = input[i]; |
| input_clk = input[i + 1]; |
| |
| if (input_index != 1) { |
| pr_info("Invalid index %d\n", input_index); |
| pr_info("Support max Mclk frequency setting only which index by 1\n"); |
| return -EINVAL; |
| } |
| |
| if (input_clk < clocks.data[0].clocks_in_khz / 1000 || |
| input_clk > od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].max_value) { |
| pr_info("clock freq %d is not within allowed range [%d - %d]\n", |
| input_clk, |
| clocks.data[0].clocks_in_khz / 1000, |
| od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].max_value); |
| return -EINVAL; |
| } |
| |
| if (input_index == 1 && od_table->UclkFmax != input_clk) { |
| od8_settings->od_gfxclk_update = true; |
| od_table->UclkFmax = input_clk; |
| } |
| } |
| |
| break; |
| |
| case PP_OD_EDIT_VDDC_CURVE: |
| if (!(od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].feature_id && |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].feature_id && |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].feature_id && |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].feature_id && |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].feature_id && |
| od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].feature_id)) { |
| pr_info("Voltage curve calibrate not supported\n"); |
| return -EOPNOTSUPP; |
| } |
| |
| for (i = 0; i < size; i += 3) { |
| if (i + 3 > size) { |
| pr_info("invalid number of input parameters %d\n", |
| size); |
| return -EINVAL; |
| } |
| |
| input_index = input[i]; |
| input_clk = input[i + 1]; |
| input_vol = input[i + 2]; |
| |
| if (input_index > 2) { |
| pr_info("Setting for point %d is not supported\n", |
| input_index + 1); |
| pr_info("Three supported points index by 0, 1, 2\n"); |
| return -EINVAL; |
| } |
| |
| od8_id = OD8_SETTING_GFXCLK_FREQ1 + 2 * input_index; |
| if (input_clk < od8_settings->od8_settings_array[od8_id].min_value || |
| input_clk > od8_settings->od8_settings_array[od8_id].max_value) { |
| pr_info("clock freq %d is not within allowed range [%d - %d]\n", |
| input_clk, |
| od8_settings->od8_settings_array[od8_id].min_value, |
| od8_settings->od8_settings_array[od8_id].max_value); |
| return -EINVAL; |
| } |
| |
| od8_id = OD8_SETTING_GFXCLK_VOLTAGE1 + 2 * input_index; |
| if (input_vol < od8_settings->od8_settings_array[od8_id].min_value || |
| input_vol > od8_settings->od8_settings_array[od8_id].max_value) { |
| pr_info("clock voltage %d is not within allowed range [%d- %d]\n", |
| input_vol, |
| od8_settings->od8_settings_array[od8_id].min_value, |
| od8_settings->od8_settings_array[od8_id].max_value); |
| return -EINVAL; |
| } |
| |
| switch (input_index) { |
| case 0: |
| od_table->GfxclkFreq1 = input_clk; |
| od_table->GfxclkVolt1 = input_vol * VOLTAGE_SCALE; |
| break; |
| case 1: |
| od_table->GfxclkFreq2 = input_clk; |
| od_table->GfxclkVolt2 = input_vol * VOLTAGE_SCALE; |
| break; |
| case 2: |
| od_table->GfxclkFreq3 = input_clk; |
| od_table->GfxclkVolt3 = input_vol * VOLTAGE_SCALE; |
| break; |
| } |
| } |
| |
| break; |
| |
| case PP_OD_RESTORE_DEFAULT_TABLE: |
| ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE, 0, table_context->overdrive_table, false); |
| if (ret) { |
| pr_err("Failed to export over drive table!\n"); |
| return ret; |
| } |
| |
| break; |
| |
| case PP_OD_COMMIT_DPM_TABLE: |
| ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE, 0, table_context->overdrive_table, true); |
| if (ret) { |
| pr_err("Failed to import over drive table!\n"); |
| return ret; |
| } |
| |
| /* retrieve updated gfxclk table */ |
| if (od8_settings->od_gfxclk_update) { |
| od8_settings->od_gfxclk_update = false; |
| single_dpm_table = &(dpm_table->gfx_table); |
| |
| if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT)) { |
| ret = vega20_set_single_dpm_table(smu, single_dpm_table, |
| PPCLK_GFXCLK); |
| if (ret) { |
| pr_err("[Setoverdrive] failed to refresh dpm table!\n"); |
| return ret; |
| } |
| } else { |
| single_dpm_table->count = 1; |
| single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.gfxclk / 100; |
| } |
| } |
| |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| |
| if (type == PP_OD_COMMIT_DPM_TABLE) { |
| mutex_lock(&(smu->mutex)); |
| ret = smu_handle_task(smu, smu_dpm->dpm_level, |
| AMD_PP_TASK_READJUST_POWER_STATE); |
| mutex_unlock(&(smu->mutex)); |
| } |
| |
| return ret; |
| } |
| |
| static int vega20_dpm_set_uvd_enable(struct smu_context *smu, bool enable) |
| { |
| if (!smu_feature_is_supported(smu, SMU_FEATURE_DPM_UVD_BIT)) |
| return 0; |
| |
| if (enable == smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UVD_BIT)) |
| return 0; |
| |
| return smu_feature_set_enabled(smu, SMU_FEATURE_DPM_UVD_BIT, enable); |
| } |
| |
| static int vega20_dpm_set_vce_enable(struct smu_context *smu, bool enable) |
| { |
| if (!smu_feature_is_supported(smu, SMU_FEATURE_DPM_VCE_BIT)) |
| return 0; |
| |
| if (enable == smu_feature_is_enabled(smu, SMU_FEATURE_DPM_VCE_BIT)) |
| return 0; |
| |
| return smu_feature_set_enabled(smu, SMU_FEATURE_DPM_VCE_BIT, enable); |
| } |
| |
| static int vega20_get_enabled_smc_features(struct smu_context *smu, |
| uint64_t *features_enabled) |
| { |
| uint32_t feature_mask[2] = {0, 0}; |
| int ret = 0; |
| |
| ret = smu_feature_get_enabled_mask(smu, feature_mask, 2); |
| if (ret) |
| return ret; |
| |
| *features_enabled = ((((uint64_t)feature_mask[0] << SMU_FEATURES_LOW_SHIFT) & SMU_FEATURES_LOW_MASK) | |
| (((uint64_t)feature_mask[1] << SMU_FEATURES_HIGH_SHIFT) & SMU_FEATURES_HIGH_MASK)); |
| |
| return ret; |
| } |
| |
| static int vega20_enable_smc_features(struct smu_context *smu, |
| bool enable, uint64_t feature_mask) |
| { |
| uint32_t smu_features_low, smu_features_high; |
| int ret = 0; |
| |
| smu_features_low = (uint32_t)((feature_mask & SMU_FEATURES_LOW_MASK) >> SMU_FEATURES_LOW_SHIFT); |
| smu_features_high = (uint32_t)((feature_mask & SMU_FEATURES_HIGH_MASK) >> SMU_FEATURES_HIGH_SHIFT); |
| |
| if (enable) { |
| ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesLow, |
| smu_features_low); |
| if (ret) |
| return ret; |
| ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesHigh, |
| smu_features_high); |
| if (ret) |
| return ret; |
| } else { |
| ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesLow, |
| smu_features_low); |
| if (ret) |
| return ret; |
| ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesHigh, |
| smu_features_high); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| |
| } |
| |
| static int vega20_get_ppfeature_status(struct smu_context *smu, char *buf) |
| { |
| static const char *ppfeature_name[] = { |
| "DPM_PREFETCHER", |
| "GFXCLK_DPM", |
| "UCLK_DPM", |
| "SOCCLK_DPM", |
| "UVD_DPM", |
| "VCE_DPM", |
| "ULV", |
| "MP0CLK_DPM", |
| "LINK_DPM", |
| "DCEFCLK_DPM", |
| "GFXCLK_DS", |
| "SOCCLK_DS", |
| "LCLK_DS", |
| "PPT", |
| "TDC", |
| "THERMAL", |
| "GFX_PER_CU_CG", |
| "RM", |
| "DCEFCLK_DS", |
| "ACDC", |
| "VR0HOT", |
| "VR1HOT", |
| "FW_CTF", |
| "LED_DISPLAY", |
| "FAN_CONTROL", |
| "GFX_EDC", |
| "GFXOFF", |
| "CG", |
| "FCLK_DPM", |
| "FCLK_DS", |
| "MP1CLK_DS", |
| "MP0CLK_DS", |
| "XGMI", |
| "ECC"}; |
| static const char *output_title[] = { |
| "FEATURES", |
| "BITMASK", |
| "ENABLEMENT"}; |
| uint64_t features_enabled; |
| int i; |
| int ret = 0; |
| int size = 0; |
| |
| ret = vega20_get_enabled_smc_features(smu, &features_enabled); |
| if (ret) |
| return ret; |
| |
| size += sprintf(buf + size, "Current ppfeatures: 0x%016llx\n", features_enabled); |
| size += sprintf(buf + size, "%-19s %-22s %s\n", |
| output_title[0], |
| output_title[1], |
| output_title[2]); |
| for (i = 0; i < GNLD_FEATURES_MAX; i++) { |
| size += sprintf(buf + size, "%-19s 0x%016llx %6s\n", |
| ppfeature_name[i], |
| 1ULL << i, |
| (features_enabled & (1ULL << i)) ? "Y" : "N"); |
| } |
| |
| return size; |
| } |
| |
| static int vega20_set_ppfeature_status(struct smu_context *smu, uint64_t new_ppfeature_masks) |
| { |
| uint64_t features_enabled; |
| uint64_t features_to_enable; |
| uint64_t features_to_disable; |
| int ret = 0; |
| |
| if (new_ppfeature_masks >= (1ULL << GNLD_FEATURES_MAX)) |
| return -EINVAL; |
| |
| ret = vega20_get_enabled_smc_features(smu, &features_enabled); |
| if (ret) |
| return ret; |
| |
| features_to_disable = |
| features_enabled & ~new_ppfeature_masks; |
| features_to_enable = |
| ~features_enabled & new_ppfeature_masks; |
| |
| pr_debug("features_to_disable 0x%llx\n", features_to_disable); |
| pr_debug("features_to_enable 0x%llx\n", features_to_enable); |
| |
| if (features_to_disable) { |
| ret = vega20_enable_smc_features(smu, false, features_to_disable); |
| if (ret) |
| return ret; |
| } |
| |
| if (features_to_enable) { |
| ret = vega20_enable_smc_features(smu, true, features_to_enable); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static bool vega20_is_dpm_running(struct smu_context *smu) |
| { |
| int ret = 0; |
| uint32_t feature_mask[2]; |
| unsigned long feature_enabled; |
| ret = smu_feature_get_enabled_mask(smu, feature_mask, 2); |
| feature_enabled = (unsigned long)((uint64_t)feature_mask[0] | |
| ((uint64_t)feature_mask[1] << 32)); |
| return !!(feature_enabled & SMC_DPM_FEATURE); |
| } |
| |
| static int vega20_set_thermal_fan_table(struct smu_context *smu) |
| { |
| int ret; |
| struct smu_table_context *table_context = &smu->smu_table; |
| PPTable_t *pptable = table_context->driver_pptable; |
| |
| ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetFanTemperatureTarget, |
| (uint32_t)pptable->FanTargetTemperature); |
| |
| return ret; |
| } |
| |
| static int vega20_get_fan_speed_rpm(struct smu_context *smu, |
| uint32_t *speed) |
| { |
| int ret; |
| |
| ret = smu_send_smc_msg(smu, SMU_MSG_GetCurrentRpm); |
| |
| if (ret) { |
| pr_err("Attempt to get current RPM from SMC Failed!\n"); |
| return ret; |
| } |
| |
| smu_read_smc_arg(smu, speed); |
| |
| return 0; |
| } |
| |
| static int vega20_get_fan_speed_percent(struct smu_context *smu, |
| uint32_t *speed) |
| { |
| int ret = 0; |
| uint32_t current_rpm = 0, percent = 0; |
| PPTable_t *pptable = smu->smu_table.driver_pptable; |
| |
| ret = vega20_get_fan_speed_rpm(smu, ¤t_rpm); |
| if (ret) |
| return ret; |
| |
| percent = current_rpm * 100 / pptable->FanMaximumRpm; |
| *speed = percent > 100 ? 100 : percent; |
| |
| return 0; |
| } |
| |
| static int vega20_get_gpu_power(struct smu_context *smu, uint32_t *value) |
| { |
| int ret = 0; |
| SmuMetrics_t metrics; |
| |
| if (!value) |
| return -EINVAL; |
| |
| ret = vega20_get_metrics_table(smu, &metrics); |
| if (ret) |
| return ret; |
| |
| *value = metrics.CurrSocketPower << 8; |
| |
| return 0; |
| } |
| |
| static int vega20_get_current_activity_percent(struct smu_context *smu, |
| enum amd_pp_sensors sensor, |
| uint32_t *value) |
| { |
| int ret = 0; |
| SmuMetrics_t metrics; |
| |
| if (!value) |
| return -EINVAL; |
| |
| ret = vega20_get_metrics_table(smu, &metrics); |
| if (ret) |
| return ret; |
| |
| switch (sensor) { |
| case AMDGPU_PP_SENSOR_GPU_LOAD: |
| *value = metrics.AverageGfxActivity; |
| break; |
| case AMDGPU_PP_SENSOR_MEM_LOAD: |
| *value = metrics.AverageUclkActivity; |
| break; |
| default: |
| pr_err("Invalid sensor for retrieving clock activity\n"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int vega20_thermal_get_temperature(struct smu_context *smu, |
| enum amd_pp_sensors sensor, |
| uint32_t *value) |
| { |
| struct amdgpu_device *adev = smu->adev; |
| SmuMetrics_t metrics; |
| uint32_t temp = 0; |
| int ret = 0; |
| |
| if (!value) |
| return -EINVAL; |
| |
| ret = vega20_get_metrics_table(smu, &metrics); |
| if (ret) |
| return ret; |
| |
| switch (sensor) { |
| case AMDGPU_PP_SENSOR_HOTSPOT_TEMP: |
| temp = RREG32_SOC15(THM, 0, mmCG_MULT_THERMAL_STATUS); |
| temp = (temp & CG_MULT_THERMAL_STATUS__CTF_TEMP_MASK) >> |
| CG_MULT_THERMAL_STATUS__CTF_TEMP__SHIFT; |
| |
| temp = temp & 0x1ff; |
| temp *= SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; |
| |
| *value = temp; |
| break; |
| case AMDGPU_PP_SENSOR_EDGE_TEMP: |
| *value = metrics.TemperatureEdge * |
| SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; |
| break; |
| case AMDGPU_PP_SENSOR_MEM_TEMP: |
| *value = metrics.TemperatureHBM * |
| SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; |
| break; |
| default: |
| pr_err("Invalid sensor for retrieving temp\n"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| static int vega20_read_sensor(struct smu_context *smu, |
| enum amd_pp_sensors sensor, |
| void *data, uint32_t *size) |
| { |
| int ret = 0; |
| struct smu_table_context *table_context = &smu->smu_table; |
| PPTable_t *pptable = table_context->driver_pptable; |
| |
| switch (sensor) { |
| case AMDGPU_PP_SENSOR_MAX_FAN_RPM: |
| *(uint32_t *)data = pptable->FanMaximumRpm; |
| *size = 4; |
| break; |
| case AMDGPU_PP_SENSOR_MEM_LOAD: |
| case AMDGPU_PP_SENSOR_GPU_LOAD: |
| ret = vega20_get_current_activity_percent(smu, |
| sensor, |
| (uint32_t *)data); |
| *size = 4; |
| break; |
| case AMDGPU_PP_SENSOR_GPU_POWER: |
| ret = vega20_get_gpu_power(smu, (uint32_t *)data); |
| *size = 4; |
| break; |
| case AMDGPU_PP_SENSOR_HOTSPOT_TEMP: |
| case AMDGPU_PP_SENSOR_EDGE_TEMP: |
| case AMDGPU_PP_SENSOR_MEM_TEMP: |
| ret = vega20_thermal_get_temperature(smu, sensor, (uint32_t *)data); |
| *size = 4; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return ret; |
| } |
| |
| static int vega20_set_watermarks_table(struct smu_context *smu, |
| void *watermarks, struct |
| dm_pp_wm_sets_with_clock_ranges_soc15 |
| *clock_ranges) |
| { |
| int i; |
| Watermarks_t *table = watermarks; |
| |
| if (!table || !clock_ranges) |
| return -EINVAL; |
| |
| if (clock_ranges->num_wm_dmif_sets > 4 || |
| clock_ranges->num_wm_mcif_sets > 4) |
| return -EINVAL; |
| |
| for (i = 0; i < clock_ranges->num_wm_dmif_sets; i++) { |
| table->WatermarkRow[1][i].MinClock = |
| cpu_to_le16((uint16_t) |
| (clock_ranges->wm_dmif_clocks_ranges[i].wm_min_dcfclk_clk_in_khz / |
| 1000)); |
| table->WatermarkRow[1][i].MaxClock = |
| cpu_to_le16((uint16_t) |
| (clock_ranges->wm_dmif_clocks_ranges[i].wm_max_dcfclk_clk_in_khz / |
| 1000)); |
| table->WatermarkRow[1][i].MinUclk = |
| cpu_to_le16((uint16_t) |
| (clock_ranges->wm_dmif_clocks_ranges[i].wm_min_mem_clk_in_khz / |
| 1000)); |
| table->WatermarkRow[1][i].MaxUclk = |
| cpu_to_le16((uint16_t) |
| (clock_ranges->wm_dmif_clocks_ranges[i].wm_max_mem_clk_in_khz / |
| 1000)); |
| table->WatermarkRow[1][i].WmSetting = (uint8_t) |
| clock_ranges->wm_dmif_clocks_ranges[i].wm_set_id; |
| } |
| |
| for (i = 0; i < clock_ranges->num_wm_mcif_sets; i++) { |
| table->WatermarkRow[0][i].MinClock = |
| cpu_to_le16((uint16_t) |
| (clock_ranges->wm_mcif_clocks_ranges[i].wm_min_socclk_clk_in_khz / |
| 1000)); |
| table->WatermarkRow[0][i].MaxClock = |
| cpu_to_le16((uint16_t) |
| (clock_ranges->wm_mcif_clocks_ranges[i].wm_max_socclk_clk_in_khz / |
| 1000)); |
| table->WatermarkRow[0][i].MinUclk = |
| cpu_to_le16((uint16_t) |
| (clock_ranges->wm_mcif_clocks_ranges[i].wm_min_mem_clk_in_khz / |
| 1000)); |
| table->WatermarkRow[0][i].MaxUclk = |
| cpu_to_le16((uint16_t) |
| (clock_ranges->wm_mcif_clocks_ranges[i].wm_max_mem_clk_in_khz / |
| 1000)); |
| table->WatermarkRow[0][i].WmSetting = (uint8_t) |
| clock_ranges->wm_mcif_clocks_ranges[i].wm_set_id; |
| } |
| |
| return 0; |
| } |
| |
| static int vega20_get_thermal_temperature_range(struct smu_context *smu, |
| struct smu_temperature_range *range) |
| { |
| struct smu_table_context *table_context = &smu->smu_table; |
| ATOM_Vega20_POWERPLAYTABLE *powerplay_table = table_context->power_play_table; |
| PPTable_t *pptable = smu->smu_table.driver_pptable; |
| |
| if (!range || !powerplay_table) |
| return -EINVAL; |
| |
| /* The unit is temperature */ |
| range->min = 0; |
| range->max = powerplay_table->usSoftwareShutdownTemp; |
| range->edge_emergency_max = (pptable->TedgeLimit + CTF_OFFSET_EDGE); |
| range->hotspot_crit_max = pptable->ThotspotLimit; |
| range->hotspot_emergency_max = (pptable->ThotspotLimit + CTF_OFFSET_HOTSPOT); |
| range->mem_crit_max = pptable->ThbmLimit; |
| range->mem_emergency_max = (pptable->ThbmLimit + CTF_OFFSET_HBM); |
| |
| |
| return 0; |
| } |
| |
| static const struct pptable_funcs vega20_ppt_funcs = { |
| .tables_init = vega20_tables_init, |
| .alloc_dpm_context = vega20_allocate_dpm_context, |
| .store_powerplay_table = vega20_store_powerplay_table, |
| .check_powerplay_table = vega20_check_powerplay_table, |
| .append_powerplay_table = vega20_append_powerplay_table, |
| .get_smu_msg_index = vega20_get_smu_msg_index, |
| .get_smu_clk_index = vega20_get_smu_clk_index, |
| .get_smu_feature_index = vega20_get_smu_feature_index, |
| .get_smu_table_index = vega20_get_smu_table_index, |
| .get_smu_power_index = vega20_get_pwr_src_index, |
| .get_workload_type = vega20_get_workload_type, |
| .run_afll_btc = vega20_run_btc_afll, |
| .get_allowed_feature_mask = vega20_get_allowed_feature_mask, |
| .get_current_power_state = vega20_get_current_power_state, |
| .set_default_dpm_table = vega20_set_default_dpm_table, |
| .set_power_state = NULL, |
| .populate_umd_state_clk = vega20_populate_umd_state_clk, |
| .print_clk_levels = vega20_print_clk_levels, |
| .force_clk_levels = vega20_force_clk_levels, |
| .get_clock_by_type_with_latency = vega20_get_clock_by_type_with_latency, |
| .get_od_percentage = vega20_get_od_percentage, |
| .get_power_profile_mode = vega20_get_power_profile_mode, |
| .set_power_profile_mode = vega20_set_power_profile_mode, |
| .set_od_percentage = vega20_set_od_percentage, |
| .set_default_od_settings = vega20_set_default_od_settings, |
| .od_edit_dpm_table = vega20_odn_edit_dpm_table, |
| .dpm_set_uvd_enable = vega20_dpm_set_uvd_enable, |
| .dpm_set_vce_enable = vega20_dpm_set_vce_enable, |
| .read_sensor = vega20_read_sensor, |
| .pre_display_config_changed = vega20_pre_display_config_changed, |
| .display_config_changed = vega20_display_config_changed, |
| .apply_clocks_adjust_rules = vega20_apply_clocks_adjust_rules, |
| .notify_smc_dispaly_config = vega20_notify_smc_dispaly_config, |
| .force_dpm_limit_value = vega20_force_dpm_limit_value, |
| .unforce_dpm_levels = vega20_unforce_dpm_levels, |
| .get_profiling_clk_mask = vega20_get_profiling_clk_mask, |
| .set_ppfeature_status = vega20_set_ppfeature_status, |
| .get_ppfeature_status = vega20_get_ppfeature_status, |
| .is_dpm_running = vega20_is_dpm_running, |
| .set_thermal_fan_table = vega20_set_thermal_fan_table, |
| .get_fan_speed_percent = vega20_get_fan_speed_percent, |
| .get_fan_speed_rpm = vega20_get_fan_speed_rpm, |
| .set_watermarks_table = vega20_set_watermarks_table, |
| .get_thermal_temperature_range = vega20_get_thermal_temperature_range |
| }; |
| |
| void vega20_set_ppt_funcs(struct smu_context *smu) |
| { |
| struct smu_table_context *smu_table = &smu->smu_table; |
| |
| smu->ppt_funcs = &vega20_ppt_funcs; |
| smu->smc_if_version = SMU11_DRIVER_IF_VERSION; |
| smu_table->table_count = TABLE_COUNT; |
| } |