| /* |
| * Copyright (C) 1995 Linus Torvalds |
| * |
| * Pentium III FXSR, SSE support |
| * Gareth Hughes <gareth@valinux.com>, May 2000 |
| */ |
| |
| /* |
| * This file handles the architecture-dependent parts of process handling.. |
| */ |
| |
| #include <linux/cpu.h> |
| #include <linux/errno.h> |
| #include <linux/sched.h> |
| #include <linux/sched/task.h> |
| #include <linux/sched/task_stack.h> |
| #include <linux/fs.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/elfcore.h> |
| #include <linux/smp.h> |
| #include <linux/stddef.h> |
| #include <linux/slab.h> |
| #include <linux/vmalloc.h> |
| #include <linux/user.h> |
| #include <linux/interrupt.h> |
| #include <linux/delay.h> |
| #include <linux/reboot.h> |
| #include <linux/mc146818rtc.h> |
| #include <linux/export.h> |
| #include <linux/kallsyms.h> |
| #include <linux/ptrace.h> |
| #include <linux/personality.h> |
| #include <linux/percpu.h> |
| #include <linux/prctl.h> |
| #include <linux/ftrace.h> |
| #include <linux/uaccess.h> |
| #include <linux/io.h> |
| #include <linux/kdebug.h> |
| #include <linux/syscalls.h> |
| |
| #include <asm/pgtable.h> |
| #include <asm/ldt.h> |
| #include <asm/processor.h> |
| #include <asm/fpu/internal.h> |
| #include <asm/desc.h> |
| |
| #include <linux/err.h> |
| |
| #include <asm/tlbflush.h> |
| #include <asm/cpu.h> |
| #include <asm/syscalls.h> |
| #include <asm/debugreg.h> |
| #include <asm/switch_to.h> |
| #include <asm/vm86.h> |
| #include <asm/resctrl_sched.h> |
| #include <asm/proto.h> |
| |
| #include "process.h" |
| |
| void __show_regs(struct pt_regs *regs, enum show_regs_mode mode) |
| { |
| unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L; |
| unsigned long d0, d1, d2, d3, d6, d7; |
| unsigned long sp; |
| unsigned short ss, gs; |
| |
| if (user_mode(regs)) { |
| sp = regs->sp; |
| ss = regs->ss; |
| gs = get_user_gs(regs); |
| } else { |
| sp = kernel_stack_pointer(regs); |
| savesegment(ss, ss); |
| savesegment(gs, gs); |
| } |
| |
| show_ip(regs, KERN_DEFAULT); |
| |
| printk(KERN_DEFAULT "EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n", |
| regs->ax, regs->bx, regs->cx, regs->dx); |
| printk(KERN_DEFAULT "ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n", |
| regs->si, regs->di, regs->bp, sp); |
| printk(KERN_DEFAULT "DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x EFLAGS: %08lx\n", |
| (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss, regs->flags); |
| |
| if (mode != SHOW_REGS_ALL) |
| return; |
| |
| cr0 = read_cr0(); |
| cr2 = read_cr2(); |
| cr3 = __read_cr3(); |
| cr4 = __read_cr4(); |
| printk(KERN_DEFAULT "CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n", |
| cr0, cr2, cr3, cr4); |
| |
| get_debugreg(d0, 0); |
| get_debugreg(d1, 1); |
| get_debugreg(d2, 2); |
| get_debugreg(d3, 3); |
| get_debugreg(d6, 6); |
| get_debugreg(d7, 7); |
| |
| /* Only print out debug registers if they are in their non-default state. */ |
| if ((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) && |
| (d6 == DR6_RESERVED) && (d7 == 0x400)) |
| return; |
| |
| printk(KERN_DEFAULT "DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n", |
| d0, d1, d2, d3); |
| printk(KERN_DEFAULT "DR6: %08lx DR7: %08lx\n", |
| d6, d7); |
| } |
| |
| void release_thread(struct task_struct *dead_task) |
| { |
| BUG_ON(dead_task->mm); |
| release_vm86_irqs(dead_task); |
| } |
| |
| int copy_thread_tls(unsigned long clone_flags, unsigned long sp, |
| unsigned long arg, struct task_struct *p, unsigned long tls) |
| { |
| struct pt_regs *childregs = task_pt_regs(p); |
| struct fork_frame *fork_frame = container_of(childregs, struct fork_frame, regs); |
| struct inactive_task_frame *frame = &fork_frame->frame; |
| struct task_struct *tsk; |
| int err; |
| |
| /* |
| * For a new task use the RESET flags value since there is no before. |
| * All the status flags are zero; DF and all the system flags must also |
| * be 0, specifically IF must be 0 because we context switch to the new |
| * task with interrupts disabled. |
| */ |
| frame->flags = X86_EFLAGS_FIXED; |
| frame->bp = 0; |
| frame->ret_addr = (unsigned long) ret_from_fork; |
| p->thread.sp = (unsigned long) fork_frame; |
| p->thread.sp0 = (unsigned long) (childregs+1); |
| memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps)); |
| |
| if (unlikely(p->flags & PF_KTHREAD)) { |
| /* kernel thread */ |
| memset(childregs, 0, sizeof(struct pt_regs)); |
| frame->bx = sp; /* function */ |
| frame->di = arg; |
| p->thread.io_bitmap_ptr = NULL; |
| return 0; |
| } |
| frame->bx = 0; |
| *childregs = *current_pt_regs(); |
| childregs->ax = 0; |
| if (sp) |
| childregs->sp = sp; |
| |
| task_user_gs(p) = get_user_gs(current_pt_regs()); |
| |
| p->thread.io_bitmap_ptr = NULL; |
| tsk = current; |
| err = -ENOMEM; |
| |
| if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) { |
| p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr, |
| IO_BITMAP_BYTES, GFP_KERNEL); |
| if (!p->thread.io_bitmap_ptr) { |
| p->thread.io_bitmap_max = 0; |
| return -ENOMEM; |
| } |
| set_tsk_thread_flag(p, TIF_IO_BITMAP); |
| } |
| |
| err = 0; |
| |
| /* |
| * Set a new TLS for the child thread? |
| */ |
| if (clone_flags & CLONE_SETTLS) |
| err = do_set_thread_area(p, -1, |
| (struct user_desc __user *)tls, 0); |
| |
| if (err && p->thread.io_bitmap_ptr) { |
| kfree(p->thread.io_bitmap_ptr); |
| p->thread.io_bitmap_max = 0; |
| } |
| return err; |
| } |
| |
| void |
| start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp) |
| { |
| set_user_gs(regs, 0); |
| regs->fs = 0; |
| regs->ds = __USER_DS; |
| regs->es = __USER_DS; |
| regs->ss = __USER_DS; |
| regs->cs = __USER_CS; |
| regs->ip = new_ip; |
| regs->sp = new_sp; |
| regs->flags = X86_EFLAGS_IF; |
| force_iret(); |
| } |
| EXPORT_SYMBOL_GPL(start_thread); |
| |
| |
| /* |
| * switch_to(x,y) should switch tasks from x to y. |
| * |
| * We fsave/fwait so that an exception goes off at the right time |
| * (as a call from the fsave or fwait in effect) rather than to |
| * the wrong process. Lazy FP saving no longer makes any sense |
| * with modern CPU's, and this simplifies a lot of things (SMP |
| * and UP become the same). |
| * |
| * NOTE! We used to use the x86 hardware context switching. The |
| * reason for not using it any more becomes apparent when you |
| * try to recover gracefully from saved state that is no longer |
| * valid (stale segment register values in particular). With the |
| * hardware task-switch, there is no way to fix up bad state in |
| * a reasonable manner. |
| * |
| * The fact that Intel documents the hardware task-switching to |
| * be slow is a fairly red herring - this code is not noticeably |
| * faster. However, there _is_ some room for improvement here, |
| * so the performance issues may eventually be a valid point. |
| * More important, however, is the fact that this allows us much |
| * more flexibility. |
| * |
| * The return value (in %ax) will be the "prev" task after |
| * the task-switch, and shows up in ret_from_fork in entry.S, |
| * for example. |
| */ |
| __visible __notrace_funcgraph struct task_struct * |
| __switch_to(struct task_struct *prev_p, struct task_struct *next_p) |
| { |
| struct thread_struct *prev = &prev_p->thread, |
| *next = &next_p->thread; |
| struct fpu *prev_fpu = &prev->fpu; |
| struct fpu *next_fpu = &next->fpu; |
| int cpu = smp_processor_id(); |
| |
| /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */ |
| |
| switch_fpu_prepare(prev_fpu, cpu); |
| |
| /* |
| * Save away %gs. No need to save %fs, as it was saved on the |
| * stack on entry. No need to save %es and %ds, as those are |
| * always kernel segments while inside the kernel. Doing this |
| * before setting the new TLS descriptors avoids the situation |
| * where we temporarily have non-reloadable segments in %fs |
| * and %gs. This could be an issue if the NMI handler ever |
| * used %fs or %gs (it does not today), or if the kernel is |
| * running inside of a hypervisor layer. |
| */ |
| lazy_save_gs(prev->gs); |
| |
| /* |
| * Load the per-thread Thread-Local Storage descriptor. |
| */ |
| load_TLS(next, cpu); |
| |
| /* |
| * Restore IOPL if needed. In normal use, the flags restore |
| * in the switch assembly will handle this. But if the kernel |
| * is running virtualized at a non-zero CPL, the popf will |
| * not restore flags, so it must be done in a separate step. |
| */ |
| if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl)) |
| set_iopl_mask(next->iopl); |
| |
| switch_to_extra(prev_p, next_p); |
| |
| /* |
| * Leave lazy mode, flushing any hypercalls made here. |
| * This must be done before restoring TLS segments so |
| * the GDT and LDT are properly updated, and must be |
| * done before fpu__restore(), so the TS bit is up |
| * to date. |
| */ |
| arch_end_context_switch(next_p); |
| |
| /* |
| * Reload esp0 and cpu_current_top_of_stack. This changes |
| * current_thread_info(). Refresh the SYSENTER configuration in |
| * case prev or next is vm86. |
| */ |
| update_task_stack(next_p); |
| refresh_sysenter_cs(next); |
| this_cpu_write(cpu_current_top_of_stack, |
| (unsigned long)task_stack_page(next_p) + |
| THREAD_SIZE); |
| |
| /* |
| * Restore %gs if needed (which is common) |
| */ |
| if (prev->gs | next->gs) |
| lazy_load_gs(next->gs); |
| |
| switch_fpu_finish(next_fpu, cpu); |
| |
| this_cpu_write(current_task, next_p); |
| |
| /* Load the Intel cache allocation PQR MSR. */ |
| resctrl_sched_in(); |
| |
| return prev_p; |
| } |
| |
| SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2) |
| { |
| return do_arch_prctl_common(current, option, arg2); |
| } |