| /* |
| * Copyright(c) 2015 - 2018 Intel Corporation. |
| * |
| * This file is provided under a dual BSD/GPLv2 license. When using or |
| * redistributing this file, you may do so under either license. |
| * |
| * GPL LICENSE SUMMARY |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * BSD LICENSE |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * - Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * - Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * - Neither the name of Intel Corporation nor the names of its |
| * contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| */ |
| |
| #include <linux/io.h> |
| #include <rdma/rdma_vt.h> |
| #include <rdma/rdmavt_qp.h> |
| |
| #include "hfi.h" |
| #include "qp.h" |
| #include "rc.h" |
| #include "verbs_txreq.h" |
| #include "trace.h" |
| |
| struct rvt_ack_entry *find_prev_entry(struct rvt_qp *qp, u32 psn, u8 *prev, |
| u8 *prev_ack, bool *scheduled) |
| __must_hold(&qp->s_lock) |
| { |
| struct rvt_ack_entry *e = NULL; |
| u8 i, p; |
| bool s = true; |
| |
| for (i = qp->r_head_ack_queue; ; i = p) { |
| if (i == qp->s_tail_ack_queue) |
| s = false; |
| if (i) |
| p = i - 1; |
| else |
| p = rvt_size_atomic(ib_to_rvt(qp->ibqp.device)); |
| if (p == qp->r_head_ack_queue) { |
| e = NULL; |
| break; |
| } |
| e = &qp->s_ack_queue[p]; |
| if (!e->opcode) { |
| e = NULL; |
| break; |
| } |
| if (cmp_psn(psn, e->psn) >= 0) { |
| if (p == qp->s_tail_ack_queue && |
| cmp_psn(psn, e->lpsn) <= 0) |
| s = false; |
| break; |
| } |
| } |
| if (prev) |
| *prev = p; |
| if (prev_ack) |
| *prev_ack = i; |
| if (scheduled) |
| *scheduled = s; |
| return e; |
| } |
| |
| /** |
| * make_rc_ack - construct a response packet (ACK, NAK, or RDMA read) |
| * @dev: the device for this QP |
| * @qp: a pointer to the QP |
| * @ohdr: a pointer to the IB header being constructed |
| * @ps: the xmit packet state |
| * |
| * Return 1 if constructed; otherwise, return 0. |
| * Note that we are in the responder's side of the QP context. |
| * Note the QP s_lock must be held. |
| */ |
| static int make_rc_ack(struct hfi1_ibdev *dev, struct rvt_qp *qp, |
| struct ib_other_headers *ohdr, |
| struct hfi1_pkt_state *ps) |
| { |
| struct rvt_ack_entry *e; |
| u32 hwords, hdrlen; |
| u32 len = 0; |
| u32 bth0 = 0, bth2 = 0; |
| u32 bth1 = qp->remote_qpn | (HFI1_CAP_IS_KSET(OPFN) << IB_BTHE_E_SHIFT); |
| int middle = 0; |
| u32 pmtu = qp->pmtu; |
| struct hfi1_qp_priv *qpriv = qp->priv; |
| bool last_pkt; |
| u32 delta; |
| u8 next = qp->s_tail_ack_queue; |
| struct tid_rdma_request *req; |
| |
| trace_hfi1_rsp_make_rc_ack(qp, 0); |
| lockdep_assert_held(&qp->s_lock); |
| /* Don't send an ACK if we aren't supposed to. */ |
| if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) |
| goto bail; |
| |
| if (qpriv->hdr_type == HFI1_PKT_TYPE_9B) |
| /* header size in 32-bit words LRH+BTH = (8+12)/4. */ |
| hwords = 5; |
| else |
| /* header size in 32-bit words 16B LRH+BTH = (16+12)/4. */ |
| hwords = 7; |
| |
| switch (qp->s_ack_state) { |
| case OP(RDMA_READ_RESPONSE_LAST): |
| case OP(RDMA_READ_RESPONSE_ONLY): |
| e = &qp->s_ack_queue[qp->s_tail_ack_queue]; |
| if (e->rdma_sge.mr) { |
| rvt_put_mr(e->rdma_sge.mr); |
| e->rdma_sge.mr = NULL; |
| } |
| /* FALLTHROUGH */ |
| case OP(ATOMIC_ACKNOWLEDGE): |
| /* |
| * We can increment the tail pointer now that the last |
| * response has been sent instead of only being |
| * constructed. |
| */ |
| if (++next > rvt_size_atomic(&dev->rdi)) |
| next = 0; |
| /* |
| * Only advance the s_acked_ack_queue pointer if there |
| * have been no TID RDMA requests. |
| */ |
| e = &qp->s_ack_queue[qp->s_tail_ack_queue]; |
| if (e->opcode != TID_OP(WRITE_REQ) && |
| qp->s_acked_ack_queue == qp->s_tail_ack_queue) |
| qp->s_acked_ack_queue = next; |
| qp->s_tail_ack_queue = next; |
| trace_hfi1_rsp_make_rc_ack(qp, e->psn); |
| /* FALLTHROUGH */ |
| case OP(SEND_ONLY): |
| case OP(ACKNOWLEDGE): |
| /* Check for no next entry in the queue. */ |
| if (qp->r_head_ack_queue == qp->s_tail_ack_queue) { |
| if (qp->s_flags & RVT_S_ACK_PENDING) |
| goto normal; |
| goto bail; |
| } |
| |
| e = &qp->s_ack_queue[qp->s_tail_ack_queue]; |
| /* Check for tid write fence */ |
| if ((qpriv->s_flags & HFI1_R_TID_WAIT_INTERLCK) || |
| hfi1_tid_rdma_ack_interlock(qp, e)) { |
| iowait_set_flag(&qpriv->s_iowait, IOWAIT_PENDING_IB); |
| goto bail; |
| } |
| if (e->opcode == OP(RDMA_READ_REQUEST)) { |
| /* |
| * If a RDMA read response is being resent and |
| * we haven't seen the duplicate request yet, |
| * then stop sending the remaining responses the |
| * responder has seen until the requester re-sends it. |
| */ |
| len = e->rdma_sge.sge_length; |
| if (len && !e->rdma_sge.mr) { |
| if (qp->s_acked_ack_queue == |
| qp->s_tail_ack_queue) |
| qp->s_acked_ack_queue = |
| qp->r_head_ack_queue; |
| qp->s_tail_ack_queue = qp->r_head_ack_queue; |
| goto bail; |
| } |
| /* Copy SGE state in case we need to resend */ |
| ps->s_txreq->mr = e->rdma_sge.mr; |
| if (ps->s_txreq->mr) |
| rvt_get_mr(ps->s_txreq->mr); |
| qp->s_ack_rdma_sge.sge = e->rdma_sge; |
| qp->s_ack_rdma_sge.num_sge = 1; |
| ps->s_txreq->ss = &qp->s_ack_rdma_sge; |
| if (len > pmtu) { |
| len = pmtu; |
| qp->s_ack_state = OP(RDMA_READ_RESPONSE_FIRST); |
| } else { |
| qp->s_ack_state = OP(RDMA_READ_RESPONSE_ONLY); |
| e->sent = 1; |
| } |
| ohdr->u.aeth = rvt_compute_aeth(qp); |
| hwords++; |
| qp->s_ack_rdma_psn = e->psn; |
| bth2 = mask_psn(qp->s_ack_rdma_psn++); |
| } else if (e->opcode == TID_OP(WRITE_REQ)) { |
| /* |
| * If a TID RDMA WRITE RESP is being resent, we have to |
| * wait for the actual request. All requests that are to |
| * be resent will have their state set to |
| * TID_REQUEST_RESEND. When the new request arrives, the |
| * state will be changed to TID_REQUEST_RESEND_ACTIVE. |
| */ |
| req = ack_to_tid_req(e); |
| if (req->state == TID_REQUEST_RESEND || |
| req->state == TID_REQUEST_INIT_RESEND) |
| goto bail; |
| qp->s_ack_state = TID_OP(WRITE_RESP); |
| qp->s_ack_rdma_psn = mask_psn(e->psn + req->cur_seg); |
| goto write_resp; |
| } else if (e->opcode == TID_OP(READ_REQ)) { |
| /* |
| * If a TID RDMA read response is being resent and |
| * we haven't seen the duplicate request yet, |
| * then stop sending the remaining responses the |
| * responder has seen until the requester re-sends it. |
| */ |
| len = e->rdma_sge.sge_length; |
| if (len && !e->rdma_sge.mr) { |
| if (qp->s_acked_ack_queue == |
| qp->s_tail_ack_queue) |
| qp->s_acked_ack_queue = |
| qp->r_head_ack_queue; |
| qp->s_tail_ack_queue = qp->r_head_ack_queue; |
| goto bail; |
| } |
| /* Copy SGE state in case we need to resend */ |
| ps->s_txreq->mr = e->rdma_sge.mr; |
| if (ps->s_txreq->mr) |
| rvt_get_mr(ps->s_txreq->mr); |
| qp->s_ack_rdma_sge.sge = e->rdma_sge; |
| qp->s_ack_rdma_sge.num_sge = 1; |
| qp->s_ack_state = TID_OP(READ_RESP); |
| goto read_resp; |
| } else { |
| /* COMPARE_SWAP or FETCH_ADD */ |
| ps->s_txreq->ss = NULL; |
| len = 0; |
| qp->s_ack_state = OP(ATOMIC_ACKNOWLEDGE); |
| ohdr->u.at.aeth = rvt_compute_aeth(qp); |
| ib_u64_put(e->atomic_data, &ohdr->u.at.atomic_ack_eth); |
| hwords += sizeof(ohdr->u.at) / sizeof(u32); |
| bth2 = mask_psn(e->psn); |
| e->sent = 1; |
| } |
| trace_hfi1_tid_write_rsp_make_rc_ack(qp); |
| bth0 = qp->s_ack_state << 24; |
| break; |
| |
| case OP(RDMA_READ_RESPONSE_FIRST): |
| qp->s_ack_state = OP(RDMA_READ_RESPONSE_MIDDLE); |
| /* FALLTHROUGH */ |
| case OP(RDMA_READ_RESPONSE_MIDDLE): |
| ps->s_txreq->ss = &qp->s_ack_rdma_sge; |
| ps->s_txreq->mr = qp->s_ack_rdma_sge.sge.mr; |
| if (ps->s_txreq->mr) |
| rvt_get_mr(ps->s_txreq->mr); |
| len = qp->s_ack_rdma_sge.sge.sge_length; |
| if (len > pmtu) { |
| len = pmtu; |
| middle = HFI1_CAP_IS_KSET(SDMA_AHG); |
| } else { |
| ohdr->u.aeth = rvt_compute_aeth(qp); |
| hwords++; |
| qp->s_ack_state = OP(RDMA_READ_RESPONSE_LAST); |
| e = &qp->s_ack_queue[qp->s_tail_ack_queue]; |
| e->sent = 1; |
| } |
| bth0 = qp->s_ack_state << 24; |
| bth2 = mask_psn(qp->s_ack_rdma_psn++); |
| break; |
| |
| case TID_OP(WRITE_RESP): |
| write_resp: |
| /* |
| * 1. Check if RVT_S_ACK_PENDING is set. If yes, |
| * goto normal. |
| * 2. Attempt to allocate TID resources. |
| * 3. Remove RVT_S_RESP_PENDING flags from s_flags |
| * 4. If resources not available: |
| * 4.1 Set RVT_S_WAIT_TID_SPACE |
| * 4.2 Queue QP on RCD TID queue |
| * 4.3 Put QP on iowait list. |
| * 4.4 Build IB RNR NAK with appropriate timeout value |
| * 4.5 Return indication progress made. |
| * 5. If resources are available: |
| * 5.1 Program HW flow CSRs |
| * 5.2 Build TID RDMA WRITE RESP packet |
| * 5.3 If more resources needed, do 2.1 - 2.3. |
| * 5.4 Wake up next QP on RCD TID queue. |
| * 5.5 Return indication progress made. |
| */ |
| |
| e = &qp->s_ack_queue[qp->s_tail_ack_queue]; |
| req = ack_to_tid_req(e); |
| |
| /* |
| * Send scheduled RNR NAK's. RNR NAK's need to be sent at |
| * segment boundaries, not at request boundaries. Don't change |
| * s_ack_state because we are still in the middle of a request |
| */ |
| if (qpriv->rnr_nak_state == TID_RNR_NAK_SEND && |
| qp->s_tail_ack_queue == qpriv->r_tid_alloc && |
| req->cur_seg == req->alloc_seg) { |
| qpriv->rnr_nak_state = TID_RNR_NAK_SENT; |
| goto normal_no_state; |
| } |
| |
| bth2 = mask_psn(qp->s_ack_rdma_psn); |
| hdrlen = hfi1_build_tid_rdma_write_resp(qp, e, ohdr, &bth1, |
| bth2, &len, |
| &ps->s_txreq->ss); |
| if (!hdrlen) |
| return 0; |
| |
| hwords += hdrlen; |
| bth0 = qp->s_ack_state << 24; |
| qp->s_ack_rdma_psn++; |
| trace_hfi1_tid_req_make_rc_ack_write(qp, 0, e->opcode, e->psn, |
| e->lpsn, req); |
| if (req->cur_seg != req->total_segs) |
| break; |
| |
| e->sent = 1; |
| qp->s_ack_state = OP(RDMA_READ_RESPONSE_LAST); |
| break; |
| |
| case TID_OP(READ_RESP): |
| read_resp: |
| e = &qp->s_ack_queue[qp->s_tail_ack_queue]; |
| ps->s_txreq->ss = &qp->s_ack_rdma_sge; |
| delta = hfi1_build_tid_rdma_read_resp(qp, e, ohdr, &bth0, |
| &bth1, &bth2, &len, |
| &last_pkt); |
| if (delta == 0) |
| goto error_qp; |
| hwords += delta; |
| if (last_pkt) { |
| e->sent = 1; |
| /* |
| * Increment qp->s_tail_ack_queue through s_ack_state |
| * transition. |
| */ |
| qp->s_ack_state = OP(RDMA_READ_RESPONSE_LAST); |
| } |
| break; |
| case TID_OP(READ_REQ): |
| goto bail; |
| |
| default: |
| normal: |
| /* |
| * Send a regular ACK. |
| * Set the s_ack_state so we wait until after sending |
| * the ACK before setting s_ack_state to ACKNOWLEDGE |
| * (see above). |
| */ |
| qp->s_ack_state = OP(SEND_ONLY); |
| normal_no_state: |
| if (qp->s_nak_state) |
| ohdr->u.aeth = |
| cpu_to_be32((qp->r_msn & IB_MSN_MASK) | |
| (qp->s_nak_state << |
| IB_AETH_CREDIT_SHIFT)); |
| else |
| ohdr->u.aeth = rvt_compute_aeth(qp); |
| hwords++; |
| len = 0; |
| bth0 = OP(ACKNOWLEDGE) << 24; |
| bth2 = mask_psn(qp->s_ack_psn); |
| qp->s_flags &= ~RVT_S_ACK_PENDING; |
| ps->s_txreq->txreq.flags |= SDMA_TXREQ_F_VIP; |
| ps->s_txreq->ss = NULL; |
| } |
| qp->s_rdma_ack_cnt++; |
| ps->s_txreq->sde = qpriv->s_sde; |
| ps->s_txreq->s_cur_size = len; |
| ps->s_txreq->hdr_dwords = hwords; |
| hfi1_make_ruc_header(qp, ohdr, bth0, bth1, bth2, middle, ps); |
| return 1; |
| error_qp: |
| spin_unlock_irqrestore(&qp->s_lock, ps->flags); |
| spin_lock_irqsave(&qp->r_lock, ps->flags); |
| spin_lock(&qp->s_lock); |
| rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR); |
| spin_unlock(&qp->s_lock); |
| spin_unlock_irqrestore(&qp->r_lock, ps->flags); |
| spin_lock_irqsave(&qp->s_lock, ps->flags); |
| bail: |
| qp->s_ack_state = OP(ACKNOWLEDGE); |
| /* |
| * Ensure s_rdma_ack_cnt changes are committed prior to resetting |
| * RVT_S_RESP_PENDING |
| */ |
| smp_wmb(); |
| qp->s_flags &= ~(RVT_S_RESP_PENDING |
| | RVT_S_ACK_PENDING |
| | HFI1_S_AHG_VALID); |
| return 0; |
| } |
| |
| /** |
| * hfi1_make_rc_req - construct a request packet (SEND, RDMA r/w, ATOMIC) |
| * @qp: a pointer to the QP |
| * |
| * Assumes s_lock is held. |
| * |
| * Return 1 if constructed; otherwise, return 0. |
| */ |
| int hfi1_make_rc_req(struct rvt_qp *qp, struct hfi1_pkt_state *ps) |
| { |
| struct hfi1_qp_priv *priv = qp->priv; |
| struct hfi1_ibdev *dev = to_idev(qp->ibqp.device); |
| struct ib_other_headers *ohdr; |
| struct rvt_sge_state *ss = NULL; |
| struct rvt_swqe *wqe; |
| struct hfi1_swqe_priv *wpriv; |
| struct tid_rdma_request *req = NULL; |
| /* header size in 32-bit words LRH+BTH = (8+12)/4. */ |
| u32 hwords = 5; |
| u32 len = 0; |
| u32 bth0 = 0, bth2 = 0; |
| u32 bth1 = qp->remote_qpn | (HFI1_CAP_IS_KSET(OPFN) << IB_BTHE_E_SHIFT); |
| u32 pmtu = qp->pmtu; |
| char newreq; |
| int middle = 0; |
| int delta; |
| struct tid_rdma_flow *flow = NULL; |
| struct tid_rdma_params *remote; |
| |
| trace_hfi1_sender_make_rc_req(qp); |
| lockdep_assert_held(&qp->s_lock); |
| ps->s_txreq = get_txreq(ps->dev, qp); |
| if (!ps->s_txreq) |
| goto bail_no_tx; |
| |
| if (priv->hdr_type == HFI1_PKT_TYPE_9B) { |
| /* header size in 32-bit words LRH+BTH = (8+12)/4. */ |
| hwords = 5; |
| if (rdma_ah_get_ah_flags(&qp->remote_ah_attr) & IB_AH_GRH) |
| ohdr = &ps->s_txreq->phdr.hdr.ibh.u.l.oth; |
| else |
| ohdr = &ps->s_txreq->phdr.hdr.ibh.u.oth; |
| } else { |
| /* header size in 32-bit words 16B LRH+BTH = (16+12)/4. */ |
| hwords = 7; |
| if ((rdma_ah_get_ah_flags(&qp->remote_ah_attr) & IB_AH_GRH) && |
| (hfi1_check_mcast(rdma_ah_get_dlid(&qp->remote_ah_attr)))) |
| ohdr = &ps->s_txreq->phdr.hdr.opah.u.l.oth; |
| else |
| ohdr = &ps->s_txreq->phdr.hdr.opah.u.oth; |
| } |
| |
| /* Sending responses has higher priority over sending requests. */ |
| if ((qp->s_flags & RVT_S_RESP_PENDING) && |
| make_rc_ack(dev, qp, ohdr, ps)) |
| return 1; |
| |
| if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_SEND_OK)) { |
| if (!(ib_rvt_state_ops[qp->state] & RVT_FLUSH_SEND)) |
| goto bail; |
| /* We are in the error state, flush the work request. */ |
| if (qp->s_last == READ_ONCE(qp->s_head)) |
| goto bail; |
| /* If DMAs are in progress, we can't flush immediately. */ |
| if (iowait_sdma_pending(&priv->s_iowait)) { |
| qp->s_flags |= RVT_S_WAIT_DMA; |
| goto bail; |
| } |
| clear_ahg(qp); |
| wqe = rvt_get_swqe_ptr(qp, qp->s_last); |
| hfi1_trdma_send_complete(qp, wqe, qp->s_last != qp->s_acked ? |
| IB_WC_SUCCESS : IB_WC_WR_FLUSH_ERR); |
| /* will get called again */ |
| goto done_free_tx; |
| } |
| |
| if (qp->s_flags & (RVT_S_WAIT_RNR | RVT_S_WAIT_ACK | HFI1_S_WAIT_HALT)) |
| goto bail; |
| |
| if (cmp_psn(qp->s_psn, qp->s_sending_hpsn) <= 0) { |
| if (cmp_psn(qp->s_sending_psn, qp->s_sending_hpsn) <= 0) { |
| qp->s_flags |= RVT_S_WAIT_PSN; |
| goto bail; |
| } |
| qp->s_sending_psn = qp->s_psn; |
| qp->s_sending_hpsn = qp->s_psn - 1; |
| } |
| |
| /* Send a request. */ |
| wqe = rvt_get_swqe_ptr(qp, qp->s_cur); |
| check_s_state: |
| switch (qp->s_state) { |
| default: |
| if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_NEXT_SEND_OK)) |
| goto bail; |
| /* |
| * Resend an old request or start a new one. |
| * |
| * We keep track of the current SWQE so that |
| * we don't reset the "furthest progress" state |
| * if we need to back up. |
| */ |
| newreq = 0; |
| if (qp->s_cur == qp->s_tail) { |
| /* Check if send work queue is empty. */ |
| if (qp->s_tail == READ_ONCE(qp->s_head)) { |
| clear_ahg(qp); |
| goto bail; |
| } |
| /* |
| * If a fence is requested, wait for previous |
| * RDMA read and atomic operations to finish. |
| * However, there is no need to guard against |
| * TID RDMA READ after TID RDMA READ. |
| */ |
| if ((wqe->wr.send_flags & IB_SEND_FENCE) && |
| qp->s_num_rd_atomic && |
| (wqe->wr.opcode != IB_WR_TID_RDMA_READ || |
| priv->pending_tid_r_segs < qp->s_num_rd_atomic)) { |
| qp->s_flags |= RVT_S_WAIT_FENCE; |
| goto bail; |
| } |
| /* |
| * Local operations are processed immediately |
| * after all prior requests have completed |
| */ |
| if (wqe->wr.opcode == IB_WR_REG_MR || |
| wqe->wr.opcode == IB_WR_LOCAL_INV) { |
| int local_ops = 0; |
| int err = 0; |
| |
| if (qp->s_last != qp->s_cur) |
| goto bail; |
| if (++qp->s_cur == qp->s_size) |
| qp->s_cur = 0; |
| if (++qp->s_tail == qp->s_size) |
| qp->s_tail = 0; |
| if (!(wqe->wr.send_flags & |
| RVT_SEND_COMPLETION_ONLY)) { |
| err = rvt_invalidate_rkey( |
| qp, |
| wqe->wr.ex.invalidate_rkey); |
| local_ops = 1; |
| } |
| rvt_send_complete(qp, wqe, |
| err ? IB_WC_LOC_PROT_ERR |
| : IB_WC_SUCCESS); |
| if (local_ops) |
| atomic_dec(&qp->local_ops_pending); |
| goto done_free_tx; |
| } |
| |
| newreq = 1; |
| qp->s_psn = wqe->psn; |
| } |
| /* |
| * Note that we have to be careful not to modify the |
| * original work request since we may need to resend |
| * it. |
| */ |
| len = wqe->length; |
| ss = &qp->s_sge; |
| bth2 = mask_psn(qp->s_psn); |
| |
| /* |
| * Interlock between various IB requests and TID RDMA |
| * if necessary. |
| */ |
| if ((priv->s_flags & HFI1_S_TID_WAIT_INTERLCK) || |
| hfi1_tid_rdma_wqe_interlock(qp, wqe)) |
| goto bail; |
| |
| switch (wqe->wr.opcode) { |
| case IB_WR_SEND: |
| case IB_WR_SEND_WITH_IMM: |
| case IB_WR_SEND_WITH_INV: |
| /* If no credit, return. */ |
| if (!(qp->s_flags & RVT_S_UNLIMITED_CREDIT) && |
| rvt_cmp_msn(wqe->ssn, qp->s_lsn + 1) > 0) { |
| qp->s_flags |= RVT_S_WAIT_SSN_CREDIT; |
| goto bail; |
| } |
| if (len > pmtu) { |
| qp->s_state = OP(SEND_FIRST); |
| len = pmtu; |
| break; |
| } |
| if (wqe->wr.opcode == IB_WR_SEND) { |
| qp->s_state = OP(SEND_ONLY); |
| } else if (wqe->wr.opcode == IB_WR_SEND_WITH_IMM) { |
| qp->s_state = OP(SEND_ONLY_WITH_IMMEDIATE); |
| /* Immediate data comes after the BTH */ |
| ohdr->u.imm_data = wqe->wr.ex.imm_data; |
| hwords += 1; |
| } else { |
| qp->s_state = OP(SEND_ONLY_WITH_INVALIDATE); |
| /* Invalidate rkey comes after the BTH */ |
| ohdr->u.ieth = cpu_to_be32( |
| wqe->wr.ex.invalidate_rkey); |
| hwords += 1; |
| } |
| if (wqe->wr.send_flags & IB_SEND_SOLICITED) |
| bth0 |= IB_BTH_SOLICITED; |
| bth2 |= IB_BTH_REQ_ACK; |
| if (++qp->s_cur == qp->s_size) |
| qp->s_cur = 0; |
| break; |
| |
| case IB_WR_RDMA_WRITE: |
| if (newreq && !(qp->s_flags & RVT_S_UNLIMITED_CREDIT)) |
| qp->s_lsn++; |
| goto no_flow_control; |
| case IB_WR_RDMA_WRITE_WITH_IMM: |
| /* If no credit, return. */ |
| if (!(qp->s_flags & RVT_S_UNLIMITED_CREDIT) && |
| rvt_cmp_msn(wqe->ssn, qp->s_lsn + 1) > 0) { |
| qp->s_flags |= RVT_S_WAIT_SSN_CREDIT; |
| goto bail; |
| } |
| no_flow_control: |
| put_ib_reth_vaddr( |
| wqe->rdma_wr.remote_addr, |
| &ohdr->u.rc.reth); |
| ohdr->u.rc.reth.rkey = |
| cpu_to_be32(wqe->rdma_wr.rkey); |
| ohdr->u.rc.reth.length = cpu_to_be32(len); |
| hwords += sizeof(struct ib_reth) / sizeof(u32); |
| if (len > pmtu) { |
| qp->s_state = OP(RDMA_WRITE_FIRST); |
| len = pmtu; |
| break; |
| } |
| if (wqe->wr.opcode == IB_WR_RDMA_WRITE) { |
| qp->s_state = OP(RDMA_WRITE_ONLY); |
| } else { |
| qp->s_state = |
| OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE); |
| /* Immediate data comes after RETH */ |
| ohdr->u.rc.imm_data = wqe->wr.ex.imm_data; |
| hwords += 1; |
| if (wqe->wr.send_flags & IB_SEND_SOLICITED) |
| bth0 |= IB_BTH_SOLICITED; |
| } |
| bth2 |= IB_BTH_REQ_ACK; |
| if (++qp->s_cur == qp->s_size) |
| qp->s_cur = 0; |
| break; |
| |
| case IB_WR_TID_RDMA_WRITE: |
| if (newreq) { |
| /* |
| * Limit the number of TID RDMA WRITE requests. |
| */ |
| if (atomic_read(&priv->n_tid_requests) >= |
| HFI1_TID_RDMA_WRITE_CNT) |
| goto bail; |
| |
| if (!(qp->s_flags & RVT_S_UNLIMITED_CREDIT)) |
| qp->s_lsn++; |
| } |
| |
| hwords += hfi1_build_tid_rdma_write_req(qp, wqe, ohdr, |
| &bth1, &bth2, |
| &len); |
| ss = NULL; |
| if (priv->s_tid_cur == HFI1_QP_WQE_INVALID) { |
| priv->s_tid_cur = qp->s_cur; |
| if (priv->s_tid_tail == HFI1_QP_WQE_INVALID) { |
| priv->s_tid_tail = qp->s_cur; |
| priv->s_state = TID_OP(WRITE_RESP); |
| } |
| } else if (priv->s_tid_cur == priv->s_tid_head) { |
| struct rvt_swqe *__w; |
| struct tid_rdma_request *__r; |
| |
| __w = rvt_get_swqe_ptr(qp, priv->s_tid_cur); |
| __r = wqe_to_tid_req(__w); |
| |
| /* |
| * The s_tid_cur pointer is advanced to s_cur if |
| * any of the following conditions about the WQE |
| * to which s_ti_cur currently points to are |
| * satisfied: |
| * 1. The request is not a TID RDMA WRITE |
| * request, |
| * 2. The request is in the INACTIVE or |
| * COMPLETE states (TID RDMA READ requests |
| * stay at INACTIVE and TID RDMA WRITE |
| * transition to COMPLETE when done), |
| * 3. The request is in the ACTIVE or SYNC |
| * state and the number of completed |
| * segments is equal to the total segment |
| * count. |
| * (If ACTIVE, the request is waiting for |
| * ACKs. If SYNC, the request has not |
| * received any responses because it's |
| * waiting on a sync point.) |
| */ |
| if (__w->wr.opcode != IB_WR_TID_RDMA_WRITE || |
| __r->state == TID_REQUEST_INACTIVE || |
| __r->state == TID_REQUEST_COMPLETE || |
| ((__r->state == TID_REQUEST_ACTIVE || |
| __r->state == TID_REQUEST_SYNC) && |
| __r->comp_seg == __r->total_segs)) { |
| if (priv->s_tid_tail == |
| priv->s_tid_cur && |
| priv->s_state == |
| TID_OP(WRITE_DATA_LAST)) { |
| priv->s_tid_tail = qp->s_cur; |
| priv->s_state = |
| TID_OP(WRITE_RESP); |
| } |
| priv->s_tid_cur = qp->s_cur; |
| } |
| /* |
| * A corner case: when the last TID RDMA WRITE |
| * request was completed, s_tid_head, |
| * s_tid_cur, and s_tid_tail all point to the |
| * same location. Other requests are posted and |
| * s_cur wraps around to the same location, |
| * where a new TID RDMA WRITE is posted. In |
| * this case, none of the indices need to be |
| * updated. However, the priv->s_state should. |
| */ |
| if (priv->s_tid_tail == qp->s_cur && |
| priv->s_state == TID_OP(WRITE_DATA_LAST)) |
| priv->s_state = TID_OP(WRITE_RESP); |
| } |
| req = wqe_to_tid_req(wqe); |
| if (newreq) { |
| priv->s_tid_head = qp->s_cur; |
| priv->pending_tid_w_resp += req->total_segs; |
| atomic_inc(&priv->n_tid_requests); |
| atomic_dec(&priv->n_requests); |
| } else { |
| req->state = TID_REQUEST_RESEND; |
| req->comp_seg = delta_psn(bth2, wqe->psn); |
| /* |
| * Pull back any segments since we are going |
| * to re-receive them. |
| */ |
| req->setup_head = req->clear_tail; |
| priv->pending_tid_w_resp += |
| delta_psn(wqe->lpsn, bth2) + 1; |
| } |
| |
| trace_hfi1_tid_write_sender_make_req(qp, newreq); |
| trace_hfi1_tid_req_make_req_write(qp, newreq, |
| wqe->wr.opcode, |
| wqe->psn, wqe->lpsn, |
| req); |
| if (++qp->s_cur == qp->s_size) |
| qp->s_cur = 0; |
| break; |
| |
| case IB_WR_RDMA_READ: |
| /* |
| * Don't allow more operations to be started |
| * than the QP limits allow. |
| */ |
| if (qp->s_num_rd_atomic >= |
| qp->s_max_rd_atomic) { |
| qp->s_flags |= RVT_S_WAIT_RDMAR; |
| goto bail; |
| } |
| qp->s_num_rd_atomic++; |
| if (newreq && !(qp->s_flags & RVT_S_UNLIMITED_CREDIT)) |
| qp->s_lsn++; |
| put_ib_reth_vaddr( |
| wqe->rdma_wr.remote_addr, |
| &ohdr->u.rc.reth); |
| ohdr->u.rc.reth.rkey = |
| cpu_to_be32(wqe->rdma_wr.rkey); |
| ohdr->u.rc.reth.length = cpu_to_be32(len); |
| qp->s_state = OP(RDMA_READ_REQUEST); |
| hwords += sizeof(ohdr->u.rc.reth) / sizeof(u32); |
| ss = NULL; |
| len = 0; |
| bth2 |= IB_BTH_REQ_ACK; |
| if (++qp->s_cur == qp->s_size) |
| qp->s_cur = 0; |
| break; |
| |
| case IB_WR_TID_RDMA_READ: |
| trace_hfi1_tid_read_sender_make_req(qp, newreq); |
| wpriv = wqe->priv; |
| req = wqe_to_tid_req(wqe); |
| trace_hfi1_tid_req_make_req_read(qp, newreq, |
| wqe->wr.opcode, |
| wqe->psn, wqe->lpsn, |
| req); |
| delta = cmp_psn(qp->s_psn, wqe->psn); |
| |
| /* |
| * Don't allow more operations to be started |
| * than the QP limits allow. We could get here under |
| * three conditions; (1) It's a new request; (2) We are |
| * sending the second or later segment of a request, |
| * but the qp->s_state is set to OP(RDMA_READ_REQUEST) |
| * when the last segment of a previous request is |
| * received just before this; (3) We are re-sending a |
| * request. |
| */ |
| if (qp->s_num_rd_atomic >= qp->s_max_rd_atomic) { |
| qp->s_flags |= RVT_S_WAIT_RDMAR; |
| goto bail; |
| } |
| if (newreq) { |
| struct tid_rdma_flow *flow = |
| &req->flows[req->setup_head]; |
| |
| /* |
| * Set up s_sge as it is needed for TID |
| * allocation. However, if the pages have been |
| * walked and mapped, skip it. An earlier try |
| * has failed to allocate the TID entries. |
| */ |
| if (!flow->npagesets) { |
| qp->s_sge.sge = wqe->sg_list[0]; |
| qp->s_sge.sg_list = wqe->sg_list + 1; |
| qp->s_sge.num_sge = wqe->wr.num_sge; |
| qp->s_sge.total_len = wqe->length; |
| qp->s_len = wqe->length; |
| req->isge = 0; |
| req->clear_tail = req->setup_head; |
| req->flow_idx = req->setup_head; |
| req->state = TID_REQUEST_ACTIVE; |
| } |
| } else if (delta == 0) { |
| /* Re-send a request */ |
| req->cur_seg = 0; |
| req->comp_seg = 0; |
| req->ack_pending = 0; |
| req->flow_idx = req->clear_tail; |
| req->state = TID_REQUEST_RESEND; |
| } |
| req->s_next_psn = qp->s_psn; |
| /* Read one segment at a time */ |
| len = min_t(u32, req->seg_len, |
| wqe->length - req->seg_len * req->cur_seg); |
| delta = hfi1_build_tid_rdma_read_req(qp, wqe, ohdr, |
| &bth1, &bth2, |
| &len); |
| if (delta <= 0) { |
| /* Wait for TID space */ |
| goto bail; |
| } |
| if (newreq && !(qp->s_flags & RVT_S_UNLIMITED_CREDIT)) |
| qp->s_lsn++; |
| hwords += delta; |
| ss = &wpriv->ss; |
| /* Check if this is the last segment */ |
| if (req->cur_seg >= req->total_segs && |
| ++qp->s_cur == qp->s_size) |
| qp->s_cur = 0; |
| break; |
| |
| case IB_WR_ATOMIC_CMP_AND_SWP: |
| case IB_WR_ATOMIC_FETCH_AND_ADD: |
| /* |
| * Don't allow more operations to be started |
| * than the QP limits allow. |
| */ |
| if (qp->s_num_rd_atomic >= |
| qp->s_max_rd_atomic) { |
| qp->s_flags |= RVT_S_WAIT_RDMAR; |
| goto bail; |
| } |
| qp->s_num_rd_atomic++; |
| |
| /* FALLTHROUGH */ |
| case IB_WR_OPFN: |
| if (newreq && !(qp->s_flags & RVT_S_UNLIMITED_CREDIT)) |
| qp->s_lsn++; |
| if (wqe->wr.opcode == IB_WR_ATOMIC_CMP_AND_SWP || |
| wqe->wr.opcode == IB_WR_OPFN) { |
| qp->s_state = OP(COMPARE_SWAP); |
| put_ib_ateth_swap(wqe->atomic_wr.swap, |
| &ohdr->u.atomic_eth); |
| put_ib_ateth_compare(wqe->atomic_wr.compare_add, |
| &ohdr->u.atomic_eth); |
| } else { |
| qp->s_state = OP(FETCH_ADD); |
| put_ib_ateth_swap(wqe->atomic_wr.compare_add, |
| &ohdr->u.atomic_eth); |
| put_ib_ateth_compare(0, &ohdr->u.atomic_eth); |
| } |
| put_ib_ateth_vaddr(wqe->atomic_wr.remote_addr, |
| &ohdr->u.atomic_eth); |
| ohdr->u.atomic_eth.rkey = cpu_to_be32( |
| wqe->atomic_wr.rkey); |
| hwords += sizeof(struct ib_atomic_eth) / sizeof(u32); |
| ss = NULL; |
| len = 0; |
| bth2 |= IB_BTH_REQ_ACK; |
| if (++qp->s_cur == qp->s_size) |
| qp->s_cur = 0; |
| break; |
| |
| default: |
| goto bail; |
| } |
| if (wqe->wr.opcode != IB_WR_TID_RDMA_READ) { |
| qp->s_sge.sge = wqe->sg_list[0]; |
| qp->s_sge.sg_list = wqe->sg_list + 1; |
| qp->s_sge.num_sge = wqe->wr.num_sge; |
| qp->s_sge.total_len = wqe->length; |
| qp->s_len = wqe->length; |
| } |
| if (newreq) { |
| qp->s_tail++; |
| if (qp->s_tail >= qp->s_size) |
| qp->s_tail = 0; |
| } |
| if (wqe->wr.opcode == IB_WR_RDMA_READ || |
| wqe->wr.opcode == IB_WR_TID_RDMA_WRITE) |
| qp->s_psn = wqe->lpsn + 1; |
| else if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) |
| qp->s_psn = req->s_next_psn; |
| else |
| qp->s_psn++; |
| break; |
| |
| case OP(RDMA_READ_RESPONSE_FIRST): |
| /* |
| * qp->s_state is normally set to the opcode of the |
| * last packet constructed for new requests and therefore |
| * is never set to RDMA read response. |
| * RDMA_READ_RESPONSE_FIRST is used by the ACK processing |
| * thread to indicate a SEND needs to be restarted from an |
| * earlier PSN without interfering with the sending thread. |
| * See restart_rc(). |
| */ |
| qp->s_len = restart_sge(&qp->s_sge, wqe, qp->s_psn, pmtu); |
| /* FALLTHROUGH */ |
| case OP(SEND_FIRST): |
| qp->s_state = OP(SEND_MIDDLE); |
| /* FALLTHROUGH */ |
| case OP(SEND_MIDDLE): |
| bth2 = mask_psn(qp->s_psn++); |
| ss = &qp->s_sge; |
| len = qp->s_len; |
| if (len > pmtu) { |
| len = pmtu; |
| middle = HFI1_CAP_IS_KSET(SDMA_AHG); |
| break; |
| } |
| if (wqe->wr.opcode == IB_WR_SEND) { |
| qp->s_state = OP(SEND_LAST); |
| } else if (wqe->wr.opcode == IB_WR_SEND_WITH_IMM) { |
| qp->s_state = OP(SEND_LAST_WITH_IMMEDIATE); |
| /* Immediate data comes after the BTH */ |
| ohdr->u.imm_data = wqe->wr.ex.imm_data; |
| hwords += 1; |
| } else { |
| qp->s_state = OP(SEND_LAST_WITH_INVALIDATE); |
| /* invalidate data comes after the BTH */ |
| ohdr->u.ieth = cpu_to_be32(wqe->wr.ex.invalidate_rkey); |
| hwords += 1; |
| } |
| if (wqe->wr.send_flags & IB_SEND_SOLICITED) |
| bth0 |= IB_BTH_SOLICITED; |
| bth2 |= IB_BTH_REQ_ACK; |
| qp->s_cur++; |
| if (qp->s_cur >= qp->s_size) |
| qp->s_cur = 0; |
| break; |
| |
| case OP(RDMA_READ_RESPONSE_LAST): |
| /* |
| * qp->s_state is normally set to the opcode of the |
| * last packet constructed for new requests and therefore |
| * is never set to RDMA read response. |
| * RDMA_READ_RESPONSE_LAST is used by the ACK processing |
| * thread to indicate a RDMA write needs to be restarted from |
| * an earlier PSN without interfering with the sending thread. |
| * See restart_rc(). |
| */ |
| qp->s_len = restart_sge(&qp->s_sge, wqe, qp->s_psn, pmtu); |
| /* FALLTHROUGH */ |
| case OP(RDMA_WRITE_FIRST): |
| qp->s_state = OP(RDMA_WRITE_MIDDLE); |
| /* FALLTHROUGH */ |
| case OP(RDMA_WRITE_MIDDLE): |
| bth2 = mask_psn(qp->s_psn++); |
| ss = &qp->s_sge; |
| len = qp->s_len; |
| if (len > pmtu) { |
| len = pmtu; |
| middle = HFI1_CAP_IS_KSET(SDMA_AHG); |
| break; |
| } |
| if (wqe->wr.opcode == IB_WR_RDMA_WRITE) { |
| qp->s_state = OP(RDMA_WRITE_LAST); |
| } else { |
| qp->s_state = OP(RDMA_WRITE_LAST_WITH_IMMEDIATE); |
| /* Immediate data comes after the BTH */ |
| ohdr->u.imm_data = wqe->wr.ex.imm_data; |
| hwords += 1; |
| if (wqe->wr.send_flags & IB_SEND_SOLICITED) |
| bth0 |= IB_BTH_SOLICITED; |
| } |
| bth2 |= IB_BTH_REQ_ACK; |
| qp->s_cur++; |
| if (qp->s_cur >= qp->s_size) |
| qp->s_cur = 0; |
| break; |
| |
| case OP(RDMA_READ_RESPONSE_MIDDLE): |
| /* |
| * qp->s_state is normally set to the opcode of the |
| * last packet constructed for new requests and therefore |
| * is never set to RDMA read response. |
| * RDMA_READ_RESPONSE_MIDDLE is used by the ACK processing |
| * thread to indicate a RDMA read needs to be restarted from |
| * an earlier PSN without interfering with the sending thread. |
| * See restart_rc(). |
| */ |
| len = (delta_psn(qp->s_psn, wqe->psn)) * pmtu; |
| put_ib_reth_vaddr( |
| wqe->rdma_wr.remote_addr + len, |
| &ohdr->u.rc.reth); |
| ohdr->u.rc.reth.rkey = |
| cpu_to_be32(wqe->rdma_wr.rkey); |
| ohdr->u.rc.reth.length = cpu_to_be32(wqe->length - len); |
| qp->s_state = OP(RDMA_READ_REQUEST); |
| hwords += sizeof(ohdr->u.rc.reth) / sizeof(u32); |
| bth2 = mask_psn(qp->s_psn) | IB_BTH_REQ_ACK; |
| qp->s_psn = wqe->lpsn + 1; |
| ss = NULL; |
| len = 0; |
| qp->s_cur++; |
| if (qp->s_cur == qp->s_size) |
| qp->s_cur = 0; |
| break; |
| |
| case TID_OP(WRITE_RESP): |
| /* |
| * This value for s_state is used for restarting a TID RDMA |
| * WRITE request. See comment in OP(RDMA_READ_RESPONSE_MIDDLE |
| * for more). |
| */ |
| req = wqe_to_tid_req(wqe); |
| req->state = TID_REQUEST_RESEND; |
| rcu_read_lock(); |
| remote = rcu_dereference(priv->tid_rdma.remote); |
| req->comp_seg = delta_psn(qp->s_psn, wqe->psn); |
| len = wqe->length - (req->comp_seg * remote->max_len); |
| rcu_read_unlock(); |
| |
| bth2 = mask_psn(qp->s_psn); |
| hwords += hfi1_build_tid_rdma_write_req(qp, wqe, ohdr, &bth1, |
| &bth2, &len); |
| qp->s_psn = wqe->lpsn + 1; |
| ss = NULL; |
| qp->s_state = TID_OP(WRITE_REQ); |
| priv->pending_tid_w_resp += delta_psn(wqe->lpsn, bth2) + 1; |
| priv->s_tid_cur = qp->s_cur; |
| if (++qp->s_cur == qp->s_size) |
| qp->s_cur = 0; |
| trace_hfi1_tid_req_make_req_write(qp, 0, wqe->wr.opcode, |
| wqe->psn, wqe->lpsn, req); |
| break; |
| |
| case TID_OP(READ_RESP): |
| if (wqe->wr.opcode != IB_WR_TID_RDMA_READ) |
| goto bail; |
| /* This is used to restart a TID read request */ |
| req = wqe_to_tid_req(wqe); |
| wpriv = wqe->priv; |
| /* |
| * Back down. The field qp->s_psn has been set to the psn with |
| * which the request should be restart. It's OK to use division |
| * as this is on the retry path. |
| */ |
| req->cur_seg = delta_psn(qp->s_psn, wqe->psn) / priv->pkts_ps; |
| |
| /* |
| * The following function need to be redefined to return the |
| * status to make sure that we find the flow. At the same |
| * time, we can use the req->state change to check if the |
| * call succeeds or not. |
| */ |
| req->state = TID_REQUEST_RESEND; |
| hfi1_tid_rdma_restart_req(qp, wqe, &bth2); |
| if (req->state != TID_REQUEST_ACTIVE) { |
| /* |
| * Failed to find the flow. Release all allocated tid |
| * resources. |
| */ |
| hfi1_kern_exp_rcv_clear_all(req); |
| hfi1_kern_clear_hw_flow(priv->rcd, qp); |
| |
| hfi1_trdma_send_complete(qp, wqe, IB_WC_LOC_QP_OP_ERR); |
| goto bail; |
| } |
| req->state = TID_REQUEST_RESEND; |
| len = min_t(u32, req->seg_len, |
| wqe->length - req->seg_len * req->cur_seg); |
| flow = &req->flows[req->flow_idx]; |
| len -= flow->sent; |
| req->s_next_psn = flow->flow_state.ib_lpsn + 1; |
| delta = hfi1_build_tid_rdma_read_packet(wqe, ohdr, &bth1, |
| &bth2, &len); |
| if (delta <= 0) { |
| /* Wait for TID space */ |
| goto bail; |
| } |
| hwords += delta; |
| ss = &wpriv->ss; |
| /* Check if this is the last segment */ |
| if (req->cur_seg >= req->total_segs && |
| ++qp->s_cur == qp->s_size) |
| qp->s_cur = 0; |
| qp->s_psn = req->s_next_psn; |
| trace_hfi1_tid_req_make_req_read(qp, 0, wqe->wr.opcode, |
| wqe->psn, wqe->lpsn, req); |
| break; |
| case TID_OP(READ_REQ): |
| req = wqe_to_tid_req(wqe); |
| delta = cmp_psn(qp->s_psn, wqe->psn); |
| /* |
| * If the current WR is not TID RDMA READ, or this is the start |
| * of a new request, we need to change the qp->s_state so that |
| * the request can be set up properly. |
| */ |
| if (wqe->wr.opcode != IB_WR_TID_RDMA_READ || delta == 0 || |
| qp->s_cur == qp->s_tail) { |
| qp->s_state = OP(RDMA_READ_REQUEST); |
| if (delta == 0 || qp->s_cur == qp->s_tail) |
| goto check_s_state; |
| else |
| goto bail; |
| } |
| |
| /* Rate limiting */ |
| if (qp->s_num_rd_atomic >= qp->s_max_rd_atomic) { |
| qp->s_flags |= RVT_S_WAIT_RDMAR; |
| goto bail; |
| } |
| |
| wpriv = wqe->priv; |
| /* Read one segment at a time */ |
| len = min_t(u32, req->seg_len, |
| wqe->length - req->seg_len * req->cur_seg); |
| delta = hfi1_build_tid_rdma_read_req(qp, wqe, ohdr, &bth1, |
| &bth2, &len); |
| if (delta <= 0) { |
| /* Wait for TID space */ |
| goto bail; |
| } |
| hwords += delta; |
| ss = &wpriv->ss; |
| /* Check if this is the last segment */ |
| if (req->cur_seg >= req->total_segs && |
| ++qp->s_cur == qp->s_size) |
| qp->s_cur = 0; |
| qp->s_psn = req->s_next_psn; |
| trace_hfi1_tid_req_make_req_read(qp, 0, wqe->wr.opcode, |
| wqe->psn, wqe->lpsn, req); |
| break; |
| } |
| qp->s_sending_hpsn = bth2; |
| delta = delta_psn(bth2, wqe->psn); |
| if (delta && delta % HFI1_PSN_CREDIT == 0 && |
| wqe->wr.opcode != IB_WR_TID_RDMA_WRITE) |
| bth2 |= IB_BTH_REQ_ACK; |
| if (qp->s_flags & RVT_S_SEND_ONE) { |
| qp->s_flags &= ~RVT_S_SEND_ONE; |
| qp->s_flags |= RVT_S_WAIT_ACK; |
| bth2 |= IB_BTH_REQ_ACK; |
| } |
| qp->s_len -= len; |
| ps->s_txreq->hdr_dwords = hwords; |
| ps->s_txreq->sde = priv->s_sde; |
| ps->s_txreq->ss = ss; |
| ps->s_txreq->s_cur_size = len; |
| hfi1_make_ruc_header( |
| qp, |
| ohdr, |
| bth0 | (qp->s_state << 24), |
| bth1, |
| bth2, |
| middle, |
| ps); |
| return 1; |
| |
| done_free_tx: |
| hfi1_put_txreq(ps->s_txreq); |
| ps->s_txreq = NULL; |
| return 1; |
| |
| bail: |
| hfi1_put_txreq(ps->s_txreq); |
| |
| bail_no_tx: |
| ps->s_txreq = NULL; |
| qp->s_flags &= ~RVT_S_BUSY; |
| /* |
| * If we didn't get a txreq, the QP will be woken up later to try |
| * again. Set the flags to indicate which work item to wake |
| * up. |
| */ |
| iowait_set_flag(&priv->s_iowait, IOWAIT_PENDING_IB); |
| return 0; |
| } |
| |
| static inline void hfi1_make_bth_aeth(struct rvt_qp *qp, |
| struct ib_other_headers *ohdr, |
| u32 bth0, u32 bth1) |
| { |
| if (qp->r_nak_state) |
| ohdr->u.aeth = cpu_to_be32((qp->r_msn & IB_MSN_MASK) | |
| (qp->r_nak_state << |
| IB_AETH_CREDIT_SHIFT)); |
| else |
| ohdr->u.aeth = rvt_compute_aeth(qp); |
| |
| ohdr->bth[0] = cpu_to_be32(bth0); |
| ohdr->bth[1] = cpu_to_be32(bth1 | qp->remote_qpn); |
| ohdr->bth[2] = cpu_to_be32(mask_psn(qp->r_ack_psn)); |
| } |
| |
| static inline void hfi1_queue_rc_ack(struct hfi1_packet *packet, bool is_fecn) |
| { |
| struct rvt_qp *qp = packet->qp; |
| struct hfi1_ibport *ibp; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&qp->s_lock, flags); |
| if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) |
| goto unlock; |
| ibp = rcd_to_iport(packet->rcd); |
| this_cpu_inc(*ibp->rvp.rc_qacks); |
| qp->s_flags |= RVT_S_ACK_PENDING | RVT_S_RESP_PENDING; |
| qp->s_nak_state = qp->r_nak_state; |
| qp->s_ack_psn = qp->r_ack_psn; |
| if (is_fecn) |
| qp->s_flags |= RVT_S_ECN; |
| |
| /* Schedule the send tasklet. */ |
| hfi1_schedule_send(qp); |
| unlock: |
| spin_unlock_irqrestore(&qp->s_lock, flags); |
| } |
| |
| static inline void hfi1_make_rc_ack_9B(struct hfi1_packet *packet, |
| struct hfi1_opa_header *opa_hdr, |
| u8 sc5, bool is_fecn, |
| u64 *pbc_flags, u32 *hwords, |
| u32 *nwords) |
| { |
| struct rvt_qp *qp = packet->qp; |
| struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd); |
| struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); |
| struct ib_header *hdr = &opa_hdr->ibh; |
| struct ib_other_headers *ohdr; |
| u16 lrh0 = HFI1_LRH_BTH; |
| u16 pkey; |
| u32 bth0, bth1; |
| |
| opa_hdr->hdr_type = HFI1_PKT_TYPE_9B; |
| ohdr = &hdr->u.oth; |
| /* header size in 32-bit words LRH+BTH+AETH = (8+12+4)/4 */ |
| *hwords = 6; |
| |
| if (unlikely(rdma_ah_get_ah_flags(&qp->remote_ah_attr) & IB_AH_GRH)) { |
| *hwords += hfi1_make_grh(ibp, &hdr->u.l.grh, |
| rdma_ah_read_grh(&qp->remote_ah_attr), |
| *hwords - 2, SIZE_OF_CRC); |
| ohdr = &hdr->u.l.oth; |
| lrh0 = HFI1_LRH_GRH; |
| } |
| /* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */ |
| *pbc_flags |= ((!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT); |
| |
| /* read pkey_index w/o lock (its atomic) */ |
| pkey = hfi1_get_pkey(ibp, qp->s_pkey_index); |
| |
| lrh0 |= (sc5 & IB_SC_MASK) << IB_SC_SHIFT | |
| (rdma_ah_get_sl(&qp->remote_ah_attr) & IB_SL_MASK) << |
| IB_SL_SHIFT; |
| |
| hfi1_make_ib_hdr(hdr, lrh0, *hwords + SIZE_OF_CRC, |
| opa_get_lid(rdma_ah_get_dlid(&qp->remote_ah_attr), 9B), |
| ppd->lid | rdma_ah_get_path_bits(&qp->remote_ah_attr)); |
| |
| bth0 = pkey | (OP(ACKNOWLEDGE) << 24); |
| if (qp->s_mig_state == IB_MIG_MIGRATED) |
| bth0 |= IB_BTH_MIG_REQ; |
| bth1 = (!!is_fecn) << IB_BECN_SHIFT; |
| /* |
| * Inline ACKs go out without the use of the Verbs send engine, so |
| * we need to set the STL Verbs Extended bit here |
| */ |
| bth1 |= HFI1_CAP_IS_KSET(OPFN) << IB_BTHE_E_SHIFT; |
| hfi1_make_bth_aeth(qp, ohdr, bth0, bth1); |
| } |
| |
| static inline void hfi1_make_rc_ack_16B(struct hfi1_packet *packet, |
| struct hfi1_opa_header *opa_hdr, |
| u8 sc5, bool is_fecn, |
| u64 *pbc_flags, u32 *hwords, |
| u32 *nwords) |
| { |
| struct rvt_qp *qp = packet->qp; |
| struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd); |
| struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); |
| struct hfi1_16b_header *hdr = &opa_hdr->opah; |
| struct ib_other_headers *ohdr; |
| u32 bth0, bth1 = 0; |
| u16 len, pkey; |
| bool becn = is_fecn; |
| u8 l4 = OPA_16B_L4_IB_LOCAL; |
| u8 extra_bytes; |
| |
| opa_hdr->hdr_type = HFI1_PKT_TYPE_16B; |
| ohdr = &hdr->u.oth; |
| /* header size in 32-bit words 16B LRH+BTH+AETH = (16+12+4)/4 */ |
| *hwords = 8; |
| extra_bytes = hfi1_get_16b_padding(*hwords << 2, 0); |
| *nwords = SIZE_OF_CRC + ((extra_bytes + SIZE_OF_LT) >> 2); |
| |
| if (unlikely(rdma_ah_get_ah_flags(&qp->remote_ah_attr) & IB_AH_GRH) && |
| hfi1_check_mcast(rdma_ah_get_dlid(&qp->remote_ah_attr))) { |
| *hwords += hfi1_make_grh(ibp, &hdr->u.l.grh, |
| rdma_ah_read_grh(&qp->remote_ah_attr), |
| *hwords - 4, *nwords); |
| ohdr = &hdr->u.l.oth; |
| l4 = OPA_16B_L4_IB_GLOBAL; |
| } |
| *pbc_flags |= PBC_PACKET_BYPASS | PBC_INSERT_BYPASS_ICRC; |
| |
| /* read pkey_index w/o lock (its atomic) */ |
| pkey = hfi1_get_pkey(ibp, qp->s_pkey_index); |
| |
| /* Convert dwords to flits */ |
| len = (*hwords + *nwords) >> 1; |
| |
| hfi1_make_16b_hdr(hdr, ppd->lid | |
| (rdma_ah_get_path_bits(&qp->remote_ah_attr) & |
| ((1 << ppd->lmc) - 1)), |
| opa_get_lid(rdma_ah_get_dlid(&qp->remote_ah_attr), |
| 16B), len, pkey, becn, 0, l4, sc5); |
| |
| bth0 = pkey | (OP(ACKNOWLEDGE) << 24); |
| bth0 |= extra_bytes << 20; |
| if (qp->s_mig_state == IB_MIG_MIGRATED) |
| bth1 = OPA_BTH_MIG_REQ; |
| hfi1_make_bth_aeth(qp, ohdr, bth0, bth1); |
| } |
| |
| typedef void (*hfi1_make_rc_ack)(struct hfi1_packet *packet, |
| struct hfi1_opa_header *opa_hdr, |
| u8 sc5, bool is_fecn, |
| u64 *pbc_flags, u32 *hwords, |
| u32 *nwords); |
| |
| /* We support only two types - 9B and 16B for now */ |
| static const hfi1_make_rc_ack hfi1_make_rc_ack_tbl[2] = { |
| [HFI1_PKT_TYPE_9B] = &hfi1_make_rc_ack_9B, |
| [HFI1_PKT_TYPE_16B] = &hfi1_make_rc_ack_16B |
| }; |
| |
| /** |
| * hfi1_send_rc_ack - Construct an ACK packet and send it |
| * @qp: a pointer to the QP |
| * |
| * This is called from hfi1_rc_rcv() and handle_receive_interrupt(). |
| * Note that RDMA reads and atomics are handled in the |
| * send side QP state and send engine. |
| */ |
| void hfi1_send_rc_ack(struct hfi1_packet *packet, bool is_fecn) |
| { |
| struct hfi1_ctxtdata *rcd = packet->rcd; |
| struct rvt_qp *qp = packet->qp; |
| struct hfi1_ibport *ibp = rcd_to_iport(rcd); |
| struct hfi1_qp_priv *priv = qp->priv; |
| struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); |
| u8 sc5 = ibp->sl_to_sc[rdma_ah_get_sl(&qp->remote_ah_attr)]; |
| u64 pbc, pbc_flags = 0; |
| u32 hwords = 0; |
| u32 nwords = 0; |
| u32 plen; |
| struct pio_buf *pbuf; |
| struct hfi1_opa_header opa_hdr; |
| |
| /* clear the defer count */ |
| qp->r_adefered = 0; |
| |
| /* Don't send ACK or NAK if a RDMA read or atomic is pending. */ |
| if (qp->s_flags & RVT_S_RESP_PENDING) { |
| hfi1_queue_rc_ack(packet, is_fecn); |
| return; |
| } |
| |
| /* Ensure s_rdma_ack_cnt changes are committed */ |
| if (qp->s_rdma_ack_cnt) { |
| hfi1_queue_rc_ack(packet, is_fecn); |
| return; |
| } |
| |
| /* Don't try to send ACKs if the link isn't ACTIVE */ |
| if (driver_lstate(ppd) != IB_PORT_ACTIVE) |
| return; |
| |
| /* Make the appropriate header */ |
| hfi1_make_rc_ack_tbl[priv->hdr_type](packet, &opa_hdr, sc5, is_fecn, |
| &pbc_flags, &hwords, &nwords); |
| |
| plen = 2 /* PBC */ + hwords + nwords; |
| pbc = create_pbc(ppd, pbc_flags, qp->srate_mbps, |
| sc_to_vlt(ppd->dd, sc5), plen); |
| pbuf = sc_buffer_alloc(rcd->sc, plen, NULL, NULL); |
| if (!pbuf) { |
| /* |
| * We have no room to send at the moment. Pass |
| * responsibility for sending the ACK to the send engine |
| * so that when enough buffer space becomes available, |
| * the ACK is sent ahead of other outgoing packets. |
| */ |
| hfi1_queue_rc_ack(packet, is_fecn); |
| return; |
| } |
| trace_ack_output_ibhdr(dd_from_ibdev(qp->ibqp.device), |
| &opa_hdr, ib_is_sc5(sc5)); |
| |
| /* write the pbc and data */ |
| ppd->dd->pio_inline_send(ppd->dd, pbuf, pbc, |
| (priv->hdr_type == HFI1_PKT_TYPE_9B ? |
| (void *)&opa_hdr.ibh : |
| (void *)&opa_hdr.opah), hwords); |
| return; |
| } |
| |
| /** |
| * update_num_rd_atomic - update the qp->s_num_rd_atomic |
| * @qp: the QP |
| * @psn: the packet sequence number to restart at |
| * @wqe: the wqe |
| * |
| * This is called from reset_psn() to update qp->s_num_rd_atomic |
| * for the current wqe. |
| * Called at interrupt level with the QP s_lock held. |
| */ |
| static void update_num_rd_atomic(struct rvt_qp *qp, u32 psn, |
| struct rvt_swqe *wqe) |
| { |
| u32 opcode = wqe->wr.opcode; |
| |
| if (opcode == IB_WR_RDMA_READ || |
| opcode == IB_WR_ATOMIC_CMP_AND_SWP || |
| opcode == IB_WR_ATOMIC_FETCH_AND_ADD) { |
| qp->s_num_rd_atomic++; |
| } else if (opcode == IB_WR_TID_RDMA_READ) { |
| struct tid_rdma_request *req = wqe_to_tid_req(wqe); |
| struct hfi1_qp_priv *priv = qp->priv; |
| |
| if (cmp_psn(psn, wqe->lpsn) <= 0) { |
| u32 cur_seg; |
| |
| cur_seg = (psn - wqe->psn) / priv->pkts_ps; |
| req->ack_pending = cur_seg - req->comp_seg; |
| priv->pending_tid_r_segs += req->ack_pending; |
| qp->s_num_rd_atomic += req->ack_pending; |
| } else { |
| priv->pending_tid_r_segs += req->total_segs; |
| qp->s_num_rd_atomic += req->total_segs; |
| } |
| } |
| } |
| |
| /** |
| * reset_psn - reset the QP state to send starting from PSN |
| * @qp: the QP |
| * @psn: the packet sequence number to restart at |
| * |
| * This is called from hfi1_rc_rcv() to process an incoming RC ACK |
| * for the given QP. |
| * Called at interrupt level with the QP s_lock held. |
| */ |
| static void reset_psn(struct rvt_qp *qp, u32 psn) |
| { |
| u32 n = qp->s_acked; |
| struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, n); |
| u32 opcode; |
| struct hfi1_qp_priv *priv = qp->priv; |
| |
| lockdep_assert_held(&qp->s_lock); |
| qp->s_cur = n; |
| priv->pending_tid_r_segs = 0; |
| priv->pending_tid_w_resp = 0; |
| qp->s_num_rd_atomic = 0; |
| |
| /* |
| * If we are starting the request from the beginning, |
| * let the normal send code handle initialization. |
| */ |
| if (cmp_psn(psn, wqe->psn) <= 0) { |
| qp->s_state = OP(SEND_LAST); |
| goto done; |
| } |
| update_num_rd_atomic(qp, psn, wqe); |
| |
| /* Find the work request opcode corresponding to the given PSN. */ |
| for (;;) { |
| int diff; |
| |
| if (++n == qp->s_size) |
| n = 0; |
| if (n == qp->s_tail) |
| break; |
| wqe = rvt_get_swqe_ptr(qp, n); |
| diff = cmp_psn(psn, wqe->psn); |
| if (diff < 0) { |
| /* Point wqe back to the previous one*/ |
| wqe = rvt_get_swqe_ptr(qp, qp->s_cur); |
| break; |
| } |
| qp->s_cur = n; |
| /* |
| * If we are starting the request from the beginning, |
| * let the normal send code handle initialization. |
| */ |
| if (diff == 0) { |
| qp->s_state = OP(SEND_LAST); |
| goto done; |
| } |
| |
| update_num_rd_atomic(qp, psn, wqe); |
| } |
| opcode = wqe->wr.opcode; |
| |
| /* |
| * Set the state to restart in the middle of a request. |
| * Don't change the s_sge, s_cur_sge, or s_cur_size. |
| * See hfi1_make_rc_req(). |
| */ |
| switch (opcode) { |
| case IB_WR_SEND: |
| case IB_WR_SEND_WITH_IMM: |
| qp->s_state = OP(RDMA_READ_RESPONSE_FIRST); |
| break; |
| |
| case IB_WR_RDMA_WRITE: |
| case IB_WR_RDMA_WRITE_WITH_IMM: |
| qp->s_state = OP(RDMA_READ_RESPONSE_LAST); |
| break; |
| |
| case IB_WR_TID_RDMA_WRITE: |
| qp->s_state = TID_OP(WRITE_RESP); |
| break; |
| |
| case IB_WR_RDMA_READ: |
| qp->s_state = OP(RDMA_READ_RESPONSE_MIDDLE); |
| break; |
| |
| case IB_WR_TID_RDMA_READ: |
| qp->s_state = TID_OP(READ_RESP); |
| break; |
| |
| default: |
| /* |
| * This case shouldn't happen since its only |
| * one PSN per req. |
| */ |
| qp->s_state = OP(SEND_LAST); |
| } |
| done: |
| priv->s_flags &= ~HFI1_S_TID_WAIT_INTERLCK; |
| qp->s_psn = psn; |
| /* |
| * Set RVT_S_WAIT_PSN as rc_complete() may start the timer |
| * asynchronously before the send engine can get scheduled. |
| * Doing it in hfi1_make_rc_req() is too late. |
| */ |
| if ((cmp_psn(qp->s_psn, qp->s_sending_hpsn) <= 0) && |
| (cmp_psn(qp->s_sending_psn, qp->s_sending_hpsn) <= 0)) |
| qp->s_flags |= RVT_S_WAIT_PSN; |
| qp->s_flags &= ~HFI1_S_AHG_VALID; |
| trace_hfi1_sender_reset_psn(qp); |
| } |
| |
| /* |
| * Back up requester to resend the last un-ACKed request. |
| * The QP r_lock and s_lock should be held and interrupts disabled. |
| */ |
| void hfi1_restart_rc(struct rvt_qp *qp, u32 psn, int wait) |
| { |
| struct hfi1_qp_priv *priv = qp->priv; |
| struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_acked); |
| struct hfi1_ibport *ibp; |
| |
| lockdep_assert_held(&qp->r_lock); |
| lockdep_assert_held(&qp->s_lock); |
| trace_hfi1_sender_restart_rc(qp); |
| if (qp->s_retry == 0) { |
| if (qp->s_mig_state == IB_MIG_ARMED) { |
| hfi1_migrate_qp(qp); |
| qp->s_retry = qp->s_retry_cnt; |
| } else if (qp->s_last == qp->s_acked) { |
| /* |
| * We need special handling for the OPFN request WQEs as |
| * they are not allowed to generate real user errors |
| */ |
| if (wqe->wr.opcode == IB_WR_OPFN) { |
| struct hfi1_ibport *ibp = |
| to_iport(qp->ibqp.device, qp->port_num); |
| /* |
| * Call opfn_conn_reply() with capcode and |
| * remaining data as 0 to close out the |
| * current request |
| */ |
| opfn_conn_reply(qp, priv->opfn.curr); |
| wqe = do_rc_completion(qp, wqe, ibp); |
| qp->s_flags &= ~RVT_S_WAIT_ACK; |
| } else { |
| trace_hfi1_tid_write_sender_restart_rc(qp, 0); |
| if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) { |
| struct tid_rdma_request *req; |
| |
| req = wqe_to_tid_req(wqe); |
| hfi1_kern_exp_rcv_clear_all(req); |
| hfi1_kern_clear_hw_flow(priv->rcd, qp); |
| } |
| |
| hfi1_trdma_send_complete(qp, wqe, |
| IB_WC_RETRY_EXC_ERR); |
| rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR); |
| } |
| return; |
| } else { /* need to handle delayed completion */ |
| return; |
| } |
| } else { |
| qp->s_retry--; |
| } |
| |
| ibp = to_iport(qp->ibqp.device, qp->port_num); |
| if (wqe->wr.opcode == IB_WR_RDMA_READ || |
| wqe->wr.opcode == IB_WR_TID_RDMA_READ) |
| ibp->rvp.n_rc_resends++; |
| else |
| ibp->rvp.n_rc_resends += delta_psn(qp->s_psn, psn); |
| |
| qp->s_flags &= ~(RVT_S_WAIT_FENCE | RVT_S_WAIT_RDMAR | |
| RVT_S_WAIT_SSN_CREDIT | RVT_S_WAIT_PSN | |
| RVT_S_WAIT_ACK | HFI1_S_WAIT_TID_RESP); |
| if (wait) |
| qp->s_flags |= RVT_S_SEND_ONE; |
| reset_psn(qp, psn); |
| } |
| |
| /* |
| * Set qp->s_sending_psn to the next PSN after the given one. |
| * This would be psn+1 except when RDMA reads or TID RDMA ops |
| * are present. |
| */ |
| static void reset_sending_psn(struct rvt_qp *qp, u32 psn) |
| { |
| struct rvt_swqe *wqe; |
| u32 n = qp->s_last; |
| |
| lockdep_assert_held(&qp->s_lock); |
| /* Find the work request corresponding to the given PSN. */ |
| for (;;) { |
| wqe = rvt_get_swqe_ptr(qp, n); |
| if (cmp_psn(psn, wqe->lpsn) <= 0) { |
| if (wqe->wr.opcode == IB_WR_RDMA_READ || |
| wqe->wr.opcode == IB_WR_TID_RDMA_READ || |
| wqe->wr.opcode == IB_WR_TID_RDMA_WRITE) |
| qp->s_sending_psn = wqe->lpsn + 1; |
| else |
| qp->s_sending_psn = psn + 1; |
| break; |
| } |
| if (++n == qp->s_size) |
| n = 0; |
| if (n == qp->s_tail) |
| break; |
| } |
| } |
| |
| /* |
| * This should be called with the QP s_lock held and interrupts disabled. |
| */ |
| void hfi1_rc_send_complete(struct rvt_qp *qp, struct hfi1_opa_header *opah) |
| { |
| struct ib_other_headers *ohdr; |
| struct hfi1_qp_priv *priv = qp->priv; |
| struct rvt_swqe *wqe; |
| struct ib_header *hdr = NULL; |
| struct hfi1_16b_header *hdr_16b = NULL; |
| u32 opcode, head, tail; |
| u32 psn; |
| struct tid_rdma_request *req; |
| |
| lockdep_assert_held(&qp->s_lock); |
| if (!(ib_rvt_state_ops[qp->state] & RVT_SEND_OR_FLUSH_OR_RECV_OK)) |
| return; |
| |
| /* Find out where the BTH is */ |
| if (priv->hdr_type == HFI1_PKT_TYPE_9B) { |
| hdr = &opah->ibh; |
| if (ib_get_lnh(hdr) == HFI1_LRH_BTH) |
| ohdr = &hdr->u.oth; |
| else |
| ohdr = &hdr->u.l.oth; |
| } else { |
| u8 l4; |
| |
| hdr_16b = &opah->opah; |
| l4 = hfi1_16B_get_l4(hdr_16b); |
| if (l4 == OPA_16B_L4_IB_LOCAL) |
| ohdr = &hdr_16b->u.oth; |
| else |
| ohdr = &hdr_16b->u.l.oth; |
| } |
| |
| opcode = ib_bth_get_opcode(ohdr); |
| if ((opcode >= OP(RDMA_READ_RESPONSE_FIRST) && |
| opcode <= OP(ATOMIC_ACKNOWLEDGE)) || |
| opcode == TID_OP(READ_RESP) || |
| opcode == TID_OP(WRITE_RESP)) { |
| WARN_ON(!qp->s_rdma_ack_cnt); |
| qp->s_rdma_ack_cnt--; |
| return; |
| } |
| |
| psn = ib_bth_get_psn(ohdr); |
| /* |
| * Don't attempt to reset the sending PSN for packets in the |
| * KDETH PSN space since the PSN does not match anything. |
| */ |
| if (opcode != TID_OP(WRITE_DATA) && |
| opcode != TID_OP(WRITE_DATA_LAST) && |
| opcode != TID_OP(ACK) && opcode != TID_OP(RESYNC)) |
| reset_sending_psn(qp, psn); |
| |
| /* Handle TID RDMA WRITE packets differently */ |
| if (opcode >= TID_OP(WRITE_REQ) && |
| opcode <= TID_OP(WRITE_DATA_LAST)) { |
| head = priv->s_tid_head; |
| tail = priv->s_tid_cur; |
| /* |
| * s_tid_cur is set to s_tid_head in the case, where |
| * a new TID RDMA request is being started and all |
| * previous ones have been completed. |
| * Therefore, we need to do a secondary check in order |
| * to properly determine whether we should start the |
| * RC timer. |
| */ |
| wqe = rvt_get_swqe_ptr(qp, tail); |
| req = wqe_to_tid_req(wqe); |
| if (head == tail && req->comp_seg < req->total_segs) { |
| if (tail == 0) |
| tail = qp->s_size - 1; |
| else |
| tail -= 1; |
| } |
| } else { |
| head = qp->s_tail; |
| tail = qp->s_acked; |
| } |
| |
| /* |
| * Start timer after a packet requesting an ACK has been sent and |
| * there are still requests that haven't been acked. |
| */ |
| if ((psn & IB_BTH_REQ_ACK) && tail != head && |
| opcode != TID_OP(WRITE_DATA) && opcode != TID_OP(WRITE_DATA_LAST) && |
| opcode != TID_OP(RESYNC) && |
| !(qp->s_flags & |
| (RVT_S_TIMER | RVT_S_WAIT_RNR | RVT_S_WAIT_PSN)) && |
| (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) { |
| if (opcode == TID_OP(READ_REQ)) |
| rvt_add_retry_timer_ext(qp, priv->timeout_shift); |
| else |
| rvt_add_retry_timer(qp); |
| } |
| |
| /* Start TID RDMA ACK timer */ |
| if ((opcode == TID_OP(WRITE_DATA) || |
| opcode == TID_OP(WRITE_DATA_LAST) || |
| opcode == TID_OP(RESYNC)) && |
| (psn & IB_BTH_REQ_ACK) && |
| !(priv->s_flags & HFI1_S_TID_RETRY_TIMER) && |
| (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) { |
| /* |
| * The TID RDMA ACK packet could be received before this |
| * function is called. Therefore, add the timer only if TID |
| * RDMA ACK packets are actually pending. |
| */ |
| wqe = rvt_get_swqe_ptr(qp, qp->s_acked); |
| req = wqe_to_tid_req(wqe); |
| if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE && |
| req->ack_seg < req->cur_seg) |
| hfi1_add_tid_retry_timer(qp); |
| } |
| |
| while (qp->s_last != qp->s_acked) { |
| u32 s_last; |
| |
| wqe = rvt_get_swqe_ptr(qp, qp->s_last); |
| if (cmp_psn(wqe->lpsn, qp->s_sending_psn) >= 0 && |
| cmp_psn(qp->s_sending_psn, qp->s_sending_hpsn) <= 0) |
| break; |
| trdma_clean_swqe(qp, wqe); |
| rvt_qp_wqe_unreserve(qp, wqe); |
| s_last = qp->s_last; |
| trace_hfi1_qp_send_completion(qp, wqe, s_last); |
| if (++s_last >= qp->s_size) |
| s_last = 0; |
| qp->s_last = s_last; |
| /* see post_send() */ |
| barrier(); |
| rvt_put_swqe(wqe); |
| rvt_qp_swqe_complete(qp, |
| wqe, |
| ib_hfi1_wc_opcode[wqe->wr.opcode], |
| IB_WC_SUCCESS); |
| } |
| /* |
| * If we were waiting for sends to complete before re-sending, |
| * and they are now complete, restart sending. |
| */ |
| trace_hfi1_sendcomplete(qp, psn); |
| if (qp->s_flags & RVT_S_WAIT_PSN && |
| cmp_psn(qp->s_sending_psn, qp->s_sending_hpsn) > 0) { |
| qp->s_flags &= ~RVT_S_WAIT_PSN; |
| qp->s_sending_psn = qp->s_psn; |
| qp->s_sending_hpsn = qp->s_psn - 1; |
| hfi1_schedule_send(qp); |
| } |
| } |
| |
| static inline void update_last_psn(struct rvt_qp *qp, u32 psn) |
| { |
| qp->s_last_psn = psn; |
| } |
| |
| /* |
| * Generate a SWQE completion. |
| * This is similar to hfi1_send_complete but has to check to be sure |
| * that the SGEs are not being referenced if the SWQE is being resent. |
| */ |
| struct rvt_swqe *do_rc_completion(struct rvt_qp *qp, |
| struct rvt_swqe *wqe, |
| struct hfi1_ibport *ibp) |
| { |
| struct hfi1_qp_priv *priv = qp->priv; |
| |
| lockdep_assert_held(&qp->s_lock); |
| /* |
| * Don't decrement refcount and don't generate a |
| * completion if the SWQE is being resent until the send |
| * is finished. |
| */ |
| trace_hfi1_rc_completion(qp, wqe->lpsn); |
| if (cmp_psn(wqe->lpsn, qp->s_sending_psn) < 0 || |
| cmp_psn(qp->s_sending_psn, qp->s_sending_hpsn) > 0) { |
| u32 s_last; |
| |
| trdma_clean_swqe(qp, wqe); |
| rvt_put_swqe(wqe); |
| rvt_qp_wqe_unreserve(qp, wqe); |
| s_last = qp->s_last; |
| trace_hfi1_qp_send_completion(qp, wqe, s_last); |
| if (++s_last >= qp->s_size) |
| s_last = 0; |
| qp->s_last = s_last; |
| /* see post_send() */ |
| barrier(); |
| rvt_qp_swqe_complete(qp, |
| wqe, |
| ib_hfi1_wc_opcode[wqe->wr.opcode], |
| IB_WC_SUCCESS); |
| } else { |
| struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); |
| |
| this_cpu_inc(*ibp->rvp.rc_delayed_comp); |
| /* |
| * If send progress not running attempt to progress |
| * SDMA queue. |
| */ |
| if (ppd->dd->flags & HFI1_HAS_SEND_DMA) { |
| struct sdma_engine *engine; |
| u8 sl = rdma_ah_get_sl(&qp->remote_ah_attr); |
| u8 sc5; |
| |
| /* For now use sc to find engine */ |
| sc5 = ibp->sl_to_sc[sl]; |
| engine = qp_to_sdma_engine(qp, sc5); |
| sdma_engine_progress_schedule(engine); |
| } |
| } |
| |
| qp->s_retry = qp->s_retry_cnt; |
| /* |
| * Don't update the last PSN if the request being completed is |
| * a TID RDMA WRITE request. |
| * Completion of the TID RDMA WRITE requests are done by the |
| * TID RDMA ACKs and as such could be for a request that has |
| * already been ACKed as far as the IB state machine is |
| * concerned. |
| */ |
| if (wqe->wr.opcode != IB_WR_TID_RDMA_WRITE) |
| update_last_psn(qp, wqe->lpsn); |
| |
| /* |
| * If we are completing a request which is in the process of |
| * being resent, we can stop re-sending it since we know the |
| * responder has already seen it. |
| */ |
| if (qp->s_acked == qp->s_cur) { |
| if (++qp->s_cur >= qp->s_size) |
| qp->s_cur = 0; |
| qp->s_acked = qp->s_cur; |
| wqe = rvt_get_swqe_ptr(qp, qp->s_cur); |
| if (qp->s_acked != qp->s_tail) { |
| qp->s_state = OP(SEND_LAST); |
| qp->s_psn = wqe->psn; |
| } |
| } else { |
| if (++qp->s_acked >= qp->s_size) |
| qp->s_acked = 0; |
| if (qp->state == IB_QPS_SQD && qp->s_acked == qp->s_cur) |
| qp->s_draining = 0; |
| wqe = rvt_get_swqe_ptr(qp, qp->s_acked); |
| } |
| if (priv->s_flags & HFI1_S_TID_WAIT_INTERLCK) { |
| priv->s_flags &= ~HFI1_S_TID_WAIT_INTERLCK; |
| hfi1_schedule_send(qp); |
| } |
| return wqe; |
| } |
| |
| static void set_restart_qp(struct rvt_qp *qp, struct hfi1_ctxtdata *rcd) |
| { |
| /* Retry this request. */ |
| if (!(qp->r_flags & RVT_R_RDMAR_SEQ)) { |
| qp->r_flags |= RVT_R_RDMAR_SEQ; |
| hfi1_restart_rc(qp, qp->s_last_psn + 1, 0); |
| if (list_empty(&qp->rspwait)) { |
| qp->r_flags |= RVT_R_RSP_SEND; |
| rvt_get_qp(qp); |
| list_add_tail(&qp->rspwait, &rcd->qp_wait_list); |
| } |
| } |
| } |
| |
| /** |
| * update_qp_retry_state - Update qp retry state. |
| * @qp: the QP |
| * @psn: the packet sequence number of the TID RDMA WRITE RESP. |
| * @spsn: The start psn for the given TID RDMA WRITE swqe. |
| * @lpsn: The last psn for the given TID RDMA WRITE swqe. |
| * |
| * This function is called to update the qp retry state upon |
| * receiving a TID WRITE RESP after the qp is scheduled to retry |
| * a request. |
| */ |
| static void update_qp_retry_state(struct rvt_qp *qp, u32 psn, u32 spsn, |
| u32 lpsn) |
| { |
| struct hfi1_qp_priv *qpriv = qp->priv; |
| |
| qp->s_psn = psn + 1; |
| /* |
| * If this is the first TID RDMA WRITE RESP packet for the current |
| * request, change the s_state so that the retry will be processed |
| * correctly. Similarly, if this is the last TID RDMA WRITE RESP |
| * packet, change the s_state and advance the s_cur. |
| */ |
| if (cmp_psn(psn, lpsn) >= 0) { |
| qp->s_cur = qpriv->s_tid_cur + 1; |
| if (qp->s_cur >= qp->s_size) |
| qp->s_cur = 0; |
| qp->s_state = TID_OP(WRITE_REQ); |
| } else if (!cmp_psn(psn, spsn)) { |
| qp->s_cur = qpriv->s_tid_cur; |
| qp->s_state = TID_OP(WRITE_RESP); |
| } |
| } |
| |
| /** |
| * do_rc_ack - process an incoming RC ACK |
| * @qp: the QP the ACK came in on |
| * @psn: the packet sequence number of the ACK |
| * @opcode: the opcode of the request that resulted in the ACK |
| * |
| * This is called from rc_rcv_resp() to process an incoming RC ACK |
| * for the given QP. |
| * May be called at interrupt level, with the QP s_lock held. |
| * Returns 1 if OK, 0 if current operation should be aborted (NAK). |
| */ |
| int do_rc_ack(struct rvt_qp *qp, u32 aeth, u32 psn, int opcode, |
| u64 val, struct hfi1_ctxtdata *rcd) |
| { |
| struct hfi1_ibport *ibp; |
| enum ib_wc_status status; |
| struct hfi1_qp_priv *qpriv = qp->priv; |
| struct rvt_swqe *wqe; |
| int ret = 0; |
| u32 ack_psn; |
| int diff; |
| struct rvt_dev_info *rdi; |
| |
| lockdep_assert_held(&qp->s_lock); |
| /* |
| * Note that NAKs implicitly ACK outstanding SEND and RDMA write |
| * requests and implicitly NAK RDMA read and atomic requests issued |
| * before the NAK'ed request. The MSN won't include the NAK'ed |
| * request but will include an ACK'ed request(s). |
| */ |
| ack_psn = psn; |
| if (aeth >> IB_AETH_NAK_SHIFT) |
| ack_psn--; |
| wqe = rvt_get_swqe_ptr(qp, qp->s_acked); |
| ibp = rcd_to_iport(rcd); |
| |
| /* |
| * The MSN might be for a later WQE than the PSN indicates so |
| * only complete WQEs that the PSN finishes. |
| */ |
| while ((diff = delta_psn(ack_psn, wqe->lpsn)) >= 0) { |
| /* |
| * RDMA_READ_RESPONSE_ONLY is a special case since |
| * we want to generate completion events for everything |
| * before the RDMA read, copy the data, then generate |
| * the completion for the read. |
| */ |
| if (wqe->wr.opcode == IB_WR_RDMA_READ && |
| opcode == OP(RDMA_READ_RESPONSE_ONLY) && |
| diff == 0) { |
| ret = 1; |
| goto bail_stop; |
| } |
| /* |
| * If this request is a RDMA read or atomic, and the ACK is |
| * for a later operation, this ACK NAKs the RDMA read or |
| * atomic. In other words, only a RDMA_READ_LAST or ONLY |
| * can ACK a RDMA read and likewise for atomic ops. Note |
| * that the NAK case can only happen if relaxed ordering is |
| * used and requests are sent after an RDMA read or atomic |
| * is sent but before the response is received. |
| */ |
| if ((wqe->wr.opcode == IB_WR_RDMA_READ && |
| (opcode != OP(RDMA_READ_RESPONSE_LAST) || diff != 0)) || |
| (wqe->wr.opcode == IB_WR_TID_RDMA_READ && |
| (opcode != TID_OP(READ_RESP) || diff != 0)) || |
| ((wqe->wr.opcode == IB_WR_ATOMIC_CMP_AND_SWP || |
| wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) && |
| (opcode != OP(ATOMIC_ACKNOWLEDGE) || diff != 0)) || |
| (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE && |
| (delta_psn(psn, qp->s_last_psn) != 1))) { |
| set_restart_qp(qp, rcd); |
| /* |
| * No need to process the ACK/NAK since we are |
| * restarting an earlier request. |
| */ |
| goto bail_stop; |
| } |
| if (wqe->wr.opcode == IB_WR_ATOMIC_CMP_AND_SWP || |
| wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) { |
| u64 *vaddr = wqe->sg_list[0].vaddr; |
| *vaddr = val; |
| } |
| if (wqe->wr.opcode == IB_WR_OPFN) |
| opfn_conn_reply(qp, val); |
| |
| if (qp->s_num_rd_atomic && |
| (wqe->wr.opcode == IB_WR_RDMA_READ || |
| wqe->wr.opcode == IB_WR_ATOMIC_CMP_AND_SWP || |
| wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD)) { |
| qp->s_num_rd_atomic--; |
| /* Restart sending task if fence is complete */ |
| if ((qp->s_flags & RVT_S_WAIT_FENCE) && |
| !qp->s_num_rd_atomic) { |
| qp->s_flags &= ~(RVT_S_WAIT_FENCE | |
| RVT_S_WAIT_ACK); |
| hfi1_schedule_send(qp); |
| } else if (qp->s_flags & RVT_S_WAIT_RDMAR) { |
| qp->s_flags &= ~(RVT_S_WAIT_RDMAR | |
| RVT_S_WAIT_ACK); |
| hfi1_schedule_send(qp); |
| } |
| } |
| |
| /* |
| * TID RDMA WRITE requests will be completed by the TID RDMA |
| * ACK packet handler (see tid_rdma.c). |
| */ |
| if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE) |
| break; |
| |
| wqe = do_rc_completion(qp, wqe, ibp); |
| if (qp->s_acked == qp->s_tail) |
| break; |
| } |
| |
| trace_hfi1_rc_ack_do(qp, aeth, psn, wqe); |
| trace_hfi1_sender_do_rc_ack(qp); |
| switch (aeth >> IB_AETH_NAK_SHIFT) { |
| case 0: /* ACK */ |
| this_cpu_inc(*ibp->rvp.rc_acks); |
| if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) { |
| if (wqe_to_tid_req(wqe)->ack_pending) |
| rvt_mod_retry_timer_ext(qp, |
| qpriv->timeout_shift); |
| else |
| rvt_stop_rc_timers(qp); |
| } else if (qp->s_acked != qp->s_tail) { |
| struct rvt_swqe *__w = NULL; |
| |
| if (qpriv->s_tid_cur != HFI1_QP_WQE_INVALID) |
| __w = rvt_get_swqe_ptr(qp, qpriv->s_tid_cur); |
| |
| /* |
| * Stop timers if we've received all of the TID RDMA |
| * WRITE * responses. |
| */ |
| if (__w && __w->wr.opcode == IB_WR_TID_RDMA_WRITE && |
| opcode == TID_OP(WRITE_RESP)) { |
| /* |
| * Normally, the loop above would correctly |
| * process all WQEs from s_acked onward and |
| * either complete them or check for correct |
| * PSN sequencing. |
| * However, for TID RDMA, due to pipelining, |
| * the response may not be for the request at |
| * s_acked so the above look would just be |
| * skipped. This does not allow for checking |
| * the PSN sequencing. It has to be done |
| * separately. |
| */ |
| if (cmp_psn(psn, qp->s_last_psn + 1)) { |
| set_restart_qp(qp, rcd); |
| goto bail_stop; |
| } |
| /* |
| * If the psn is being resent, stop the |
| * resending. |
| */ |
| if (qp->s_cur != qp->s_tail && |
| cmp_psn(qp->s_psn, psn) <= 0) |
| update_qp_retry_state(qp, psn, |
| __w->psn, |
| __w->lpsn); |
| else if (--qpriv->pending_tid_w_resp) |
| rvt_mod_retry_timer(qp); |
| else |
| rvt_stop_rc_timers(qp); |
| } else { |
| /* |
| * We are expecting more ACKs so |
| * mod the retry timer. |
| */ |
| rvt_mod_retry_timer(qp); |
| /* |
| * We can stop re-sending the earlier packets |
| * and continue with the next packet the |
| * receiver wants. |
| */ |
| if (cmp_psn(qp->s_psn, psn) <= 0) |
| reset_psn(qp, psn + 1); |
| } |
| } else { |
| /* No more acks - kill all timers */ |
| rvt_stop_rc_timers(qp); |
| if (cmp_psn(qp->s_psn, psn) <= 0) { |
| qp->s_state = OP(SEND_LAST); |
| qp->s_psn = psn + 1; |
| } |
| } |
| if (qp->s_flags & RVT_S_WAIT_ACK) { |
| qp->s_flags &= ~RVT_S_WAIT_ACK; |
| hfi1_schedule_send(qp); |
| } |
| rvt_get_credit(qp, aeth); |
| qp->s_rnr_retry = qp->s_rnr_retry_cnt; |
| qp->s_retry = qp->s_retry_cnt; |
| /* |
| * If the current request is a TID RDMA WRITE request and the |
| * response is not a TID RDMA WRITE RESP packet, s_last_psn |
| * can't be advanced. |
| */ |
| if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE && |
| opcode != TID_OP(WRITE_RESP) && |
| cmp_psn(psn, wqe->psn) >= 0) |
| return 1; |
| update_last_psn(qp, psn); |
| return 1; |
| |
| case 1: /* RNR NAK */ |
| ibp->rvp.n_rnr_naks++; |
| if (qp->s_acked == qp->s_tail) |
| goto bail_stop; |
| if (qp->s_flags & RVT_S_WAIT_RNR) |
| goto bail_stop; |
| rdi = ib_to_rvt(qp->ibqp.device); |
| if (qp->s_rnr_retry == 0 && |
| !((rdi->post_parms[wqe->wr.opcode].flags & |
| RVT_OPERATION_IGN_RNR_CNT) && |
| qp->s_rnr_retry_cnt == 0)) { |
| status = IB_WC_RNR_RETRY_EXC_ERR; |
| goto class_b; |
| } |
| if (qp->s_rnr_retry_cnt < 7 && qp->s_rnr_retry_cnt > 0) |
| qp->s_rnr_retry--; |
| |
| /* |
| * The last valid PSN is the previous PSN. For TID RDMA WRITE |
| * request, s_last_psn should be incremented only when a TID |
| * RDMA WRITE RESP is received to avoid skipping lost TID RDMA |
| * WRITE RESP packets. |
| */ |
| if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE) { |
| reset_psn(qp, qp->s_last_psn + 1); |
| } else { |
| update_last_psn(qp, psn - 1); |
| reset_psn(qp, psn); |
| } |
| |
| ibp->rvp.n_rc_resends += delta_psn(qp->s_psn, psn); |
| qp->s_flags &= ~(RVT_S_WAIT_SSN_CREDIT | RVT_S_WAIT_ACK); |
| rvt_stop_rc_timers(qp); |
| rvt_add_rnr_timer(qp, aeth); |
| return 0; |
| |
| case 3: /* NAK */ |
| if (qp->s_acked == qp->s_tail) |
| goto bail_stop; |
| /* The last valid PSN is the previous PSN. */ |
| update_last_psn(qp, psn - 1); |
| switch ((aeth >> IB_AETH_CREDIT_SHIFT) & |
| IB_AETH_CREDIT_MASK) { |
| case 0: /* PSN sequence error */ |
| ibp->rvp.n_seq_naks++; |
| /* |
| * Back up to the responder's expected PSN. |
| * Note that we might get a NAK in the middle of an |
| * RDMA READ response which terminates the RDMA |
| * READ. |
| */ |
| hfi1_restart_rc(qp, psn, 0); |
| hfi1_schedule_send(qp); |
| break; |
| |
| case 1: /* Invalid Request */ |
| status = IB_WC_REM_INV_REQ_ERR; |
| ibp->rvp.n_other_naks++; |
| goto class_b; |
| |
| case 2: /* Remote Access Error */ |
| status = IB_WC_REM_ACCESS_ERR; |
| ibp->rvp.n_other_naks++; |
| goto class_b; |
| |
| case 3: /* Remote Operation Error */ |
| status = IB_WC_REM_OP_ERR; |
| ibp->rvp.n_other_naks++; |
| class_b: |
| if (qp->s_last == qp->s_acked) { |
| if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) |
| hfi1_kern_read_tid_flow_free(qp); |
| |
| hfi1_trdma_send_complete(qp, wqe, status); |
| rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR); |
| } |
| break; |
| |
| default: |
| /* Ignore other reserved NAK error codes */ |
| goto reserved; |
| } |
| qp->s_retry = qp->s_retry_cnt; |
| qp->s_rnr_retry = qp->s_rnr_retry_cnt; |
| goto bail_stop; |
| |
| default: /* 2: reserved */ |
| reserved: |
| /* Ignore reserved NAK codes. */ |
| goto bail_stop; |
| } |
| /* cannot be reached */ |
| bail_stop: |
| rvt_stop_rc_timers(qp); |
| return ret; |
| } |
| |
| /* |
| * We have seen an out of sequence RDMA read middle or last packet. |
| * This ACKs SENDs and RDMA writes up to the first RDMA read or atomic SWQE. |
| */ |
| static void rdma_seq_err(struct rvt_qp *qp, struct hfi1_ibport *ibp, u32 psn, |
| struct hfi1_ctxtdata *rcd) |
| { |
| struct rvt_swqe *wqe; |
| |
| lockdep_assert_held(&qp->s_lock); |
| /* Remove QP from retry timer */ |
| rvt_stop_rc_timers(qp); |
| |
| wqe = rvt_get_swqe_ptr(qp, qp->s_acked); |
| |
| while (cmp_psn(psn, wqe->lpsn) > 0) { |
| if (wqe->wr.opcode == IB_WR_RDMA_READ || |
| wqe->wr.opcode == IB_WR_TID_RDMA_READ || |
| wqe->wr.opcode == IB_WR_TID_RDMA_WRITE || |
| wqe->wr.opcode == IB_WR_ATOMIC_CMP_AND_SWP || |
| wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) |
| break; |
| wqe = do_rc_completion(qp, wqe, ibp); |
| } |
| |
| ibp->rvp.n_rdma_seq++; |
| qp->r_flags |= RVT_R_RDMAR_SEQ; |
| hfi1_restart_rc(qp, qp->s_last_psn + 1, 0); |
| if (list_empty(&qp->rspwait)) { |
| qp->r_flags |= RVT_R_RSP_SEND; |
| rvt_get_qp(qp); |
| list_add_tail(&qp->rspwait, &rcd->qp_wait_list); |
| } |
| } |
| |
| /** |
| * rc_rcv_resp - process an incoming RC response packet |
| * @packet: data packet information |
| * |
| * This is called from hfi1_rc_rcv() to process an incoming RC response |
| * packet for the given QP. |
| * Called at interrupt level. |
| */ |
| static void rc_rcv_resp(struct hfi1_packet *packet) |
| { |
| struct hfi1_ctxtdata *rcd = packet->rcd; |
| void *data = packet->payload; |
| u32 tlen = packet->tlen; |
| struct rvt_qp *qp = packet->qp; |
| struct hfi1_ibport *ibp; |
| struct ib_other_headers *ohdr = packet->ohdr; |
| struct rvt_swqe *wqe; |
| enum ib_wc_status status; |
| unsigned long flags; |
| int diff; |
| u64 val; |
| u32 aeth; |
| u32 psn = ib_bth_get_psn(packet->ohdr); |
| u32 pmtu = qp->pmtu; |
| u16 hdrsize = packet->hlen; |
| u8 opcode = packet->opcode; |
| u8 pad = packet->pad; |
| u8 extra_bytes = pad + packet->extra_byte + (SIZE_OF_CRC << 2); |
| |
| spin_lock_irqsave(&qp->s_lock, flags); |
| trace_hfi1_ack(qp, psn); |
| |
| /* Ignore invalid responses. */ |
| if (cmp_psn(psn, READ_ONCE(qp->s_next_psn)) >= 0) |
| goto ack_done; |
| |
| /* Ignore duplicate responses. */ |
| diff = cmp_psn(psn, qp->s_last_psn); |
| if (unlikely(diff <= 0)) { |
| /* Update credits for "ghost" ACKs */ |
| if (diff == 0 && opcode == OP(ACKNOWLEDGE)) { |
| aeth = be32_to_cpu(ohdr->u.aeth); |
| if ((aeth >> IB_AETH_NAK_SHIFT) == 0) |
| rvt_get_credit(qp, aeth); |
| } |
| goto ack_done; |
| } |
| |
| /* |
| * Skip everything other than the PSN we expect, if we are waiting |
| * for a reply to a restarted RDMA read or atomic op. |
| */ |
| if (qp->r_flags & RVT_R_RDMAR_SEQ) { |
| if (cmp_psn(psn, qp->s_last_psn + 1) != 0) |
| goto ack_done; |
| qp->r_flags &= ~RVT_R_RDMAR_SEQ; |
| } |
| |
| if (unlikely(qp->s_acked == qp->s_tail)) |
| goto ack_done; |
| wqe = rvt_get_swqe_ptr(qp, qp->s_acked); |
| status = IB_WC_SUCCESS; |
| |
| switch (opcode) { |
| case OP(ACKNOWLEDGE): |
| case OP(ATOMIC_ACKNOWLEDGE): |
| case OP(RDMA_READ_RESPONSE_FIRST): |
| aeth = be32_to_cpu(ohdr->u.aeth); |
| if (opcode == OP(ATOMIC_ACKNOWLEDGE)) |
| val = ib_u64_get(&ohdr->u.at.atomic_ack_eth); |
| else |
| val = 0; |
| if (!do_rc_ack(qp, aeth, psn, opcode, val, rcd) || |
| opcode != OP(RDMA_READ_RESPONSE_FIRST)) |
| goto ack_done; |
| wqe = rvt_get_swqe_ptr(qp, qp->s_acked); |
| if (unlikely(wqe->wr.opcode != IB_WR_RDMA_READ)) |
| goto ack_op_err; |
| /* |
| * If this is a response to a resent RDMA read, we |
| * have to be careful to copy the data to the right |
| * location. |
| */ |
| qp->s_rdma_read_len = restart_sge(&qp->s_rdma_read_sge, |
| wqe, psn, pmtu); |
| goto read_middle; |
| |
| case OP(RDMA_READ_RESPONSE_MIDDLE): |
| /* no AETH, no ACK */ |
| if (unlikely(cmp_psn(psn, qp->s_last_psn + 1))) |
| goto ack_seq_err; |
| if (unlikely(wqe->wr.opcode != IB_WR_RDMA_READ)) |
| goto ack_op_err; |
| read_middle: |
| if (unlikely(tlen != (hdrsize + pmtu + extra_bytes))) |
| goto ack_len_err; |
| if (unlikely(pmtu >= qp->s_rdma_read_len)) |
| goto ack_len_err; |
| |
| /* |
| * We got a response so update the timeout. |
| * 4.096 usec. * (1 << qp->timeout) |
| */ |
| rvt_mod_retry_timer(qp); |
| if (qp->s_flags & RVT_S_WAIT_ACK) { |
| qp->s_flags &= ~RVT_S_WAIT_ACK; |
| hfi1_schedule_send(qp); |
| } |
| |
| if (opcode == OP(RDMA_READ_RESPONSE_MIDDLE)) |
| qp->s_retry = qp->s_retry_cnt; |
| |
| /* |
| * Update the RDMA receive state but do the copy w/o |
| * holding the locks and blocking interrupts. |
| */ |
| qp->s_rdma_read_len -= pmtu; |
| update_last_psn(qp, psn); |
| spin_unlock_irqrestore(&qp->s_lock, flags); |
| rvt_copy_sge(qp, &qp->s_rdma_read_sge, |
| data, pmtu, false, false); |
| goto bail; |
| |
| case OP(RDMA_READ_RESPONSE_ONLY): |
| aeth = be32_to_cpu(ohdr->u.aeth); |
| if (!do_rc_ack(qp, aeth, psn, opcode, 0, rcd)) |
| goto ack_done; |
| /* |
| * Check that the data size is >= 0 && <= pmtu. |
| * Remember to account for ICRC (4). |
| */ |
| if (unlikely(tlen < (hdrsize + extra_bytes))) |
| goto ack_len_err; |
| /* |
| * If this is a response to a resent RDMA read, we |
| * have to be careful to copy the data to the right |
| * location. |
| */ |
| wqe = rvt_get_swqe_ptr(qp, qp->s_acked); |
| qp->s_rdma_read_len = restart_sge(&qp->s_rdma_read_sge, |
| wqe, psn, pmtu); |
| goto read_last; |
| |
| case OP(RDMA_READ_RESPONSE_LAST): |
| /* ACKs READ req. */ |
| if (unlikely(cmp_psn(psn, qp->s_last_psn + 1))) |
| goto ack_seq_err; |
| if (unlikely(wqe->wr.opcode != IB_WR_RDMA_READ)) |
| goto ack_op_err; |
| /* |
| * Check that the data size is >= 1 && <= pmtu. |
| * Remember to account for ICRC (4). |
| */ |
| if (unlikely(tlen <= (hdrsize + extra_bytes))) |
| goto ack_len_err; |
| read_last: |
| tlen -= hdrsize + extra_bytes; |
| if (unlikely(tlen != qp->s_rdma_read_len)) |
| goto ack_len_err; |
| aeth = be32_to_cpu(ohdr->u.aeth); |
| rvt_copy_sge(qp, &qp->s_rdma_read_sge, |
| data, tlen, false, false); |
| WARN_ON(qp->s_rdma_read_sge.num_sge); |
| (void)do_rc_ack(qp, aeth, psn, |
| OP(RDMA_READ_RESPONSE_LAST), 0, rcd); |
| goto ack_done; |
| } |
| |
| ack_op_err: |
| status = IB_WC_LOC_QP_OP_ERR; |
| goto ack_err; |
| |
| ack_seq_err: |
| ibp = rcd_to_iport(rcd); |
| rdma_seq_err(qp, ibp, psn, rcd); |
| goto ack_done; |
| |
| ack_len_err: |
| status = IB_WC_LOC_LEN_ERR; |
| ack_err: |
| if (qp->s_last == qp->s_acked) { |
| rvt_send_complete(qp, wqe, status); |
| rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR); |
| } |
| ack_done: |
| spin_unlock_irqrestore(&qp->s_lock, flags); |
| bail: |
| return; |
| } |
| |
| static inline void rc_cancel_ack(struct rvt_qp *qp) |
| { |
| qp->r_adefered = 0; |
| if (list_empty(&qp->rspwait)) |
| return; |
| list_del_init(&qp->rspwait); |
| qp->r_flags &= ~RVT_R_RSP_NAK; |
| rvt_put_qp(qp); |
| } |
| |
| /** |
| * rc_rcv_error - process an incoming duplicate or error RC packet |
| * @ohdr: the other headers for this packet |
| * @data: the packet data |
| * @qp: the QP for this packet |
| * @opcode: the opcode for this packet |
| * @psn: the packet sequence number for this packet |
| * @diff: the difference between the PSN and the expected PSN |
| * |
| * This is called from hfi1_rc_rcv() to process an unexpected |
| * incoming RC packet for the given QP. |
| * Called at interrupt level. |
| * Return 1 if no more processing is needed; otherwise return 0 to |
| * schedule a response to be sent. |
| */ |
| static noinline int rc_rcv_error(struct ib_other_headers *ohdr, void *data, |
| struct rvt_qp *qp, u32 opcode, u32 psn, |
| int diff, struct hfi1_ctxtdata *rcd) |
| { |
| struct hfi1_ibport *ibp = rcd_to_iport(rcd); |
| struct rvt_ack_entry *e; |
| unsigned long flags; |
| u8 prev; |
| u8 mra; /* most recent ACK */ |
| bool old_req; |
| |
| trace_hfi1_rcv_error(qp, psn); |
| if (diff > 0) { |
| /* |
| * Packet sequence error. |
| * A NAK will ACK earlier sends and RDMA writes. |
| * Don't queue the NAK if we already sent one. |
| */ |
| if (!qp->r_nak_state) { |
| ibp->rvp.n_rc_seqnak++; |
| qp->r_nak_state = IB_NAK_PSN_ERROR; |
| /* Use the expected PSN. */ |
| qp->r_ack_psn = qp->r_psn; |
| /* |
| * Wait to send the sequence NAK until all packets |
| * in the receive queue have been processed. |
| * Otherwise, we end up propagating congestion. |
| */ |
| rc_defered_ack(rcd, qp); |
| } |
| goto done; |
| } |
| |
| /* |
| * Handle a duplicate request. Don't re-execute SEND, RDMA |
| * write or atomic op. Don't NAK errors, just silently drop |
| * the duplicate request. Note that r_sge, r_len, and |
| * r_rcv_len may be in use so don't modify them. |
| * |
| * We are supposed to ACK the earliest duplicate PSN but we |
| * can coalesce an outstanding duplicate ACK. We have to |
| * send the earliest so that RDMA reads can be restarted at |
| * the requester's expected PSN. |
| * |
| * First, find where this duplicate PSN falls within the |
| * ACKs previously sent. |
| * old_req is true if there is an older response that is scheduled |
| * to be sent before sending this one. |
| */ |
| e = NULL; |
| old_req = 1; |
| ibp->rvp.n_rc_dupreq++; |
| |
| spin_lock_irqsave(&qp->s_lock, flags); |
| |
| e = find_prev_entry(qp, psn, &prev, &mra, &old_req); |
| |
| switch (opcode) { |
| case OP(RDMA_READ_REQUEST): { |
| struct ib_reth *reth; |
| u32 offset; |
| u32 len; |
| |
| /* |
| * If we didn't find the RDMA read request in the ack queue, |
| * we can ignore this request. |
| */ |
| if (!e || e->opcode != OP(RDMA_READ_REQUEST)) |
| goto unlock_done; |
| /* RETH comes after BTH */ |
| reth = &ohdr->u.rc.reth; |
| /* |
| * Address range must be a subset of the original |
| * request and start on pmtu boundaries. |
| * We reuse the old ack_queue slot since the requester |
| * should not back up and request an earlier PSN for the |
| * same request. |
| */ |
| offset = delta_psn(psn, e->psn) * qp->pmtu; |
| len = be32_to_cpu(reth->length); |
| if (unlikely(offset + len != e->rdma_sge.sge_length)) |
| goto unlock_done; |
| if (e->rdma_sge.mr) { |
| rvt_put_mr(e->rdma_sge.mr); |
| e->rdma_sge.mr = NULL; |
| } |
| if (len != 0) { |
| u32 rkey = be32_to_cpu(reth->rkey); |
| u64 vaddr = get_ib_reth_vaddr(reth); |
| int ok; |
| |
| ok = rvt_rkey_ok(qp, &e->rdma_sge, len, vaddr, rkey, |
| IB_ACCESS_REMOTE_READ); |
| if (unlikely(!ok)) |
| goto unlock_done; |
| } else { |
| e->rdma_sge.vaddr = NULL; |
| e->rdma_sge.length = 0; |
| e->rdma_sge.sge_length = 0; |
| } |
| e->psn = psn; |
| if (old_req) |
| goto unlock_done; |
| if (qp->s_acked_ack_queue == qp->s_tail_ack_queue) |
| qp->s_acked_ack_queue = prev; |
| qp->s_tail_ack_queue = prev; |
| break; |
| } |
| |
| case OP(COMPARE_SWAP): |
| case OP(FETCH_ADD): { |
| /* |
| * If we didn't find the atomic request in the ack queue |
| * or the send engine is already backed up to send an |
| * earlier entry, we can ignore this request. |
| */ |
| if (!e || e->opcode != (u8)opcode || old_req) |
| goto unlock_done; |
| if (qp->s_tail_ack_queue == qp->s_acked_ack_queue) |
| qp->s_acked_ack_queue = prev; |
| qp->s_tail_ack_queue = prev; |
| break; |
| } |
| |
| default: |
| /* |
| * Ignore this operation if it doesn't request an ACK |
| * or an earlier RDMA read or atomic is going to be resent. |
| */ |
| if (!(psn & IB_BTH_REQ_ACK) || old_req) |
| goto unlock_done; |
| /* |
| * Resend the most recent ACK if this request is |
| * after all the previous RDMA reads and atomics. |
| */ |
| if (mra == qp->r_head_ack_queue) { |
| spin_unlock_irqrestore(&qp->s_lock, flags); |
| qp->r_nak_state = 0; |
| qp->r_ack_psn = qp->r_psn - 1; |
| goto send_ack; |
| } |
| |
| /* |
| * Resend the RDMA read or atomic op which |
| * ACKs this duplicate request. |
| */ |
| if (qp->s_tail_ack_queue == qp->s_acked_ack_queue) |
| qp->s_acked_ack_queue = mra; |
| qp->s_tail_ack_queue = mra; |
| break; |
| } |
| qp->s_ack_state = OP(ACKNOWLEDGE); |
| qp->s_flags |= RVT_S_RESP_PENDING; |
| qp->r_nak_state = 0; |
| hfi1_schedule_send(qp); |
| |
| unlock_done: |
| spin_unlock_irqrestore(&qp->s_lock, flags); |
| done: |
| return 1; |
| |
| send_ack: |
| return 0; |
| } |
| |
| static void log_cca_event(struct hfi1_pportdata *ppd, u8 sl, u32 rlid, |
| u32 lqpn, u32 rqpn, u8 svc_type) |
| { |
| struct opa_hfi1_cong_log_event_internal *cc_event; |
| unsigned long flags; |
| |
| if (sl >= OPA_MAX_SLS) |
| return; |
| |
| spin_lock_irqsave(&ppd->cc_log_lock, flags); |
| |
| ppd->threshold_cong_event_map[sl / 8] |= 1 << (sl % 8); |
| ppd->threshold_event_counter++; |
| |
| cc_event = &ppd->cc_events[ppd->cc_log_idx++]; |
| if (ppd->cc_log_idx == OPA_CONG_LOG_ELEMS) |
| ppd->cc_log_idx = 0; |
| cc_event->lqpn = lqpn & RVT_QPN_MASK; |
| cc_event->rqpn = rqpn & RVT_QPN_MASK; |
| cc_event->sl = sl; |
| cc_event->svc_type = svc_type; |
| cc_event->rlid = rlid; |
| /* keep timestamp in units of 1.024 usec */ |
| cc_event->timestamp = ktime_get_ns() / 1024; |
| |
| spin_unlock_irqrestore(&ppd->cc_log_lock, flags); |
| } |
| |
| void process_becn(struct hfi1_pportdata *ppd, u8 sl, u32 rlid, u32 lqpn, |
| u32 rqpn, u8 svc_type) |
| { |
| struct cca_timer *cca_timer; |
| u16 ccti, ccti_incr, ccti_timer, ccti_limit; |
| u8 trigger_threshold; |
| struct cc_state *cc_state; |
| unsigned long flags; |
| |
| if (sl >= OPA_MAX_SLS) |
| return; |
| |
| cc_state = get_cc_state(ppd); |
| |
| if (!cc_state) |
| return; |
| |
| /* |
| * 1) increase CCTI (for this SL) |
| * 2) select IPG (i.e., call set_link_ipg()) |
| * 3) start timer |
| */ |
| ccti_limit = cc_state->cct.ccti_limit; |
| ccti_incr = cc_state->cong_setting.entries[sl].ccti_increase; |
| ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer; |
| trigger_threshold = |
| cc_state->cong_setting.entries[sl].trigger_threshold; |
| |
| spin_lock_irqsave(&ppd->cca_timer_lock, flags); |
| |
| cca_timer = &ppd->cca_timer[sl]; |
| if (cca_timer->ccti < ccti_limit) { |
| if (cca_timer->ccti + ccti_incr <= ccti_limit) |
| cca_timer->ccti += ccti_incr; |
| else |
| cca_timer->ccti = ccti_limit; |
| set_link_ipg(ppd); |
| } |
| |
| ccti = cca_timer->ccti; |
| |
| if (!hrtimer_active(&cca_timer->hrtimer)) { |
| /* ccti_timer is in units of 1.024 usec */ |
| unsigned long nsec = 1024 * ccti_timer; |
| |
| hrtimer_start(&cca_timer->hrtimer, ns_to_ktime(nsec), |
| HRTIMER_MODE_REL_PINNED); |
| } |
| |
| spin_unlock_irqrestore(&ppd->cca_timer_lock, flags); |
| |
| if ((trigger_threshold != 0) && (ccti >= trigger_threshold)) |
| log_cca_event(ppd, sl, rlid, lqpn, rqpn, svc_type); |
| } |
| |
| /** |
| * hfi1_rc_rcv - process an incoming RC packet |
| * @packet: data packet information |
| * |
| * This is called from qp_rcv() to process an incoming RC packet |
| * for the given QP. |
| * May be called at interrupt level. |
| */ |
| void hfi1_rc_rcv(struct hfi1_packet *packet) |
| { |
| struct hfi1_ctxtdata *rcd = packet->rcd; |
| void *data = packet->payload; |
| u32 tlen = packet->tlen; |
| struct rvt_qp *qp = packet->qp; |
| struct hfi1_qp_priv *qpriv = qp->priv; |
| struct hfi1_ibport *ibp = rcd_to_iport(rcd); |
| struct ib_other_headers *ohdr = packet->ohdr; |
| u32 opcode = packet->opcode; |
| u32 hdrsize = packet->hlen; |
| u32 psn = ib_bth_get_psn(packet->ohdr); |
| u32 pad = packet->pad; |
| struct ib_wc wc; |
| u32 pmtu = qp->pmtu; |
| int diff; |
| struct ib_reth *reth; |
| unsigned long flags; |
| int ret; |
| bool copy_last = false, fecn; |
| u32 rkey; |
| u8 extra_bytes = pad + packet->extra_byte + (SIZE_OF_CRC << 2); |
| |
| lockdep_assert_held(&qp->r_lock); |
| |
| if (hfi1_ruc_check_hdr(ibp, packet)) |
| return; |
| |
| fecn = process_ecn(qp, packet); |
| opfn_trigger_conn_request(qp, be32_to_cpu(ohdr->bth[1])); |
| |
| /* |
| * Process responses (ACKs) before anything else. Note that the |
| * packet sequence number will be for something in the send work |
| * queue rather than the expected receive packet sequence number. |
| * In other words, this QP is the requester. |
| */ |
| if (opcode >= OP(RDMA_READ_RESPONSE_FIRST) && |
| opcode <= OP(ATOMIC_ACKNOWLEDGE)) { |
| rc_rcv_resp(packet); |
| return; |
| } |
| |
| /* Compute 24 bits worth of difference. */ |
| diff = delta_psn(psn, qp->r_psn); |
| if (unlikely(diff)) { |
| if (rc_rcv_error(ohdr, data, qp, opcode, psn, diff, rcd)) |
| return; |
| goto send_ack; |
| } |
| |
| /* Check for opcode sequence errors. */ |
| switch (qp->r_state) { |
| case OP(SEND_FIRST): |
| case OP(SEND_MIDDLE): |
| if (opcode == OP(SEND_MIDDLE) || |
| opcode == OP(SEND_LAST) || |
| opcode == OP(SEND_LAST_WITH_IMMEDIATE) || |
| opcode == OP(SEND_LAST_WITH_INVALIDATE)) |
| break; |
| goto nack_inv; |
| |
| case OP(RDMA_WRITE_FIRST): |
| case OP(RDMA_WRITE_MIDDLE): |
| if (opcode == OP(RDMA_WRITE_MIDDLE) || |
| opcode == OP(RDMA_WRITE_LAST) || |
| opcode == OP(RDMA_WRITE_LAST_WITH_IMMEDIATE)) |
| break; |
| goto nack_inv; |
| |
| default: |
| if (opcode == OP(SEND_MIDDLE) || |
| opcode == OP(SEND_LAST) || |
| opcode == OP(SEND_LAST_WITH_IMMEDIATE) || |
| opcode == OP(SEND_LAST_WITH_INVALIDATE) || |
| opcode == OP(RDMA_WRITE_MIDDLE) || |
| opcode == OP(RDMA_WRITE_LAST) || |
| opcode == OP(RDMA_WRITE_LAST_WITH_IMMEDIATE)) |
| goto nack_inv; |
| /* |
| * Note that it is up to the requester to not send a new |
| * RDMA read or atomic operation before receiving an ACK |
| * for the previous operation. |
| */ |
| break; |
| } |
| |
| if (qp->state == IB_QPS_RTR && !(qp->r_flags & RVT_R_COMM_EST)) |
| rvt_comm_est(qp); |
| |
| /* OK, process the packet. */ |
| switch (opcode) { |
| case OP(SEND_FIRST): |
| ret = rvt_get_rwqe(qp, false); |
| if (ret < 0) |
| goto nack_op_err; |
| if (!ret) |
| goto rnr_nak; |
| qp->r_rcv_len = 0; |
| /* FALLTHROUGH */ |
| case OP(SEND_MIDDLE): |
| case OP(RDMA_WRITE_MIDDLE): |
| send_middle: |
| /* Check for invalid length PMTU or posted rwqe len. */ |
| /* |
| * There will be no padding for 9B packet but 16B packets |
| * will come in with some padding since we always add |
| * CRC and LT bytes which will need to be flit aligned |
| */ |
| if (unlikely(tlen != (hdrsize + pmtu + extra_bytes))) |
| goto nack_inv; |
| qp->r_rcv_len += pmtu; |
| if (unlikely(qp->r_rcv_len > qp->r_len)) |
| goto nack_inv; |
| rvt_copy_sge(qp, &qp->r_sge, data, pmtu, true, false); |
| break; |
| |
| case OP(RDMA_WRITE_LAST_WITH_IMMEDIATE): |
| /* consume RWQE */ |
| ret = rvt_get_rwqe(qp, true); |
| if (ret < 0) |
| goto nack_op_err; |
| if (!ret) |
| goto rnr_nak; |
| goto send_last_imm; |
| |
| case OP(SEND_ONLY): |
| case OP(SEND_ONLY_WITH_IMMEDIATE): |
| case OP(SEND_ONLY_WITH_INVALIDATE): |
| ret = rvt_get_rwqe(qp, false); |
| if (ret < 0) |
| goto nack_op_err; |
| if (!ret) |
| goto rnr_nak; |
| qp->r_rcv_len = 0; |
| if (opcode == OP(SEND_ONLY)) |
| goto no_immediate_data; |
| if (opcode == OP(SEND_ONLY_WITH_INVALIDATE)) |
| goto send_last_inv; |
| /* FALLTHROUGH -- for SEND_ONLY_WITH_IMMEDIATE */ |
| case OP(SEND_LAST_WITH_IMMEDIATE): |
| send_last_imm: |
| wc.ex.imm_data = ohdr->u.imm_data; |
| wc.wc_flags = IB_WC_WITH_IMM; |
| goto send_last; |
| case OP(SEND_LAST_WITH_INVALIDATE): |
| send_last_inv: |
| rkey = be32_to_cpu(ohdr->u.ieth); |
| if (rvt_invalidate_rkey(qp, rkey)) |
| goto no_immediate_data; |
| wc.ex.invalidate_rkey = rkey; |
| wc.wc_flags = IB_WC_WITH_INVALIDATE; |
| goto send_last; |
| case OP(RDMA_WRITE_LAST): |
| copy_last = rvt_is_user_qp(qp); |
| /* fall through */ |
| case OP(SEND_LAST): |
| no_immediate_data: |
| wc.wc_flags = 0; |
| wc.ex.imm_data = 0; |
| send_last: |
| /* Check for invalid length. */ |
| /* LAST len should be >= 1 */ |
| if (unlikely(tlen < (hdrsize + extra_bytes))) |
| goto nack_inv; |
| /* Don't count the CRC(and padding and LT byte for 16B). */ |
| tlen -= (hdrsize + extra_bytes); |
| wc.byte_len = tlen + qp->r_rcv_len; |
| if (unlikely(wc.byte_len > qp->r_len)) |
| goto nack_inv; |
| rvt_copy_sge(qp, &qp->r_sge, data, tlen, true, copy_last); |
| rvt_put_ss(&qp->r_sge); |
| qp->r_msn++; |
| if (!__test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) |
| break; |
| wc.wr_id = qp->r_wr_id; |
| wc.status = IB_WC_SUCCESS; |
| if (opcode == OP(RDMA_WRITE_LAST_WITH_IMMEDIATE) || |
| opcode == OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE)) |
| wc.opcode = IB_WC_RECV_RDMA_WITH_IMM; |
| else |
| wc.opcode = IB_WC_RECV; |
| wc.qp = &qp->ibqp; |
| wc.src_qp = qp->remote_qpn; |
| wc.slid = rdma_ah_get_dlid(&qp->remote_ah_attr) & U16_MAX; |
| /* |
| * It seems that IB mandates the presence of an SL in a |
| * work completion only for the UD transport (see section |
| * 11.4.2 of IBTA Vol. 1). |
| * |
| * However, the way the SL is chosen below is consistent |
| * with the way that IB/qib works and is trying avoid |
| * introducing incompatibilities. |
| * |
| * See also OPA Vol. 1, section 9.7.6, and table 9-17. |
| */ |
| wc.sl = rdma_ah_get_sl(&qp->remote_ah_attr); |
| /* zero fields that are N/A */ |
| wc.vendor_err = 0; |
| wc.pkey_index = 0; |
| wc.dlid_path_bits = 0; |
| wc.port_num = 0; |
| /* Signal completion event if the solicited bit is set. */ |
| rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, |
| ib_bth_is_solicited(ohdr)); |
| break; |
| |
| case OP(RDMA_WRITE_ONLY): |
| copy_last = rvt_is_user_qp(qp); |
| /* fall through */ |
| case OP(RDMA_WRITE_FIRST): |
| case OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE): |
| if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE))) |
| goto nack_inv; |
| /* consume RWQE */ |
| reth = &ohdr->u.rc.reth; |
| qp->r_len = be32_to_cpu(reth->length); |
| qp->r_rcv_len = 0; |
| qp->r_sge.sg_list = NULL; |
| if (qp->r_len != 0) { |
| u32 rkey = be32_to_cpu(reth->rkey); |
| u64 vaddr = get_ib_reth_vaddr(reth); |
| int ok; |
| |
| /* Check rkey & NAK */ |
| ok = rvt_rkey_ok(qp, &qp->r_sge.sge, qp->r_len, vaddr, |
| rkey, IB_ACCESS_REMOTE_WRITE); |
| if (unlikely(!ok)) |
| goto nack_acc; |
| qp->r_sge.num_sge = 1; |
| } else { |
| qp->r_sge.num_sge = 0; |
| qp->r_sge.sge.mr = NULL; |
| qp->r_sge.sge.vaddr = NULL; |
| qp->r_sge.sge.length = 0; |
| qp->r_sge.sge.sge_length = 0; |
| } |
| if (opcode == OP(RDMA_WRITE_FIRST)) |
| goto send_middle; |
| else if (opcode == OP(RDMA_WRITE_ONLY)) |
| goto no_immediate_data; |
| ret = rvt_get_rwqe(qp, true); |
| if (ret < 0) |
| goto nack_op_err; |
| if (!ret) { |
| /* peer will send again */ |
| rvt_put_ss(&qp->r_sge); |
| goto rnr_nak; |
| } |
| wc.ex.imm_data = ohdr->u.rc.imm_data; |
| wc.wc_flags = IB_WC_WITH_IMM; |
| goto send_last; |
| |
| case OP(RDMA_READ_REQUEST): { |
| struct rvt_ack_entry *e; |
| u32 len; |
| u8 next; |
| |
| if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ))) |
| goto nack_inv; |
| next = qp->r_head_ack_queue + 1; |
| /* s_ack_queue is size rvt_size_atomic()+1 so use > not >= */ |
| if (next > rvt_size_atomic(ib_to_rvt(qp->ibqp.device))) |
| next = 0; |
| spin_lock_irqsave(&qp->s_lock, flags); |
| if (unlikely(next == qp->s_acked_ack_queue)) { |
| if (!qp->s_ack_queue[next].sent) |
| goto nack_inv_unlck; |
| update_ack_queue(qp, next); |
| } |
| e = &qp->s_ack_queue[qp->r_head_ack_queue]; |
| if (e->rdma_sge.mr) { |
| rvt_put_mr(e->rdma_sge.mr); |
| e->rdma_sge.mr = NULL; |
| } |
| reth = &ohdr->u.rc.reth; |
| len = be32_to_cpu(reth->length); |
| if (len) { |
| u32 rkey = be32_to_cpu(reth->rkey); |
| u64 vaddr = get_ib_reth_vaddr(reth); |
| int ok; |
| |
| /* Check rkey & NAK */ |
| ok = rvt_rkey_ok(qp, &e->rdma_sge, len, vaddr, |
| rkey, IB_ACCESS_REMOTE_READ); |
| if (unlikely(!ok)) |
| goto nack_acc_unlck; |
| /* |
| * Update the next expected PSN. We add 1 later |
| * below, so only add the remainder here. |
| */ |
| qp->r_psn += rvt_div_mtu(qp, len - 1); |
| } else { |
| e->rdma_sge.mr = NULL; |
| e->rdma_sge.vaddr = NULL; |
| e->rdma_sge.length = 0; |
| e->rdma_sge.sge_length = 0; |
| } |
| e->opcode = opcode; |
| e->sent = 0; |
| e->psn = psn; |
| e->lpsn = qp->r_psn; |
| /* |
| * We need to increment the MSN here instead of when we |
| * finish sending the result since a duplicate request would |
| * increment it more than once. |
| */ |
| qp->r_msn++; |
| qp->r_psn++; |
| qp->r_state = opcode; |
| qp->r_nak_state = 0; |
| qp->r_head_ack_queue = next; |
| qpriv->r_tid_alloc = qp->r_head_ack_queue; |
| |
| /* Schedule the send engine. */ |
| qp->s_flags |= RVT_S_RESP_PENDING; |
| if (fecn) |
| qp->s_flags |= RVT_S_ECN; |
| hfi1_schedule_send(qp); |
| |
| spin_unlock_irqrestore(&qp->s_lock, flags); |
| return; |
| } |
| |
| case OP(COMPARE_SWAP): |
| case OP(FETCH_ADD): { |
| struct ib_atomic_eth *ateth = &ohdr->u.atomic_eth; |
| u64 vaddr = get_ib_ateth_vaddr(ateth); |
| bool opfn = opcode == OP(COMPARE_SWAP) && |
| vaddr == HFI1_VERBS_E_ATOMIC_VADDR; |
| struct rvt_ack_entry *e; |
| atomic64_t *maddr; |
| u64 sdata; |
| u32 rkey; |
| u8 next; |
| |
| if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_ATOMIC) && |
| !opfn)) |
| goto nack_inv; |
| next = qp->r_head_ack_queue + 1; |
| if (next > rvt_size_atomic(ib_to_rvt(qp->ibqp.device))) |
| next = 0; |
| spin_lock_irqsave(&qp->s_lock, flags); |
| if (unlikely(next == qp->s_acked_ack_queue)) { |
| if (!qp->s_ack_queue[next].sent) |
| goto nack_inv_unlck; |
| update_ack_queue(qp, next); |
| } |
| e = &qp->s_ack_queue[qp->r_head_ack_queue]; |
| if (e->rdma_sge.mr) { |
| rvt_put_mr(e->rdma_sge.mr); |
| e->rdma_sge.mr = NULL; |
| } |
| /* Process OPFN special virtual address */ |
| if (opfn) { |
| opfn_conn_response(qp, e, ateth); |
| goto ack; |
| } |
| if (unlikely(vaddr & (sizeof(u64) - 1))) |
| goto nack_inv_unlck; |
| rkey = be32_to_cpu(ateth->rkey); |
| /* Check rkey & NAK */ |
| if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, sizeof(u64), |
| vaddr, rkey, |
| IB_ACCESS_REMOTE_ATOMIC))) |
| goto nack_acc_unlck; |
| /* Perform atomic OP and save result. */ |
| maddr = (atomic64_t *)qp->r_sge.sge.vaddr; |
| sdata = get_ib_ateth_swap(ateth); |
| e->atomic_data = (opcode == OP(FETCH_ADD)) ? |
| (u64)atomic64_add_return(sdata, maddr) - sdata : |
| (u64)cmpxchg((u64 *)qp->r_sge.sge.vaddr, |
| get_ib_ateth_compare(ateth), |
| sdata); |
| rvt_put_mr(qp->r_sge.sge.mr); |
| qp->r_sge.num_sge = 0; |
| ack: |
| e->opcode = opcode; |
| e->sent = 0; |
| e->psn = psn; |
| e->lpsn = psn; |
| qp->r_msn++; |
| qp->r_psn++; |
| qp->r_state = opcode; |
| qp->r_nak_state = 0; |
| qp->r_head_ack_queue = next; |
| qpriv->r_tid_alloc = qp->r_head_ack_queue; |
| |
| /* Schedule the send engine. */ |
| qp->s_flags |= RVT_S_RESP_PENDING; |
| if (fecn) |
| qp->s_flags |= RVT_S_ECN; |
| hfi1_schedule_send(qp); |
| |
| spin_unlock_irqrestore(&qp->s_lock, flags); |
| return; |
| } |
| |
| default: |
| /* NAK unknown opcodes. */ |
| goto nack_inv; |
| } |
| qp->r_psn++; |
| qp->r_state = opcode; |
| qp->r_ack_psn = psn; |
| qp->r_nak_state = 0; |
| /* Send an ACK if requested or required. */ |
| if (psn & IB_BTH_REQ_ACK || fecn) { |
| if (packet->numpkt == 0 || fecn || |
| qp->r_adefered >= HFI1_PSN_CREDIT) { |
| rc_cancel_ack(qp); |
| goto send_ack; |
| } |
| qp->r_adefered++; |
| rc_defered_ack(rcd, qp); |
| } |
| return; |
| |
| rnr_nak: |
| qp->r_nak_state = qp->r_min_rnr_timer | IB_RNR_NAK; |
| qp->r_ack_psn = qp->r_psn; |
| /* Queue RNR NAK for later */ |
| rc_defered_ack(rcd, qp); |
| return; |
| |
| nack_op_err: |
| rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR); |
| qp->r_nak_state = IB_NAK_REMOTE_OPERATIONAL_ERROR; |
| qp->r_ack_psn = qp->r_psn; |
| /* Queue NAK for later */ |
| rc_defered_ack(rcd, qp); |
| return; |
| |
| nack_inv_unlck: |
| spin_unlock_irqrestore(&qp->s_lock, flags); |
| nack_inv: |
| rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR); |
| qp->r_nak_state = IB_NAK_INVALID_REQUEST; |
| qp->r_ack_psn = qp->r_psn; |
| /* Queue NAK for later */ |
| rc_defered_ack(rcd, qp); |
| return; |
| |
| nack_acc_unlck: |
| spin_unlock_irqrestore(&qp->s_lock, flags); |
| nack_acc: |
| rvt_rc_error(qp, IB_WC_LOC_PROT_ERR); |
| qp->r_nak_state = IB_NAK_REMOTE_ACCESS_ERROR; |
| qp->r_ack_psn = qp->r_psn; |
| send_ack: |
| hfi1_send_rc_ack(packet, fecn); |
| } |
| |
| void hfi1_rc_hdrerr( |
| struct hfi1_ctxtdata *rcd, |
| struct hfi1_packet *packet, |
| struct rvt_qp *qp) |
| { |
| struct hfi1_ibport *ibp = rcd_to_iport(rcd); |
| int diff; |
| u32 opcode; |
| u32 psn; |
| |
| if (hfi1_ruc_check_hdr(ibp, packet)) |
| return; |
| |
| psn = ib_bth_get_psn(packet->ohdr); |
| opcode = ib_bth_get_opcode(packet->ohdr); |
| |
| /* Only deal with RDMA Writes for now */ |
| if (opcode < IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST) { |
| diff = delta_psn(psn, qp->r_psn); |
| if (!qp->r_nak_state && diff >= 0) { |
| ibp->rvp.n_rc_seqnak++; |
| qp->r_nak_state = IB_NAK_PSN_ERROR; |
| /* Use the expected PSN. */ |
| qp->r_ack_psn = qp->r_psn; |
| /* |
| * Wait to send the sequence |
| * NAK until all packets |
| * in the receive queue have |
| * been processed. |
| * Otherwise, we end up |
| * propagating congestion. |
| */ |
| rc_defered_ack(rcd, qp); |
| } /* Out of sequence NAK */ |
| } /* QP Request NAKs */ |
| } |