blob: 1acc622d218333ac131666536b1077fb1b9ee808 [file] [log] [blame]
// SPDX-License-Identifier: ISC
/*
* Copyright (c) 2005-2011 Atheros Communications Inc.
* Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
* Copyright (c) 2018, The Linux Foundation. All rights reserved.
*/
#include "core.h"
#include "htc.h"
#include "htt.h"
#include "txrx.h"
#include "debug.h"
#include "trace.h"
#include "mac.h"
#include <linux/log2.h>
#include <linux/bitfield.h>
/* when under memory pressure rx ring refill may fail and needs a retry */
#define HTT_RX_RING_REFILL_RETRY_MS 50
#define HTT_RX_RING_REFILL_RESCHED_MS 5
static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb);
static struct sk_buff *
ath10k_htt_rx_find_skb_paddr(struct ath10k *ar, u64 paddr)
{
struct ath10k_skb_rxcb *rxcb;
hash_for_each_possible(ar->htt.rx_ring.skb_table, rxcb, hlist, paddr)
if (rxcb->paddr == paddr)
return ATH10K_RXCB_SKB(rxcb);
WARN_ON_ONCE(1);
return NULL;
}
static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt)
{
struct sk_buff *skb;
struct ath10k_skb_rxcb *rxcb;
struct hlist_node *n;
int i;
if (htt->rx_ring.in_ord_rx) {
hash_for_each_safe(htt->rx_ring.skb_table, i, n, rxcb, hlist) {
skb = ATH10K_RXCB_SKB(rxcb);
dma_unmap_single(htt->ar->dev, rxcb->paddr,
skb->len + skb_tailroom(skb),
DMA_FROM_DEVICE);
hash_del(&rxcb->hlist);
dev_kfree_skb_any(skb);
}
} else {
for (i = 0; i < htt->rx_ring.size; i++) {
skb = htt->rx_ring.netbufs_ring[i];
if (!skb)
continue;
rxcb = ATH10K_SKB_RXCB(skb);
dma_unmap_single(htt->ar->dev, rxcb->paddr,
skb->len + skb_tailroom(skb),
DMA_FROM_DEVICE);
dev_kfree_skb_any(skb);
}
}
htt->rx_ring.fill_cnt = 0;
hash_init(htt->rx_ring.skb_table);
memset(htt->rx_ring.netbufs_ring, 0,
htt->rx_ring.size * sizeof(htt->rx_ring.netbufs_ring[0]));
}
static size_t ath10k_htt_get_rx_ring_size_32(struct ath10k_htt *htt)
{
return htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring_32);
}
static size_t ath10k_htt_get_rx_ring_size_64(struct ath10k_htt *htt)
{
return htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring_64);
}
static void ath10k_htt_config_paddrs_ring_32(struct ath10k_htt *htt,
void *vaddr)
{
htt->rx_ring.paddrs_ring_32 = vaddr;
}
static void ath10k_htt_config_paddrs_ring_64(struct ath10k_htt *htt,
void *vaddr)
{
htt->rx_ring.paddrs_ring_64 = vaddr;
}
static void ath10k_htt_set_paddrs_ring_32(struct ath10k_htt *htt,
dma_addr_t paddr, int idx)
{
htt->rx_ring.paddrs_ring_32[idx] = __cpu_to_le32(paddr);
}
static void ath10k_htt_set_paddrs_ring_64(struct ath10k_htt *htt,
dma_addr_t paddr, int idx)
{
htt->rx_ring.paddrs_ring_64[idx] = __cpu_to_le64(paddr);
}
static void ath10k_htt_reset_paddrs_ring_32(struct ath10k_htt *htt, int idx)
{
htt->rx_ring.paddrs_ring_32[idx] = 0;
}
static void ath10k_htt_reset_paddrs_ring_64(struct ath10k_htt *htt, int idx)
{
htt->rx_ring.paddrs_ring_64[idx] = 0;
}
static void *ath10k_htt_get_vaddr_ring_32(struct ath10k_htt *htt)
{
return (void *)htt->rx_ring.paddrs_ring_32;
}
static void *ath10k_htt_get_vaddr_ring_64(struct ath10k_htt *htt)
{
return (void *)htt->rx_ring.paddrs_ring_64;
}
static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
{
struct htt_rx_desc *rx_desc;
struct ath10k_skb_rxcb *rxcb;
struct sk_buff *skb;
dma_addr_t paddr;
int ret = 0, idx;
/* The Full Rx Reorder firmware has no way of telling the host
* implicitly when it copied HTT Rx Ring buffers to MAC Rx Ring.
* To keep things simple make sure ring is always half empty. This
* guarantees there'll be no replenishment overruns possible.
*/
BUILD_BUG_ON(HTT_RX_RING_FILL_LEVEL >= HTT_RX_RING_SIZE / 2);
idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
while (num > 0) {
skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN);
if (!skb) {
ret = -ENOMEM;
goto fail;
}
if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN))
skb_pull(skb,
PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) -
skb->data);
/* Clear rx_desc attention word before posting to Rx ring */
rx_desc = (struct htt_rx_desc *)skb->data;
rx_desc->attention.flags = __cpu_to_le32(0);
paddr = dma_map_single(htt->ar->dev, skb->data,
skb->len + skb_tailroom(skb),
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) {
dev_kfree_skb_any(skb);
ret = -ENOMEM;
goto fail;
}
rxcb = ATH10K_SKB_RXCB(skb);
rxcb->paddr = paddr;
htt->rx_ring.netbufs_ring[idx] = skb;
ath10k_htt_set_paddrs_ring(htt, paddr, idx);
htt->rx_ring.fill_cnt++;
if (htt->rx_ring.in_ord_rx) {
hash_add(htt->rx_ring.skb_table,
&ATH10K_SKB_RXCB(skb)->hlist,
paddr);
}
num--;
idx++;
idx &= htt->rx_ring.size_mask;
}
fail:
/*
* Make sure the rx buffer is updated before available buffer
* index to avoid any potential rx ring corruption.
*/
mb();
*htt->rx_ring.alloc_idx.vaddr = __cpu_to_le32(idx);
return ret;
}
static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
{
lockdep_assert_held(&htt->rx_ring.lock);
return __ath10k_htt_rx_ring_fill_n(htt, num);
}
static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt)
{
int ret, num_deficit, num_to_fill;
/* Refilling the whole RX ring buffer proves to be a bad idea. The
* reason is RX may take up significant amount of CPU cycles and starve
* other tasks, e.g. TX on an ethernet device while acting as a bridge
* with ath10k wlan interface. This ended up with very poor performance
* once CPU the host system was overwhelmed with RX on ath10k.
*
* By limiting the number of refills the replenishing occurs
* progressively. This in turns makes use of the fact tasklets are
* processed in FIFO order. This means actual RX processing can starve
* out refilling. If there's not enough buffers on RX ring FW will not
* report RX until it is refilled with enough buffers. This
* automatically balances load wrt to CPU power.
*
* This probably comes at a cost of lower maximum throughput but
* improves the average and stability.
*/
spin_lock_bh(&htt->rx_ring.lock);
num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt;
num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit);
num_deficit -= num_to_fill;
ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill);
if (ret == -ENOMEM) {
/*
* Failed to fill it to the desired level -
* we'll start a timer and try again next time.
* As long as enough buffers are left in the ring for
* another A-MPDU rx, no special recovery is needed.
*/
mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS));
} else if (num_deficit > 0) {
mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
msecs_to_jiffies(HTT_RX_RING_REFILL_RESCHED_MS));
}
spin_unlock_bh(&htt->rx_ring.lock);
}
static void ath10k_htt_rx_ring_refill_retry(struct timer_list *t)
{
struct ath10k_htt *htt = from_timer(htt, t, rx_ring.refill_retry_timer);
ath10k_htt_rx_msdu_buff_replenish(htt);
}
int ath10k_htt_rx_ring_refill(struct ath10k *ar)
{
struct ath10k_htt *htt = &ar->htt;
int ret;
if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL)
return 0;
spin_lock_bh(&htt->rx_ring.lock);
ret = ath10k_htt_rx_ring_fill_n(htt, (htt->rx_ring.fill_level -
htt->rx_ring.fill_cnt));
if (ret)
ath10k_htt_rx_ring_free(htt);
spin_unlock_bh(&htt->rx_ring.lock);
return ret;
}
void ath10k_htt_rx_free(struct ath10k_htt *htt)
{
if (htt->ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL)
return;
del_timer_sync(&htt->rx_ring.refill_retry_timer);
skb_queue_purge(&htt->rx_msdus_q);
skb_queue_purge(&htt->rx_in_ord_compl_q);
skb_queue_purge(&htt->tx_fetch_ind_q);
spin_lock_bh(&htt->rx_ring.lock);
ath10k_htt_rx_ring_free(htt);
spin_unlock_bh(&htt->rx_ring.lock);
dma_free_coherent(htt->ar->dev,
ath10k_htt_get_rx_ring_size(htt),
ath10k_htt_get_vaddr_ring(htt),
htt->rx_ring.base_paddr);
dma_free_coherent(htt->ar->dev,
sizeof(*htt->rx_ring.alloc_idx.vaddr),
htt->rx_ring.alloc_idx.vaddr,
htt->rx_ring.alloc_idx.paddr);
kfree(htt->rx_ring.netbufs_ring);
}
static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt)
{
struct ath10k *ar = htt->ar;
int idx;
struct sk_buff *msdu;
lockdep_assert_held(&htt->rx_ring.lock);
if (htt->rx_ring.fill_cnt == 0) {
ath10k_warn(ar, "tried to pop sk_buff from an empty rx ring\n");
return NULL;
}
idx = htt->rx_ring.sw_rd_idx.msdu_payld;
msdu = htt->rx_ring.netbufs_ring[idx];
htt->rx_ring.netbufs_ring[idx] = NULL;
ath10k_htt_reset_paddrs_ring(htt, idx);
idx++;
idx &= htt->rx_ring.size_mask;
htt->rx_ring.sw_rd_idx.msdu_payld = idx;
htt->rx_ring.fill_cnt--;
dma_unmap_single(htt->ar->dev,
ATH10K_SKB_RXCB(msdu)->paddr,
msdu->len + skb_tailroom(msdu),
DMA_FROM_DEVICE);
ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
msdu->data, msdu->len + skb_tailroom(msdu));
return msdu;
}
/* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */
static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt,
struct sk_buff_head *amsdu)
{
struct ath10k *ar = htt->ar;
int msdu_len, msdu_chaining = 0;
struct sk_buff *msdu;
struct htt_rx_desc *rx_desc;
lockdep_assert_held(&htt->rx_ring.lock);
for (;;) {
int last_msdu, msdu_len_invalid, msdu_chained;
msdu = ath10k_htt_rx_netbuf_pop(htt);
if (!msdu) {
__skb_queue_purge(amsdu);
return -ENOENT;
}
__skb_queue_tail(amsdu, msdu);
rx_desc = (struct htt_rx_desc *)msdu->data;
/* FIXME: we must report msdu payload since this is what caller
* expects now
*/
skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload));
skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload));
/*
* Sanity check - confirm the HW is finished filling in the
* rx data.
* If the HW and SW are working correctly, then it's guaranteed
* that the HW's MAC DMA is done before this point in the SW.
* To prevent the case that we handle a stale Rx descriptor,
* just assert for now until we have a way to recover.
*/
if (!(__le32_to_cpu(rx_desc->attention.flags)
& RX_ATTENTION_FLAGS_MSDU_DONE)) {
__skb_queue_purge(amsdu);
return -EIO;
}
msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags)
& (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR |
RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR));
msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.common.info0),
RX_MSDU_START_INFO0_MSDU_LENGTH);
msdu_chained = rx_desc->frag_info.ring2_more_count;
if (msdu_len_invalid)
msdu_len = 0;
skb_trim(msdu, 0);
skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE));
msdu_len -= msdu->len;
/* Note: Chained buffers do not contain rx descriptor */
while (msdu_chained--) {
msdu = ath10k_htt_rx_netbuf_pop(htt);
if (!msdu) {
__skb_queue_purge(amsdu);
return -ENOENT;
}
__skb_queue_tail(amsdu, msdu);
skb_trim(msdu, 0);
skb_put(msdu, min(msdu_len, HTT_RX_BUF_SIZE));
msdu_len -= msdu->len;
msdu_chaining = 1;
}
last_msdu = __le32_to_cpu(rx_desc->msdu_end.common.info0) &
RX_MSDU_END_INFO0_LAST_MSDU;
trace_ath10k_htt_rx_desc(ar, &rx_desc->attention,
sizeof(*rx_desc) - sizeof(u32));
if (last_msdu)
break;
}
if (skb_queue_empty(amsdu))
msdu_chaining = -1;
/*
* Don't refill the ring yet.
*
* First, the elements popped here are still in use - it is not
* safe to overwrite them until the matching call to
* mpdu_desc_list_next. Second, for efficiency it is preferable to
* refill the rx ring with 1 PPDU's worth of rx buffers (something
* like 32 x 3 buffers), rather than one MPDU's worth of rx buffers
* (something like 3 buffers). Consequently, we'll rely on the txrx
* SW to tell us when it is done pulling all the PPDU's rx buffers
* out of the rx ring, and then refill it just once.
*/
return msdu_chaining;
}
static struct sk_buff *ath10k_htt_rx_pop_paddr(struct ath10k_htt *htt,
u64 paddr)
{
struct ath10k *ar = htt->ar;
struct ath10k_skb_rxcb *rxcb;
struct sk_buff *msdu;
lockdep_assert_held(&htt->rx_ring.lock);
msdu = ath10k_htt_rx_find_skb_paddr(ar, paddr);
if (!msdu)
return NULL;
rxcb = ATH10K_SKB_RXCB(msdu);
hash_del(&rxcb->hlist);
htt->rx_ring.fill_cnt--;
dma_unmap_single(htt->ar->dev, rxcb->paddr,
msdu->len + skb_tailroom(msdu),
DMA_FROM_DEVICE);
ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
msdu->data, msdu->len + skb_tailroom(msdu));
return msdu;
}
static inline void ath10k_htt_append_frag_list(struct sk_buff *skb_head,
struct sk_buff *frag_list,
unsigned int frag_len)
{
skb_shinfo(skb_head)->frag_list = frag_list;
skb_head->data_len = frag_len;
skb_head->len += skb_head->data_len;
}
static int ath10k_htt_rx_handle_amsdu_mon_32(struct ath10k_htt *htt,
struct sk_buff *msdu,
struct htt_rx_in_ord_msdu_desc **msdu_desc)
{
struct ath10k *ar = htt->ar;
u32 paddr;
struct sk_buff *frag_buf;
struct sk_buff *prev_frag_buf;
u8 last_frag;
struct htt_rx_in_ord_msdu_desc *ind_desc = *msdu_desc;
struct htt_rx_desc *rxd;
int amsdu_len = __le16_to_cpu(ind_desc->msdu_len);
rxd = (void *)msdu->data;
trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
skb_put(msdu, sizeof(struct htt_rx_desc));
skb_pull(msdu, sizeof(struct htt_rx_desc));
skb_put(msdu, min(amsdu_len, HTT_RX_MSDU_SIZE));
amsdu_len -= msdu->len;
last_frag = ind_desc->reserved;
if (last_frag) {
if (amsdu_len) {
ath10k_warn(ar, "invalid amsdu len %u, left %d",
__le16_to_cpu(ind_desc->msdu_len),
amsdu_len);
}
return 0;
}
ind_desc++;
paddr = __le32_to_cpu(ind_desc->msdu_paddr);
frag_buf = ath10k_htt_rx_pop_paddr(htt, paddr);
if (!frag_buf) {
ath10k_warn(ar, "failed to pop frag-1 paddr: 0x%x", paddr);
return -ENOENT;
}
skb_put(frag_buf, min(amsdu_len, HTT_RX_BUF_SIZE));
ath10k_htt_append_frag_list(msdu, frag_buf, amsdu_len);
amsdu_len -= frag_buf->len;
prev_frag_buf = frag_buf;
last_frag = ind_desc->reserved;
while (!last_frag) {
ind_desc++;
paddr = __le32_to_cpu(ind_desc->msdu_paddr);
frag_buf = ath10k_htt_rx_pop_paddr(htt, paddr);
if (!frag_buf) {
ath10k_warn(ar, "failed to pop frag-n paddr: 0x%x",
paddr);
prev_frag_buf->next = NULL;
return -ENOENT;
}
skb_put(frag_buf, min(amsdu_len, HTT_RX_BUF_SIZE));
last_frag = ind_desc->reserved;
amsdu_len -= frag_buf->len;
prev_frag_buf->next = frag_buf;
prev_frag_buf = frag_buf;
}
if (amsdu_len) {
ath10k_warn(ar, "invalid amsdu len %u, left %d",
__le16_to_cpu(ind_desc->msdu_len), amsdu_len);
}
*msdu_desc = ind_desc;
prev_frag_buf->next = NULL;
return 0;
}
static int
ath10k_htt_rx_handle_amsdu_mon_64(struct ath10k_htt *htt,
struct sk_buff *msdu,
struct htt_rx_in_ord_msdu_desc_ext **msdu_desc)
{
struct ath10k *ar = htt->ar;
u64 paddr;
struct sk_buff *frag_buf;
struct sk_buff *prev_frag_buf;
u8 last_frag;
struct htt_rx_in_ord_msdu_desc_ext *ind_desc = *msdu_desc;
struct htt_rx_desc *rxd;
int amsdu_len = __le16_to_cpu(ind_desc->msdu_len);
rxd = (void *)msdu->data;
trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
skb_put(msdu, sizeof(struct htt_rx_desc));
skb_pull(msdu, sizeof(struct htt_rx_desc));
skb_put(msdu, min(amsdu_len, HTT_RX_MSDU_SIZE));
amsdu_len -= msdu->len;
last_frag = ind_desc->reserved;
if (last_frag) {
if (amsdu_len) {
ath10k_warn(ar, "invalid amsdu len %u, left %d",
__le16_to_cpu(ind_desc->msdu_len),
amsdu_len);
}
return 0;
}
ind_desc++;
paddr = __le64_to_cpu(ind_desc->msdu_paddr);
frag_buf = ath10k_htt_rx_pop_paddr(htt, paddr);
if (!frag_buf) {
ath10k_warn(ar, "failed to pop frag-1 paddr: 0x%llx", paddr);
return -ENOENT;
}
skb_put(frag_buf, min(amsdu_len, HTT_RX_BUF_SIZE));
ath10k_htt_append_frag_list(msdu, frag_buf, amsdu_len);
amsdu_len -= frag_buf->len;
prev_frag_buf = frag_buf;
last_frag = ind_desc->reserved;
while (!last_frag) {
ind_desc++;
paddr = __le64_to_cpu(ind_desc->msdu_paddr);
frag_buf = ath10k_htt_rx_pop_paddr(htt, paddr);
if (!frag_buf) {
ath10k_warn(ar, "failed to pop frag-n paddr: 0x%llx",
paddr);
prev_frag_buf->next = NULL;
return -ENOENT;
}
skb_put(frag_buf, min(amsdu_len, HTT_RX_BUF_SIZE));
last_frag = ind_desc->reserved;
amsdu_len -= frag_buf->len;
prev_frag_buf->next = frag_buf;
prev_frag_buf = frag_buf;
}
if (amsdu_len) {
ath10k_warn(ar, "invalid amsdu len %u, left %d",
__le16_to_cpu(ind_desc->msdu_len), amsdu_len);
}
*msdu_desc = ind_desc;
prev_frag_buf->next = NULL;
return 0;
}
static int ath10k_htt_rx_pop_paddr32_list(struct ath10k_htt *htt,
struct htt_rx_in_ord_ind *ev,
struct sk_buff_head *list)
{
struct ath10k *ar = htt->ar;
struct htt_rx_in_ord_msdu_desc *msdu_desc = ev->msdu_descs32;
struct htt_rx_desc *rxd;
struct sk_buff *msdu;
int msdu_count, ret;
bool is_offload;
u32 paddr;
lockdep_assert_held(&htt->rx_ring.lock);
msdu_count = __le16_to_cpu(ev->msdu_count);
is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
while (msdu_count--) {
paddr = __le32_to_cpu(msdu_desc->msdu_paddr);
msdu = ath10k_htt_rx_pop_paddr(htt, paddr);
if (!msdu) {
__skb_queue_purge(list);
return -ENOENT;
}
if (!is_offload && ar->monitor_arvif) {
ret = ath10k_htt_rx_handle_amsdu_mon_32(htt, msdu,
&msdu_desc);
if (ret) {
__skb_queue_purge(list);
return ret;
}
__skb_queue_tail(list, msdu);
msdu_desc++;
continue;
}
__skb_queue_tail(list, msdu);
if (!is_offload) {
rxd = (void *)msdu->data;
trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
skb_put(msdu, sizeof(*rxd));
skb_pull(msdu, sizeof(*rxd));
skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len));
if (!(__le32_to_cpu(rxd->attention.flags) &
RX_ATTENTION_FLAGS_MSDU_DONE)) {
ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n");
return -EIO;
}
}
msdu_desc++;
}
return 0;
}
static int ath10k_htt_rx_pop_paddr64_list(struct ath10k_htt *htt,
struct htt_rx_in_ord_ind *ev,
struct sk_buff_head *list)
{
struct ath10k *ar = htt->ar;
struct htt_rx_in_ord_msdu_desc_ext *msdu_desc = ev->msdu_descs64;
struct htt_rx_desc *rxd;
struct sk_buff *msdu;
int msdu_count, ret;
bool is_offload;
u64 paddr;
lockdep_assert_held(&htt->rx_ring.lock);
msdu_count = __le16_to_cpu(ev->msdu_count);
is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
while (msdu_count--) {
paddr = __le64_to_cpu(msdu_desc->msdu_paddr);
msdu = ath10k_htt_rx_pop_paddr(htt, paddr);
if (!msdu) {
__skb_queue_purge(list);
return -ENOENT;
}
if (!is_offload && ar->monitor_arvif) {
ret = ath10k_htt_rx_handle_amsdu_mon_64(htt, msdu,
&msdu_desc);
if (ret) {
__skb_queue_purge(list);
return ret;
}
__skb_queue_tail(list, msdu);
msdu_desc++;
continue;
}
__skb_queue_tail(list, msdu);
if (!is_offload) {
rxd = (void *)msdu->data;
trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
skb_put(msdu, sizeof(*rxd));
skb_pull(msdu, sizeof(*rxd));
skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len));
if (!(__le32_to_cpu(rxd->attention.flags) &
RX_ATTENTION_FLAGS_MSDU_DONE)) {
ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n");
return -EIO;
}
}
msdu_desc++;
}
return 0;
}
int ath10k_htt_rx_alloc(struct ath10k_htt *htt)
{
struct ath10k *ar = htt->ar;
dma_addr_t paddr;
void *vaddr, *vaddr_ring;
size_t size;
struct timer_list *timer = &htt->rx_ring.refill_retry_timer;
if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL)
return 0;
htt->rx_confused = false;
/* XXX: The fill level could be changed during runtime in response to
* the host processing latency. Is this really worth it?
*/
htt->rx_ring.size = HTT_RX_RING_SIZE;
htt->rx_ring.size_mask = htt->rx_ring.size - 1;
htt->rx_ring.fill_level = ar->hw_params.rx_ring_fill_level;
if (!is_power_of_2(htt->rx_ring.size)) {
ath10k_warn(ar, "htt rx ring size is not power of 2\n");
return -EINVAL;
}
htt->rx_ring.netbufs_ring =
kcalloc(htt->rx_ring.size, sizeof(struct sk_buff *),
GFP_KERNEL);
if (!htt->rx_ring.netbufs_ring)
goto err_netbuf;
size = ath10k_htt_get_rx_ring_size(htt);
vaddr_ring = dma_alloc_coherent(htt->ar->dev, size, &paddr, GFP_KERNEL);
if (!vaddr_ring)
goto err_dma_ring;
ath10k_htt_config_paddrs_ring(htt, vaddr_ring);
htt->rx_ring.base_paddr = paddr;
vaddr = dma_alloc_coherent(htt->ar->dev,
sizeof(*htt->rx_ring.alloc_idx.vaddr),
&paddr, GFP_KERNEL);
if (!vaddr)
goto err_dma_idx;
htt->rx_ring.alloc_idx.vaddr = vaddr;
htt->rx_ring.alloc_idx.paddr = paddr;
htt->rx_ring.sw_rd_idx.msdu_payld = htt->rx_ring.size_mask;
*htt->rx_ring.alloc_idx.vaddr = 0;
/* Initialize the Rx refill retry timer */
timer_setup(timer, ath10k_htt_rx_ring_refill_retry, 0);
spin_lock_init(&htt->rx_ring.lock);
htt->rx_ring.fill_cnt = 0;
htt->rx_ring.sw_rd_idx.msdu_payld = 0;
hash_init(htt->rx_ring.skb_table);
skb_queue_head_init(&htt->rx_msdus_q);
skb_queue_head_init(&htt->rx_in_ord_compl_q);
skb_queue_head_init(&htt->tx_fetch_ind_q);
atomic_set(&htt->num_mpdus_ready, 0);
ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n",
htt->rx_ring.size, htt->rx_ring.fill_level);
return 0;
err_dma_idx:
dma_free_coherent(htt->ar->dev,
ath10k_htt_get_rx_ring_size(htt),
vaddr_ring,
htt->rx_ring.base_paddr);
err_dma_ring:
kfree(htt->rx_ring.netbufs_ring);
err_netbuf:
return -ENOMEM;
}
static int ath10k_htt_rx_crypto_param_len(struct ath10k *ar,
enum htt_rx_mpdu_encrypt_type type)
{
switch (type) {
case HTT_RX_MPDU_ENCRYPT_NONE:
return 0;
case HTT_RX_MPDU_ENCRYPT_WEP40:
case HTT_RX_MPDU_ENCRYPT_WEP104:
return IEEE80211_WEP_IV_LEN;
case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
return IEEE80211_TKIP_IV_LEN;
case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
return IEEE80211_CCMP_HDR_LEN;
case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2:
return IEEE80211_CCMP_256_HDR_LEN;
case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2:
case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2:
return IEEE80211_GCMP_HDR_LEN;
case HTT_RX_MPDU_ENCRYPT_WEP128:
case HTT_RX_MPDU_ENCRYPT_WAPI:
break;
}
ath10k_warn(ar, "unsupported encryption type %d\n", type);
return 0;
}
#define MICHAEL_MIC_LEN 8
static int ath10k_htt_rx_crypto_mic_len(struct ath10k *ar,
enum htt_rx_mpdu_encrypt_type type)
{
switch (type) {
case HTT_RX_MPDU_ENCRYPT_NONE:
case HTT_RX_MPDU_ENCRYPT_WEP40:
case HTT_RX_MPDU_ENCRYPT_WEP104:
case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
return 0;
case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
return IEEE80211_CCMP_MIC_LEN;
case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2:
return IEEE80211_CCMP_256_MIC_LEN;
case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2:
case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2:
return IEEE80211_GCMP_MIC_LEN;
case HTT_RX_MPDU_ENCRYPT_WEP128:
case HTT_RX_MPDU_ENCRYPT_WAPI:
break;
}
ath10k_warn(ar, "unsupported encryption type %d\n", type);
return 0;
}
static int ath10k_htt_rx_crypto_icv_len(struct ath10k *ar,
enum htt_rx_mpdu_encrypt_type type)
{
switch (type) {
case HTT_RX_MPDU_ENCRYPT_NONE:
case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2:
case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2:
case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2:
return 0;
case HTT_RX_MPDU_ENCRYPT_WEP40:
case HTT_RX_MPDU_ENCRYPT_WEP104:
return IEEE80211_WEP_ICV_LEN;
case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
return IEEE80211_TKIP_ICV_LEN;
case HTT_RX_MPDU_ENCRYPT_WEP128:
case HTT_RX_MPDU_ENCRYPT_WAPI:
break;
}
ath10k_warn(ar, "unsupported encryption type %d\n", type);
return 0;
}
struct amsdu_subframe_hdr {
u8 dst[ETH_ALEN];
u8 src[ETH_ALEN];
__be16 len;
} __packed;
#define GROUP_ID_IS_SU_MIMO(x) ((x) == 0 || (x) == 63)
static inline u8 ath10k_bw_to_mac80211_bw(u8 bw)
{
u8 ret = 0;
switch (bw) {
case 0:
ret = RATE_INFO_BW_20;
break;
case 1:
ret = RATE_INFO_BW_40;
break;
case 2:
ret = RATE_INFO_BW_80;
break;
case 3:
ret = RATE_INFO_BW_160;
break;
}
return ret;
}
static void ath10k_htt_rx_h_rates(struct ath10k *ar,
struct ieee80211_rx_status *status,
struct htt_rx_desc *rxd)
{
struct ieee80211_supported_band *sband;
u8 cck, rate, bw, sgi, mcs, nss;
u8 preamble = 0;
u8 group_id;
u32 info1, info2, info3;
info1 = __le32_to_cpu(rxd->ppdu_start.info1);
info2 = __le32_to_cpu(rxd->ppdu_start.info2);
info3 = __le32_to_cpu(rxd->ppdu_start.info3);
preamble = MS(info1, RX_PPDU_START_INFO1_PREAMBLE_TYPE);
switch (preamble) {
case HTT_RX_LEGACY:
/* To get legacy rate index band is required. Since band can't
* be undefined check if freq is non-zero.
*/
if (!status->freq)
return;
cck = info1 & RX_PPDU_START_INFO1_L_SIG_RATE_SELECT;
rate = MS(info1, RX_PPDU_START_INFO1_L_SIG_RATE);
rate &= ~RX_PPDU_START_RATE_FLAG;
sband = &ar->mac.sbands[status->band];
status->rate_idx = ath10k_mac_hw_rate_to_idx(sband, rate, cck);
break;
case HTT_RX_HT:
case HTT_RX_HT_WITH_TXBF:
/* HT-SIG - Table 20-11 in info2 and info3 */
mcs = info2 & 0x1F;
nss = mcs >> 3;
bw = (info2 >> 7) & 1;
sgi = (info3 >> 7) & 1;
status->rate_idx = mcs;
status->encoding = RX_ENC_HT;
if (sgi)
status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
if (bw)
status->bw = RATE_INFO_BW_40;
break;
case HTT_RX_VHT:
case HTT_RX_VHT_WITH_TXBF:
/* VHT-SIG-A1 in info2, VHT-SIG-A2 in info3
* TODO check this
*/
bw = info2 & 3;
sgi = info3 & 1;
group_id = (info2 >> 4) & 0x3F;
if (GROUP_ID_IS_SU_MIMO(group_id)) {
mcs = (info3 >> 4) & 0x0F;
nss = ((info2 >> 10) & 0x07) + 1;
} else {
/* Hardware doesn't decode VHT-SIG-B into Rx descriptor
* so it's impossible to decode MCS. Also since
* firmware consumes Group Id Management frames host
* has no knowledge regarding group/user position
* mapping so it's impossible to pick the correct Nsts
* from VHT-SIG-A1.
*
* Bandwidth and SGI are valid so report the rateinfo
* on best-effort basis.
*/
mcs = 0;
nss = 1;
}
if (mcs > 0x09) {
ath10k_warn(ar, "invalid MCS received %u\n", mcs);
ath10k_warn(ar, "rxd %08x mpdu start %08x %08x msdu start %08x %08x ppdu start %08x %08x %08x %08x %08x\n",
__le32_to_cpu(rxd->attention.flags),
__le32_to_cpu(rxd->mpdu_start.info0),
__le32_to_cpu(rxd->mpdu_start.info1),
__le32_to_cpu(rxd->msdu_start.common.info0),
__le32_to_cpu(rxd->msdu_start.common.info1),
rxd->ppdu_start.info0,
__le32_to_cpu(rxd->ppdu_start.info1),
__le32_to_cpu(rxd->ppdu_start.info2),
__le32_to_cpu(rxd->ppdu_start.info3),
__le32_to_cpu(rxd->ppdu_start.info4));
ath10k_warn(ar, "msdu end %08x mpdu end %08x\n",
__le32_to_cpu(rxd->msdu_end.common.info0),
__le32_to_cpu(rxd->mpdu_end.info0));
ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL,
"rx desc msdu payload: ",
rxd->msdu_payload, 50);
}
status->rate_idx = mcs;
status->nss = nss;
if (sgi)
status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
status->bw = ath10k_bw_to_mac80211_bw(bw);
status->encoding = RX_ENC_VHT;
break;
default:
break;
}
}
static struct ieee80211_channel *
ath10k_htt_rx_h_peer_channel(struct ath10k *ar, struct htt_rx_desc *rxd)
{
struct ath10k_peer *peer;
struct ath10k_vif *arvif;
struct cfg80211_chan_def def;
u16 peer_id;
lockdep_assert_held(&ar->data_lock);
if (!rxd)
return NULL;
if (rxd->attention.flags &
__cpu_to_le32(RX_ATTENTION_FLAGS_PEER_IDX_INVALID))
return NULL;
if (!(rxd->msdu_end.common.info0 &
__cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)))
return NULL;
peer_id = MS(__le32_to_cpu(rxd->mpdu_start.info0),
RX_MPDU_START_INFO0_PEER_IDX);
peer = ath10k_peer_find_by_id(ar, peer_id);
if (!peer)
return NULL;
arvif = ath10k_get_arvif(ar, peer->vdev_id);
if (WARN_ON_ONCE(!arvif))
return NULL;
if (ath10k_mac_vif_chan(arvif->vif, &def))
return NULL;
return def.chan;
}
static struct ieee80211_channel *
ath10k_htt_rx_h_vdev_channel(struct ath10k *ar, u32 vdev_id)
{
struct ath10k_vif *arvif;
struct cfg80211_chan_def def;
lockdep_assert_held(&ar->data_lock);
list_for_each_entry(arvif, &ar->arvifs, list) {
if (arvif->vdev_id == vdev_id &&
ath10k_mac_vif_chan(arvif->vif, &def) == 0)
return def.chan;
}
return NULL;
}
static void
ath10k_htt_rx_h_any_chan_iter(struct ieee80211_hw *hw,
struct ieee80211_chanctx_conf *conf,
void *data)
{
struct cfg80211_chan_def *def = data;
*def = conf->def;
}
static struct ieee80211_channel *
ath10k_htt_rx_h_any_channel(struct ath10k *ar)
{
struct cfg80211_chan_def def = {};
ieee80211_iter_chan_contexts_atomic(ar->hw,
ath10k_htt_rx_h_any_chan_iter,
&def);
return def.chan;
}
static bool ath10k_htt_rx_h_channel(struct ath10k *ar,
struct ieee80211_rx_status *status,
struct htt_rx_desc *rxd,
u32 vdev_id)
{
struct ieee80211_channel *ch;
spin_lock_bh(&ar->data_lock);
ch = ar->scan_channel;
if (!ch)
ch = ar->rx_channel;
if (!ch)
ch = ath10k_htt_rx_h_peer_channel(ar, rxd);
if (!ch)
ch = ath10k_htt_rx_h_vdev_channel(ar, vdev_id);
if (!ch)
ch = ath10k_htt_rx_h_any_channel(ar);
if (!ch)
ch = ar->tgt_oper_chan;
spin_unlock_bh(&ar->data_lock);
if (!ch)
return false;
status->band = ch->band;
status->freq = ch->center_freq;
return true;
}
static void ath10k_htt_rx_h_signal(struct ath10k *ar,
struct ieee80211_rx_status *status,
struct htt_rx_desc *rxd)
{
int i;
for (i = 0; i < IEEE80211_MAX_CHAINS ; i++) {
status->chains &= ~BIT(i);
if (rxd->ppdu_start.rssi_chains[i].pri20_mhz != 0x80) {
status->chain_signal[i] = ATH10K_DEFAULT_NOISE_FLOOR +
rxd->ppdu_start.rssi_chains[i].pri20_mhz;
status->chains |= BIT(i);
}
}
/* FIXME: Get real NF */
status->signal = ATH10K_DEFAULT_NOISE_FLOOR +
rxd->ppdu_start.rssi_comb;
status->flag &= ~RX_FLAG_NO_SIGNAL_VAL;
}
static void ath10k_htt_rx_h_mactime(struct ath10k *ar,
struct ieee80211_rx_status *status,
struct htt_rx_desc *rxd)
{
/* FIXME: TSF is known only at the end of PPDU, in the last MPDU. This
* means all prior MSDUs in a PPDU are reported to mac80211 without the
* TSF. Is it worth holding frames until end of PPDU is known?
*
* FIXME: Can we get/compute 64bit TSF?
*/
status->mactime = __le32_to_cpu(rxd->ppdu_end.common.tsf_timestamp);
status->flag |= RX_FLAG_MACTIME_END;
}
static void ath10k_htt_rx_h_ppdu(struct ath10k *ar,
struct sk_buff_head *amsdu,
struct ieee80211_rx_status *status,
u32 vdev_id)
{
struct sk_buff *first;
struct htt_rx_desc *rxd;
bool is_first_ppdu;
bool is_last_ppdu;
if (skb_queue_empty(amsdu))
return;
first = skb_peek(amsdu);
rxd = (void *)first->data - sizeof(*rxd);
is_first_ppdu = !!(rxd->attention.flags &
__cpu_to_le32(RX_ATTENTION_FLAGS_FIRST_MPDU));
is_last_ppdu = !!(rxd->attention.flags &
__cpu_to_le32(RX_ATTENTION_FLAGS_LAST_MPDU));
if (is_first_ppdu) {
/* New PPDU starts so clear out the old per-PPDU status. */
status->freq = 0;
status->rate_idx = 0;
status->nss = 0;
status->encoding = RX_ENC_LEGACY;
status->bw = RATE_INFO_BW_20;
status->flag &= ~RX_FLAG_MACTIME_END;
status->flag |= RX_FLAG_NO_SIGNAL_VAL;
status->flag &= ~(RX_FLAG_AMPDU_IS_LAST);
status->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN;
status->ampdu_reference = ar->ampdu_reference;
ath10k_htt_rx_h_signal(ar, status, rxd);
ath10k_htt_rx_h_channel(ar, status, rxd, vdev_id);
ath10k_htt_rx_h_rates(ar, status, rxd);
}
if (is_last_ppdu) {
ath10k_htt_rx_h_mactime(ar, status, rxd);
/* set ampdu last segment flag */
status->flag |= RX_FLAG_AMPDU_IS_LAST;
ar->ampdu_reference++;
}
}
static const char * const tid_to_ac[] = {
"BE",
"BK",
"BK",
"BE",
"VI",
"VI",
"VO",
"VO",
};
static char *ath10k_get_tid(struct ieee80211_hdr *hdr, char *out, size_t size)
{
u8 *qc;
int tid;
if (!ieee80211_is_data_qos(hdr->frame_control))
return "";
qc = ieee80211_get_qos_ctl(hdr);
tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
if (tid < 8)
snprintf(out, size, "tid %d (%s)", tid, tid_to_ac[tid]);
else
snprintf(out, size, "tid %d", tid);
return out;
}
static void ath10k_htt_rx_h_queue_msdu(struct ath10k *ar,
struct ieee80211_rx_status *rx_status,
struct sk_buff *skb)
{
struct ieee80211_rx_status *status;
status = IEEE80211_SKB_RXCB(skb);
*status = *rx_status;
skb_queue_tail(&ar->htt.rx_msdus_q, skb);
}
static void ath10k_process_rx(struct ath10k *ar, struct sk_buff *skb)
{
struct ieee80211_rx_status *status;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
char tid[32];
status = IEEE80211_SKB_RXCB(skb);
ath10k_dbg(ar, ATH10K_DBG_DATA,
"rx skb %pK len %u peer %pM %s %s sn %u %s%s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %i mic-err %i amsdu-more %i\n",
skb,
skb->len,
ieee80211_get_SA(hdr),
ath10k_get_tid(hdr, tid, sizeof(tid)),
is_multicast_ether_addr(ieee80211_get_DA(hdr)) ?
"mcast" : "ucast",
(__le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4,
(status->encoding == RX_ENC_LEGACY) ? "legacy" : "",
(status->encoding == RX_ENC_HT) ? "ht" : "",
(status->encoding == RX_ENC_VHT) ? "vht" : "",
(status->bw == RATE_INFO_BW_40) ? "40" : "",
(status->bw == RATE_INFO_BW_80) ? "80" : "",
(status->bw == RATE_INFO_BW_160) ? "160" : "",
status->enc_flags & RX_ENC_FLAG_SHORT_GI ? "sgi " : "",
status->rate_idx,
status->nss,
status->freq,
status->band, status->flag,
!!(status->flag & RX_FLAG_FAILED_FCS_CRC),
!!(status->flag & RX_FLAG_MMIC_ERROR),
!!(status->flag & RX_FLAG_AMSDU_MORE));
ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ",
skb->data, skb->len);
trace_ath10k_rx_hdr(ar, skb->data, skb->len);
trace_ath10k_rx_payload(ar, skb->data, skb->len);
ieee80211_rx_napi(ar->hw, NULL, skb, &ar->napi);
}
static int ath10k_htt_rx_nwifi_hdrlen(struct ath10k *ar,
struct ieee80211_hdr *hdr)
{
int len = ieee80211_hdrlen(hdr->frame_control);
if (!test_bit(ATH10K_FW_FEATURE_NO_NWIFI_DECAP_4ADDR_PADDING,
ar->running_fw->fw_file.fw_features))
len = round_up(len, 4);
return len;
}
static void ath10k_htt_rx_h_undecap_raw(struct ath10k *ar,
struct sk_buff *msdu,
struct ieee80211_rx_status *status,
enum htt_rx_mpdu_encrypt_type enctype,
bool is_decrypted,
const u8 first_hdr[64])
{
struct ieee80211_hdr *hdr;
struct htt_rx_desc *rxd;
size_t hdr_len;
size_t crypto_len;
bool is_first;
bool is_last;
bool msdu_limit_err;
int bytes_aligned = ar->hw_params.decap_align_bytes;
u8 *qos;
rxd = (void *)msdu->data - sizeof(*rxd);
is_first = !!(rxd->msdu_end.common.info0 &
__cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
is_last = !!(rxd->msdu_end.common.info0 &
__cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
/* Delivered decapped frame:
* [802.11 header]
* [crypto param] <-- can be trimmed if !fcs_err &&
* !decrypt_err && !peer_idx_invalid
* [amsdu header] <-- only if A-MSDU
* [rfc1042/llc]
* [payload]
* [FCS] <-- at end, needs to be trimmed
*/
/* Some hardwares(QCA99x0 variants) limit number of msdus in a-msdu when
* deaggregate, so that unwanted MSDU-deaggregation is avoided for
* error packets. If limit exceeds, hw sends all remaining MSDUs as
* a single last MSDU with this msdu limit error set.
*/
msdu_limit_err = ath10k_rx_desc_msdu_limit_error(&ar->hw_params, rxd);
/* If MSDU limit error happens, then don't warn on, the partial raw MSDU
* without first MSDU is expected in that case, and handled later here.
*/
/* This probably shouldn't happen but warn just in case */
if (WARN_ON_ONCE(!is_first && !msdu_limit_err))
return;
/* This probably shouldn't happen but warn just in case */
if (WARN_ON_ONCE(!(is_first && is_last) && !msdu_limit_err))
return;
skb_trim(msdu, msdu->len - FCS_LEN);
/* Push original 80211 header */
if (unlikely(msdu_limit_err)) {
hdr = (struct ieee80211_hdr *)first_hdr;
hdr_len = ieee80211_hdrlen(hdr->frame_control);
crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
if (ieee80211_is_data_qos(hdr->frame_control)) {
qos = ieee80211_get_qos_ctl(hdr);
qos[0] |= IEEE80211_QOS_CTL_A_MSDU_PRESENT;
}
if (crypto_len)
memcpy(skb_push(msdu, crypto_len),
(void *)hdr + round_up(hdr_len, bytes_aligned),
crypto_len);
memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
}
/* In most cases this will be true for sniffed frames. It makes sense
* to deliver them as-is without stripping the crypto param. This is
* necessary for software based decryption.
*
* If there's no error then the frame is decrypted. At least that is
* the case for frames that come in via fragmented rx indication.
*/
if (!is_decrypted)
return;
/* The payload is decrypted so strip crypto params. Start from tail
* since hdr is used to compute some stuff.
*/
hdr = (void *)msdu->data;
/* Tail */
if (status->flag & RX_FLAG_IV_STRIPPED) {
skb_trim(msdu, msdu->len -
ath10k_htt_rx_crypto_mic_len(ar, enctype));
skb_trim(msdu, msdu->len -
ath10k_htt_rx_crypto_icv_len(ar, enctype));
} else {
/* MIC */
if (status->flag & RX_FLAG_MIC_STRIPPED)
skb_trim(msdu, msdu->len -
ath10k_htt_rx_crypto_mic_len(ar, enctype));
/* ICV */
if (status->flag & RX_FLAG_ICV_STRIPPED)
skb_trim(msdu, msdu->len -
ath10k_htt_rx_crypto_icv_len(ar, enctype));
}
/* MMIC */
if ((status->flag & RX_FLAG_MMIC_STRIPPED) &&
!ieee80211_has_morefrags(hdr->frame_control) &&
enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA)
skb_trim(msdu, msdu->len - MICHAEL_MIC_LEN);
/* Head */
if (status->flag & RX_FLAG_IV_STRIPPED) {
hdr_len = ieee80211_hdrlen(hdr->frame_control);
crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
memmove((void *)msdu->data + crypto_len,
(void *)msdu->data, hdr_len);
skb_pull(msdu, crypto_len);
}
}
static void ath10k_htt_rx_h_undecap_nwifi(struct ath10k *ar,
struct sk_buff *msdu,
struct ieee80211_rx_status *status,
const u8 first_hdr[64],
enum htt_rx_mpdu_encrypt_type enctype)
{
struct ieee80211_hdr *hdr;
struct htt_rx_desc *rxd;
size_t hdr_len;
u8 da[ETH_ALEN];
u8 sa[ETH_ALEN];
int l3_pad_bytes;
int bytes_aligned = ar->hw_params.decap_align_bytes;
/* Delivered decapped frame:
* [nwifi 802.11 header] <-- replaced with 802.11 hdr
* [rfc1042/llc]
*
* Note: The nwifi header doesn't have QoS Control and is
* (always?) a 3addr frame.
*
* Note2: There's no A-MSDU subframe header. Even if it's part
* of an A-MSDU.
*/
/* pull decapped header and copy SA & DA */
rxd = (void *)msdu->data - sizeof(*rxd);
l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
skb_put(msdu, l3_pad_bytes);
hdr = (struct ieee80211_hdr *)(msdu->data + l3_pad_bytes);
hdr_len = ath10k_htt_rx_nwifi_hdrlen(ar, hdr);
ether_addr_copy(da, ieee80211_get_DA(hdr));
ether_addr_copy(sa, ieee80211_get_SA(hdr));
skb_pull(msdu, hdr_len);
/* push original 802.11 header */
hdr = (struct ieee80211_hdr *)first_hdr;
hdr_len = ieee80211_hdrlen(hdr->frame_control);
if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
memcpy(skb_push(msdu,
ath10k_htt_rx_crypto_param_len(ar, enctype)),
(void *)hdr + round_up(hdr_len, bytes_aligned),
ath10k_htt_rx_crypto_param_len(ar, enctype));
}
memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
/* original 802.11 header has a different DA and in
* case of 4addr it may also have different SA
*/
hdr = (struct ieee80211_hdr *)msdu->data;
ether_addr_copy(ieee80211_get_DA(hdr), da);
ether_addr_copy(ieee80211_get_SA(hdr), sa);
}
static void *ath10k_htt_rx_h_find_rfc1042(struct ath10k *ar,
struct sk_buff *msdu,
enum htt_rx_mpdu_encrypt_type enctype)
{
struct ieee80211_hdr *hdr;
struct htt_rx_desc *rxd;
size_t hdr_len, crypto_len;
void *rfc1042;
bool is_first, is_last, is_amsdu;
int bytes_aligned = ar->hw_params.decap_align_bytes;
rxd = (void *)msdu->data - sizeof(*rxd);
hdr = (void *)rxd->rx_hdr_status;
is_first = !!(rxd->msdu_end.common.info0 &
__cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
is_last = !!(rxd->msdu_end.common.info0 &
__cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
is_amsdu = !(is_first && is_last);
rfc1042 = hdr;
if (is_first) {
hdr_len = ieee80211_hdrlen(hdr->frame_control);
crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
rfc1042 += round_up(hdr_len, bytes_aligned) +
round_up(crypto_len, bytes_aligned);
}
if (is_amsdu)
rfc1042 += sizeof(struct amsdu_subframe_hdr);
return rfc1042;
}
static void ath10k_htt_rx_h_undecap_eth(struct ath10k *ar,
struct sk_buff *msdu,
struct ieee80211_rx_status *status,
const u8 first_hdr[64],
enum htt_rx_mpdu_encrypt_type enctype)
{
struct ieee80211_hdr *hdr;
struct ethhdr *eth;
size_t hdr_len;
void *rfc1042;
u8 da[ETH_ALEN];
u8 sa[ETH_ALEN];
int l3_pad_bytes;
struct htt_rx_desc *rxd;
int bytes_aligned = ar->hw_params.decap_align_bytes;
/* Delivered decapped frame:
* [eth header] <-- replaced with 802.11 hdr & rfc1042/llc
* [payload]
*/
rfc1042 = ath10k_htt_rx_h_find_rfc1042(ar, msdu, enctype);
if (WARN_ON_ONCE(!rfc1042))
return;
rxd = (void *)msdu->data - sizeof(*rxd);
l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
skb_put(msdu, l3_pad_bytes);
skb_pull(msdu, l3_pad_bytes);
/* pull decapped header and copy SA & DA */
eth = (struct ethhdr *)msdu->data;
ether_addr_copy(da, eth->h_dest);
ether_addr_copy(sa, eth->h_source);
skb_pull(msdu, sizeof(struct ethhdr));
/* push rfc1042/llc/snap */
memcpy(skb_push(msdu, sizeof(struct rfc1042_hdr)), rfc1042,
sizeof(struct rfc1042_hdr));
/* push original 802.11 header */
hdr = (struct ieee80211_hdr *)first_hdr;
hdr_len = ieee80211_hdrlen(hdr->frame_control);
if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
memcpy(skb_push(msdu,
ath10k_htt_rx_crypto_param_len(ar, enctype)),
(void *)hdr + round_up(hdr_len, bytes_aligned),
ath10k_htt_rx_crypto_param_len(ar, enctype));
}
memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
/* original 802.11 header has a different DA and in
* case of 4addr it may also have different SA
*/
hdr = (struct ieee80211_hdr *)msdu->data;
ether_addr_copy(ieee80211_get_DA(hdr), da);
ether_addr_copy(ieee80211_get_SA(hdr), sa);
}
static void ath10k_htt_rx_h_undecap_snap(struct ath10k *ar,
struct sk_buff *msdu,
struct ieee80211_rx_status *status,
const u8 first_hdr[64],
enum htt_rx_mpdu_encrypt_type enctype)
{
struct ieee80211_hdr *hdr;
size_t hdr_len;
int l3_pad_bytes;
struct htt_rx_desc *rxd;
int bytes_aligned = ar->hw_params.decap_align_bytes;
/* Delivered decapped frame:
* [amsdu header] <-- replaced with 802.11 hdr
* [rfc1042/llc]
* [payload]
*/
rxd = (void *)msdu->data - sizeof(*rxd);
l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
skb_put(msdu, l3_pad_bytes);
skb_pull(msdu, sizeof(struct amsdu_subframe_hdr) + l3_pad_bytes);
hdr = (struct ieee80211_hdr *)first_hdr;
hdr_len = ieee80211_hdrlen(hdr->frame_control);
if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
memcpy(skb_push(msdu,
ath10k_htt_rx_crypto_param_len(ar, enctype)),
(void *)hdr + round_up(hdr_len, bytes_aligned),
ath10k_htt_rx_crypto_param_len(ar, enctype));
}
memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
}
static void ath10k_htt_rx_h_undecap(struct ath10k *ar,
struct sk_buff *msdu,
struct ieee80211_rx_status *status,
u8 first_hdr[64],
enum htt_rx_mpdu_encrypt_type enctype,
bool is_decrypted)
{
struct htt_rx_desc *rxd;
enum rx_msdu_decap_format decap;
/* First msdu's decapped header:
* [802.11 header] <-- padded to 4 bytes long
* [crypto param] <-- padded to 4 bytes long
* [amsdu header] <-- only if A-MSDU
* [rfc1042/llc]
*
* Other (2nd, 3rd, ..) msdu's decapped header:
* [amsdu header] <-- only if A-MSDU
* [rfc1042/llc]
*/
rxd = (void *)msdu->data - sizeof(*rxd);
decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1),
RX_MSDU_START_INFO1_DECAP_FORMAT);
switch (decap) {
case RX_MSDU_DECAP_RAW:
ath10k_htt_rx_h_undecap_raw(ar, msdu, status, enctype,
is_decrypted, first_hdr);
break;
case RX_MSDU_DECAP_NATIVE_WIFI:
ath10k_htt_rx_h_undecap_nwifi(ar, msdu, status, first_hdr,
enctype);
break;
case RX_MSDU_DECAP_ETHERNET2_DIX:
ath10k_htt_rx_h_undecap_eth(ar, msdu, status, first_hdr, enctype);
break;
case RX_MSDU_DECAP_8023_SNAP_LLC:
ath10k_htt_rx_h_undecap_snap(ar, msdu, status, first_hdr,
enctype);
break;
}
}
static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb)
{
struct htt_rx_desc *rxd;
u32 flags, info;
bool is_ip4, is_ip6;
bool is_tcp, is_udp;
bool ip_csum_ok, tcpudp_csum_ok;
rxd = (void *)skb->data - sizeof(*rxd);
flags = __le32_to_cpu(rxd->attention.flags);
info = __le32_to_cpu(rxd->msdu_start.common.info1);
is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO);
is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO);
is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO);
is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO);
ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL);
tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL);
if (!is_ip4 && !is_ip6)
return CHECKSUM_NONE;
if (!is_tcp && !is_udp)
return CHECKSUM_NONE;
if (!ip_csum_ok)
return CHECKSUM_NONE;
if (!tcpudp_csum_ok)
return CHECKSUM_NONE;
return CHECKSUM_UNNECESSARY;
}
static void ath10k_htt_rx_h_csum_offload(struct sk_buff *msdu)
{
msdu->ip_summed = ath10k_htt_rx_get_csum_state(msdu);
}
static void ath10k_htt_rx_h_mpdu(struct ath10k *ar,
struct sk_buff_head *amsdu,
struct ieee80211_rx_status *status,
bool fill_crypt_header,
u8 *rx_hdr,
enum ath10k_pkt_rx_err *err)
{
struct sk_buff *first;
struct sk_buff *last;
struct sk_buff *msdu;
struct htt_rx_desc *rxd;
struct ieee80211_hdr *hdr;
enum htt_rx_mpdu_encrypt_type enctype;
u8 first_hdr[64];
u8 *qos;
bool has_fcs_err;
bool has_crypto_err;
bool has_tkip_err;
bool has_peer_idx_invalid;
bool is_decrypted;
bool is_mgmt;
u32 attention;
if (skb_queue_empty(amsdu))
return;
first = skb_peek(amsdu);
rxd = (void *)first->data - sizeof(*rxd);
is_mgmt = !!(rxd->attention.flags &
__cpu_to_le32(RX_ATTENTION_FLAGS_MGMT_TYPE));
enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
RX_MPDU_START_INFO0_ENCRYPT_TYPE);
/* First MSDU's Rx descriptor in an A-MSDU contains full 802.11
* decapped header. It'll be used for undecapping of each MSDU.
*/
hdr = (void *)rxd->rx_hdr_status;
memcpy(first_hdr, hdr, RX_HTT_HDR_STATUS_LEN);
if (rx_hdr)
memcpy(rx_hdr, hdr, RX_HTT_HDR_STATUS_LEN);
/* Each A-MSDU subframe will use the original header as the base and be
* reported as a separate MSDU so strip the A-MSDU bit from QoS Ctl.
*/
hdr = (void *)first_hdr;
if (ieee80211_is_data_qos(hdr->frame_control)) {
qos = ieee80211_get_qos_ctl(hdr);
qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
}
/* Some attention flags are valid only in the last MSDU. */
last = skb_peek_tail(amsdu);
rxd = (void *)last->data - sizeof(*rxd);
attention = __le32_to_cpu(rxd->attention.flags);
has_fcs_err = !!(attention & RX_ATTENTION_FLAGS_FCS_ERR);
has_crypto_err = !!(attention & RX_ATTENTION_FLAGS_DECRYPT_ERR);
has_tkip_err = !!(attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR);
has_peer_idx_invalid = !!(attention & RX_ATTENTION_FLAGS_PEER_IDX_INVALID);
/* Note: If hardware captures an encrypted frame that it can't decrypt,
* e.g. due to fcs error, missing peer or invalid key data it will
* report the frame as raw.
*/
is_decrypted = (enctype != HTT_RX_MPDU_ENCRYPT_NONE &&
!has_fcs_err &&
!has_crypto_err &&
!has_peer_idx_invalid);
/* Clear per-MPDU flags while leaving per-PPDU flags intact. */
status->flag &= ~(RX_FLAG_FAILED_FCS_CRC |
RX_FLAG_MMIC_ERROR |
RX_FLAG_DECRYPTED |
RX_FLAG_IV_STRIPPED |
RX_FLAG_ONLY_MONITOR |
RX_FLAG_MMIC_STRIPPED);
if (has_fcs_err)
status->flag |= RX_FLAG_FAILED_FCS_CRC;
if (has_tkip_err)
status->flag |= RX_FLAG_MMIC_ERROR;
if (err) {
if (has_fcs_err)
*err = ATH10K_PKT_RX_ERR_FCS;
else if (has_tkip_err)
*err = ATH10K_PKT_RX_ERR_TKIP;
else if (has_crypto_err)
*err = ATH10K_PKT_RX_ERR_CRYPT;
else if (has_peer_idx_invalid)
*err = ATH10K_PKT_RX_ERR_PEER_IDX_INVAL;
}
/* Firmware reports all necessary management frames via WMI already.
* They are not reported to monitor interfaces at all so pass the ones
* coming via HTT to monitor interfaces instead. This simplifies
* matters a lot.
*/
if (is_mgmt)
status->flag |= RX_FLAG_ONLY_MONITOR;
if (is_decrypted) {
status->flag |= RX_FLAG_DECRYPTED;
if (likely(!is_mgmt))
status->flag |= RX_FLAG_MMIC_STRIPPED;
if (fill_crypt_header)
status->flag |= RX_FLAG_MIC_STRIPPED |
RX_FLAG_ICV_STRIPPED;
else
status->flag |= RX_FLAG_IV_STRIPPED;
}
skb_queue_walk(amsdu, msdu) {
ath10k_htt_rx_h_csum_offload(msdu);
ath10k_htt_rx_h_undecap(ar, msdu, status, first_hdr, enctype,
is_decrypted);
/* Undecapping involves copying the original 802.11 header back
* to sk_buff. If frame is protected and hardware has decrypted
* it then remove the protected bit.
*/
if (!is_decrypted)
continue;
if (is_mgmt)
continue;
if (fill_crypt_header)
continue;
hdr = (void *)msdu->data;
hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
}
}
static void ath10k_htt_rx_h_enqueue(struct ath10k *ar,
struct sk_buff_head *amsdu,
struct ieee80211_rx_status *status)
{
struct sk_buff *msdu;
struct sk_buff *first_subframe;
first_subframe = skb_peek(amsdu);
while ((msdu = __skb_dequeue(amsdu))) {
/* Setup per-MSDU flags */
if (skb_queue_empty(amsdu))
status->flag &= ~RX_FLAG_AMSDU_MORE;
else
status->flag |= RX_FLAG_AMSDU_MORE;
if (msdu == first_subframe) {
first_subframe = NULL;
status->flag &= ~RX_FLAG_ALLOW_SAME_PN;
} else {
status->flag |= RX_FLAG_ALLOW_SAME_PN;
}
ath10k_htt_rx_h_queue_msdu(ar, status, msdu);
}
}
static int ath10k_unchain_msdu(struct sk_buff_head *amsdu,
unsigned long *unchain_cnt)
{
struct sk_buff *skb, *first;
int space;
int total_len = 0;
int amsdu_len = skb_queue_len(amsdu);
/* TODO: Might could optimize this by using
* skb_try_coalesce or similar method to
* decrease copying, or maybe get mac80211 to
* provide a way to just receive a list of
* skb?
*/
first = __skb_dequeue(amsdu);
/* Allocate total length all at once. */
skb_queue_walk(amsdu, skb)
total_len += skb->len;
space = total_len - skb_tailroom(first);
if ((space > 0) &&
(pskb_expand_head(first, 0, space, GFP_ATOMIC) < 0)) {
/* TODO: bump some rx-oom error stat */
/* put it back together so we can free the
* whole list at once.
*/
__skb_queue_head(amsdu, first);
return -1;
}
/* Walk list again, copying contents into
* msdu_head
*/
while ((skb = __skb_dequeue(amsdu))) {
skb_copy_from_linear_data(skb, skb_put(first, skb->len),
skb->len);
dev_kfree_skb_any(skb);
}
__skb_queue_head(amsdu, first);
*unchain_cnt += amsdu_len - 1;
return 0;
}
static void ath10k_htt_rx_h_unchain(struct ath10k *ar,
struct sk_buff_head *amsdu,
unsigned long *drop_cnt,
unsigned long *unchain_cnt)
{
struct sk_buff *first;
struct htt_rx_desc *rxd;
enum rx_msdu_decap_format decap;
first = skb_peek(amsdu);
rxd = (void *)first->data - sizeof(*rxd);
decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1),
RX_MSDU_START_INFO1_DECAP_FORMAT);
/* FIXME: Current unchaining logic can only handle simple case of raw
* msdu chaining. If decapping is other than raw the chaining may be
* more complex and this isn't handled by the current code. Don't even
* try re-constructing such frames - it'll be pretty much garbage.
*/
if (decap != RX_MSDU_DECAP_RAW ||
skb_queue_len(amsdu) != 1 + rxd->frag_info.ring2_more_count) {
*drop_cnt += skb_queue_len(amsdu);
__skb_queue_purge(amsdu);
return;
}
ath10k_unchain_msdu(amsdu, unchain_cnt);
}
static bool ath10k_htt_rx_amsdu_allowed(struct ath10k *ar,
struct sk_buff_head *amsdu,
struct ieee80211_rx_status *rx_status)
{
/* FIXME: It might be a good idea to do some fuzzy-testing to drop
* invalid/dangerous frames.
*/
if (!rx_status->freq) {
ath10k_dbg(ar, ATH10K_DBG_HTT, "no channel configured; ignoring frame(s)!\n");
return false;
}
if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) {
ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx cac running\n");
return false;
}
return true;
}
static void ath10k_htt_rx_h_filter(struct ath10k *ar,
struct sk_buff_head *amsdu,
struct ieee80211_rx_status *rx_status,
unsigned long *drop_cnt)
{
if (skb_queue_empty(amsdu))
return;
if (ath10k_htt_rx_amsdu_allowed(ar, amsdu, rx_status))
return;
if (drop_cnt)
*drop_cnt += skb_queue_len(amsdu);
__skb_queue_purge(amsdu);
}
static int ath10k_htt_rx_handle_amsdu(struct ath10k_htt *htt)
{
struct ath10k *ar = htt->ar;
struct ieee80211_rx_status *rx_status = &htt->rx_status;
struct sk_buff_head amsdu;
int ret;
unsigned long drop_cnt = 0;
unsigned long unchain_cnt = 0;
unsigned long drop_cnt_filter = 0;
unsigned long msdus_to_queue, num_msdus;
enum ath10k_pkt_rx_err err = ATH10K_PKT_RX_ERR_MAX;
u8 first_hdr[RX_HTT_HDR_STATUS_LEN];
__skb_queue_head_init(&amsdu);
spin_lock_bh(&htt->rx_ring.lock);
if (htt->rx_confused) {
spin_unlock_bh(&htt->rx_ring.lock);
return -EIO;
}
ret = ath10k_htt_rx_amsdu_pop(htt, &amsdu);
spin_unlock_bh(&htt->rx_ring.lock);
if (ret < 0) {
ath10k_warn(ar, "rx ring became corrupted: %d\n", ret);
__skb_queue_purge(&amsdu);
/* FIXME: It's probably a good idea to reboot the
* device instead of leaving it inoperable.
*/
htt->rx_confused = true;
return ret;
}
num_msdus = skb_queue_len(&amsdu);
ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status, 0xffff);
/* only for ret = 1 indicates chained msdus */
if (ret > 0)
ath10k_htt_rx_h_unchain(ar, &amsdu, &drop_cnt, &unchain_cnt);
ath10k_htt_rx_h_filter(ar, &amsdu, rx_status, &drop_cnt_filter);
ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status, true, first_hdr, &err);
msdus_to_queue = skb_queue_len(&amsdu);
ath10k_htt_rx_h_enqueue(ar, &amsdu, rx_status);
ath10k_sta_update_rx_tid_stats(ar, first_hdr, num_msdus, err,
unchain_cnt, drop_cnt, drop_cnt_filter,
msdus_to_queue);
return 0;
}
static bool ath10k_htt_rx_proc_rx_ind_hl(struct ath10k_htt *htt,
struct htt_rx_indication_hl *rx,
struct sk_buff *skb)
{
struct ath10k *ar = htt->ar;
struct ath10k_peer *peer;
struct htt_rx_indication_mpdu_range *mpdu_ranges;
struct fw_rx_desc_hl *fw_desc;
struct ieee80211_hdr *hdr;
struct ieee80211_rx_status *rx_status;
u16 peer_id;
u8 rx_desc_len;
int num_mpdu_ranges;
size_t tot_hdr_len;
struct ieee80211_channel *ch;
peer_id = __le16_to_cpu(rx->hdr.peer_id);
spin_lock_bh(&ar->data_lock);
peer = ath10k_peer_find_by_id(ar, peer_id);
spin_unlock_bh(&ar->data_lock);
if (!peer)
ath10k_warn(ar, "Got RX ind from invalid peer: %u\n", peer_id);
num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
mpdu_ranges = htt_rx_ind_get_mpdu_ranges_hl(rx);
fw_desc = &rx->fw_desc;
rx_desc_len = fw_desc->len;
/* I have not yet seen any case where num_mpdu_ranges > 1.
* qcacld does not seem handle that case either, so we introduce the
* same limitiation here as well.
*/
if (num_mpdu_ranges > 1)
ath10k_warn(ar,
"Unsupported number of MPDU ranges: %d, ignoring all but the first\n",
num_mpdu_ranges);
if (mpdu_ranges->mpdu_range_status !=
HTT_RX_IND_MPDU_STATUS_OK) {
ath10k_warn(ar, "MPDU range status: %d\n",
mpdu_ranges->mpdu_range_status);
goto err;
}
/* Strip off all headers before the MAC header before delivery to
* mac80211
*/
tot_hdr_len = sizeof(struct htt_resp_hdr) + sizeof(rx->hdr) +
sizeof(rx->ppdu) + sizeof(rx->prefix) +
sizeof(rx->fw_desc) +
sizeof(*mpdu_ranges) * num_mpdu_ranges + rx_desc_len;
skb_pull(skb, tot_hdr_len);
hdr = (struct ieee80211_hdr *)skb->data;
rx_status = IEEE80211_SKB_RXCB(skb);
rx_status->chains |= BIT(0);
if (rx->ppdu.combined_rssi == 0) {
/* SDIO firmware does not provide signal */
rx_status->signal = 0;
rx_status->flag |= RX_FLAG_NO_SIGNAL_VAL;
} else {
rx_status->signal = ATH10K_DEFAULT_NOISE_FLOOR +
rx->ppdu.combined_rssi;
rx_status->flag &= ~RX_FLAG_NO_SIGNAL_VAL;
}
spin_lock_bh(&ar->data_lock);
ch = ar->scan_channel;
if (!ch)
ch = ar->rx_channel;
if (!ch)
ch = ath10k_htt_rx_h_any_channel(ar);
if (!ch)
ch = ar->tgt_oper_chan;
spin_unlock_bh(&ar->data_lock);
if (ch) {
rx_status->band = ch->band;
rx_status->freq = ch->center_freq;
}
if (rx->fw_desc.flags & FW_RX_DESC_FLAGS_LAST_MSDU)
rx_status->flag &= ~RX_FLAG_AMSDU_MORE;
else
rx_status->flag |= RX_FLAG_AMSDU_MORE;
/* Not entirely sure about this, but all frames from the chipset has
* the protected flag set even though they have already been decrypted.
* Unmasking this flag is necessary in order for mac80211 not to drop
* the frame.
* TODO: Verify this is always the case or find out a way to check
* if there has been hw decryption.
*/
if (ieee80211_has_protected(hdr->frame_control)) {
hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
rx_status->flag |= RX_FLAG_DECRYPTED |
RX_FLAG_IV_STRIPPED |
RX_FLAG_MMIC_STRIPPED;
}
ieee80211_rx_ni(ar->hw, skb);
/* We have delivered the skb to the upper layers (mac80211) so we
* must not free it.
*/
return false;
err:
/* Tell the caller that it must free the skb since we have not
* consumed it
*/
return true;
}
static void ath10k_htt_rx_proc_rx_ind_ll(struct ath10k_htt *htt,
struct htt_rx_indication *rx)
{
struct ath10k *ar = htt->ar;
struct htt_rx_indication_mpdu_range *mpdu_ranges;
int num_mpdu_ranges;
int i, mpdu_count = 0;
u16 peer_id;
u8 tid;
num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
peer_id = __le16_to_cpu(rx->hdr.peer_id);
tid = MS(rx->hdr.info0, HTT_RX_INDICATION_INFO0_EXT_TID);
mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx);
ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ",
rx, sizeof(*rx) +
(sizeof(struct htt_rx_indication_mpdu_range) *
num_mpdu_ranges));
for (i = 0; i < num_mpdu_ranges; i++)
mpdu_count += mpdu_ranges[i].mpdu_count;
atomic_add(mpdu_count, &htt->num_mpdus_ready);
ath10k_sta_update_rx_tid_stats_ampdu(ar, peer_id, tid, mpdu_ranges,
num_mpdu_ranges);
}
static void ath10k_htt_rx_tx_compl_ind(struct ath10k *ar,
struct sk_buff *skb)
{
struct ath10k_htt *htt = &ar->htt;
struct htt_resp *resp = (struct htt_resp *)skb->data;
struct htt_tx_done tx_done = {};
int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS);
__le16 msdu_id, *msdus;
bool rssi_enabled = false;
u8 msdu_count = 0, num_airtime_records, tid;
int i, htt_pad = 0;
struct htt_data_tx_compl_ppdu_dur *ppdu_info;
struct ath10k_peer *peer;
u16 ppdu_info_offset = 0, peer_id;
u32 tx_duration;
switch (status) {
case HTT_DATA_TX_STATUS_NO_ACK:
tx_done.status = HTT_TX_COMPL_STATE_NOACK;
break;
case HTT_DATA_TX_STATUS_OK:
tx_done.status = HTT_TX_COMPL_STATE_ACK;
break;
case HTT_DATA_TX_STATUS_DISCARD:
case HTT_DATA_TX_STATUS_POSTPONE:
case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL:
tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
break;
default:
ath10k_warn(ar, "unhandled tx completion status %d\n", status);
tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
break;
}
ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n",
resp->data_tx_completion.num_msdus);
msdu_count = resp->data_tx_completion.num_msdus;
msdus = resp->data_tx_completion.msdus;
rssi_enabled = ath10k_is_rssi_enable(&ar->hw_params, resp);
if (rssi_enabled)
htt_pad = ath10k_tx_data_rssi_get_pad_bytes(&ar->hw_params,
resp);
for (i = 0; i < msdu_count; i++) {
msdu_id = msdus[i];
tx_done.msdu_id = __le16_to_cpu(msdu_id);
if (rssi_enabled) {
/* Total no of MSDUs should be even,
* if odd MSDUs are sent firmware fills
* last msdu id with 0xffff
*/
if (msdu_count & 0x01) {
msdu_id = msdus[msdu_count + i + 1 + htt_pad];
tx_done.ack_rssi = __le16_to_cpu(msdu_id);
} else {
msdu_id = msdus[msdu_count + i + htt_pad];
tx_done.ack_rssi = __le16_to_cpu(msdu_id);
}
}
/* kfifo_put: In practice firmware shouldn't fire off per-CE
* interrupt and main interrupt (MSI/-X range case) for the same
* HTC service so it should be safe to use kfifo_put w/o lock.
*
* From kfifo_put() documentation:
* Note that with only one concurrent reader and one concurrent
* writer, you don't need extra locking to use these macro.
*/
if (!kfifo_put(&htt->txdone_fifo, tx_done)) {
ath10k_warn(ar, "txdone fifo overrun, msdu_id %d status %d\n",
tx_done.msdu_id, tx_done.status);
ath10k_txrx_tx_unref(htt, &tx_done);
}
}
if (!(resp->data_tx_completion.flags2 & HTT_TX_CMPL_FLAG_PPDU_DURATION_PRESENT))
return;
ppdu_info_offset = (msdu_count & 0x01) ? msdu_count + 1 : msdu_count;
if (rssi_enabled)
ppdu_info_offset += ppdu_info_offset;
if (resp->data_tx_completion.flags2 &
(HTT_TX_CMPL_FLAG_PPID_PRESENT | HTT_TX_CMPL_FLAG_PA_PRESENT))
ppdu_info_offset += 2;
ppdu_info = (struct htt_data_tx_compl_ppdu_dur *)&msdus[ppdu_info_offset];
num_airtime_records = FIELD_GET(HTT_TX_COMPL_PPDU_DUR_INFO0_NUM_ENTRIES_MASK,
__le32_to_cpu(ppdu_info->info0));
for (i = 0; i < num_airtime_records; i++) {
struct htt_data_tx_ppdu_dur *ppdu_dur;
u32 info0;
ppdu_dur = &ppdu_info->ppdu_dur[i];
info0 = __le32_to_cpu(ppdu_dur->info0);
peer_id = FIELD_GET(HTT_TX_PPDU_DUR_INFO0_PEER_ID_MASK,
info0);
rcu_read_lock();
spin_lock_bh(&ar->data_lock);
peer = ath10k_peer_find_by_id(ar, peer_id);
if (!peer) {
spin_unlock_bh(&ar->data_lock);
rcu_read_unlock();
continue;
}
tid = FIELD_GET(HTT_TX_PPDU_DUR_INFO0_TID_MASK, info0);
tx_duration = __le32_to_cpu(ppdu_dur->tx_duration);
ieee80211_sta_register_airtime(peer->sta, tid, tx_duration, 0);
spin_unlock_bh(&ar->data_lock);
rcu_read_unlock();
}
}
static void ath10k_htt_rx_addba(struct ath10k *ar, struct htt_resp *resp)
{
struct htt_rx_addba *ev = &resp->rx_addba;
struct ath10k_peer *peer;
struct ath10k_vif *arvif;
u16 info0, tid, peer_id;
info0 = __le16_to_cpu(ev->info0);
tid = MS(info0, HTT_RX_BA_INFO0_TID);
peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
ath10k_dbg(ar, ATH10K_DBG_HTT,
"htt rx addba tid %hu peer_id %hu size %hhu\n",
tid, peer_id, ev->window_size);
spin_lock_bh(&ar->data_lock);
peer = ath10k_peer_find_by_id(ar, peer_id);
if (!peer) {
ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
peer_id);
spin_unlock_bh(&ar->data_lock);
return;
}
arvif = ath10k_get_arvif(ar, peer->vdev_id);
if (!arvif) {
ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
peer->vdev_id);
spin_unlock_bh(&ar->data_lock);
return;
}
ath10k_dbg(ar, ATH10K_DBG_HTT,
"htt rx start rx ba session sta %pM tid %hu size %hhu\n",
peer->addr, tid, ev->window_size);
ieee80211_start_rx_ba_session_offl(arvif->vif, peer->addr, tid);
spin_unlock_bh(&ar->data_lock);
}
static void ath10k_htt_rx_delba(struct ath10k *ar, struct htt_resp *resp)
{
struct htt_rx_delba *ev = &resp->rx_delba;
struct ath10k_peer *peer;
struct ath10k_vif *arvif;
u16 info0, tid, peer_id;
info0 = __le16_to_cpu(ev->info0);
tid = MS(info0, HTT_RX_BA_INFO0_TID);
peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
ath10k_dbg(ar, ATH10K_DBG_HTT,
"htt rx delba tid %hu peer_id %hu\n",
tid, peer_id);
spin_lock_bh(&ar->data_lock);
peer = ath10k_peer_find_by_id(ar, peer_id);
if (!peer) {
ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
peer_id);
spin_unlock_bh(&ar->data_lock);
return;
}
arvif = ath10k_get_arvif(ar, peer->vdev_id);
if (!arvif) {
ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
peer->vdev_id);
spin_unlock_bh(&ar->data_lock);
return;
}
ath10k_dbg(ar, ATH10K_DBG_HTT,
"htt rx stop rx ba session sta %pM tid %hu\n",
peer->addr, tid);
ieee80211_stop_rx_ba_session_offl(arvif->vif, peer->addr, tid);
spin_unlock_bh(&ar->data_lock);
}
static int ath10k_htt_rx_extract_amsdu(struct sk_buff_head *list,
struct sk_buff_head *amsdu)
{
struct sk_buff *msdu;
struct htt_rx_desc *rxd;
if (skb_queue_empty(list))
return -ENOBUFS;
if (WARN_ON(!skb_queue_empty(amsdu)))
return -EINVAL;
while ((msdu = __skb_dequeue(list))) {
__skb_queue_tail(amsdu, msdu);
rxd = (void *)msdu->data - sizeof(*rxd);
if (rxd->msdu_end.common.info0 &
__cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))
break;
}
msdu = skb_peek_tail(amsdu);
rxd = (void *)msdu->data - sizeof(*rxd);
if (!(rxd->msdu_end.common.info0 &
__cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))) {
skb_queue_splice_init(amsdu, list);
return -EAGAIN;
}
return 0;
}
static void ath10k_htt_rx_h_rx_offload_prot(struct ieee80211_rx_status *status,
struct sk_buff *skb)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
if (!ieee80211_has_protected(hdr->frame_control))
return;
/* Offloaded frames are already decrypted but firmware insists they are
* protected in the 802.11 header. Strip the flag. Otherwise mac80211
* will drop the frame.
*/
hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
status->flag |= RX_FLAG_DECRYPTED |
RX_FLAG_IV_STRIPPED |
RX_FLAG_MMIC_STRIPPED;
}
static void ath10k_htt_rx_h_rx_offload(struct ath10k *ar,
struct sk_buff_head *list)
{
struct ath10k_htt *htt = &ar->htt;
struct ieee80211_rx_status *status = &htt->rx_status;
struct htt_rx_offload_msdu *rx;
struct sk_buff *msdu;
size_t offset;
while ((msdu = __skb_dequeue(list))) {
/* Offloaded frames don't have Rx descriptor. Instead they have
* a short meta information header.
*/
rx = (void *)msdu->data;
skb_put(msdu, sizeof(*rx));
skb_pull(msdu, sizeof(*rx));
if (skb_tailroom(msdu) < __le16_to_cpu(rx->msdu_len)) {
ath10k_warn(ar, "dropping frame: offloaded rx msdu is too long!\n");
dev_kfree_skb_any(msdu);
continue;
}
skb_put(msdu, __le16_to_cpu(rx->msdu_len));
/* Offloaded rx header length isn't multiple of 2 nor 4 so the
* actual payload is unaligned. Align the frame. Otherwise
* mac80211 complains. This shouldn't reduce performance much
* because these offloaded frames are rare.
*/
offset = 4 - ((unsigned long)msdu->data & 3);
skb_put(msdu, offset);
memmove(msdu->data + offset, msdu->data, msdu->len);
skb_pull(msdu, offset);
/* FIXME: The frame is NWifi. Re-construct QoS Control
* if possible later.
*/
memset(status, 0, sizeof(*status));
status->flag |= RX_FLAG_NO_SIGNAL_VAL;
ath10k_htt_rx_h_rx_offload_prot(status, msdu);
ath10k_htt_rx_h_channel(ar, status, NULL, rx->vdev_id);
ath10k_htt_rx_h_queue_msdu(ar, status, msdu);
}
}
static int ath10k_htt_rx_in_ord_ind(struct ath10k *ar, struct sk_buff *skb)
{
struct ath10k_htt *htt = &ar->htt;
struct htt_resp *resp = (void *)skb->data;
struct ieee80211_rx_status *status = &htt->rx_status;
struct sk_buff_head list;
struct sk_buff_head amsdu;
u16 peer_id;
u16 msdu_count;
u8 vdev_id;
u8 tid;
bool offload;
bool frag;
int ret;
lockdep_assert_held(&htt->rx_ring.lock);
if (htt->rx_confused)
return -EIO;
skb_pull(skb, sizeof(resp->hdr));
skb_pull(skb, sizeof(resp->rx_in_ord_ind));
peer_id = __le16_to_cpu(resp->rx_in_ord_ind.peer_id);
msdu_count = __le16_to_cpu(resp->rx_in_ord_ind.msdu_count);
vdev_id = resp->rx_in_ord_ind.vdev_id;
tid = SM(resp->rx_in_ord_ind.info, HTT_RX_IN_ORD_IND_INFO_TID);
offload = !!(resp->rx_in_ord_ind.info &
HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
frag = !!(resp->rx_in_ord_ind.info & HTT_RX_IN_ORD_IND_INFO_FRAG_MASK);
ath10k_dbg(ar, ATH10K_DBG_HTT,
"htt rx in ord vdev %i peer %i tid %i offload %i frag %i msdu count %i\n",
vdev_id, peer_id, tid, offload, frag, msdu_count);
if (skb->len < msdu_count * sizeof(*resp->rx_in_ord_ind.msdu_descs32)) {
ath10k_warn(ar, "dropping invalid in order rx indication\n");
return -EINVAL;
}
/* The event can deliver more than 1 A-MSDU. Each A-MSDU is later
* extracted and processed.
*/
__skb_queue_head_init(&list);
if (ar->hw_params.target_64bit)
ret = ath10k_htt_rx_pop_paddr64_list(htt, &resp->rx_in_ord_ind,
&list);
else
ret = ath10k_htt_rx_pop_paddr32_list(htt, &resp->rx_in_ord_ind,
&list);
if (ret < 0) {
ath10k_warn(ar, "failed to pop paddr list: %d\n", ret);
htt->rx_confused = true;
return -EIO;
}
/* Offloaded frames are very different and need to be handled
* separately.
*/
if (offload)
ath10k_htt_rx_h_rx_offload(ar, &list);
while (!skb_queue_empty(&list)) {
__skb_queue_head_init(&amsdu);
ret = ath10k_htt_rx_extract_amsdu(&list, &amsdu);
switch (ret) {
case 0:
/* Note: The in-order indication may report interleaved
* frames from different PPDUs meaning reported rx rate
* to mac80211 isn't accurate/reliable. It's still
* better to report something than nothing though. This
* should still give an idea about rx rate to the user.
*/
ath10k_htt_rx_h_ppdu(ar, &amsdu, status, vdev_id);
ath10k_htt_rx_h_filter(ar, &amsdu, status, NULL);
ath10k_htt_rx_h_mpdu(ar, &amsdu, status, false, NULL,
NULL);
ath10k_htt_rx_h_enqueue(ar, &amsdu, status);
break;
case -EAGAIN:
/* fall through */
default:
/* Should not happen. */
ath10k_warn(ar, "failed to extract amsdu: %d\n", ret);
htt->rx_confused = true;
__skb_queue_purge(&list);
return -EIO;
}
}
return ret;
}
static void ath10k_htt_rx_tx_fetch_resp_id_confirm(struct ath10k *ar,
const __le32 *resp_ids,
int num_resp_ids)
{
int i;
u32 resp_id;
ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm num_resp_ids %d\n",
num_resp_ids);
for (i = 0; i < num_resp_ids; i++) {
resp_id = le32_to_cpu(resp_ids[i]);
ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm resp_id %u\n",
resp_id);
/* TODO: free resp_id */
}
}
static void ath10k_htt_rx_tx_fetch_ind(struct ath10k *ar, struct sk_buff *skb)
{
struct ieee80211_hw *hw = ar->hw;
struct ieee80211_txq *txq;
struct htt_resp *resp = (struct htt_resp *)skb->data;
struct htt_tx_fetch_record *record;
size_t len;
size_t max_num_bytes;
size_t max_num_msdus;
size_t num_bytes;
size_t num_msdus;
const __le32 *resp_ids;
u16 num_records;
u16 num_resp_ids;
u16 peer_id;
u8 tid;
int ret;
int i;
bool may_tx;
ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind\n");
len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_ind);
if (unlikely(skb->len < len)) {
ath10k_warn(ar, "received corrupted tx_fetch_ind event: buffer too short\n");
return;
}
num_records = le16_to_cpu(resp->tx_fetch_ind.num_records);
num_resp_ids = le16_to_cpu(resp->tx_fetch_ind.num_resp_ids);
len += sizeof(resp->tx_fetch_ind.records[0]) * num_records;
len += sizeof(resp->tx_fetch_ind.resp_ids[0]) * num_resp_ids;
if (unlikely(skb->len < len)) {
ath10k_warn(ar, "received corrupted tx_fetch_ind event: too many records/resp_ids\n");
return;
}
ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind num records %hu num resps %hu seq %hu\n",
num_records, num_resp_ids,
le16_to_cpu(resp->tx_fetch_ind.fetch_seq_num));
if (!ar->htt.tx_q_state.enabled) {
ath10k_warn(ar, "received unexpected tx_fetch_ind event: not enabled\n");
return;
}
if (ar->htt.tx_q_state.mode == HTT_TX_MODE_SWITCH_PUSH) {
ath10k_warn(ar, "received unexpected tx_fetch_ind event: in push mode\n");
return;
}
rcu_read_lock();
for (i = 0; i < num_records; i++) {
record = &resp->tx_fetch_ind.records[i];
peer_id = MS(le16_to_cpu(record->info),
HTT_TX_FETCH_RECORD_INFO_PEER_ID);
tid = MS(le16_to_cpu(record->info),
HTT_TX_FETCH_RECORD_INFO_TID);
max_num_msdus = le16_to_cpu(record->num_msdus);
max_num_bytes = le32_to_cpu(record->num_bytes);
ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch record %i peer_id %hu tid %hhu msdus %zu bytes %zu\n",
i, peer_id, tid, max_num_msdus, max_num_bytes);
if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n",
peer_id, tid);
continue;
}
spin_lock_bh(&ar->data_lock);
txq = ath10k_mac_txq_lookup(ar, peer_id, tid);
spin_unlock_bh(&ar->data_lock);
/* It is okay to release the lock and use txq because RCU read
* lock is held.
*/
if (unlikely(!txq)) {
ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n",
peer_id, tid);
continue;
}
num_msdus = 0;
num_bytes = 0;
ieee80211_txq_schedule_start(hw, txq->ac);
may_tx = ieee80211_txq_may_transmit(hw, txq);
while (num_msdus < max_num_msdus &&
num_bytes < max_num_bytes) {
if (!may_tx)
break;
ret = ath10k_mac_tx_push_txq(hw, txq);
if (ret < 0)
break;
num_msdus++;
num_bytes += ret;
}
ieee80211_return_txq(hw, txq, false);
ieee80211_txq_schedule_end(hw, txq->ac);
record->num_msdus = cpu_to_le16(num_msdus);
record->num_bytes = cpu_to_le32(num_bytes);
ath10k_htt_tx_txq_recalc(hw, txq);
}
rcu_read_unlock();
resp_ids = ath10k_htt_get_tx_fetch_ind_resp_ids(&resp->tx_fetch_ind);
ath10k_htt_rx_tx_fetch_resp_id_confirm(ar, resp_ids, num_resp_ids);
ret = ath10k_htt_tx_fetch_resp(ar,
resp->tx_fetch_ind.token,
resp->tx_fetch_ind.fetch_seq_num,
resp->tx_fetch_ind.records,
num_records);
if (unlikely(ret)) {
ath10k_warn(ar, "failed to submit tx fetch resp for token 0x%08x: %d\n",
le32_to_cpu(resp->tx_fetch_ind.token), ret);
/* FIXME: request fw restart */
}
ath10k_htt_tx_txq_sync(ar);
}
static void ath10k_htt_rx_tx_fetch_confirm(struct ath10k *ar,
struct sk_buff *skb)
{
const struct htt_resp *resp = (void *)skb->data;
size_t len;
int num_resp_ids;
ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm\n");
len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_confirm);
if (unlikely(skb->len < len)) {
ath10k_warn(ar, "received corrupted tx_fetch_confirm event: buffer too short\n");
return;
}
num_resp_ids = le16_to_cpu(resp->tx_fetch_confirm.num_resp_ids);
len += sizeof(resp->tx_fetch_confirm.resp_ids[0]) * num_resp_ids;
if (unlikely(skb->len < len)) {
ath10k_warn(ar, "received corrupted tx_fetch_confirm event: resp_ids buffer overflow\n");
return;
}
ath10k_htt_rx_tx_fetch_resp_id_confirm(ar,
resp->tx_fetch_confirm.resp_ids,
num_resp_ids);
}
static void ath10k_htt_rx_tx_mode_switch_ind(struct ath10k *ar,
struct sk_buff *skb)
{
const struct htt_resp *resp = (void *)skb->data;
const struct htt_tx_mode_switch_record *record;
struct ieee80211_txq *txq;
struct ath10k_txq *artxq;
size_t len;
size_t num_records;
enum htt_tx_mode_switch_mode mode;
bool enable;
u16 info0;
u16 info1;
u16 threshold;
u16 peer_id;
u8 tid;
int i;
ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx mode switch ind\n");
len = sizeof(resp->hdr) + sizeof(resp->tx_mode_switch_ind);
if (unlikely(skb->len < len)) {
ath10k_warn(ar, "received corrupted tx_mode_switch_ind event: buffer too short\n");
return;
}
info0 = le16_to_cpu(resp->tx_mode_switch_ind.info0);
info1 = le16_to_cpu(resp->tx_mode_switch_ind.info1);
enable = !!(info0 & HTT_TX_MODE_SWITCH_IND_INFO0_ENABLE);
num_records = MS(info0, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD);
mode = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_MODE);
threshold = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD);
ath10k_dbg(ar, ATH10K_DBG_HTT,
"htt rx tx mode switch ind info0 0x%04hx info1 0x%04hx enable %d num records %zd mode %d threshold %hu\n",
info0, info1, enable, num_records, mode, threshold);
len += sizeof(resp->tx_mode_switch_ind.records[0]) * num_records;
if (unlikely(skb->len < len)) {
ath10k_warn(ar, "received corrupted tx_mode_switch_mode_ind event: too many records\n");
return;
}
switch (mode) {
case HTT_TX_MODE_SWITCH_PUSH:
case HTT_TX_MODE_SWITCH_PUSH_PULL:
break;
default:
ath10k_warn(ar, "received invalid tx_mode_switch_mode_ind mode %d, ignoring\n",
mode);
return;
}
if (!enable)
return;
ar->htt.tx_q_state.enabled = enable;
ar->htt.tx_q_state.mode = mode;
ar->htt.tx_q_state.num_push_allowed = threshold;
rcu_read_lock();
for (i = 0; i < num_records; i++) {
record = &resp->tx_mode_switch_ind.records[i];
info0 = le16_to_cpu(record->info0);
peer_id = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_PEER_ID);
tid = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_TID);
if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n",
peer_id, tid);
continue;
}
spin_lock_bh(&ar->data_lock);
txq = ath10k_mac_txq_lookup(ar, peer_id, tid);
spin_unlock_bh(&ar->data_lock);
/* It is okay to release the lock and use txq because RCU read
* lock is held.
*/
if (unlikely(!txq)) {
ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n",
peer_id, tid);
continue;
}
spin_lock_bh(&ar->htt.tx_lock);
artxq = (void *)txq->drv_priv;
artxq->num_push_allowed = le16_to_cpu(record->num_max_msdus);
spin_unlock_bh(&ar->htt.tx_lock);
}
rcu_read_unlock();
ath10k_mac_tx_push_pending(ar);
}
void ath10k_htt_htc_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
{
bool release;
release = ath10k_htt_t2h_msg_handler(ar, skb);
/* Free the indication buffer */
if (release)
dev_kfree_skb_any(skb);
}
static inline s8 ath10k_get_legacy_rate_idx(struct ath10k *ar, u8 rate)
{
static const u8 legacy_rates[] = {1, 2, 5, 11, 6, 9, 12,
18, 24, 36, 48, 54};
int i;
for (i = 0; i < ARRAY_SIZE(legacy_rates); i++) {
if (rate == legacy_rates[i])
return i;
}
ath10k_warn(ar, "Invalid legacy rate %hhd peer stats", rate);
return -EINVAL;
}
static void
ath10k_accumulate_per_peer_tx_stats(struct ath10k *ar,
struct ath10k_sta *arsta,
struct ath10k_per_peer_tx_stats *pstats,
s8 legacy_rate_idx)
{
struct rate_info *txrate = &arsta->txrate;
struct ath10k_htt_tx_stats *tx_stats;
int idx, ht_idx, gi, mcs, bw, nss;
unsigned long flags;
if (!arsta->tx_stats)
return;
tx_stats = arsta->tx_stats;
flags = txrate->flags;
gi = test_bit(ATH10K_RATE_INFO_FLAGS_SGI_BIT, &flags);
mcs = ATH10K_HW_MCS_RATE(pstats->ratecode);
bw = txrate->bw;
nss = txrate->nss;
ht_idx = mcs + (nss - 1) * 8;
idx = mcs * 8 + 8 * 10 * (nss - 1);
idx += bw * 2 + gi;
#define STATS_OP_FMT(name) tx_stats->stats[ATH10K_STATS_TYPE_##name]
if (txrate->flags == RATE_INFO_FLAGS_VHT_MCS) {
STATS_OP_FMT(SUCC).vht[0][mcs] += pstats->succ_bytes;
STATS_OP_FMT(SUCC).vht[1][mcs] += pstats->succ_pkts;
STATS_OP_FMT(FAIL).vht[0][mcs] += pstats->failed_bytes;
STATS_OP_FMT(FAIL).vht[1][mcs] += pstats->failed_pkts;
STATS_OP_FMT(RETRY).vht[0][mcs] += pstats->retry_bytes;
STATS_OP_FMT(RETRY).vht[1][mcs] += pstats->retry_pkts;
} else if (txrate->flags == RATE_INFO_FLAGS_MCS) {
STATS_OP_FMT(SUCC).ht[0][ht_idx] += pstats->succ_bytes;
STATS_OP_FMT(SUCC).ht[1][ht_idx] += pstats->succ_pkts;
STATS_OP_FMT(FAIL).ht[0][ht_idx] += pstats->failed_bytes;
STATS_OP_FMT(FAIL).ht[1][ht_idx] += pstats->failed_pkts;
STATS_OP_FMT(RETRY).ht[0][ht_idx] += pstats->retry_bytes;
STATS_OP_FMT(RETRY).ht[1][ht_idx] += pstats->retry_pkts;
} else {
mcs = legacy_rate_idx;
STATS_OP_FMT(SUCC).legacy[0][mcs] += pstats->succ_bytes;
STATS_OP_FMT(SUCC).legacy[1][mcs] += pstats->succ_pkts;
STATS_OP_FMT(FAIL).legacy[0][mcs] += pstats->failed_bytes;
STATS_OP_FMT(FAIL).legacy[1][mcs] += pstats->failed_pkts;
STATS_OP_FMT(RETRY).legacy[0][mcs] += pstats->retry_bytes;
STATS_OP_FMT(RETRY).legacy[1][mcs] += pstats->retry_pkts;
}
if (ATH10K_HW_AMPDU(pstats->flags)) {
tx_stats->ba_fails += ATH10K_HW_BA_FAIL(pstats->flags);
if (txrate->flags == RATE_INFO_FLAGS_MCS) {
STATS_OP_FMT(AMPDU).ht[0][ht_idx] +=
pstats->succ_bytes + pstats->retry_bytes;
STATS_OP_FMT(AMPDU).ht[1][ht_idx] +=
pstats->succ_pkts + pstats->retry_pkts;
} else {
STATS_OP_FMT(AMPDU).vht[0][mcs] +=
pstats->succ_bytes + pstats->retry_bytes;
STATS_OP_FMT(AMPDU).vht[1][mcs] +=
pstats->succ_pkts + pstats->retry_pkts;
}
STATS_OP_FMT(AMPDU).bw[0][bw] +=
pstats->succ_bytes + pstats->retry_bytes;
STATS_OP_FMT(AMPDU).nss[0][nss - 1] +=
pstats->succ_bytes + pstats->retry_bytes;
STATS_OP_FMT(AMPDU).gi[0][gi] +=
pstats->succ_bytes + pstats->retry_bytes;
STATS_OP_FMT(AMPDU).rate_table[0][idx] +=
pstats->succ_bytes + pstats->retry_bytes;
STATS_OP_FMT(AMPDU).bw[1][bw] +=
pstats->succ_pkts + pstats->retry_pkts;
STATS_OP_FMT(AMPDU).nss[1][nss - 1] +=
pstats->succ_pkts + pstats->retry_pkts;
STATS_OP_FMT(AMPDU).gi[1][gi] +=
pstats->succ_pkts + pstats->retry_pkts;
STATS_OP_FMT(AMPDU).rate_table[1][idx] +=
pstats->succ_pkts + pstats->retry_pkts;
} else {
tx_stats->ack_fails +=
ATH10K_HW_BA_FAIL(pstats->flags);
}
STATS_OP_FMT(SUCC).bw[0][bw] += pstats->succ_bytes;
STATS_OP_FMT(SUCC).nss[0][nss - 1] += pstats->succ_bytes;
STATS_OP_FMT(SUCC).gi[0][gi] += pstats->succ_bytes;
STATS_OP_FMT(SUCC).bw[1][bw] += pstats->succ_pkts;
STATS_OP_FMT(SUCC).nss[1][nss - 1] += pstats->succ_pkts;
STATS_OP_FMT(SUCC).gi[1][gi] += pstats->succ_pkts;
STATS_OP_FMT(FAIL).bw[0][bw] += pstats->failed_bytes;
STATS_OP_FMT(FAIL).nss[0][nss - 1] += pstats->failed_bytes;
STATS_OP_FMT(FAIL).gi[0][gi] += pstats->failed_bytes;
STATS_OP_FMT(FAIL).bw[1][bw] += pstats->failed_pkts;
STATS_OP_FMT(FAIL).nss[1][nss - 1] += pstats->failed_pkts;
STATS_OP_FMT(FAIL).gi[1][gi] += pstats->failed_pkts;
STATS_OP_FMT(RETRY).bw[0][bw] += pstats->retry_bytes;
STATS_OP_FMT(RETRY).nss[0][nss - 1] += pstats->retry_bytes;
STATS_OP_FMT(RETRY).gi[0][gi] += pstats->retry_bytes;
STATS_OP_FMT(RETRY).bw[1][bw] += pstats->retry_pkts;
STATS_OP_FMT(RETRY).nss[1][nss - 1] += pstats->retry_pkts;
STATS_OP_FMT(RETRY).gi[1][gi] += pstats->retry_pkts;
if (txrate->flags >= RATE_INFO_FLAGS_MCS) {
STATS_OP_FMT(SUCC).rate_table[0][idx] += pstats->succ_bytes;
STATS_OP_FMT(SUCC).rate_table[1][idx] += pstats->succ_pkts;
STATS_OP_FMT(FAIL).rate_table[0][idx] += pstats->failed_bytes;
STATS_OP_FMT(FAIL).rate_table[1][idx] += pstats->failed_pkts;
STATS_OP_FMT(RETRY).rate_table[0][idx] += pstats->retry_bytes;
STATS_OP_FMT(RETRY).rate_table[1][idx] += pstats->retry_pkts;
}
tx_stats->tx_duration += pstats->duration;
}
static void
ath10k_update_per_peer_tx_stats(struct ath10k *ar,
struct ieee80211_sta *sta,
struct ath10k_per_peer_tx_stats *peer_stats)
{
struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
struct ieee80211_chanctx_conf *conf = NULL;
u8 rate = 0, sgi;
s8 rate_idx = 0;
bool skip_auto_rate;
struct rate_info txrate;
lockdep_assert_held(&ar->data_lock);
txrate.flags = ATH10K_HW_PREAMBLE(peer_stats->ratecode);
txrate.bw = ATH10K_HW_BW(peer_stats->flags);
txrate.nss = ATH10K_HW_NSS(peer_stats->ratecode);
txrate.mcs = ATH10K_HW_MCS_RATE(peer_stats->ratecode);
sgi = ATH10K_HW_GI(peer_stats->flags);
skip_auto_rate = ATH10K_FW_SKIPPED_RATE_CTRL(peer_stats->flags);
/* Firmware's rate control skips broadcast/management frames,
* if host has configure fixed rates and in some other special cases.
*/
if (skip_auto_rate)
return;
if (txrate.flags == WMI_RATE_PREAMBLE_VHT && txrate.mcs > 9) {
ath10k_warn(ar, "Invalid VHT mcs %hhd peer stats", txrate.mcs);
return;
}
if (txrate.flags == WMI_RATE_PREAMBLE_HT &&
(txrate.mcs > 7 || txrate.nss < 1)) {
ath10k_warn(ar, "Invalid HT mcs %hhd nss %hhd peer stats",
txrate.mcs, txrate.nss);
return;
}
memset(&arsta->txrate, 0, sizeof(arsta->txrate));
memset(&arsta->tx_info.status, 0, sizeof(arsta->tx_info.status));
if (txrate.flags == WMI_RATE_PREAMBLE_CCK ||
txrate.flags == WMI_RATE_PREAMBLE_OFDM) {
rate = ATH10K_HW_LEGACY_RATE(peer_stats->ratecode);
/* This is hacky, FW sends CCK rate 5.5Mbps as 6 */
if (rate == 6 && txrate.flags == WMI_RATE_PREAMBLE_CCK)
rate = 5;
rate_idx = ath10k_get_legacy_rate_idx(ar, rate);
if (rate_idx < 0)
return;
arsta->txrate.legacy = rate;
} else if (txrate.flags == WMI_RATE_PREAMBLE_HT) {
arsta->txrate.flags = RATE_INFO_FLAGS_MCS;
arsta->txrate.mcs = txrate.mcs + 8 * (txrate.nss - 1);
} else {
arsta->txrate.flags = RATE_INFO_FLAGS_VHT_MCS;
arsta->txrate.mcs = txrate.mcs;
}
switch (txrate.flags) {
case WMI_RATE_PREAMBLE_OFDM:
if (arsta->arvif && arsta->arvif->vif)
conf = rcu_dereference(arsta->arvif->vif->chanctx_conf);
if (conf && conf->def.chan->band == NL80211_BAND_5GHZ)
arsta->tx_info.status.rates[0].idx = rate_idx - 4;
break;
case WMI_RATE_PREAMBLE_CCK:
arsta->tx_info.status.rates[0].idx = rate_idx;
if (sgi)
arsta->tx_info.status.rates[0].flags |=
(IEEE80211_TX_RC_USE_SHORT_PREAMBLE |
IEEE80211_TX_RC_SHORT_GI);
break;
case WMI_RATE_PREAMBLE_HT:
arsta->tx_info.status.rates[0].idx =
txrate.mcs + ((txrate.nss - 1) * 8);
if (sgi)
arsta->tx_info.status.rates[0].flags |=
IEEE80211_TX_RC_SHORT_GI;
arsta->tx_info.status.rates[0].flags |= IEEE80211_TX_RC_MCS;
break;
case WMI_RATE_PREAMBLE_VHT:
ieee80211_rate_set_vht(&arsta->tx_info.status.rates[0],
txrate.mcs, txrate.nss);
if (sgi)
arsta->tx_info.status.rates[0].flags |=
IEEE80211_TX_RC_SHORT_GI;
arsta->tx_info.status.rates[0].flags |= IEEE80211_TX_RC_VHT_MCS;
break;
}
arsta->txrate.nss = txrate.nss;
arsta->txrate.bw = ath10k_bw_to_mac80211_bw(txrate.bw);
arsta->last_tx_bitrate = cfg80211_calculate_bitrate(&arsta->txrate);
if (sgi)
arsta->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI;
switch (arsta->txrate.bw) {
case RATE_INFO_BW_40:
arsta->tx_info.status.rates[0].flags |=
IEEE80211_TX_RC_40_MHZ_WIDTH;
break;
case RATE_INFO_BW_80:
arsta->tx_info.status.rates[0].flags |=
IEEE80211_TX_RC_80_MHZ_WIDTH;
break;
}
if (peer_stats->succ_pkts) {
arsta->tx_info.flags = IEEE80211_TX_STAT_ACK;
arsta->tx_info.status.rates[0].count = 1;
ieee80211_tx_rate_update(ar->hw, sta, &arsta->tx_info);
}
if (ath10k_debug_is_extd_tx_stats_enabled(ar))
ath10k_accumulate_per_peer_tx_stats(ar, arsta, peer_stats,
rate_idx);
}
static void ath10k_htt_fetch_peer_stats(struct ath10k *ar,
struct sk_buff *skb)
{
struct htt_resp *resp = (struct htt_resp *)skb->data;
struct ath10k_per_peer_tx_stats *p_tx_stats = &ar->peer_tx_stats;
struct htt_per_peer_tx_stats_ind *tx_stats;
struct ieee80211_sta *sta;
struct ath10k_peer *peer;
int peer_id, i;
u8 ppdu_len, num_ppdu;
num_ppdu = resp->peer_tx_stats.num_ppdu;
ppdu_len = resp->peer_tx_stats.ppdu_len * sizeof(__le32);
if (skb->len < sizeof(struct htt_resp_hdr) + num_ppdu * ppdu_len) {
ath10k_warn(ar, "Invalid peer stats buf length %d\n", skb->len);
return;
}
tx_stats = (struct htt_per_peer_tx_stats_ind *)
(resp->peer_tx_stats.payload);
peer_id = __le16_to_cpu(tx_stats->peer_id);
rcu_read_lock();
spin_lock_bh(&ar->data_lock);
peer = ath10k_peer_find_by_id(ar, peer_id);
if (!peer || !peer->sta) {
ath10k_warn(ar, "Invalid peer id %d peer stats buffer\n",
peer_id);
goto out;
}
sta = peer->sta;
for (i = 0; i < num_ppdu; i++) {
tx_stats = (struct htt_per_peer_tx_stats_ind *)
(resp->peer_tx_stats.payload + i * ppdu_len);
p_tx_stats->succ_bytes = __le32_to_cpu(tx_stats->succ_bytes);
p_tx_stats->retry_bytes = __le32_to_cpu(tx_stats->retry_bytes);
p_tx_stats->failed_bytes =
__le32_to_cpu(tx_stats->failed_bytes);
p_tx_stats->ratecode = tx_stats->ratecode;
p_tx_stats->flags = tx_stats->flags;
p_tx_stats->succ_pkts = __le16_to_cpu(tx_stats->succ_pkts);
p_tx_stats->retry_pkts = __le16_to_cpu(tx_stats->retry_pkts);
p_tx_stats->failed_pkts = __le16_to_cpu(tx_stats->failed_pkts);
p_tx_stats->duration = __le16_to_cpu(tx_stats->tx_duration);
ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats);
}
out:
spin_unlock_bh(&ar->data_lock);
rcu_read_unlock();
}
static void ath10k_fetch_10_2_tx_stats(struct ath10k *ar, u8 *data)
{
struct ath10k_pktlog_hdr *hdr = (struct ath10k_pktlog_hdr *)data;
struct ath10k_per_peer_tx_stats *p_tx_stats = &ar->peer_tx_stats;
struct ath10k_10_2_peer_tx_stats *tx_stats;
struct ieee80211_sta *sta;
struct ath10k_peer *peer;
u16 log_type = __le16_to_cpu(hdr->log_type);
u32 peer_id = 0, i;
if (log_type != ATH_PKTLOG_TYPE_TX_STAT)
return;
tx_stats = (struct ath10k_10_2_peer_tx_stats *)((hdr->payload) +
ATH10K_10_2_TX_STATS_OFFSET);
if (!tx_stats->tx_ppdu_cnt)
return;
peer_id = tx_stats->peer_id;
rcu_read_lock();
spin_lock_bh(&ar->data_lock);
peer = ath10k_peer_find_by_id(ar, peer_id);
if (!peer || !peer->sta) {
ath10k_warn(ar, "Invalid peer id %d in peer stats buffer\n",
peer_id);
goto out;
}
sta = peer->sta;
for (i = 0; i < tx_stats->tx_ppdu_cnt; i++) {
p_tx_stats->succ_bytes =
__le16_to_cpu(tx_stats->success_bytes[i]);
p_tx_stats->retry_bytes =
__le16_to_cpu(tx_stats->retry_bytes[i]);
p_tx_stats->failed_bytes =
__le16_to_cpu(tx_stats->failed_bytes[i]);
p_tx_stats->ratecode = tx_stats->ratecode[i];
p_tx_stats->flags = tx_stats->flags[i];
p_tx_stats->succ_pkts = tx_stats->success_pkts[i];
p_tx_stats->retry_pkts = tx_stats->retry_pkts[i];
p_tx_stats->failed_pkts = tx_stats->failed_pkts[i];
ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats);
}
spin_unlock_bh(&ar->data_lock);
rcu_read_unlock();
return;
out:
spin_unlock_bh(&ar->data_lock);
rcu_read_unlock();
}
bool ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
{
struct ath10k_htt *htt = &ar->htt;
struct htt_resp *resp = (struct htt_resp *)skb->data;
enum htt_t2h_msg_type type;
/* confirm alignment */
if (!IS_ALIGNED((unsigned long)skb->data, 4))
ath10k_warn(ar, "unaligned htt message, expect trouble\n");
ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n",
resp->hdr.msg_type);
if (resp->hdr.msg_type >= ar->htt.t2h_msg_types_max) {
ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, unsupported msg_type: 0x%0X\n max: 0x%0X",
resp->hdr.msg_type, ar->htt.t2h_msg_types_max);
return true;
}
type = ar->htt.t2h_msg_types[resp->hdr.msg_type];
switch (type) {
case HTT_T2H_MSG_TYPE_VERSION_CONF: {
htt->target_version_major = resp->ver_resp.major;
htt->target_version_minor = resp->ver_resp.minor;
complete(&htt->target_version_received);
break;
}
case HTT_T2H_MSG_TYPE_RX_IND:
if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL)
return ath10k_htt_rx_proc_rx_ind_hl(htt,
&resp->rx_ind_hl,
skb);
else
ath10k_htt_rx_proc_rx_ind_ll(htt, &resp->rx_ind);
break;
case HTT_T2H_MSG_TYPE_PEER_MAP: {
struct htt_peer_map_event ev = {
.vdev_id = resp->peer_map.vdev_id,
.peer_id = __le16_to_cpu(resp->peer_map.peer_id),
};
memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr));
ath10k_peer_map_event(htt, &ev);
break;
}
case HTT_T2H_MSG_TYPE_PEER_UNMAP: {
struct htt_peer_unmap_event ev = {
.peer_id = __le16_to_cpu(resp->peer_unmap.peer_id),
};
ath10k_peer_unmap_event(htt, &ev);
break;
}
case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: {
struct htt_tx_done tx_done = {};
int status = __le32_to_cpu(resp->mgmt_tx_completion.status);
int info = __le32_to_cpu(resp->mgmt_tx_completion.info);
tx_done.msdu_id = __le32_to_cpu(resp->mgmt_tx_completion.desc_id);
switch (status) {
case HTT_MGMT_TX_STATUS_OK:
tx_done.status = HTT_TX_COMPL_STATE_ACK;
if (test_bit(WMI_SERVICE_HTT_MGMT_TX_COMP_VALID_FLAGS,
ar->wmi.svc_map) &&
(resp->mgmt_tx_completion.flags &
HTT_MGMT_TX_CMPL_FLAG_ACK_RSSI)) {
tx_done.ack_rssi =
FIELD_GET(HTT_MGMT_TX_CMPL_INFO_ACK_RSSI_MASK,
info);
}
break;
case HTT_MGMT_TX_STATUS_RETRY:
tx_done.status = HTT_TX_COMPL_STATE_NOACK;
break;
case HTT_MGMT_TX_STATUS_DROP:
tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
break;
}
status = ath10k_txrx_tx_unref(htt, &tx_done);
if (!status) {
spin_lock_bh(&htt->tx_lock);
ath10k_htt_tx_mgmt_dec_pending(htt);
spin_unlock_bh(&htt->tx_lock);
}
break;
}
case HTT_T2H_MSG_TYPE_TX_COMPL_IND:
ath10k_htt_rx_tx_compl_ind(htt->ar, skb);
break;
case HTT_T2H_MSG_TYPE_SEC_IND: {
struct ath10k *ar = htt->ar;
struct htt_security_indication *ev = &resp->security_indication;
ath10k_dbg(ar, ATH10K_DBG_HTT,
"sec ind peer_id %d unicast %d type %d\n",
__le16_to_cpu(ev->peer_id),
!!(ev->flags & HTT_SECURITY_IS_UNICAST),
MS(ev->flags, HTT_SECURITY_TYPE));
complete(&ar->install_key_done);
break;
}
case HTT_T2H_MSG_TYPE_RX_FRAG_IND: {
ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
skb->data, skb->len);
atomic_inc(&htt->num_mpdus_ready);
break;
}
case HTT_T2H_MSG_TYPE_TEST:
break;
case HTT_T2H_MSG_TYPE_STATS_CONF:
trace_ath10k_htt_stats(ar, skb->data, skb->len);
break;
case HTT_T2H_MSG_TYPE_TX_INSPECT_IND:
/* Firmware can return tx frames if it's unable to fully
* process them and suspects host may be able to fix it. ath10k
* sends all tx frames as already inspected so this shouldn't
* happen unless fw has a bug.
*/
ath10k_warn(ar, "received an unexpected htt tx inspect event\n");
break;
case HTT_T2H_MSG_TYPE_RX_ADDBA:
ath10k_htt_rx_addba(ar, resp);
break;
case HTT_T2H_MSG_TYPE_RX_DELBA:
ath10k_htt_rx_delba(ar, resp);
break;
case HTT_T2H_MSG_TYPE_PKTLOG: {
trace_ath10k_htt_pktlog(ar, resp->pktlog_msg.payload,
skb->len -
offsetof(struct htt_resp,
pktlog_msg.payload));
if (ath10k_peer_stats_enabled(ar))
ath10k_fetch_10_2_tx_stats(ar,
resp->pktlog_msg.payload);
break;
}
case HTT_T2H_MSG_TYPE_RX_FLUSH: {
/* Ignore this event because mac80211 takes care of Rx
* aggregation reordering.
*/
break;
}
case HTT_T2H_MSG_TYPE_RX_IN_ORD_PADDR_IND: {
skb_queue_tail(&htt->rx_in_ord_compl_q, skb);
return false;
}
case HTT_T2H_MSG_TYPE_TX_CREDIT_UPDATE_IND:
break;
case HTT_T2H_MSG_TYPE_CHAN_CHANGE: {
u32 phymode = __le32_to_cpu(resp->chan_change.phymode);
u32 freq = __le32_to_cpu(resp->chan_change.freq);
ar->tgt_oper_chan = ieee80211_get_channel(ar->hw->wiphy, freq);
ath10k_dbg(ar, ATH10K_DBG_HTT,
"htt chan change freq %u phymode %s\n",
freq, ath10k_wmi_phymode_str(phymode));
break;
}
case HTT_T2H_MSG_TYPE_AGGR_CONF:
break;
case HTT_T2H_MSG_TYPE_TX_FETCH_IND: {
struct sk_buff *tx_fetch_ind = skb_copy(skb, GFP_ATOMIC);
if (!tx_fetch_ind) {
ath10k_warn(ar, "failed to copy htt tx fetch ind\n");
break;
}
skb_queue_tail(&htt->tx_fetch_ind_q, tx_fetch_ind);
break;
}
case HTT_T2H_MSG_TYPE_TX_FETCH_CONFIRM:
ath10k_htt_rx_tx_fetch_confirm(ar, skb);
break;
case HTT_T2H_MSG_TYPE_TX_MODE_SWITCH_IND:
ath10k_htt_rx_tx_mode_switch_ind(ar, skb);
break;
case HTT_T2H_MSG_TYPE_PEER_STATS:
ath10k_htt_fetch_peer_stats(ar, skb);
break;
case HTT_T2H_MSG_TYPE_EN_STATS:
default:
ath10k_warn(ar, "htt event (%d) not handled\n",
resp->hdr.msg_type);
ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
skb->data, skb->len);
break;
}
return true;
}
EXPORT_SYMBOL(ath10k_htt_t2h_msg_handler);
void ath10k_htt_rx_pktlog_completion_handler(struct ath10k *ar,
struct sk_buff *skb)
{
trace_ath10k_htt_pktlog(ar, skb->data, skb->len);
dev_kfree_skb_any(skb);
}
EXPORT_SYMBOL(ath10k_htt_rx_pktlog_completion_handler);
static int ath10k_htt_rx_deliver_msdu(struct ath10k *ar, int quota, int budget)
{
struct sk_buff *skb;
while (quota < budget) {
if (skb_queue_empty(&ar->htt.rx_msdus_q))
break;
skb = skb_dequeue(&ar->htt.rx_msdus_q);
if (!skb)
break;
ath10k_process_rx(ar, skb);
quota++;
}
return quota;
}
int ath10k_htt_txrx_compl_task(struct ath10k *ar, int budget)
{
struct ath10k_htt *htt = &ar->htt;
struct htt_tx_done tx_done = {};
struct sk_buff_head tx_ind_q;
struct sk_buff *skb;
unsigned long flags;
int quota = 0, done, ret;
bool resched_napi = false;
__skb_queue_head_init(&tx_ind_q);
/* Process pending frames before dequeuing more data
* from hardware.
*/
quota = ath10k_htt_rx_deliver_msdu(ar, quota, budget);
if (quota == budget) {
resched_napi = true;
goto exit;
}
while ((skb = skb_dequeue(&htt->rx_in_ord_compl_q))) {
spin_lock_bh(&htt->rx_ring.lock);
ret = ath10k_htt_rx_in_ord_ind(ar, skb);
spin_unlock_bh(&htt->rx_ring.lock);
dev_kfree_skb_any(skb);
if (ret == -EIO) {
resched_napi = true;
goto exit;
}
}
while (atomic_read(&htt->num_mpdus_ready)) {
ret = ath10k_htt_rx_handle_amsdu(htt);
if (ret == -EIO) {
resched_napi = true;
goto exit;
}
atomic_dec(&htt->num_mpdus_ready);
}
/* Deliver received data after processing data from hardware */
quota = ath10k_htt_rx_deliver_msdu(ar, quota, budget);
/* From NAPI documentation:
* The napi poll() function may also process TX completions, in which
* case if it processes the entire TX ring then it should count that
* work as the rest of the budget.
*/
if ((quota < budget) && !kfifo_is_empty(&htt->txdone_fifo))
quota = budget;
/* kfifo_get: called only within txrx_tasklet so it's neatly serialized.
* From kfifo_get() documentation:
* Note that with only one concurrent reader and one concurrent writer,
* you don't need extra locking to use these macro.
*/
while (kfifo_get(&htt->txdone_fifo, &tx_done))
ath10k_txrx_tx_unref(htt, &tx_done);
ath10k_mac_tx_push_pending(ar);
spin_lock_irqsave(&htt->tx_fetch_ind_q.lock, flags);
skb_queue_splice_init(&htt->tx_fetch_ind_q, &tx_ind_q);
spin_unlock_irqrestore(&htt->tx_fetch_ind_q.lock, flags);
while ((skb = __skb_dequeue(&tx_ind_q))) {
ath10k_htt_rx_tx_fetch_ind(ar, skb);
dev_kfree_skb_any(skb);
}
exit:
ath10k_htt_rx_msdu_buff_replenish(htt);
/* In case of rx failure or more data to read, report budget
* to reschedule NAPI poll
*/
done = resched_napi ? budget : quota;
return done;
}
EXPORT_SYMBOL(ath10k_htt_txrx_compl_task);
static const struct ath10k_htt_rx_ops htt_rx_ops_32 = {
.htt_get_rx_ring_size = ath10k_htt_get_rx_ring_size_32,
.htt_config_paddrs_ring = ath10k_htt_config_paddrs_ring_32,
.htt_set_paddrs_ring = ath10k_htt_set_paddrs_ring_32,
.htt_get_vaddr_ring = ath10k_htt_get_vaddr_ring_32,
.htt_reset_paddrs_ring = ath10k_htt_reset_paddrs_ring_32,
};
static const struct ath10k_htt_rx_ops htt_rx_ops_64 = {
.htt_get_rx_ring_size = ath10k_htt_get_rx_ring_size_64,
.htt_config_paddrs_ring = ath10k_htt_config_paddrs_ring_64,
.htt_set_paddrs_ring = ath10k_htt_set_paddrs_ring_64,
.htt_get_vaddr_ring = ath10k_htt_get_vaddr_ring_64,
.htt_reset_paddrs_ring = ath10k_htt_reset_paddrs_ring_64,
};
static const struct ath10k_htt_rx_ops htt_rx_ops_hl = {
};
void ath10k_htt_set_rx_ops(struct ath10k_htt *htt)
{
struct ath10k *ar = htt->ar;
if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL)
htt->rx_ops = &htt_rx_ops_hl;
else if (ar->hw_params.target_64bit)
htt->rx_ops = &htt_rx_ops_64;
else
htt->rx_ops = &htt_rx_ops_32;
}