blob: 250ab007399bd7402413812c2354650d2e09c366 [file] [log] [blame]
/*
* Copyright 2018 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
/* To compile this assembly code:
*
* Navi1x:
* cpp -DASIC_FAMILY=CHIP_NAVI10 cwsr_trap_handler_gfx10.asm -P -o nv1x.sp3
* sp3 nv1x.sp3 -hex nv1x.hex
*
* gfx10:
* cpp -DASIC_FAMILY=CHIP_SIENNA_CICHLID cwsr_trap_handler_gfx10.asm -P -o gfx10.sp3
* sp3 gfx10.sp3 -hex gfx10.hex
*
* gfx11:
* cpp -DASIC_FAMILY=CHIP_PLUM_BONITO cwsr_trap_handler_gfx10.asm -P -o gfx11.sp3
* sp3 gfx11.sp3 -hex gfx11.hex
*/
#define CHIP_NAVI10 26
#define CHIP_SIENNA_CICHLID 30
#define CHIP_PLUM_BONITO 36
#define NO_SQC_STORE (ASIC_FAMILY >= CHIP_SIENNA_CICHLID)
#define HAVE_XNACK (ASIC_FAMILY < CHIP_SIENNA_CICHLID)
#define HAVE_SENDMSG_RTN (ASIC_FAMILY >= CHIP_PLUM_BONITO)
#define HAVE_BUFFER_LDS_LOAD (ASIC_FAMILY < CHIP_PLUM_BONITO)
var SINGLE_STEP_MISSED_WORKAROUND = 1 //workaround for lost MODE.DEBUG_EN exception when SAVECTX raised
var SQ_WAVE_STATUS_SPI_PRIO_MASK = 0x00000006
var SQ_WAVE_STATUS_HALT_MASK = 0x2000
var SQ_WAVE_STATUS_ECC_ERR_MASK = 0x20000
var SQ_WAVE_LDS_ALLOC_LDS_SIZE_SHIFT = 12
var SQ_WAVE_LDS_ALLOC_LDS_SIZE_SIZE = 9
var SQ_WAVE_GPR_ALLOC_VGPR_SIZE_SIZE = 8
var SQ_WAVE_LDS_ALLOC_VGPR_SHARED_SIZE_SHIFT = 24
var SQ_WAVE_LDS_ALLOC_VGPR_SHARED_SIZE_SIZE = 4
var SQ_WAVE_IB_STS2_WAVE64_SHIFT = 11
var SQ_WAVE_IB_STS2_WAVE64_SIZE = 1
#if ASIC_FAMILY < CHIP_PLUM_BONITO
var SQ_WAVE_GPR_ALLOC_VGPR_SIZE_SHIFT = 8
#else
var SQ_WAVE_GPR_ALLOC_VGPR_SIZE_SHIFT = 12
#endif
var SQ_WAVE_TRAPSTS_SAVECTX_MASK = 0x400
var SQ_WAVE_TRAPSTS_EXCP_MASK = 0x1FF
var SQ_WAVE_TRAPSTS_SAVECTX_SHIFT = 10
var SQ_WAVE_TRAPSTS_ADDR_WATCH_MASK = 0x80
var SQ_WAVE_TRAPSTS_ADDR_WATCH_SHIFT = 7
var SQ_WAVE_TRAPSTS_MEM_VIOL_MASK = 0x100
var SQ_WAVE_TRAPSTS_MEM_VIOL_SHIFT = 8
var SQ_WAVE_TRAPSTS_PRE_SAVECTX_MASK = 0x3FF
var SQ_WAVE_TRAPSTS_PRE_SAVECTX_SHIFT = 0x0
var SQ_WAVE_TRAPSTS_PRE_SAVECTX_SIZE = 10
var SQ_WAVE_TRAPSTS_POST_SAVECTX_MASK = 0xFFFFF800
var SQ_WAVE_TRAPSTS_POST_SAVECTX_SHIFT = 11
var SQ_WAVE_TRAPSTS_POST_SAVECTX_SIZE = 21
var SQ_WAVE_TRAPSTS_ILLEGAL_INST_MASK = 0x800
var SQ_WAVE_TRAPSTS_EXCP_HI_MASK = 0x7000
var SQ_WAVE_MODE_EXCP_EN_SHIFT = 12
var SQ_WAVE_MODE_EXCP_EN_ADDR_WATCH_SHIFT = 19
var SQ_WAVE_IB_STS_FIRST_REPLAY_SHIFT = 15
var SQ_WAVE_IB_STS_REPLAY_W64H_SHIFT = 25
var SQ_WAVE_IB_STS_REPLAY_W64H_MASK = 0x02000000
var SQ_WAVE_IB_STS_RCNT_FIRST_REPLAY_MASK = 0x003F8000
var SQ_WAVE_MODE_DEBUG_EN_MASK = 0x800
// bits [31:24] unused by SPI debug data
var TTMP11_SAVE_REPLAY_W64H_SHIFT = 31
var TTMP11_SAVE_REPLAY_W64H_MASK = 0x80000000
var TTMP11_SAVE_RCNT_FIRST_REPLAY_SHIFT = 24
var TTMP11_SAVE_RCNT_FIRST_REPLAY_MASK = 0x7F000000
var TTMP11_DEBUG_TRAP_ENABLED_SHIFT = 23
var TTMP11_DEBUG_TRAP_ENABLED_MASK = 0x800000
// SQ_SEL_X/Y/Z/W, BUF_NUM_FORMAT_FLOAT, (0 for MUBUF stride[17:14]
// when ADD_TID_ENABLE and BUF_DATA_FORMAT_32 for MTBUF), ADD_TID_ENABLE
var S_SAVE_BUF_RSRC_WORD1_STRIDE = 0x00040000
var S_SAVE_BUF_RSRC_WORD3_MISC = 0x10807FAC
var S_SAVE_PC_HI_TRAP_ID_MASK = 0x00FF0000
var S_SAVE_PC_HI_HT_MASK = 0x01000000
var S_SAVE_SPI_INIT_FIRST_WAVE_MASK = 0x04000000
var S_SAVE_SPI_INIT_FIRST_WAVE_SHIFT = 26
var S_SAVE_PC_HI_FIRST_WAVE_MASK = 0x80000000
var S_SAVE_PC_HI_FIRST_WAVE_SHIFT = 31
var s_sgpr_save_num = 108
var s_save_spi_init_lo = exec_lo
var s_save_spi_init_hi = exec_hi
var s_save_pc_lo = ttmp0
var s_save_pc_hi = ttmp1
var s_save_exec_lo = ttmp2
var s_save_exec_hi = ttmp3
var s_save_status = ttmp12
var s_save_trapsts = ttmp15
var s_save_xnack_mask = s_save_trapsts
var s_wave_size = ttmp7
var s_save_buf_rsrc0 = ttmp8
var s_save_buf_rsrc1 = ttmp9
var s_save_buf_rsrc2 = ttmp10
var s_save_buf_rsrc3 = ttmp11
var s_save_mem_offset = ttmp4
var s_save_alloc_size = s_save_trapsts
var s_save_tmp = ttmp14
var s_save_m0 = ttmp5
var s_save_ttmps_lo = s_save_tmp
var s_save_ttmps_hi = s_save_trapsts
var S_RESTORE_BUF_RSRC_WORD1_STRIDE = S_SAVE_BUF_RSRC_WORD1_STRIDE
var S_RESTORE_BUF_RSRC_WORD3_MISC = S_SAVE_BUF_RSRC_WORD3_MISC
var S_RESTORE_SPI_INIT_FIRST_WAVE_MASK = 0x04000000
var S_RESTORE_SPI_INIT_FIRST_WAVE_SHIFT = 26
var S_WAVE_SIZE = 25
var s_restore_spi_init_lo = exec_lo
var s_restore_spi_init_hi = exec_hi
var s_restore_mem_offset = ttmp12
var s_restore_alloc_size = ttmp3
var s_restore_tmp = ttmp2
var s_restore_mem_offset_save = s_restore_tmp
var s_restore_m0 = s_restore_alloc_size
var s_restore_mode = ttmp7
var s_restore_flat_scratch = s_restore_tmp
var s_restore_pc_lo = ttmp0
var s_restore_pc_hi = ttmp1
var s_restore_exec_lo = ttmp4
var s_restore_exec_hi = ttmp5
var s_restore_status = ttmp14
var s_restore_trapsts = ttmp15
var s_restore_xnack_mask = ttmp13
var s_restore_buf_rsrc0 = ttmp8
var s_restore_buf_rsrc1 = ttmp9
var s_restore_buf_rsrc2 = ttmp10
var s_restore_buf_rsrc3 = ttmp11
var s_restore_size = ttmp6
var s_restore_ttmps_lo = s_restore_tmp
var s_restore_ttmps_hi = s_restore_alloc_size
shader main
asic(DEFAULT)
type(CS)
wave_size(32)
s_branch L_SKIP_RESTORE //NOT restore. might be a regular trap or save
L_JUMP_TO_RESTORE:
s_branch L_RESTORE
L_SKIP_RESTORE:
s_getreg_b32 s_save_status, hwreg(HW_REG_STATUS) //save STATUS since we will change SCC
// Clear SPI_PRIO: do not save with elevated priority.
// Clear ECC_ERR: prevents SQC store and triggers FATAL_HALT if setreg'd.
s_andn2_b32 s_save_status, s_save_status, SQ_WAVE_STATUS_SPI_PRIO_MASK|SQ_WAVE_STATUS_ECC_ERR_MASK
s_getreg_b32 s_save_trapsts, hwreg(HW_REG_TRAPSTS)
s_and_b32 ttmp2, s_save_status, SQ_WAVE_STATUS_HALT_MASK
s_cbranch_scc0 L_NOT_HALTED
L_HALTED:
// Host trap may occur while wave is halted.
s_and_b32 ttmp2, s_save_pc_hi, S_SAVE_PC_HI_TRAP_ID_MASK
s_cbranch_scc1 L_FETCH_2ND_TRAP
L_CHECK_SAVE:
s_and_b32 ttmp2, s_save_trapsts, SQ_WAVE_TRAPSTS_SAVECTX_MASK
s_cbranch_scc1 L_SAVE
// Wave is halted but neither host trap nor SAVECTX is raised.
// Caused by instruction fetch memory violation.
// Spin wait until context saved to prevent interrupt storm.
s_sleep 0x10
s_getreg_b32 s_save_trapsts, hwreg(HW_REG_TRAPSTS)
s_branch L_CHECK_SAVE
L_NOT_HALTED:
// Let second-level handle non-SAVECTX exception or trap.
// Any concurrent SAVECTX will be handled upon re-entry once halted.
// Check non-maskable exceptions. memory_violation, illegal_instruction
// and xnack_error exceptions always cause the wave to enter the trap
// handler.
s_and_b32 ttmp2, s_save_trapsts, SQ_WAVE_TRAPSTS_MEM_VIOL_MASK|SQ_WAVE_TRAPSTS_ILLEGAL_INST_MASK
s_cbranch_scc1 L_FETCH_2ND_TRAP
// Check for maskable exceptions in trapsts.excp and trapsts.excp_hi.
// Maskable exceptions only cause the wave to enter the trap handler if
// their respective bit in mode.excp_en is set.
s_and_b32 ttmp2, s_save_trapsts, SQ_WAVE_TRAPSTS_EXCP_MASK|SQ_WAVE_TRAPSTS_EXCP_HI_MASK
s_cbranch_scc0 L_CHECK_TRAP_ID
s_and_b32 ttmp3, s_save_trapsts, SQ_WAVE_TRAPSTS_ADDR_WATCH_MASK|SQ_WAVE_TRAPSTS_EXCP_HI_MASK
s_cbranch_scc0 L_NOT_ADDR_WATCH
s_bitset1_b32 ttmp2, SQ_WAVE_TRAPSTS_ADDR_WATCH_SHIFT // Check all addr_watch[123] exceptions against excp_en.addr_watch
L_NOT_ADDR_WATCH:
s_getreg_b32 ttmp3, hwreg(HW_REG_MODE)
s_lshl_b32 ttmp2, ttmp2, SQ_WAVE_MODE_EXCP_EN_SHIFT
s_and_b32 ttmp2, ttmp2, ttmp3
s_cbranch_scc1 L_FETCH_2ND_TRAP
L_CHECK_TRAP_ID:
// Check trap_id != 0
s_and_b32 ttmp2, s_save_pc_hi, S_SAVE_PC_HI_TRAP_ID_MASK
s_cbranch_scc1 L_FETCH_2ND_TRAP
if SINGLE_STEP_MISSED_WORKAROUND
// Prioritize single step exception over context save.
// Second-level trap will halt wave and RFE, re-entering for SAVECTX.
s_getreg_b32 ttmp2, hwreg(HW_REG_MODE)
s_and_b32 ttmp2, ttmp2, SQ_WAVE_MODE_DEBUG_EN_MASK
s_cbranch_scc1 L_FETCH_2ND_TRAP
end
s_and_b32 ttmp2, s_save_trapsts, SQ_WAVE_TRAPSTS_SAVECTX_MASK
s_cbranch_scc1 L_SAVE
L_FETCH_2ND_TRAP:
#if HAVE_XNACK
save_and_clear_ib_sts(ttmp14, ttmp15)
#endif
// Read second-level TBA/TMA from first-level TMA and jump if available.
// ttmp[2:5] and ttmp12 can be used (others hold SPI-initialized debug data)
// ttmp12 holds SQ_WAVE_STATUS
#if HAVE_SENDMSG_RTN
s_sendmsg_rtn_b64 [ttmp14, ttmp15], sendmsg(MSG_RTN_GET_TMA)
s_waitcnt lgkmcnt(0)
#else
s_getreg_b32 ttmp14, hwreg(HW_REG_SHADER_TMA_LO)
s_getreg_b32 ttmp15, hwreg(HW_REG_SHADER_TMA_HI)
#endif
s_lshl_b64 [ttmp14, ttmp15], [ttmp14, ttmp15], 0x8
s_load_dword ttmp2, [ttmp14, ttmp15], 0x10 glc:1 // debug trap enabled flag
s_waitcnt lgkmcnt(0)
s_lshl_b32 ttmp2, ttmp2, TTMP11_DEBUG_TRAP_ENABLED_SHIFT
s_andn2_b32 ttmp11, ttmp11, TTMP11_DEBUG_TRAP_ENABLED_MASK
s_or_b32 ttmp11, ttmp11, ttmp2
s_load_dwordx2 [ttmp2, ttmp3], [ttmp14, ttmp15], 0x0 glc:1 // second-level TBA
s_waitcnt lgkmcnt(0)
s_load_dwordx2 [ttmp14, ttmp15], [ttmp14, ttmp15], 0x8 glc:1 // second-level TMA
s_waitcnt lgkmcnt(0)
s_and_b64 [ttmp2, ttmp3], [ttmp2, ttmp3], [ttmp2, ttmp3]
s_cbranch_scc0 L_NO_NEXT_TRAP // second-level trap handler not been set
s_setpc_b64 [ttmp2, ttmp3] // jump to second-level trap handler
L_NO_NEXT_TRAP:
// If not caused by trap then halt wave to prevent re-entry.
s_and_b32 ttmp2, s_save_pc_hi, (S_SAVE_PC_HI_TRAP_ID_MASK|S_SAVE_PC_HI_HT_MASK)
s_cbranch_scc1 L_TRAP_CASE
s_or_b32 s_save_status, s_save_status, SQ_WAVE_STATUS_HALT_MASK
// If the PC points to S_ENDPGM then context save will fail if STATUS.HALT is set.
// Rewind the PC to prevent this from occurring.
s_sub_u32 ttmp0, ttmp0, 0x8
s_subb_u32 ttmp1, ttmp1, 0x0
s_branch L_EXIT_TRAP
L_TRAP_CASE:
// Host trap will not cause trap re-entry.
s_and_b32 ttmp2, s_save_pc_hi, S_SAVE_PC_HI_HT_MASK
s_cbranch_scc1 L_EXIT_TRAP
// Advance past trap instruction to prevent re-entry.
s_add_u32 ttmp0, ttmp0, 0x4
s_addc_u32 ttmp1, ttmp1, 0x0
L_EXIT_TRAP:
s_and_b32 ttmp1, ttmp1, 0xFFFF
#if HAVE_XNACK
restore_ib_sts(ttmp14, ttmp15)
#endif
// Restore SQ_WAVE_STATUS.
s_and_b64 exec, exec, exec // Restore STATUS.EXECZ, not writable by s_setreg_b32
s_and_b64 vcc, vcc, vcc // Restore STATUS.VCCZ, not writable by s_setreg_b32
s_setreg_b32 hwreg(HW_REG_STATUS), s_save_status
s_rfe_b64 [ttmp0, ttmp1]
L_SAVE:
s_and_b32 s_save_pc_hi, s_save_pc_hi, 0x0000ffff //pc[47:32]
s_mov_b32 s_save_tmp, 0
s_setreg_b32 hwreg(HW_REG_TRAPSTS, SQ_WAVE_TRAPSTS_SAVECTX_SHIFT, 1), s_save_tmp //clear saveCtx bit
#if HAVE_XNACK
save_and_clear_ib_sts(s_save_tmp, s_save_trapsts)
#endif
/* inform SPI the readiness and wait for SPI's go signal */
s_mov_b32 s_save_exec_lo, exec_lo //save EXEC and use EXEC for the go signal from SPI
s_mov_b32 s_save_exec_hi, exec_hi
s_mov_b64 exec, 0x0 //clear EXEC to get ready to receive
#if HAVE_SENDMSG_RTN
s_sendmsg_rtn_b64 [exec_lo, exec_hi], sendmsg(MSG_RTN_SAVE_WAVE)
#else
s_sendmsg sendmsg(MSG_SAVEWAVE) //send SPI a message and wait for SPI's write to EXEC
#endif
#if ASIC_FAMILY < CHIP_SIENNA_CICHLID
L_SLEEP:
// sleep 1 (64clk) is not enough for 8 waves per SIMD, which will cause
// SQ hang, since the 7,8th wave could not get arbit to exec inst, while
// other waves are stuck into the sleep-loop and waiting for wrexec!=0
s_sleep 0x2
s_cbranch_execz L_SLEEP
#else
s_waitcnt lgkmcnt(0)
#endif
// Save first_wave flag so we can clear high bits of save address.
s_and_b32 s_save_tmp, s_save_spi_init_hi, S_SAVE_SPI_INIT_FIRST_WAVE_MASK
s_lshl_b32 s_save_tmp, s_save_tmp, (S_SAVE_PC_HI_FIRST_WAVE_SHIFT - S_SAVE_SPI_INIT_FIRST_WAVE_SHIFT)
s_or_b32 s_save_pc_hi, s_save_pc_hi, s_save_tmp
#if NO_SQC_STORE
// Trap temporaries must be saved via VGPR but all VGPRs are in use.
// There is no ttmp space to hold the resource constant for VGPR save.
// Save v0 by itself since it requires only two SGPRs.
s_mov_b32 s_save_ttmps_lo, exec_lo
s_and_b32 s_save_ttmps_hi, exec_hi, 0xFFFF
s_mov_b32 exec_lo, 0xFFFFFFFF
s_mov_b32 exec_hi, 0xFFFFFFFF
global_store_dword_addtid v0, [s_save_ttmps_lo, s_save_ttmps_hi] slc:1 glc:1
v_mov_b32 v0, 0x0
s_mov_b32 exec_lo, s_save_ttmps_lo
s_mov_b32 exec_hi, s_save_ttmps_hi
#endif
// Save trap temporaries 4-11, 13 initialized by SPI debug dispatch logic
// ttmp SR memory offset : size(VGPR)+size(SVGPR)+size(SGPR)+0x40
get_wave_size(s_save_ttmps_hi)
get_vgpr_size_bytes(s_save_ttmps_lo, s_save_ttmps_hi)
get_svgpr_size_bytes(s_save_ttmps_hi)
s_add_u32 s_save_ttmps_lo, s_save_ttmps_lo, s_save_ttmps_hi
s_and_b32 s_save_ttmps_hi, s_save_spi_init_hi, 0xFFFF
s_add_u32 s_save_ttmps_lo, s_save_ttmps_lo, get_sgpr_size_bytes()
s_add_u32 s_save_ttmps_lo, s_save_ttmps_lo, s_save_spi_init_lo
s_addc_u32 s_save_ttmps_hi, s_save_ttmps_hi, 0x0
#if NO_SQC_STORE
v_writelane_b32 v0, ttmp4, 0x4
v_writelane_b32 v0, ttmp5, 0x5
v_writelane_b32 v0, ttmp6, 0x6
v_writelane_b32 v0, ttmp7, 0x7
v_writelane_b32 v0, ttmp8, 0x8
v_writelane_b32 v0, ttmp9, 0x9
v_writelane_b32 v0, ttmp10, 0xA
v_writelane_b32 v0, ttmp11, 0xB
v_writelane_b32 v0, ttmp13, 0xD
v_writelane_b32 v0, exec_lo, 0xE
v_writelane_b32 v0, exec_hi, 0xF
s_mov_b32 exec_lo, 0x3FFF
s_mov_b32 exec_hi, 0x0
global_store_dword_addtid v0, [s_save_ttmps_lo, s_save_ttmps_hi] inst_offset:0x40 slc:1 glc:1
v_readlane_b32 ttmp14, v0, 0xE
v_readlane_b32 ttmp15, v0, 0xF
s_mov_b32 exec_lo, ttmp14
s_mov_b32 exec_hi, ttmp15
#else
s_store_dwordx4 [ttmp4, ttmp5, ttmp6, ttmp7], [s_save_ttmps_lo, s_save_ttmps_hi], 0x50 glc:1
s_store_dwordx4 [ttmp8, ttmp9, ttmp10, ttmp11], [s_save_ttmps_lo, s_save_ttmps_hi], 0x60 glc:1
s_store_dword ttmp13, [s_save_ttmps_lo, s_save_ttmps_hi], 0x74 glc:1
#endif
/* setup Resource Contants */
s_mov_b32 s_save_buf_rsrc0, s_save_spi_init_lo //base_addr_lo
s_and_b32 s_save_buf_rsrc1, s_save_spi_init_hi, 0x0000FFFF //base_addr_hi
s_or_b32 s_save_buf_rsrc1, s_save_buf_rsrc1, S_SAVE_BUF_RSRC_WORD1_STRIDE
s_mov_b32 s_save_buf_rsrc2, 0 //NUM_RECORDS initial value = 0 (in bytes) although not neccessarily inited
s_mov_b32 s_save_buf_rsrc3, S_SAVE_BUF_RSRC_WORD3_MISC
s_mov_b32 s_save_m0, m0
/* global mem offset */
s_mov_b32 s_save_mem_offset, 0x0
get_wave_size(s_wave_size)
#if HAVE_XNACK
// Save and clear vector XNACK state late to free up SGPRs.
s_getreg_b32 s_save_xnack_mask, hwreg(HW_REG_SHADER_XNACK_MASK)
s_setreg_imm32_b32 hwreg(HW_REG_SHADER_XNACK_MASK), 0x0
#endif
/* save first 4 VGPRs, needed for SGPR save */
s_mov_b32 exec_lo, 0xFFFFFFFF //need every thread from now on
s_lshr_b32 m0, s_wave_size, S_WAVE_SIZE
s_and_b32 m0, m0, 1
s_cmp_eq_u32 m0, 1
s_cbranch_scc1 L_ENABLE_SAVE_4VGPR_EXEC_HI
s_mov_b32 exec_hi, 0x00000000
s_branch L_SAVE_4VGPR_WAVE32
L_ENABLE_SAVE_4VGPR_EXEC_HI:
s_mov_b32 exec_hi, 0xFFFFFFFF
s_branch L_SAVE_4VGPR_WAVE64
L_SAVE_4VGPR_WAVE32:
s_mov_b32 s_save_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes
// VGPR Allocated in 4-GPR granularity
#if !NO_SQC_STORE
buffer_store_dword v0, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1
#endif
buffer_store_dword v1, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1 offset:128
buffer_store_dword v2, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1 offset:128*2
buffer_store_dword v3, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1 offset:128*3
s_branch L_SAVE_HWREG
L_SAVE_4VGPR_WAVE64:
s_mov_b32 s_save_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes
// VGPR Allocated in 4-GPR granularity
#if !NO_SQC_STORE
buffer_store_dword v0, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1
#endif
buffer_store_dword v1, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1 offset:256
buffer_store_dword v2, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1 offset:256*2
buffer_store_dword v3, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1 offset:256*3
/* save HW registers */
L_SAVE_HWREG:
// HWREG SR memory offset : size(VGPR)+size(SVGPR)+size(SGPR)
get_vgpr_size_bytes(s_save_mem_offset, s_wave_size)
get_svgpr_size_bytes(s_save_tmp)
s_add_u32 s_save_mem_offset, s_save_mem_offset, s_save_tmp
s_add_u32 s_save_mem_offset, s_save_mem_offset, get_sgpr_size_bytes()
s_mov_b32 s_save_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes
#if NO_SQC_STORE
v_mov_b32 v0, 0x0 //Offset[31:0] from buffer resource
v_mov_b32 v1, 0x0 //Offset[63:32] from buffer resource
v_mov_b32 v2, 0x0 //Set of SGPRs for TCP store
s_mov_b32 m0, 0x0 //Next lane of v2 to write to
#endif
write_hwreg_to_mem(s_save_m0, s_save_buf_rsrc0, s_save_mem_offset)
write_hwreg_to_mem(s_save_pc_lo, s_save_buf_rsrc0, s_save_mem_offset)
s_andn2_b32 s_save_tmp, s_save_pc_hi, S_SAVE_PC_HI_FIRST_WAVE_MASK
write_hwreg_to_mem(s_save_tmp, s_save_buf_rsrc0, s_save_mem_offset)
write_hwreg_to_mem(s_save_exec_lo, s_save_buf_rsrc0, s_save_mem_offset)
write_hwreg_to_mem(s_save_exec_hi, s_save_buf_rsrc0, s_save_mem_offset)
write_hwreg_to_mem(s_save_status, s_save_buf_rsrc0, s_save_mem_offset)
s_getreg_b32 s_save_tmp, hwreg(HW_REG_TRAPSTS)
write_hwreg_to_mem(s_save_tmp, s_save_buf_rsrc0, s_save_mem_offset)
// Not used on Sienna_Cichlid but keep layout same for debugger.
write_hwreg_to_mem(s_save_xnack_mask, s_save_buf_rsrc0, s_save_mem_offset)
s_getreg_b32 s_save_m0, hwreg(HW_REG_MODE)
write_hwreg_to_mem(s_save_m0, s_save_buf_rsrc0, s_save_mem_offset)
s_getreg_b32 s_save_m0, hwreg(HW_REG_SHADER_FLAT_SCRATCH_LO)
write_hwreg_to_mem(s_save_m0, s_save_buf_rsrc0, s_save_mem_offset)
s_getreg_b32 s_save_m0, hwreg(HW_REG_SHADER_FLAT_SCRATCH_HI)
write_hwreg_to_mem(s_save_m0, s_save_buf_rsrc0, s_save_mem_offset)
#if NO_SQC_STORE
// Write HWREGs with 16 VGPR lanes. TTMPs occupy space after this.
s_mov_b32 exec_lo, 0xFFFF
s_mov_b32 exec_hi, 0x0
buffer_store_dword v2, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1
// Write SGPRs with 32 VGPR lanes. This works in wave32 and wave64 mode.
s_mov_b32 exec_lo, 0xFFFFFFFF
#endif
/* save SGPRs */
// Save SGPR before LDS save, then the s0 to s4 can be used during LDS save...
// SGPR SR memory offset : size(VGPR)+size(SVGPR)
get_vgpr_size_bytes(s_save_mem_offset, s_wave_size)
get_svgpr_size_bytes(s_save_tmp)
s_add_u32 s_save_mem_offset, s_save_mem_offset, s_save_tmp
s_mov_b32 s_save_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes
#if NO_SQC_STORE
s_mov_b32 ttmp13, 0x0 //next VGPR lane to copy SGPR into
#else
// backup s_save_buf_rsrc0,1 to s_save_pc_lo/hi, since write_16sgpr_to_mem function will change the rsrc0
s_mov_b32 s_save_xnack_mask, s_save_buf_rsrc0
s_add_u32 s_save_buf_rsrc0, s_save_buf_rsrc0, s_save_mem_offset
s_addc_u32 s_save_buf_rsrc1, s_save_buf_rsrc1, 0
#endif
s_mov_b32 m0, 0x0 //SGPR initial index value =0
s_nop 0x0 //Manually inserted wait states
L_SAVE_SGPR_LOOP:
// SGPR is allocated in 16 SGPR granularity
s_movrels_b64 s0, s0 //s0 = s[0+m0], s1 = s[1+m0]
s_movrels_b64 s2, s2 //s2 = s[2+m0], s3 = s[3+m0]
s_movrels_b64 s4, s4 //s4 = s[4+m0], s5 = s[5+m0]
s_movrels_b64 s6, s6 //s6 = s[6+m0], s7 = s[7+m0]
s_movrels_b64 s8, s8 //s8 = s[8+m0], s9 = s[9+m0]
s_movrels_b64 s10, s10 //s10 = s[10+m0], s11 = s[11+m0]
s_movrels_b64 s12, s12 //s12 = s[12+m0], s13 = s[13+m0]
s_movrels_b64 s14, s14 //s14 = s[14+m0], s15 = s[15+m0]
write_16sgpr_to_mem(s0, s_save_buf_rsrc0, s_save_mem_offset)
#if NO_SQC_STORE
s_cmp_eq_u32 ttmp13, 0x20 //have 32 VGPR lanes filled?
s_cbranch_scc0 L_SAVE_SGPR_SKIP_TCP_STORE
buffer_store_dword v2, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1
s_add_u32 s_save_mem_offset, s_save_mem_offset, 0x80
s_mov_b32 ttmp13, 0x0
v_mov_b32 v2, 0x0
L_SAVE_SGPR_SKIP_TCP_STORE:
#endif
s_add_u32 m0, m0, 16 //next sgpr index
s_cmp_lt_u32 m0, 96 //scc = (m0 < first 96 SGPR) ? 1 : 0
s_cbranch_scc1 L_SAVE_SGPR_LOOP //first 96 SGPR save is complete?
//save the rest 12 SGPR
s_movrels_b64 s0, s0 //s0 = s[0+m0], s1 = s[1+m0]
s_movrels_b64 s2, s2 //s2 = s[2+m0], s3 = s[3+m0]
s_movrels_b64 s4, s4 //s4 = s[4+m0], s5 = s[5+m0]
s_movrels_b64 s6, s6 //s6 = s[6+m0], s7 = s[7+m0]
s_movrels_b64 s8, s8 //s8 = s[8+m0], s9 = s[9+m0]
s_movrels_b64 s10, s10 //s10 = s[10+m0], s11 = s[11+m0]
write_12sgpr_to_mem(s0, s_save_buf_rsrc0, s_save_mem_offset)
#if NO_SQC_STORE
buffer_store_dword v2, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1
#else
// restore s_save_buf_rsrc0,1
s_mov_b32 s_save_buf_rsrc0, s_save_xnack_mask
#endif
/* save LDS */
L_SAVE_LDS:
// Change EXEC to all threads...
s_mov_b32 exec_lo, 0xFFFFFFFF //need every thread from now on
s_lshr_b32 m0, s_wave_size, S_WAVE_SIZE
s_and_b32 m0, m0, 1
s_cmp_eq_u32 m0, 1
s_cbranch_scc1 L_ENABLE_SAVE_LDS_EXEC_HI
s_mov_b32 exec_hi, 0x00000000
s_branch L_SAVE_LDS_NORMAL
L_ENABLE_SAVE_LDS_EXEC_HI:
s_mov_b32 exec_hi, 0xFFFFFFFF
L_SAVE_LDS_NORMAL:
s_getreg_b32 s_save_alloc_size, hwreg(HW_REG_LDS_ALLOC,SQ_WAVE_LDS_ALLOC_LDS_SIZE_SHIFT,SQ_WAVE_LDS_ALLOC_LDS_SIZE_SIZE)
s_and_b32 s_save_alloc_size, s_save_alloc_size, 0xFFFFFFFF //lds_size is zero?
s_cbranch_scc0 L_SAVE_LDS_DONE //no lds used? jump to L_SAVE_DONE
s_barrier //LDS is used? wait for other waves in the same TG
s_and_b32 s_save_tmp, s_save_pc_hi, S_SAVE_PC_HI_FIRST_WAVE_MASK
s_cbranch_scc0 L_SAVE_LDS_DONE
// first wave do LDS save;
s_lshl_b32 s_save_alloc_size, s_save_alloc_size, 6 //LDS size in dwords = lds_size * 64dw
s_lshl_b32 s_save_alloc_size, s_save_alloc_size, 2 //LDS size in bytes
s_mov_b32 s_save_buf_rsrc2, s_save_alloc_size //NUM_RECORDS in bytes
// LDS at offset: size(VGPR)+size(SVGPR)+SIZE(SGPR)+SIZE(HWREG)
//
get_vgpr_size_bytes(s_save_mem_offset, s_wave_size)
get_svgpr_size_bytes(s_save_tmp)
s_add_u32 s_save_mem_offset, s_save_mem_offset, s_save_tmp
s_add_u32 s_save_mem_offset, s_save_mem_offset, get_sgpr_size_bytes()
s_add_u32 s_save_mem_offset, s_save_mem_offset, get_hwreg_size_bytes()
s_mov_b32 s_save_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes
//load 0~63*4(byte address) to vgpr v0
v_mbcnt_lo_u32_b32 v0, -1, 0
v_mbcnt_hi_u32_b32 v0, -1, v0
v_mul_u32_u24 v0, 4, v0
s_lshr_b32 m0, s_wave_size, S_WAVE_SIZE
s_and_b32 m0, m0, 1
s_cmp_eq_u32 m0, 1
s_mov_b32 m0, 0x0
s_cbranch_scc1 L_SAVE_LDS_W64
L_SAVE_LDS_W32:
s_mov_b32 s3, 128
s_nop 0
s_nop 0
s_nop 0
L_SAVE_LDS_LOOP_W32:
ds_read_b32 v1, v0
s_waitcnt 0
buffer_store_dword v1, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1
s_add_u32 m0, m0, s3 //every buffer_store_lds does 256 bytes
s_add_u32 s_save_mem_offset, s_save_mem_offset, s3
v_add_nc_u32 v0, v0, 128 //mem offset increased by 128 bytes
s_cmp_lt_u32 m0, s_save_alloc_size //scc=(m0 < s_save_alloc_size) ? 1 : 0
s_cbranch_scc1 L_SAVE_LDS_LOOP_W32 //LDS save is complete?
s_branch L_SAVE_LDS_DONE
L_SAVE_LDS_W64:
s_mov_b32 s3, 256
s_nop 0
s_nop 0
s_nop 0
L_SAVE_LDS_LOOP_W64:
ds_read_b32 v1, v0
s_waitcnt 0
buffer_store_dword v1, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1
s_add_u32 m0, m0, s3 //every buffer_store_lds does 256 bytes
s_add_u32 s_save_mem_offset, s_save_mem_offset, s3
v_add_nc_u32 v0, v0, 256 //mem offset increased by 256 bytes
s_cmp_lt_u32 m0, s_save_alloc_size //scc=(m0 < s_save_alloc_size) ? 1 : 0
s_cbranch_scc1 L_SAVE_LDS_LOOP_W64 //LDS save is complete?
L_SAVE_LDS_DONE:
/* save VGPRs - set the Rest VGPRs */
L_SAVE_VGPR:
// VGPR SR memory offset: 0
s_mov_b32 exec_lo, 0xFFFFFFFF //need every thread from now on
s_lshr_b32 m0, s_wave_size, S_WAVE_SIZE
s_and_b32 m0, m0, 1
s_cmp_eq_u32 m0, 1
s_cbranch_scc1 L_ENABLE_SAVE_VGPR_EXEC_HI
s_mov_b32 s_save_mem_offset, (0+128*4) // for the rest VGPRs
s_mov_b32 exec_hi, 0x00000000
s_branch L_SAVE_VGPR_NORMAL
L_ENABLE_SAVE_VGPR_EXEC_HI:
s_mov_b32 s_save_mem_offset, (0+256*4) // for the rest VGPRs
s_mov_b32 exec_hi, 0xFFFFFFFF
L_SAVE_VGPR_NORMAL:
s_getreg_b32 s_save_alloc_size, hwreg(HW_REG_GPR_ALLOC,SQ_WAVE_GPR_ALLOC_VGPR_SIZE_SHIFT,SQ_WAVE_GPR_ALLOC_VGPR_SIZE_SIZE)
s_add_u32 s_save_alloc_size, s_save_alloc_size, 1
s_lshl_b32 s_save_alloc_size, s_save_alloc_size, 2 //Number of VGPRs = (vgpr_size + 1) * 4 (non-zero value)
//determine it is wave32 or wave64
s_lshr_b32 m0, s_wave_size, S_WAVE_SIZE
s_and_b32 m0, m0, 1
s_cmp_eq_u32 m0, 1
s_cbranch_scc1 L_SAVE_VGPR_WAVE64
s_mov_b32 s_save_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes
// VGPR Allocated in 4-GPR granularity
// VGPR store using dw burst
s_mov_b32 m0, 0x4 //VGPR initial index value =4
s_cmp_lt_u32 m0, s_save_alloc_size
s_cbranch_scc0 L_SAVE_VGPR_END
L_SAVE_VGPR_W32_LOOP:
v_movrels_b32 v0, v0 //v0 = v[0+m0]
v_movrels_b32 v1, v1 //v1 = v[1+m0]
v_movrels_b32 v2, v2 //v2 = v[2+m0]
v_movrels_b32 v3, v3 //v3 = v[3+m0]
buffer_store_dword v0, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1
buffer_store_dword v1, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1 offset:128
buffer_store_dword v2, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1 offset:128*2
buffer_store_dword v3, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1 offset:128*3
s_add_u32 m0, m0, 4 //next vgpr index
s_add_u32 s_save_mem_offset, s_save_mem_offset, 128*4 //every buffer_store_dword does 128 bytes
s_cmp_lt_u32 m0, s_save_alloc_size //scc = (m0 < s_save_alloc_size) ? 1 : 0
s_cbranch_scc1 L_SAVE_VGPR_W32_LOOP //VGPR save is complete?
s_branch L_SAVE_VGPR_END
L_SAVE_VGPR_WAVE64:
s_mov_b32 s_save_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes
// VGPR store using dw burst
s_mov_b32 m0, 0x4 //VGPR initial index value =4
s_cmp_lt_u32 m0, s_save_alloc_size
s_cbranch_scc0 L_SAVE_SHARED_VGPR
L_SAVE_VGPR_W64_LOOP:
v_movrels_b32 v0, v0 //v0 = v[0+m0]
v_movrels_b32 v1, v1 //v1 = v[1+m0]
v_movrels_b32 v2, v2 //v2 = v[2+m0]
v_movrels_b32 v3, v3 //v3 = v[3+m0]
buffer_store_dword v0, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1
buffer_store_dword v1, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1 offset:256
buffer_store_dword v2, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1 offset:256*2
buffer_store_dword v3, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1 offset:256*3
s_add_u32 m0, m0, 4 //next vgpr index
s_add_u32 s_save_mem_offset, s_save_mem_offset, 256*4 //every buffer_store_dword does 256 bytes
s_cmp_lt_u32 m0, s_save_alloc_size //scc = (m0 < s_save_alloc_size) ? 1 : 0
s_cbranch_scc1 L_SAVE_VGPR_W64_LOOP //VGPR save is complete?
L_SAVE_SHARED_VGPR:
//Below part will be the save shared vgpr part (new for gfx10)
s_getreg_b32 s_save_alloc_size, hwreg(HW_REG_LDS_ALLOC,SQ_WAVE_LDS_ALLOC_VGPR_SHARED_SIZE_SHIFT,SQ_WAVE_LDS_ALLOC_VGPR_SHARED_SIZE_SIZE)
s_and_b32 s_save_alloc_size, s_save_alloc_size, 0xFFFFFFFF //shared_vgpr_size is zero?
s_cbranch_scc0 L_SAVE_VGPR_END //no shared_vgpr used? jump to L_SAVE_LDS
s_lshl_b32 s_save_alloc_size, s_save_alloc_size, 3 //Number of SHARED_VGPRs = shared_vgpr_size * 8 (non-zero value)
//m0 now has the value of normal vgpr count, just add the m0 with shared_vgpr count to get the total count.
//save shared_vgpr will start from the index of m0
s_add_u32 s_save_alloc_size, s_save_alloc_size, m0
s_mov_b32 exec_lo, 0xFFFFFFFF
s_mov_b32 exec_hi, 0x00000000
L_SAVE_SHARED_VGPR_WAVE64_LOOP:
v_movrels_b32 v0, v0 //v0 = v[0+m0]
buffer_store_dword v0, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1
s_add_u32 m0, m0, 1 //next vgpr index
s_add_u32 s_save_mem_offset, s_save_mem_offset, 128
s_cmp_lt_u32 m0, s_save_alloc_size //scc = (m0 < s_save_alloc_size) ? 1 : 0
s_cbranch_scc1 L_SAVE_SHARED_VGPR_WAVE64_LOOP //SHARED_VGPR save is complete?
L_SAVE_VGPR_END:
s_branch L_END_PGM
L_RESTORE:
/* Setup Resource Contants */
s_mov_b32 s_restore_buf_rsrc0, s_restore_spi_init_lo //base_addr_lo
s_and_b32 s_restore_buf_rsrc1, s_restore_spi_init_hi, 0x0000FFFF //base_addr_hi
s_or_b32 s_restore_buf_rsrc1, s_restore_buf_rsrc1, S_RESTORE_BUF_RSRC_WORD1_STRIDE
s_mov_b32 s_restore_buf_rsrc2, 0 //NUM_RECORDS initial value = 0 (in bytes)
s_mov_b32 s_restore_buf_rsrc3, S_RESTORE_BUF_RSRC_WORD3_MISC
//determine it is wave32 or wave64
get_wave_size(s_restore_size)
s_and_b32 s_restore_tmp, s_restore_spi_init_hi, S_RESTORE_SPI_INIT_FIRST_WAVE_MASK
s_cbranch_scc0 L_RESTORE_VGPR
/* restore LDS */
L_RESTORE_LDS:
s_mov_b32 exec_lo, 0xFFFFFFFF //need every thread from now on
s_lshr_b32 m0, s_restore_size, S_WAVE_SIZE
s_and_b32 m0, m0, 1
s_cmp_eq_u32 m0, 1
s_cbranch_scc1 L_ENABLE_RESTORE_LDS_EXEC_HI
s_mov_b32 exec_hi, 0x00000000
s_branch L_RESTORE_LDS_NORMAL
L_ENABLE_RESTORE_LDS_EXEC_HI:
s_mov_b32 exec_hi, 0xFFFFFFFF
L_RESTORE_LDS_NORMAL:
s_getreg_b32 s_restore_alloc_size, hwreg(HW_REG_LDS_ALLOC,SQ_WAVE_LDS_ALLOC_LDS_SIZE_SHIFT,SQ_WAVE_LDS_ALLOC_LDS_SIZE_SIZE)
s_and_b32 s_restore_alloc_size, s_restore_alloc_size, 0xFFFFFFFF //lds_size is zero?
s_cbranch_scc0 L_RESTORE_VGPR //no lds used? jump to L_RESTORE_VGPR
s_lshl_b32 s_restore_alloc_size, s_restore_alloc_size, 6 //LDS size in dwords = lds_size * 64dw
s_lshl_b32 s_restore_alloc_size, s_restore_alloc_size, 2 //LDS size in bytes
s_mov_b32 s_restore_buf_rsrc2, s_restore_alloc_size //NUM_RECORDS in bytes
// LDS at offset: size(VGPR)+size(SVGPR)+SIZE(SGPR)+SIZE(HWREG)
//
get_vgpr_size_bytes(s_restore_mem_offset, s_restore_size)
get_svgpr_size_bytes(s_restore_tmp)
s_add_u32 s_restore_mem_offset, s_restore_mem_offset, s_restore_tmp
s_add_u32 s_restore_mem_offset, s_restore_mem_offset, get_sgpr_size_bytes()
s_add_u32 s_restore_mem_offset, s_restore_mem_offset, get_hwreg_size_bytes()
s_mov_b32 s_restore_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes
s_lshr_b32 m0, s_restore_size, S_WAVE_SIZE
s_and_b32 m0, m0, 1
s_cmp_eq_u32 m0, 1
s_mov_b32 m0, 0x0
s_cbranch_scc1 L_RESTORE_LDS_LOOP_W64
L_RESTORE_LDS_LOOP_W32:
#if HAVE_BUFFER_LDS_LOAD
buffer_load_dword v0, v0, s_restore_buf_rsrc0, s_restore_mem_offset lds:1 // first 64DW
#else
buffer_load_dword v0, v0, s_restore_buf_rsrc0, s_restore_mem_offset
s_waitcnt vmcnt(0)
ds_store_addtid_b32 v0
#endif
s_add_u32 m0, m0, 128 // 128 DW
s_add_u32 s_restore_mem_offset, s_restore_mem_offset, 128 //mem offset increased by 128DW
s_cmp_lt_u32 m0, s_restore_alloc_size //scc=(m0 < s_restore_alloc_size) ? 1 : 0
s_cbranch_scc1 L_RESTORE_LDS_LOOP_W32 //LDS restore is complete?
s_branch L_RESTORE_VGPR
L_RESTORE_LDS_LOOP_W64:
#if HAVE_BUFFER_LDS_LOAD
buffer_load_dword v0, v0, s_restore_buf_rsrc0, s_restore_mem_offset lds:1 // first 64DW
#else
buffer_load_dword v0, v0, s_restore_buf_rsrc0, s_restore_mem_offset
s_waitcnt vmcnt(0)
ds_store_addtid_b32 v0
#endif
s_add_u32 m0, m0, 256 // 256 DW
s_add_u32 s_restore_mem_offset, s_restore_mem_offset, 256 //mem offset increased by 256DW
s_cmp_lt_u32 m0, s_restore_alloc_size //scc=(m0 < s_restore_alloc_size) ? 1 : 0
s_cbranch_scc1 L_RESTORE_LDS_LOOP_W64 //LDS restore is complete?
/* restore VGPRs */
L_RESTORE_VGPR:
// VGPR SR memory offset : 0
s_mov_b32 s_restore_mem_offset, 0x0
s_mov_b32 exec_lo, 0xFFFFFFFF //need every thread from now on
s_lshr_b32 m0, s_restore_size, S_WAVE_SIZE
s_and_b32 m0, m0, 1
s_cmp_eq_u32 m0, 1
s_cbranch_scc1 L_ENABLE_RESTORE_VGPR_EXEC_HI
s_mov_b32 exec_hi, 0x00000000
s_branch L_RESTORE_VGPR_NORMAL
L_ENABLE_RESTORE_VGPR_EXEC_HI:
s_mov_b32 exec_hi, 0xFFFFFFFF
L_RESTORE_VGPR_NORMAL:
s_getreg_b32 s_restore_alloc_size, hwreg(HW_REG_GPR_ALLOC,SQ_WAVE_GPR_ALLOC_VGPR_SIZE_SHIFT,SQ_WAVE_GPR_ALLOC_VGPR_SIZE_SIZE)
s_add_u32 s_restore_alloc_size, s_restore_alloc_size, 1
s_lshl_b32 s_restore_alloc_size, s_restore_alloc_size, 2 //Number of VGPRs = (vgpr_size + 1) * 4 (non-zero value)
//determine it is wave32 or wave64
s_lshr_b32 m0, s_restore_size, S_WAVE_SIZE
s_and_b32 m0, m0, 1
s_cmp_eq_u32 m0, 1
s_cbranch_scc1 L_RESTORE_VGPR_WAVE64
s_mov_b32 s_restore_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes
// VGPR load using dw burst
s_mov_b32 s_restore_mem_offset_save, s_restore_mem_offset // restore start with v1, v0 will be the last
s_add_u32 s_restore_mem_offset, s_restore_mem_offset, 128*4
s_mov_b32 m0, 4 //VGPR initial index value = 4
s_cmp_lt_u32 m0, s_restore_alloc_size
s_cbranch_scc0 L_RESTORE_SGPR
L_RESTORE_VGPR_WAVE32_LOOP:
buffer_load_dword v0, v0, s_restore_buf_rsrc0, s_restore_mem_offset slc:1 glc:1
buffer_load_dword v1, v0, s_restore_buf_rsrc0, s_restore_mem_offset slc:1 glc:1 offset:128
buffer_load_dword v2, v0, s_restore_buf_rsrc0, s_restore_mem_offset slc:1 glc:1 offset:128*2
buffer_load_dword v3, v0, s_restore_buf_rsrc0, s_restore_mem_offset slc:1 glc:1 offset:128*3
s_waitcnt vmcnt(0)
v_movreld_b32 v0, v0 //v[0+m0] = v0
v_movreld_b32 v1, v1
v_movreld_b32 v2, v2
v_movreld_b32 v3, v3
s_add_u32 m0, m0, 4 //next vgpr index
s_add_u32 s_restore_mem_offset, s_restore_mem_offset, 128*4 //every buffer_load_dword does 128 bytes
s_cmp_lt_u32 m0, s_restore_alloc_size //scc = (m0 < s_restore_alloc_size) ? 1 : 0
s_cbranch_scc1 L_RESTORE_VGPR_WAVE32_LOOP //VGPR restore (except v0) is complete?
/* VGPR restore on v0 */
buffer_load_dword v0, v0, s_restore_buf_rsrc0, s_restore_mem_offset_save slc:1 glc:1
buffer_load_dword v1, v0, s_restore_buf_rsrc0, s_restore_mem_offset_save slc:1 glc:1 offset:128
buffer_load_dword v2, v0, s_restore_buf_rsrc0, s_restore_mem_offset_save slc:1 glc:1 offset:128*2
buffer_load_dword v3, v0, s_restore_buf_rsrc0, s_restore_mem_offset_save slc:1 glc:1 offset:128*3
s_waitcnt vmcnt(0)
s_branch L_RESTORE_SGPR
L_RESTORE_VGPR_WAVE64:
s_mov_b32 s_restore_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes
// VGPR load using dw burst
s_mov_b32 s_restore_mem_offset_save, s_restore_mem_offset // restore start with v4, v0 will be the last
s_add_u32 s_restore_mem_offset, s_restore_mem_offset, 256*4
s_mov_b32 m0, 4 //VGPR initial index value = 4
s_cmp_lt_u32 m0, s_restore_alloc_size
s_cbranch_scc0 L_RESTORE_SHARED_VGPR
L_RESTORE_VGPR_WAVE64_LOOP:
buffer_load_dword v0, v0, s_restore_buf_rsrc0, s_restore_mem_offset slc:1 glc:1
buffer_load_dword v1, v0, s_restore_buf_rsrc0, s_restore_mem_offset slc:1 glc:1 offset:256
buffer_load_dword v2, v0, s_restore_buf_rsrc0, s_restore_mem_offset slc:1 glc:1 offset:256*2
buffer_load_dword v3, v0, s_restore_buf_rsrc0, s_restore_mem_offset slc:1 glc:1 offset:256*3
s_waitcnt vmcnt(0)
v_movreld_b32 v0, v0 //v[0+m0] = v0
v_movreld_b32 v1, v1
v_movreld_b32 v2, v2
v_movreld_b32 v3, v3
s_add_u32 m0, m0, 4 //next vgpr index
s_add_u32 s_restore_mem_offset, s_restore_mem_offset, 256*4 //every buffer_load_dword does 256 bytes
s_cmp_lt_u32 m0, s_restore_alloc_size //scc = (m0 < s_restore_alloc_size) ? 1 : 0
s_cbranch_scc1 L_RESTORE_VGPR_WAVE64_LOOP //VGPR restore (except v0) is complete?
L_RESTORE_SHARED_VGPR:
//Below part will be the restore shared vgpr part (new for gfx10)
s_getreg_b32 s_restore_alloc_size, hwreg(HW_REG_LDS_ALLOC,SQ_WAVE_LDS_ALLOC_VGPR_SHARED_SIZE_SHIFT,SQ_WAVE_LDS_ALLOC_VGPR_SHARED_SIZE_SIZE) //shared_vgpr_size
s_and_b32 s_restore_alloc_size, s_restore_alloc_size, 0xFFFFFFFF //shared_vgpr_size is zero?
s_cbranch_scc0 L_RESTORE_V0 //no shared_vgpr used?
s_lshl_b32 s_restore_alloc_size, s_restore_alloc_size, 3 //Number of SHARED_VGPRs = shared_vgpr_size * 8 (non-zero value)
//m0 now has the value of normal vgpr count, just add the m0 with shared_vgpr count to get the total count.
//restore shared_vgpr will start from the index of m0
s_add_u32 s_restore_alloc_size, s_restore_alloc_size, m0
s_mov_b32 exec_lo, 0xFFFFFFFF
s_mov_b32 exec_hi, 0x00000000
L_RESTORE_SHARED_VGPR_WAVE64_LOOP:
buffer_load_dword v0, v0, s_restore_buf_rsrc0, s_restore_mem_offset slc:1 glc:1
s_waitcnt vmcnt(0)
v_movreld_b32 v0, v0 //v[0+m0] = v0
s_add_u32 m0, m0, 1 //next vgpr index
s_add_u32 s_restore_mem_offset, s_restore_mem_offset, 128
s_cmp_lt_u32 m0, s_restore_alloc_size //scc = (m0 < s_restore_alloc_size) ? 1 : 0
s_cbranch_scc1 L_RESTORE_SHARED_VGPR_WAVE64_LOOP //VGPR restore (except v0) is complete?
s_mov_b32 exec_hi, 0xFFFFFFFF //restore back exec_hi before restoring V0!!
/* VGPR restore on v0 */
L_RESTORE_V0:
buffer_load_dword v0, v0, s_restore_buf_rsrc0, s_restore_mem_offset_save slc:1 glc:1
buffer_load_dword v1, v0, s_restore_buf_rsrc0, s_restore_mem_offset_save slc:1 glc:1 offset:256
buffer_load_dword v2, v0, s_restore_buf_rsrc0, s_restore_mem_offset_save slc:1 glc:1 offset:256*2
buffer_load_dword v3, v0, s_restore_buf_rsrc0, s_restore_mem_offset_save slc:1 glc:1 offset:256*3
s_waitcnt vmcnt(0)
/* restore SGPRs */
//will be 2+8+16*6
// SGPR SR memory offset : size(VGPR)+size(SVGPR)
L_RESTORE_SGPR:
get_vgpr_size_bytes(s_restore_mem_offset, s_restore_size)
get_svgpr_size_bytes(s_restore_tmp)
s_add_u32 s_restore_mem_offset, s_restore_mem_offset, s_restore_tmp
s_add_u32 s_restore_mem_offset, s_restore_mem_offset, get_sgpr_size_bytes()
s_sub_u32 s_restore_mem_offset, s_restore_mem_offset, 20*4 //s108~s127 is not saved
s_mov_b32 s_restore_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes
s_mov_b32 m0, s_sgpr_save_num
read_4sgpr_from_mem(s0, s_restore_buf_rsrc0, s_restore_mem_offset)
s_waitcnt lgkmcnt(0)
s_sub_u32 m0, m0, 4 // Restore from S[0] to S[104]
s_nop 0 // hazard SALU M0=> S_MOVREL
s_movreld_b64 s0, s0 //s[0+m0] = s0
s_movreld_b64 s2, s2
read_8sgpr_from_mem(s0, s_restore_buf_rsrc0, s_restore_mem_offset)
s_waitcnt lgkmcnt(0)
s_sub_u32 m0, m0, 8 // Restore from S[0] to S[96]
s_nop 0 // hazard SALU M0=> S_MOVREL
s_movreld_b64 s0, s0 //s[0+m0] = s0
s_movreld_b64 s2, s2
s_movreld_b64 s4, s4
s_movreld_b64 s6, s6
L_RESTORE_SGPR_LOOP:
read_16sgpr_from_mem(s0, s_restore_buf_rsrc0, s_restore_mem_offset)
s_waitcnt lgkmcnt(0)
s_sub_u32 m0, m0, 16 // Restore from S[n] to S[0]
s_nop 0 // hazard SALU M0=> S_MOVREL
s_movreld_b64 s0, s0 //s[0+m0] = s0
s_movreld_b64 s2, s2
s_movreld_b64 s4, s4
s_movreld_b64 s6, s6
s_movreld_b64 s8, s8
s_movreld_b64 s10, s10
s_movreld_b64 s12, s12
s_movreld_b64 s14, s14
s_cmp_eq_u32 m0, 0 //scc = (m0 < s_sgpr_save_num) ? 1 : 0
s_cbranch_scc0 L_RESTORE_SGPR_LOOP
// s_barrier with MODE.DEBUG_EN=1, STATUS.PRIV=1 incorrectly asserts debug exception.
// Clear DEBUG_EN before and restore MODE after the barrier.
s_setreg_imm32_b32 hwreg(HW_REG_MODE), 0
s_barrier //barrier to ensure the readiness of LDS before access attemps from any other wave in the same TG
/* restore HW registers */
L_RESTORE_HWREG:
// HWREG SR memory offset : size(VGPR)+size(SVGPR)+size(SGPR)
get_vgpr_size_bytes(s_restore_mem_offset, s_restore_size)
get_svgpr_size_bytes(s_restore_tmp)
s_add_u32 s_restore_mem_offset, s_restore_mem_offset, s_restore_tmp
s_add_u32 s_restore_mem_offset, s_restore_mem_offset, get_sgpr_size_bytes()
s_mov_b32 s_restore_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes
read_hwreg_from_mem(s_restore_m0, s_restore_buf_rsrc0, s_restore_mem_offset)
read_hwreg_from_mem(s_restore_pc_lo, s_restore_buf_rsrc0, s_restore_mem_offset)
read_hwreg_from_mem(s_restore_pc_hi, s_restore_buf_rsrc0, s_restore_mem_offset)
read_hwreg_from_mem(s_restore_exec_lo, s_restore_buf_rsrc0, s_restore_mem_offset)
read_hwreg_from_mem(s_restore_exec_hi, s_restore_buf_rsrc0, s_restore_mem_offset)
read_hwreg_from_mem(s_restore_status, s_restore_buf_rsrc0, s_restore_mem_offset)
read_hwreg_from_mem(s_restore_trapsts, s_restore_buf_rsrc0, s_restore_mem_offset)
read_hwreg_from_mem(s_restore_xnack_mask, s_restore_buf_rsrc0, s_restore_mem_offset)
read_hwreg_from_mem(s_restore_mode, s_restore_buf_rsrc0, s_restore_mem_offset)
read_hwreg_from_mem(s_restore_flat_scratch, s_restore_buf_rsrc0, s_restore_mem_offset)
s_waitcnt lgkmcnt(0)
s_setreg_b32 hwreg(HW_REG_SHADER_FLAT_SCRATCH_LO), s_restore_flat_scratch
read_hwreg_from_mem(s_restore_flat_scratch, s_restore_buf_rsrc0, s_restore_mem_offset)
s_waitcnt lgkmcnt(0) //from now on, it is safe to restore STATUS and IB_STS
s_setreg_b32 hwreg(HW_REG_SHADER_FLAT_SCRATCH_HI), s_restore_flat_scratch
s_mov_b32 m0, s_restore_m0
s_mov_b32 exec_lo, s_restore_exec_lo
s_mov_b32 exec_hi, s_restore_exec_hi
s_and_b32 s_restore_m0, SQ_WAVE_TRAPSTS_PRE_SAVECTX_MASK, s_restore_trapsts
s_setreg_b32 hwreg(HW_REG_TRAPSTS, SQ_WAVE_TRAPSTS_PRE_SAVECTX_SHIFT, SQ_WAVE_TRAPSTS_PRE_SAVECTX_SIZE), s_restore_m0
#if HAVE_XNACK
s_setreg_b32 hwreg(HW_REG_SHADER_XNACK_MASK), s_restore_xnack_mask
#endif
s_and_b32 s_restore_m0, SQ_WAVE_TRAPSTS_POST_SAVECTX_MASK, s_restore_trapsts
s_lshr_b32 s_restore_m0, s_restore_m0, SQ_WAVE_TRAPSTS_POST_SAVECTX_SHIFT
s_setreg_b32 hwreg(HW_REG_TRAPSTS, SQ_WAVE_TRAPSTS_POST_SAVECTX_SHIFT, SQ_WAVE_TRAPSTS_POST_SAVECTX_SIZE), s_restore_m0
s_setreg_b32 hwreg(HW_REG_MODE), s_restore_mode
// Restore trap temporaries 4-11, 13 initialized by SPI debug dispatch logic
// ttmp SR memory offset : size(VGPR)+size(SVGPR)+size(SGPR)+0x40
get_vgpr_size_bytes(s_restore_ttmps_lo, s_restore_size)
get_svgpr_size_bytes(s_restore_ttmps_hi)
s_add_u32 s_restore_ttmps_lo, s_restore_ttmps_lo, s_restore_ttmps_hi
s_add_u32 s_restore_ttmps_lo, s_restore_ttmps_lo, get_sgpr_size_bytes()
s_add_u32 s_restore_ttmps_lo, s_restore_ttmps_lo, s_restore_buf_rsrc0
s_addc_u32 s_restore_ttmps_hi, s_restore_buf_rsrc1, 0x0
s_and_b32 s_restore_ttmps_hi, s_restore_ttmps_hi, 0xFFFF
s_load_dwordx4 [ttmp4, ttmp5, ttmp6, ttmp7], [s_restore_ttmps_lo, s_restore_ttmps_hi], 0x50 glc:1
s_load_dwordx4 [ttmp8, ttmp9, ttmp10, ttmp11], [s_restore_ttmps_lo, s_restore_ttmps_hi], 0x60 glc:1
s_load_dword ttmp13, [s_restore_ttmps_lo, s_restore_ttmps_hi], 0x74 glc:1
s_waitcnt lgkmcnt(0)
#if HAVE_XNACK
restore_ib_sts(s_restore_tmp, s_restore_m0)
#endif
s_and_b32 s_restore_pc_hi, s_restore_pc_hi, 0x0000ffff //pc[47:32] //Do it here in order not to affect STATUS
s_and_b64 exec, exec, exec // Restore STATUS.EXECZ, not writable by s_setreg_b32
s_and_b64 vcc, vcc, vcc // Restore STATUS.VCCZ, not writable by s_setreg_b32
s_setreg_b32 hwreg(HW_REG_STATUS), s_restore_status // SCC is included, which is changed by previous salu
s_rfe_b64 s_restore_pc_lo //Return to the main shader program and resume execution
L_END_PGM:
s_endpgm
end
function write_hwreg_to_mem(s, s_rsrc, s_mem_offset)
#if NO_SQC_STORE
// Copy into VGPR for later TCP store.
v_writelane_b32 v2, s, m0
s_add_u32 m0, m0, 0x1
#else
s_mov_b32 exec_lo, m0
s_mov_b32 m0, s_mem_offset
s_buffer_store_dword s, s_rsrc, m0 glc:1
s_add_u32 s_mem_offset, s_mem_offset, 4
s_mov_b32 m0, exec_lo
#endif
end
function write_16sgpr_to_mem(s, s_rsrc, s_mem_offset)
#if NO_SQC_STORE
// Copy into VGPR for later TCP store.
for var sgpr_idx = 0; sgpr_idx < 16; sgpr_idx ++
v_writelane_b32 v2, s[sgpr_idx], ttmp13
s_add_u32 ttmp13, ttmp13, 0x1
end
#else
s_buffer_store_dwordx4 s[0], s_rsrc, 0 glc:1
s_buffer_store_dwordx4 s[4], s_rsrc, 16 glc:1
s_buffer_store_dwordx4 s[8], s_rsrc, 32 glc:1
s_buffer_store_dwordx4 s[12], s_rsrc, 48 glc:1
s_add_u32 s_rsrc[0], s_rsrc[0], 4*16
s_addc_u32 s_rsrc[1], s_rsrc[1], 0x0
#endif
end
function write_12sgpr_to_mem(s, s_rsrc, s_mem_offset)
#if NO_SQC_STORE
// Copy into VGPR for later TCP store.
for var sgpr_idx = 0; sgpr_idx < 12; sgpr_idx ++
v_writelane_b32 v2, s[sgpr_idx], ttmp13
s_add_u32 ttmp13, ttmp13, 0x1
end
#else
s_buffer_store_dwordx4 s[0], s_rsrc, 0 glc:1
s_buffer_store_dwordx4 s[4], s_rsrc, 16 glc:1
s_buffer_store_dwordx4 s[8], s_rsrc, 32 glc:1
s_add_u32 s_rsrc[0], s_rsrc[0], 4*12
s_addc_u32 s_rsrc[1], s_rsrc[1], 0x0
#endif
end
function read_hwreg_from_mem(s, s_rsrc, s_mem_offset)
s_buffer_load_dword s, s_rsrc, s_mem_offset glc:1
s_add_u32 s_mem_offset, s_mem_offset, 4
end
function read_16sgpr_from_mem(s, s_rsrc, s_mem_offset)
s_sub_u32 s_mem_offset, s_mem_offset, 4*16
s_buffer_load_dwordx16 s, s_rsrc, s_mem_offset glc:1
end
function read_8sgpr_from_mem(s, s_rsrc, s_mem_offset)
s_sub_u32 s_mem_offset, s_mem_offset, 4*8
s_buffer_load_dwordx8 s, s_rsrc, s_mem_offset glc:1
end
function read_4sgpr_from_mem(s, s_rsrc, s_mem_offset)
s_sub_u32 s_mem_offset, s_mem_offset, 4*4
s_buffer_load_dwordx4 s, s_rsrc, s_mem_offset glc:1
end
function get_lds_size_bytes(s_lds_size_byte)
s_getreg_b32 s_lds_size_byte, hwreg(HW_REG_LDS_ALLOC, SQ_WAVE_LDS_ALLOC_LDS_SIZE_SHIFT, SQ_WAVE_LDS_ALLOC_LDS_SIZE_SIZE)
s_lshl_b32 s_lds_size_byte, s_lds_size_byte, 8 //LDS size in dwords = lds_size * 64 *4Bytes // granularity 64DW
end
function get_vgpr_size_bytes(s_vgpr_size_byte, s_size)
s_getreg_b32 s_vgpr_size_byte, hwreg(HW_REG_GPR_ALLOC,SQ_WAVE_GPR_ALLOC_VGPR_SIZE_SHIFT,SQ_WAVE_GPR_ALLOC_VGPR_SIZE_SIZE)
s_add_u32 s_vgpr_size_byte, s_vgpr_size_byte, 1
s_bitcmp1_b32 s_size, S_WAVE_SIZE
s_cbranch_scc1 L_ENABLE_SHIFT_W64
s_lshl_b32 s_vgpr_size_byte, s_vgpr_size_byte, (2+7) //Number of VGPRs = (vgpr_size + 1) * 4 * 32 * 4 (non-zero value)
s_branch L_SHIFT_DONE
L_ENABLE_SHIFT_W64:
s_lshl_b32 s_vgpr_size_byte, s_vgpr_size_byte, (2+8) //Number of VGPRs = (vgpr_size + 1) * 4 * 64 * 4 (non-zero value)
L_SHIFT_DONE:
end
function get_svgpr_size_bytes(s_svgpr_size_byte)
s_getreg_b32 s_svgpr_size_byte, hwreg(HW_REG_LDS_ALLOC,SQ_WAVE_LDS_ALLOC_VGPR_SHARED_SIZE_SHIFT,SQ_WAVE_LDS_ALLOC_VGPR_SHARED_SIZE_SIZE)
s_lshl_b32 s_svgpr_size_byte, s_svgpr_size_byte, (3+7)
end
function get_sgpr_size_bytes
return 512
end
function get_hwreg_size_bytes
return 128
end
function get_wave_size(s_reg)
s_getreg_b32 s_reg, hwreg(HW_REG_IB_STS2,SQ_WAVE_IB_STS2_WAVE64_SHIFT,SQ_WAVE_IB_STS2_WAVE64_SIZE)
s_lshl_b32 s_reg, s_reg, S_WAVE_SIZE
end
function save_and_clear_ib_sts(tmp1, tmp2)
// Preserve and clear scalar XNACK state before issuing scalar loads.
// Save IB_STS.REPLAY_W64H[25], RCNT[21:16], FIRST_REPLAY[15] into
// unused space ttmp11[31:24].
s_andn2_b32 ttmp11, ttmp11, (TTMP11_SAVE_REPLAY_W64H_MASK | TTMP11_SAVE_RCNT_FIRST_REPLAY_MASK)
s_getreg_b32 tmp1, hwreg(HW_REG_IB_STS)
s_and_b32 tmp2, tmp1, SQ_WAVE_IB_STS_REPLAY_W64H_MASK
s_lshl_b32 tmp2, tmp2, (TTMP11_SAVE_REPLAY_W64H_SHIFT - SQ_WAVE_IB_STS_REPLAY_W64H_SHIFT)
s_or_b32 ttmp11, ttmp11, tmp2
s_and_b32 tmp2, tmp1, SQ_WAVE_IB_STS_RCNT_FIRST_REPLAY_MASK
s_lshl_b32 tmp2, tmp2, (TTMP11_SAVE_RCNT_FIRST_REPLAY_SHIFT - SQ_WAVE_IB_STS_FIRST_REPLAY_SHIFT)
s_or_b32 ttmp11, ttmp11, tmp2
s_andn2_b32 tmp1, tmp1, (SQ_WAVE_IB_STS_REPLAY_W64H_MASK | SQ_WAVE_IB_STS_RCNT_FIRST_REPLAY_MASK)
s_setreg_b32 hwreg(HW_REG_IB_STS), tmp1
end
function restore_ib_sts(tmp1, tmp2)
s_lshr_b32 tmp1, ttmp11, (TTMP11_SAVE_RCNT_FIRST_REPLAY_SHIFT - SQ_WAVE_IB_STS_FIRST_REPLAY_SHIFT)
s_and_b32 tmp2, tmp1, SQ_WAVE_IB_STS_RCNT_FIRST_REPLAY_MASK
s_lshr_b32 tmp1, ttmp11, (TTMP11_SAVE_REPLAY_W64H_SHIFT - SQ_WAVE_IB_STS_REPLAY_W64H_SHIFT)
s_and_b32 tmp1, tmp1, SQ_WAVE_IB_STS_REPLAY_W64H_MASK
s_or_b32 tmp1, tmp1, tmp2
s_setreg_b32 hwreg(HW_REG_IB_STS), tmp1
end