| /* |
| * Copyright 2016 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| * Authors: AMD |
| * |
| */ |
| |
| #include "dm_services.h" |
| |
| #include "core_types.h" |
| |
| #include "reg_helper.h" |
| #include "dcn10_dpp.h" |
| #include "basics/conversion.h" |
| #include "dcn10_cm_common.h" |
| |
| #define NUM_PHASES 64 |
| #define HORZ_MAX_TAPS 8 |
| #define VERT_MAX_TAPS 8 |
| |
| #define BLACK_OFFSET_RGB_Y 0x0 |
| #define BLACK_OFFSET_CBCR 0x8000 |
| |
| #define REG(reg)\ |
| dpp->tf_regs->reg |
| |
| #define CTX \ |
| dpp->base.ctx |
| |
| #undef FN |
| #define FN(reg_name, field_name) \ |
| dpp->tf_shift->field_name, dpp->tf_mask->field_name |
| |
| #define NUM_ELEMENTS(a) (sizeof(a) / sizeof((a)[0])) |
| |
| |
| enum dcn10_coef_filter_type_sel { |
| SCL_COEF_LUMA_VERT_FILTER = 0, |
| SCL_COEF_LUMA_HORZ_FILTER = 1, |
| SCL_COEF_CHROMA_VERT_FILTER = 2, |
| SCL_COEF_CHROMA_HORZ_FILTER = 3, |
| SCL_COEF_ALPHA_VERT_FILTER = 4, |
| SCL_COEF_ALPHA_HORZ_FILTER = 5 |
| }; |
| |
| enum dscl_autocal_mode { |
| AUTOCAL_MODE_OFF = 0, |
| |
| /* Autocal calculate the scaling ratio and initial phase and the |
| * DSCL_MODE_SEL must be set to 1 |
| */ |
| AUTOCAL_MODE_AUTOSCALE = 1, |
| /* Autocal perform auto centering without replication and the |
| * DSCL_MODE_SEL must be set to 0 |
| */ |
| AUTOCAL_MODE_AUTOCENTER = 2, |
| /* Autocal perform auto centering and auto replication and the |
| * DSCL_MODE_SEL must be set to 0 |
| */ |
| AUTOCAL_MODE_AUTOREPLICATE = 3 |
| }; |
| |
| enum dscl_mode_sel { |
| DSCL_MODE_SCALING_444_BYPASS = 0, |
| DSCL_MODE_SCALING_444_RGB_ENABLE = 1, |
| DSCL_MODE_SCALING_444_YCBCR_ENABLE = 2, |
| DSCL_MODE_SCALING_420_YCBCR_ENABLE = 3, |
| DSCL_MODE_SCALING_420_LUMA_BYPASS = 4, |
| DSCL_MODE_SCALING_420_CHROMA_BYPASS = 5, |
| DSCL_MODE_DSCL_BYPASS = 6 |
| }; |
| |
| static void program_gamut_remap( |
| struct dcn10_dpp *dpp, |
| const uint16_t *regval, |
| enum gamut_remap_select select) |
| { |
| uint16_t selection = 0; |
| struct color_matrices_reg gam_regs; |
| |
| if (regval == NULL || select == GAMUT_REMAP_BYPASS) { |
| REG_SET(CM_GAMUT_REMAP_CONTROL, 0, |
| CM_GAMUT_REMAP_MODE, 0); |
| return; |
| } |
| switch (select) { |
| case GAMUT_REMAP_COEFF: |
| selection = 1; |
| break; |
| case GAMUT_REMAP_COMA_COEFF: |
| selection = 2; |
| break; |
| case GAMUT_REMAP_COMB_COEFF: |
| selection = 3; |
| break; |
| default: |
| break; |
| } |
| |
| gam_regs.shifts.csc_c11 = dpp->tf_shift->CM_GAMUT_REMAP_C11; |
| gam_regs.masks.csc_c11 = dpp->tf_mask->CM_GAMUT_REMAP_C11; |
| gam_regs.shifts.csc_c12 = dpp->tf_shift->CM_GAMUT_REMAP_C12; |
| gam_regs.masks.csc_c12 = dpp->tf_mask->CM_GAMUT_REMAP_C12; |
| |
| |
| if (select == GAMUT_REMAP_COEFF) { |
| gam_regs.csc_c11_c12 = REG(CM_GAMUT_REMAP_C11_C12); |
| gam_regs.csc_c33_c34 = REG(CM_GAMUT_REMAP_C33_C34); |
| |
| cm_helper_program_color_matrices( |
| dpp->base.ctx, |
| regval, |
| &gam_regs); |
| |
| } else if (select == GAMUT_REMAP_COMA_COEFF) { |
| |
| gam_regs.csc_c11_c12 = REG(CM_COMA_C11_C12); |
| gam_regs.csc_c33_c34 = REG(CM_COMA_C33_C34); |
| |
| cm_helper_program_color_matrices( |
| dpp->base.ctx, |
| regval, |
| &gam_regs); |
| |
| } else { |
| |
| gam_regs.csc_c11_c12 = REG(CM_COMB_C11_C12); |
| gam_regs.csc_c33_c34 = REG(CM_COMB_C33_C34); |
| |
| cm_helper_program_color_matrices( |
| dpp->base.ctx, |
| regval, |
| &gam_regs); |
| } |
| |
| REG_SET( |
| CM_GAMUT_REMAP_CONTROL, 0, |
| CM_GAMUT_REMAP_MODE, selection); |
| |
| } |
| |
| void dpp1_cm_set_gamut_remap( |
| struct dpp *dpp_base, |
| const struct dpp_grph_csc_adjustment *adjust) |
| { |
| struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); |
| int i = 0; |
| |
| if (adjust->gamut_adjust_type != GRAPHICS_GAMUT_ADJUST_TYPE_SW) |
| /* Bypass if type is bypass or hw */ |
| program_gamut_remap(dpp, NULL, GAMUT_REMAP_BYPASS); |
| else { |
| struct fixed31_32 arr_matrix[12]; |
| uint16_t arr_reg_val[12]; |
| |
| for (i = 0; i < 12; i++) |
| arr_matrix[i] = adjust->temperature_matrix[i]; |
| |
| convert_float_matrix( |
| arr_reg_val, arr_matrix, 12); |
| |
| program_gamut_remap(dpp, arr_reg_val, GAMUT_REMAP_COEFF); |
| } |
| } |
| |
| static void dpp1_cm_program_color_matrix( |
| struct dcn10_dpp *dpp, |
| const uint16_t *regval) |
| { |
| uint32_t ocsc_mode; |
| uint32_t cur_mode; |
| struct color_matrices_reg gam_regs; |
| |
| if (regval == NULL) { |
| BREAK_TO_DEBUGGER(); |
| return; |
| } |
| |
| /* determine which CSC matrix (ocsc or comb) we are using |
| * currently. select the alternate set to double buffer |
| * the CSC update so CSC is updated on frame boundary |
| */ |
| REG_SET(CM_TEST_DEBUG_INDEX, 0, |
| CM_TEST_DEBUG_INDEX, 9); |
| |
| REG_GET(CM_TEST_DEBUG_DATA, |
| CM_TEST_DEBUG_DATA_ID9_OCSC_MODE, &cur_mode); |
| |
| if (cur_mode != 4) |
| ocsc_mode = 4; |
| else |
| ocsc_mode = 5; |
| |
| |
| gam_regs.shifts.csc_c11 = dpp->tf_shift->CM_OCSC_C11; |
| gam_regs.masks.csc_c11 = dpp->tf_mask->CM_OCSC_C11; |
| gam_regs.shifts.csc_c12 = dpp->tf_shift->CM_OCSC_C12; |
| gam_regs.masks.csc_c12 = dpp->tf_mask->CM_OCSC_C12; |
| |
| if (ocsc_mode == 4) { |
| |
| gam_regs.csc_c11_c12 = REG(CM_OCSC_C11_C12); |
| gam_regs.csc_c33_c34 = REG(CM_OCSC_C33_C34); |
| |
| } else { |
| |
| gam_regs.csc_c11_c12 = REG(CM_COMB_C11_C12); |
| gam_regs.csc_c33_c34 = REG(CM_COMB_C33_C34); |
| |
| } |
| |
| cm_helper_program_color_matrices( |
| dpp->base.ctx, |
| regval, |
| &gam_regs); |
| |
| REG_SET(CM_OCSC_CONTROL, 0, CM_OCSC_MODE, ocsc_mode); |
| |
| } |
| |
| void dpp1_cm_set_output_csc_default( |
| struct dpp *dpp_base, |
| enum dc_color_space colorspace) |
| { |
| struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); |
| const uint16_t *regval = NULL; |
| int arr_size; |
| |
| regval = find_color_matrix(colorspace, &arr_size); |
| if (regval == NULL) { |
| BREAK_TO_DEBUGGER(); |
| return; |
| } |
| |
| dpp1_cm_program_color_matrix(dpp, regval); |
| } |
| |
| static void dpp1_cm_get_reg_field( |
| struct dcn10_dpp *dpp, |
| struct xfer_func_reg *reg) |
| { |
| reg->shifts.exp_region0_lut_offset = dpp->tf_shift->CM_RGAM_RAMA_EXP_REGION0_LUT_OFFSET; |
| reg->masks.exp_region0_lut_offset = dpp->tf_mask->CM_RGAM_RAMA_EXP_REGION0_LUT_OFFSET; |
| reg->shifts.exp_region0_num_segments = dpp->tf_shift->CM_RGAM_RAMA_EXP_REGION0_NUM_SEGMENTS; |
| reg->masks.exp_region0_num_segments = dpp->tf_mask->CM_RGAM_RAMA_EXP_REGION0_NUM_SEGMENTS; |
| reg->shifts.exp_region1_lut_offset = dpp->tf_shift->CM_RGAM_RAMA_EXP_REGION1_LUT_OFFSET; |
| reg->masks.exp_region1_lut_offset = dpp->tf_mask->CM_RGAM_RAMA_EXP_REGION1_LUT_OFFSET; |
| reg->shifts.exp_region1_num_segments = dpp->tf_shift->CM_RGAM_RAMA_EXP_REGION1_NUM_SEGMENTS; |
| reg->masks.exp_region1_num_segments = dpp->tf_mask->CM_RGAM_RAMA_EXP_REGION1_NUM_SEGMENTS; |
| |
| reg->shifts.field_region_end = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_END_B; |
| reg->masks.field_region_end = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_END_B; |
| reg->shifts.field_region_end_slope = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_END_SLOPE_B; |
| reg->masks.field_region_end_slope = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_END_SLOPE_B; |
| reg->shifts.field_region_end_base = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_END_BASE_B; |
| reg->masks.field_region_end_base = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_END_BASE_B; |
| reg->shifts.field_region_linear_slope = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_LINEAR_SLOPE_B; |
| reg->masks.field_region_linear_slope = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_LINEAR_SLOPE_B; |
| reg->shifts.exp_region_start = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_START_B; |
| reg->masks.exp_region_start = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_START_B; |
| reg->shifts.exp_resion_start_segment = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_START_SEGMENT_B; |
| reg->masks.exp_resion_start_segment = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_START_SEGMENT_B; |
| } |
| |
| static void dpp1_cm_get_degamma_reg_field( |
| struct dcn10_dpp *dpp, |
| struct xfer_func_reg *reg) |
| { |
| reg->shifts.exp_region0_lut_offset = dpp->tf_shift->CM_DGAM_RAMA_EXP_REGION0_LUT_OFFSET; |
| reg->masks.exp_region0_lut_offset = dpp->tf_mask->CM_DGAM_RAMA_EXP_REGION0_LUT_OFFSET; |
| reg->shifts.exp_region0_num_segments = dpp->tf_shift->CM_DGAM_RAMA_EXP_REGION0_NUM_SEGMENTS; |
| reg->masks.exp_region0_num_segments = dpp->tf_mask->CM_DGAM_RAMA_EXP_REGION0_NUM_SEGMENTS; |
| reg->shifts.exp_region1_lut_offset = dpp->tf_shift->CM_DGAM_RAMA_EXP_REGION1_LUT_OFFSET; |
| reg->masks.exp_region1_lut_offset = dpp->tf_mask->CM_DGAM_RAMA_EXP_REGION1_LUT_OFFSET; |
| reg->shifts.exp_region1_num_segments = dpp->tf_shift->CM_DGAM_RAMA_EXP_REGION1_NUM_SEGMENTS; |
| reg->masks.exp_region1_num_segments = dpp->tf_mask->CM_DGAM_RAMA_EXP_REGION1_NUM_SEGMENTS; |
| |
| reg->shifts.field_region_end = dpp->tf_shift->CM_DGAM_RAMB_EXP_REGION_END_B; |
| reg->masks.field_region_end = dpp->tf_mask->CM_DGAM_RAMB_EXP_REGION_END_B; |
| reg->shifts.field_region_end_slope = dpp->tf_shift->CM_DGAM_RAMB_EXP_REGION_END_SLOPE_B; |
| reg->masks.field_region_end_slope = dpp->tf_mask->CM_DGAM_RAMB_EXP_REGION_END_SLOPE_B; |
| reg->shifts.field_region_end_base = dpp->tf_shift->CM_DGAM_RAMB_EXP_REGION_END_BASE_B; |
| reg->masks.field_region_end_base = dpp->tf_mask->CM_DGAM_RAMB_EXP_REGION_END_BASE_B; |
| reg->shifts.field_region_linear_slope = dpp->tf_shift->CM_DGAM_RAMB_EXP_REGION_LINEAR_SLOPE_B; |
| reg->masks.field_region_linear_slope = dpp->tf_mask->CM_DGAM_RAMB_EXP_REGION_LINEAR_SLOPE_B; |
| reg->shifts.exp_region_start = dpp->tf_shift->CM_DGAM_RAMB_EXP_REGION_START_B; |
| reg->masks.exp_region_start = dpp->tf_mask->CM_DGAM_RAMB_EXP_REGION_START_B; |
| reg->shifts.exp_resion_start_segment = dpp->tf_shift->CM_DGAM_RAMB_EXP_REGION_START_SEGMENT_B; |
| reg->masks.exp_resion_start_segment = dpp->tf_mask->CM_DGAM_RAMB_EXP_REGION_START_SEGMENT_B; |
| } |
| void dpp1_cm_set_output_csc_adjustment( |
| struct dpp *dpp_base, |
| const uint16_t *regval) |
| { |
| struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); |
| |
| dpp1_cm_program_color_matrix(dpp, regval); |
| } |
| |
| void dpp1_cm_power_on_regamma_lut(struct dpp *dpp_base, |
| bool power_on) |
| { |
| struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); |
| |
| REG_SET(CM_MEM_PWR_CTRL, 0, |
| RGAM_MEM_PWR_FORCE, power_on == true ? 0:1); |
| |
| } |
| |
| void dpp1_cm_program_regamma_lut(struct dpp *dpp_base, |
| const struct pwl_result_data *rgb, |
| uint32_t num) |
| { |
| uint32_t i; |
| struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); |
| |
| REG_SEQ_START(); |
| |
| for (i = 0 ; i < num; i++) { |
| REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].red_reg); |
| REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].green_reg); |
| REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].blue_reg); |
| |
| REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].delta_red_reg); |
| REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].delta_green_reg); |
| REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].delta_blue_reg); |
| |
| } |
| |
| } |
| |
| void dpp1_cm_configure_regamma_lut( |
| struct dpp *dpp_base, |
| bool is_ram_a) |
| { |
| struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); |
| |
| REG_UPDATE(CM_RGAM_LUT_WRITE_EN_MASK, |
| CM_RGAM_LUT_WRITE_EN_MASK, 7); |
| REG_UPDATE(CM_RGAM_LUT_WRITE_EN_MASK, |
| CM_RGAM_LUT_WRITE_SEL, is_ram_a == true ? 0:1); |
| REG_SET(CM_RGAM_LUT_INDEX, 0, CM_RGAM_LUT_INDEX, 0); |
| } |
| |
| /*program re gamma RAM A*/ |
| void dpp1_cm_program_regamma_luta_settings( |
| struct dpp *dpp_base, |
| const struct pwl_params *params) |
| { |
| struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); |
| struct xfer_func_reg gam_regs; |
| |
| dpp1_cm_get_reg_field(dpp, &gam_regs); |
| |
| gam_regs.start_cntl_b = REG(CM_RGAM_RAMA_START_CNTL_B); |
| gam_regs.start_cntl_g = REG(CM_RGAM_RAMA_START_CNTL_G); |
| gam_regs.start_cntl_r = REG(CM_RGAM_RAMA_START_CNTL_R); |
| gam_regs.start_slope_cntl_b = REG(CM_RGAM_RAMA_SLOPE_CNTL_B); |
| gam_regs.start_slope_cntl_g = REG(CM_RGAM_RAMA_SLOPE_CNTL_G); |
| gam_regs.start_slope_cntl_r = REG(CM_RGAM_RAMA_SLOPE_CNTL_R); |
| gam_regs.start_end_cntl1_b = REG(CM_RGAM_RAMA_END_CNTL1_B); |
| gam_regs.start_end_cntl2_b = REG(CM_RGAM_RAMA_END_CNTL2_B); |
| gam_regs.start_end_cntl1_g = REG(CM_RGAM_RAMA_END_CNTL1_G); |
| gam_regs.start_end_cntl2_g = REG(CM_RGAM_RAMA_END_CNTL2_G); |
| gam_regs.start_end_cntl1_r = REG(CM_RGAM_RAMA_END_CNTL1_R); |
| gam_regs.start_end_cntl2_r = REG(CM_RGAM_RAMA_END_CNTL2_R); |
| gam_regs.region_start = REG(CM_RGAM_RAMA_REGION_0_1); |
| gam_regs.region_end = REG(CM_RGAM_RAMA_REGION_32_33); |
| |
| cm_helper_program_xfer_func(dpp->base.ctx, params, &gam_regs); |
| |
| } |
| |
| /*program re gamma RAM B*/ |
| void dpp1_cm_program_regamma_lutb_settings( |
| struct dpp *dpp_base, |
| const struct pwl_params *params) |
| { |
| struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); |
| struct xfer_func_reg gam_regs; |
| |
| dpp1_cm_get_reg_field(dpp, &gam_regs); |
| |
| gam_regs.start_cntl_b = REG(CM_RGAM_RAMB_START_CNTL_B); |
| gam_regs.start_cntl_g = REG(CM_RGAM_RAMB_START_CNTL_G); |
| gam_regs.start_cntl_r = REG(CM_RGAM_RAMB_START_CNTL_R); |
| gam_regs.start_slope_cntl_b = REG(CM_RGAM_RAMB_SLOPE_CNTL_B); |
| gam_regs.start_slope_cntl_g = REG(CM_RGAM_RAMB_SLOPE_CNTL_G); |
| gam_regs.start_slope_cntl_r = REG(CM_RGAM_RAMB_SLOPE_CNTL_R); |
| gam_regs.start_end_cntl1_b = REG(CM_RGAM_RAMB_END_CNTL1_B); |
| gam_regs.start_end_cntl2_b = REG(CM_RGAM_RAMB_END_CNTL2_B); |
| gam_regs.start_end_cntl1_g = REG(CM_RGAM_RAMB_END_CNTL1_G); |
| gam_regs.start_end_cntl2_g = REG(CM_RGAM_RAMB_END_CNTL2_G); |
| gam_regs.start_end_cntl1_r = REG(CM_RGAM_RAMB_END_CNTL1_R); |
| gam_regs.start_end_cntl2_r = REG(CM_RGAM_RAMB_END_CNTL2_R); |
| gam_regs.region_start = REG(CM_RGAM_RAMB_REGION_0_1); |
| gam_regs.region_end = REG(CM_RGAM_RAMB_REGION_32_33); |
| |
| cm_helper_program_xfer_func(dpp->base.ctx, params, &gam_regs); |
| } |
| |
| void dpp1_program_input_csc( |
| struct dpp *dpp_base, |
| enum dc_color_space color_space, |
| enum dcn10_input_csc_select input_select, |
| const struct out_csc_color_matrix *tbl_entry) |
| { |
| struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); |
| int i; |
| int arr_size = sizeof(dpp_input_csc_matrix)/sizeof(struct dpp_input_csc_matrix); |
| const uint16_t *regval = NULL; |
| uint32_t cur_select = 0; |
| enum dcn10_input_csc_select select; |
| struct color_matrices_reg gam_regs; |
| |
| if (input_select == INPUT_CSC_SELECT_BYPASS) { |
| REG_SET(CM_ICSC_CONTROL, 0, CM_ICSC_MODE, 0); |
| return; |
| } |
| |
| if (tbl_entry == NULL) { |
| for (i = 0; i < arr_size; i++) |
| if (dpp_input_csc_matrix[i].color_space == color_space) { |
| regval = dpp_input_csc_matrix[i].regval; |
| break; |
| } |
| |
| if (regval == NULL) { |
| BREAK_TO_DEBUGGER(); |
| return; |
| } |
| } else { |
| regval = tbl_entry->regval; |
| } |
| |
| /* determine which CSC matrix (icsc or coma) we are using |
| * currently. select the alternate set to double buffer |
| * the CSC update so CSC is updated on frame boundary |
| */ |
| REG_SET(CM_TEST_DEBUG_INDEX, 0, |
| CM_TEST_DEBUG_INDEX, 9); |
| |
| REG_GET(CM_TEST_DEBUG_DATA, |
| CM_TEST_DEBUG_DATA_ID9_ICSC_MODE, &cur_select); |
| |
| if (cur_select != INPUT_CSC_SELECT_ICSC) |
| select = INPUT_CSC_SELECT_ICSC; |
| else |
| select = INPUT_CSC_SELECT_COMA; |
| |
| gam_regs.shifts.csc_c11 = dpp->tf_shift->CM_ICSC_C11; |
| gam_regs.masks.csc_c11 = dpp->tf_mask->CM_ICSC_C11; |
| gam_regs.shifts.csc_c12 = dpp->tf_shift->CM_ICSC_C12; |
| gam_regs.masks.csc_c12 = dpp->tf_mask->CM_ICSC_C12; |
| |
| if (select == INPUT_CSC_SELECT_ICSC) { |
| |
| gam_regs.csc_c11_c12 = REG(CM_ICSC_C11_C12); |
| gam_regs.csc_c33_c34 = REG(CM_ICSC_C33_C34); |
| |
| } else { |
| |
| gam_regs.csc_c11_c12 = REG(CM_COMA_C11_C12); |
| gam_regs.csc_c33_c34 = REG(CM_COMA_C33_C34); |
| |
| } |
| |
| cm_helper_program_color_matrices( |
| dpp->base.ctx, |
| regval, |
| &gam_regs); |
| |
| REG_SET(CM_ICSC_CONTROL, 0, |
| CM_ICSC_MODE, select); |
| } |
| |
| //keep here for now, decide multi dce support later |
| void dpp1_program_bias_and_scale( |
| struct dpp *dpp_base, |
| struct dc_bias_and_scale *params) |
| { |
| struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); |
| |
| REG_SET_2(CM_BNS_VALUES_R, 0, |
| CM_BNS_SCALE_R, params->scale_red, |
| CM_BNS_BIAS_R, params->bias_red); |
| |
| REG_SET_2(CM_BNS_VALUES_G, 0, |
| CM_BNS_SCALE_G, params->scale_green, |
| CM_BNS_BIAS_G, params->bias_green); |
| |
| REG_SET_2(CM_BNS_VALUES_B, 0, |
| CM_BNS_SCALE_B, params->scale_blue, |
| CM_BNS_BIAS_B, params->bias_blue); |
| |
| } |
| |
| /*program de gamma RAM B*/ |
| void dpp1_program_degamma_lutb_settings( |
| struct dpp *dpp_base, |
| const struct pwl_params *params) |
| { |
| struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); |
| struct xfer_func_reg gam_regs; |
| |
| dpp1_cm_get_degamma_reg_field(dpp, &gam_regs); |
| |
| gam_regs.start_cntl_b = REG(CM_DGAM_RAMB_START_CNTL_B); |
| gam_regs.start_cntl_g = REG(CM_DGAM_RAMB_START_CNTL_G); |
| gam_regs.start_cntl_r = REG(CM_DGAM_RAMB_START_CNTL_R); |
| gam_regs.start_slope_cntl_b = REG(CM_DGAM_RAMB_SLOPE_CNTL_B); |
| gam_regs.start_slope_cntl_g = REG(CM_DGAM_RAMB_SLOPE_CNTL_G); |
| gam_regs.start_slope_cntl_r = REG(CM_DGAM_RAMB_SLOPE_CNTL_R); |
| gam_regs.start_end_cntl1_b = REG(CM_DGAM_RAMB_END_CNTL1_B); |
| gam_regs.start_end_cntl2_b = REG(CM_DGAM_RAMB_END_CNTL2_B); |
| gam_regs.start_end_cntl1_g = REG(CM_DGAM_RAMB_END_CNTL1_G); |
| gam_regs.start_end_cntl2_g = REG(CM_DGAM_RAMB_END_CNTL2_G); |
| gam_regs.start_end_cntl1_r = REG(CM_DGAM_RAMB_END_CNTL1_R); |
| gam_regs.start_end_cntl2_r = REG(CM_DGAM_RAMB_END_CNTL2_R); |
| gam_regs.region_start = REG(CM_DGAM_RAMB_REGION_0_1); |
| gam_regs.region_end = REG(CM_DGAM_RAMB_REGION_14_15); |
| |
| |
| cm_helper_program_xfer_func(dpp->base.ctx, params, &gam_regs); |
| } |
| |
| /*program de gamma RAM A*/ |
| void dpp1_program_degamma_luta_settings( |
| struct dpp *dpp_base, |
| const struct pwl_params *params) |
| { |
| struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); |
| struct xfer_func_reg gam_regs; |
| |
| dpp1_cm_get_degamma_reg_field(dpp, &gam_regs); |
| |
| gam_regs.start_cntl_b = REG(CM_DGAM_RAMA_START_CNTL_B); |
| gam_regs.start_cntl_g = REG(CM_DGAM_RAMA_START_CNTL_G); |
| gam_regs.start_cntl_r = REG(CM_DGAM_RAMA_START_CNTL_R); |
| gam_regs.start_slope_cntl_b = REG(CM_DGAM_RAMA_SLOPE_CNTL_B); |
| gam_regs.start_slope_cntl_g = REG(CM_DGAM_RAMA_SLOPE_CNTL_G); |
| gam_regs.start_slope_cntl_r = REG(CM_DGAM_RAMA_SLOPE_CNTL_R); |
| gam_regs.start_end_cntl1_b = REG(CM_DGAM_RAMA_END_CNTL1_B); |
| gam_regs.start_end_cntl2_b = REG(CM_DGAM_RAMA_END_CNTL2_B); |
| gam_regs.start_end_cntl1_g = REG(CM_DGAM_RAMA_END_CNTL1_G); |
| gam_regs.start_end_cntl2_g = REG(CM_DGAM_RAMA_END_CNTL2_G); |
| gam_regs.start_end_cntl1_r = REG(CM_DGAM_RAMA_END_CNTL1_R); |
| gam_regs.start_end_cntl2_r = REG(CM_DGAM_RAMA_END_CNTL2_R); |
| gam_regs.region_start = REG(CM_DGAM_RAMA_REGION_0_1); |
| gam_regs.region_end = REG(CM_DGAM_RAMA_REGION_14_15); |
| |
| cm_helper_program_xfer_func(dpp->base.ctx, params, &gam_regs); |
| } |
| |
| void dpp1_power_on_degamma_lut( |
| struct dpp *dpp_base, |
| bool power_on) |
| { |
| struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); |
| |
| REG_SET(CM_MEM_PWR_CTRL, 0, |
| SHARED_MEM_PWR_DIS, power_on ? 0:1); |
| |
| } |
| |
| static void dpp1_enable_cm_block( |
| struct dpp *dpp_base) |
| { |
| struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); |
| |
| REG_UPDATE(CM_CMOUT_CONTROL, CM_CMOUT_ROUND_TRUNC_MODE, 8); |
| REG_UPDATE(CM_CONTROL, CM_BYPASS_EN, 0); |
| } |
| |
| void dpp1_set_degamma( |
| struct dpp *dpp_base, |
| enum ipp_degamma_mode mode) |
| { |
| struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); |
| dpp1_enable_cm_block(dpp_base); |
| |
| switch (mode) { |
| case IPP_DEGAMMA_MODE_BYPASS: |
| /* Setting de gamma bypass for now */ |
| REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 0); |
| break; |
| case IPP_DEGAMMA_MODE_HW_sRGB: |
| REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 1); |
| break; |
| case IPP_DEGAMMA_MODE_HW_xvYCC: |
| REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 2); |
| break; |
| case IPP_DEGAMMA_MODE_USER_PWL: |
| REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 3); |
| break; |
| default: |
| BREAK_TO_DEBUGGER(); |
| break; |
| } |
| |
| REG_SEQ_SUBMIT(); |
| REG_SEQ_WAIT_DONE(); |
| } |
| |
| void dpp1_degamma_ram_select( |
| struct dpp *dpp_base, |
| bool use_ram_a) |
| { |
| struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); |
| |
| if (use_ram_a) |
| REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 3); |
| else |
| REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 4); |
| |
| } |
| |
| static bool dpp1_degamma_ram_inuse( |
| struct dpp *dpp_base, |
| bool *ram_a_inuse) |
| { |
| bool ret = false; |
| uint32_t status_reg = 0; |
| struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); |
| |
| REG_GET(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_DGAM_CONFIG_STATUS, |
| &status_reg); |
| |
| if (status_reg == 9) { |
| *ram_a_inuse = true; |
| ret = true; |
| } else if (status_reg == 10) { |
| *ram_a_inuse = false; |
| ret = true; |
| } |
| return ret; |
| } |
| |
| void dpp1_program_degamma_lut( |
| struct dpp *dpp_base, |
| const struct pwl_result_data *rgb, |
| uint32_t num, |
| bool is_ram_a) |
| { |
| uint32_t i; |
| |
| struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); |
| REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_HOST_EN, 0); |
| REG_UPDATE(CM_DGAM_LUT_WRITE_EN_MASK, |
| CM_DGAM_LUT_WRITE_EN_MASK, 7); |
| REG_UPDATE(CM_DGAM_LUT_WRITE_EN_MASK, CM_DGAM_LUT_WRITE_SEL, |
| is_ram_a == true ? 0:1); |
| |
| REG_SET(CM_DGAM_LUT_INDEX, 0, CM_DGAM_LUT_INDEX, 0); |
| for (i = 0 ; i < num; i++) { |
| REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].red_reg); |
| REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].green_reg); |
| REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].blue_reg); |
| |
| REG_SET(CM_DGAM_LUT_DATA, 0, |
| CM_DGAM_LUT_DATA, rgb[i].delta_red_reg); |
| REG_SET(CM_DGAM_LUT_DATA, 0, |
| CM_DGAM_LUT_DATA, rgb[i].delta_green_reg); |
| REG_SET(CM_DGAM_LUT_DATA, 0, |
| CM_DGAM_LUT_DATA, rgb[i].delta_blue_reg); |
| } |
| } |
| |
| void dpp1_set_degamma_pwl(struct dpp *dpp_base, |
| const struct pwl_params *params) |
| { |
| bool is_ram_a = true; |
| |
| dpp1_power_on_degamma_lut(dpp_base, true); |
| dpp1_enable_cm_block(dpp_base); |
| dpp1_degamma_ram_inuse(dpp_base, &is_ram_a); |
| if (is_ram_a == true) |
| dpp1_program_degamma_lutb_settings(dpp_base, params); |
| else |
| dpp1_program_degamma_luta_settings(dpp_base, params); |
| |
| dpp1_program_degamma_lut(dpp_base, params->rgb_resulted, |
| params->hw_points_num, !is_ram_a); |
| dpp1_degamma_ram_select(dpp_base, !is_ram_a); |
| } |
| |
| void dpp1_full_bypass(struct dpp *dpp_base) |
| { |
| struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); |
| |
| /* Input pixel format: ARGB8888 */ |
| REG_SET(CNVC_SURFACE_PIXEL_FORMAT, 0, |
| CNVC_SURFACE_PIXEL_FORMAT, 0x8); |
| |
| /* Zero expansion */ |
| REG_SET_3(FORMAT_CONTROL, 0, |
| CNVC_BYPASS, 0, |
| FORMAT_CONTROL__ALPHA_EN, 0, |
| FORMAT_EXPANSION_MODE, 0); |
| |
| /* COLOR_KEYER_CONTROL.COLOR_KEYER_EN = 0 this should be default */ |
| if (dpp->tf_mask->CM_BYPASS_EN) |
| REG_SET(CM_CONTROL, 0, CM_BYPASS_EN, 1); |
| else |
| REG_SET(CM_CONTROL, 0, CM_BYPASS, 1); |
| |
| /* Setting degamma bypass for now */ |
| REG_SET(CM_DGAM_CONTROL, 0, CM_DGAM_LUT_MODE, 0); |
| } |
| |
| static bool dpp1_ingamma_ram_inuse(struct dpp *dpp_base, |
| bool *ram_a_inuse) |
| { |
| bool in_use = false; |
| uint32_t status_reg = 0; |
| struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); |
| |
| REG_GET(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_DGAM_CONFIG_STATUS, |
| &status_reg); |
| |
| // 1 => IGAM_RAMA, 3 => IGAM_RAMA & DGAM_ROMA, 4 => IGAM_RAMA & DGAM_ROMB |
| if (status_reg == 1 || status_reg == 3 || status_reg == 4) { |
| *ram_a_inuse = true; |
| in_use = true; |
| // 2 => IGAM_RAMB, 5 => IGAM_RAMB & DGAM_ROMA, 6 => IGAM_RAMB & DGAM_ROMB |
| } else if (status_reg == 2 || status_reg == 5 || status_reg == 6) { |
| *ram_a_inuse = false; |
| in_use = true; |
| } |
| return in_use; |
| } |
| |
| /* |
| * Input gamma LUT currently supports 256 values only. This means input color |
| * can have a maximum of 8 bits per channel (= 256 possible values) in order to |
| * have a one-to-one mapping with the LUT. Truncation will occur with color |
| * values greater than 8 bits. |
| * |
| * In the future, this function should support additional input gamma methods, |
| * such as piecewise linear mapping, and input gamma bypass. |
| */ |
| void dpp1_program_input_lut( |
| struct dpp *dpp_base, |
| const struct dc_gamma *gamma) |
| { |
| int i; |
| struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); |
| bool rama_occupied = false; |
| uint32_t ram_num; |
| // Power on LUT memory. |
| REG_SET(CM_MEM_PWR_CTRL, 0, SHARED_MEM_PWR_DIS, 1); |
| dpp1_enable_cm_block(dpp_base); |
| // Determine whether to use RAM A or RAM B |
| dpp1_ingamma_ram_inuse(dpp_base, &rama_occupied); |
| if (!rama_occupied) |
| REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_SEL, 0); |
| else |
| REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_SEL, 1); |
| // RW mode is 256-entry LUT |
| REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_RW_MODE, 0); |
| // IGAM Input format should be 8 bits per channel. |
| REG_UPDATE(CM_IGAM_CONTROL, CM_IGAM_INPUT_FORMAT, 0); |
| // Do not mask any R,G,B values |
| REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_WRITE_EN_MASK, 7); |
| // LUT-256, unsigned, integer, new u0.12 format |
| REG_UPDATE_3( |
| CM_IGAM_CONTROL, |
| CM_IGAM_LUT_FORMAT_R, 3, |
| CM_IGAM_LUT_FORMAT_G, 3, |
| CM_IGAM_LUT_FORMAT_B, 3); |
| // Start at index 0 of IGAM LUT |
| REG_UPDATE(CM_IGAM_LUT_RW_INDEX, CM_IGAM_LUT_RW_INDEX, 0); |
| for (i = 0; i < gamma->num_entries; i++) { |
| REG_SET(CM_IGAM_LUT_SEQ_COLOR, 0, CM_IGAM_LUT_SEQ_COLOR, |
| dc_fixpt_round( |
| gamma->entries.red[i])); |
| REG_SET(CM_IGAM_LUT_SEQ_COLOR, 0, CM_IGAM_LUT_SEQ_COLOR, |
| dc_fixpt_round( |
| gamma->entries.green[i])); |
| REG_SET(CM_IGAM_LUT_SEQ_COLOR, 0, CM_IGAM_LUT_SEQ_COLOR, |
| dc_fixpt_round( |
| gamma->entries.blue[i])); |
| } |
| // Power off LUT memory |
| REG_SET(CM_MEM_PWR_CTRL, 0, SHARED_MEM_PWR_DIS, 0); |
| // Enable IGAM LUT on ram we just wrote to. 2 => RAMA, 3 => RAMB |
| REG_UPDATE(CM_IGAM_CONTROL, CM_IGAM_LUT_MODE, rama_occupied ? 3 : 2); |
| REG_GET(CM_IGAM_CONTROL, CM_IGAM_LUT_MODE, &ram_num); |
| } |
| |
| void dpp1_set_hdr_multiplier( |
| struct dpp *dpp_base, |
| uint32_t multiplier) |
| { |
| struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base); |
| |
| REG_UPDATE(CM_HDR_MULT_COEF, CM_HDR_MULT_COEF, multiplier); |
| } |