| /* |
| * SPDX-License-Identifier: MIT |
| * |
| * Copyright © 2014-2016 Intel Corporation |
| */ |
| |
| #include <drm/drm_cache.h> |
| |
| #include "i915_drv.h" |
| #include "i915_gem_object.h" |
| #include "i915_scatterlist.h" |
| #include "i915_gem_lmem.h" |
| #include "i915_gem_mman.h" |
| |
| #include "gt/intel_gt.h" |
| |
| void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj, |
| struct sg_table *pages, |
| unsigned int sg_page_sizes) |
| { |
| struct drm_i915_private *i915 = to_i915(obj->base.dev); |
| unsigned long supported = INTEL_INFO(i915)->page_sizes; |
| bool shrinkable; |
| int i; |
| |
| assert_object_held_shared(obj); |
| |
| if (i915_gem_object_is_volatile(obj)) |
| obj->mm.madv = I915_MADV_DONTNEED; |
| |
| /* Make the pages coherent with the GPU (flushing any swapin). */ |
| if (obj->cache_dirty) { |
| WARN_ON_ONCE(IS_DGFX(i915)); |
| obj->write_domain = 0; |
| if (i915_gem_object_has_struct_page(obj)) |
| drm_clflush_sg(pages); |
| obj->cache_dirty = false; |
| } |
| |
| obj->mm.get_page.sg_pos = pages->sgl; |
| obj->mm.get_page.sg_idx = 0; |
| obj->mm.get_dma_page.sg_pos = pages->sgl; |
| obj->mm.get_dma_page.sg_idx = 0; |
| |
| obj->mm.pages = pages; |
| |
| GEM_BUG_ON(!sg_page_sizes); |
| obj->mm.page_sizes.phys = sg_page_sizes; |
| |
| /* |
| * Calculate the supported page-sizes which fit into the given |
| * sg_page_sizes. This will give us the page-sizes which we may be able |
| * to use opportunistically when later inserting into the GTT. For |
| * example if phys=2G, then in theory we should be able to use 1G, 2M, |
| * 64K or 4K pages, although in practice this will depend on a number of |
| * other factors. |
| */ |
| obj->mm.page_sizes.sg = 0; |
| for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) { |
| if (obj->mm.page_sizes.phys & ~0u << i) |
| obj->mm.page_sizes.sg |= BIT(i); |
| } |
| GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg)); |
| |
| shrinkable = i915_gem_object_is_shrinkable(obj); |
| |
| if (i915_gem_object_is_tiled(obj) && |
| i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) { |
| GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj)); |
| i915_gem_object_set_tiling_quirk(obj); |
| GEM_BUG_ON(!list_empty(&obj->mm.link)); |
| atomic_inc(&obj->mm.shrink_pin); |
| shrinkable = false; |
| } |
| |
| if (shrinkable && !i915_gem_object_has_self_managed_shrink_list(obj)) { |
| struct list_head *list; |
| unsigned long flags; |
| |
| assert_object_held(obj); |
| spin_lock_irqsave(&i915->mm.obj_lock, flags); |
| |
| i915->mm.shrink_count++; |
| i915->mm.shrink_memory += obj->base.size; |
| |
| if (obj->mm.madv != I915_MADV_WILLNEED) |
| list = &i915->mm.purge_list; |
| else |
| list = &i915->mm.shrink_list; |
| list_add_tail(&obj->mm.link, list); |
| |
| atomic_set(&obj->mm.shrink_pin, 0); |
| spin_unlock_irqrestore(&i915->mm.obj_lock, flags); |
| } |
| } |
| |
| int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj) |
| { |
| struct drm_i915_private *i915 = to_i915(obj->base.dev); |
| int err; |
| |
| assert_object_held_shared(obj); |
| |
| if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) { |
| drm_dbg(&i915->drm, |
| "Attempting to obtain a purgeable object\n"); |
| return -EFAULT; |
| } |
| |
| err = obj->ops->get_pages(obj); |
| GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj)); |
| |
| return err; |
| } |
| |
| /* Ensure that the associated pages are gathered from the backing storage |
| * and pinned into our object. i915_gem_object_pin_pages() may be called |
| * multiple times before they are released by a single call to |
| * i915_gem_object_unpin_pages() - once the pages are no longer referenced |
| * either as a result of memory pressure (reaping pages under the shrinker) |
| * or as the object is itself released. |
| */ |
| int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj) |
| { |
| int err; |
| |
| assert_object_held(obj); |
| |
| assert_object_held_shared(obj); |
| |
| if (unlikely(!i915_gem_object_has_pages(obj))) { |
| GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj)); |
| |
| err = ____i915_gem_object_get_pages(obj); |
| if (err) |
| return err; |
| |
| smp_mb__before_atomic(); |
| } |
| atomic_inc(&obj->mm.pages_pin_count); |
| |
| return 0; |
| } |
| |
| int i915_gem_object_pin_pages_unlocked(struct drm_i915_gem_object *obj) |
| { |
| struct i915_gem_ww_ctx ww; |
| int err; |
| |
| i915_gem_ww_ctx_init(&ww, true); |
| retry: |
| err = i915_gem_object_lock(obj, &ww); |
| if (!err) |
| err = i915_gem_object_pin_pages(obj); |
| |
| if (err == -EDEADLK) { |
| err = i915_gem_ww_ctx_backoff(&ww); |
| if (!err) |
| goto retry; |
| } |
| i915_gem_ww_ctx_fini(&ww); |
| return err; |
| } |
| |
| /* Immediately discard the backing storage */ |
| int i915_gem_object_truncate(struct drm_i915_gem_object *obj) |
| { |
| if (obj->ops->truncate) |
| return obj->ops->truncate(obj); |
| |
| return 0; |
| } |
| |
| static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj) |
| { |
| struct radix_tree_iter iter; |
| void __rcu **slot; |
| |
| rcu_read_lock(); |
| radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0) |
| radix_tree_delete(&obj->mm.get_page.radix, iter.index); |
| radix_tree_for_each_slot(slot, &obj->mm.get_dma_page.radix, &iter, 0) |
| radix_tree_delete(&obj->mm.get_dma_page.radix, iter.index); |
| rcu_read_unlock(); |
| } |
| |
| static void unmap_object(struct drm_i915_gem_object *obj, void *ptr) |
| { |
| if (is_vmalloc_addr(ptr)) |
| vunmap(ptr); |
| } |
| |
| struct sg_table * |
| __i915_gem_object_unset_pages(struct drm_i915_gem_object *obj) |
| { |
| struct sg_table *pages; |
| |
| assert_object_held_shared(obj); |
| |
| pages = fetch_and_zero(&obj->mm.pages); |
| if (IS_ERR_OR_NULL(pages)) |
| return pages; |
| |
| if (i915_gem_object_is_volatile(obj)) |
| obj->mm.madv = I915_MADV_WILLNEED; |
| |
| if (!i915_gem_object_has_self_managed_shrink_list(obj)) |
| i915_gem_object_make_unshrinkable(obj); |
| |
| if (obj->mm.mapping) { |
| unmap_object(obj, page_mask_bits(obj->mm.mapping)); |
| obj->mm.mapping = NULL; |
| } |
| |
| __i915_gem_object_reset_page_iter(obj); |
| obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0; |
| |
| if (test_and_clear_bit(I915_BO_WAS_BOUND_BIT, &obj->flags)) { |
| struct drm_i915_private *i915 = to_i915(obj->base.dev); |
| intel_wakeref_t wakeref; |
| |
| with_intel_runtime_pm_if_active(&i915->runtime_pm, wakeref) |
| intel_gt_invalidate_tlbs(to_gt(i915)); |
| } |
| |
| return pages; |
| } |
| |
| int __i915_gem_object_put_pages(struct drm_i915_gem_object *obj) |
| { |
| struct sg_table *pages; |
| |
| if (i915_gem_object_has_pinned_pages(obj)) |
| return -EBUSY; |
| |
| /* May be called by shrinker from within get_pages() (on another bo) */ |
| assert_object_held_shared(obj); |
| |
| i915_gem_object_release_mmap_offset(obj); |
| |
| /* |
| * ->put_pages might need to allocate memory for the bit17 swizzle |
| * array, hence protect them from being reaped by removing them from gtt |
| * lists early. |
| */ |
| pages = __i915_gem_object_unset_pages(obj); |
| |
| /* |
| * XXX Temporary hijinx to avoid updating all backends to handle |
| * NULL pages. In the future, when we have more asynchronous |
| * get_pages backends we should be better able to handle the |
| * cancellation of the async task in a more uniform manner. |
| */ |
| if (!IS_ERR_OR_NULL(pages)) |
| obj->ops->put_pages(obj, pages); |
| |
| return 0; |
| } |
| |
| /* The 'mapping' part of i915_gem_object_pin_map() below */ |
| static void *i915_gem_object_map_page(struct drm_i915_gem_object *obj, |
| enum i915_map_type type) |
| { |
| unsigned long n_pages = obj->base.size >> PAGE_SHIFT, i; |
| struct page *stack[32], **pages = stack, *page; |
| struct sgt_iter iter; |
| pgprot_t pgprot; |
| void *vaddr; |
| |
| switch (type) { |
| default: |
| MISSING_CASE(type); |
| fallthrough; /* to use PAGE_KERNEL anyway */ |
| case I915_MAP_WB: |
| /* |
| * On 32b, highmem using a finite set of indirect PTE (i.e. |
| * vmap) to provide virtual mappings of the high pages. |
| * As these are finite, map_new_virtual() must wait for some |
| * other kmap() to finish when it runs out. If we map a large |
| * number of objects, there is no method for it to tell us |
| * to release the mappings, and we deadlock. |
| * |
| * However, if we make an explicit vmap of the page, that |
| * uses a larger vmalloc arena, and also has the ability |
| * to tell us to release unwanted mappings. Most importantly, |
| * it will fail and propagate an error instead of waiting |
| * forever. |
| * |
| * So if the page is beyond the 32b boundary, make an explicit |
| * vmap. |
| */ |
| if (n_pages == 1 && !PageHighMem(sg_page(obj->mm.pages->sgl))) |
| return page_address(sg_page(obj->mm.pages->sgl)); |
| pgprot = PAGE_KERNEL; |
| break; |
| case I915_MAP_WC: |
| pgprot = pgprot_writecombine(PAGE_KERNEL_IO); |
| break; |
| } |
| |
| if (n_pages > ARRAY_SIZE(stack)) { |
| /* Too big for stack -- allocate temporary array instead */ |
| pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL); |
| if (!pages) |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| i = 0; |
| for_each_sgt_page(page, iter, obj->mm.pages) |
| pages[i++] = page; |
| vaddr = vmap(pages, n_pages, 0, pgprot); |
| if (pages != stack) |
| kvfree(pages); |
| |
| return vaddr ?: ERR_PTR(-ENOMEM); |
| } |
| |
| static void *i915_gem_object_map_pfn(struct drm_i915_gem_object *obj, |
| enum i915_map_type type) |
| { |
| resource_size_t iomap = obj->mm.region->iomap.base - |
| obj->mm.region->region.start; |
| unsigned long n_pfn = obj->base.size >> PAGE_SHIFT; |
| unsigned long stack[32], *pfns = stack, i; |
| struct sgt_iter iter; |
| dma_addr_t addr; |
| void *vaddr; |
| |
| GEM_BUG_ON(type != I915_MAP_WC); |
| |
| if (n_pfn > ARRAY_SIZE(stack)) { |
| /* Too big for stack -- allocate temporary array instead */ |
| pfns = kvmalloc_array(n_pfn, sizeof(*pfns), GFP_KERNEL); |
| if (!pfns) |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| i = 0; |
| for_each_sgt_daddr(addr, iter, obj->mm.pages) |
| pfns[i++] = (iomap + addr) >> PAGE_SHIFT; |
| vaddr = vmap_pfn(pfns, n_pfn, pgprot_writecombine(PAGE_KERNEL_IO)); |
| if (pfns != stack) |
| kvfree(pfns); |
| |
| return vaddr ?: ERR_PTR(-ENOMEM); |
| } |
| |
| /* get, pin, and map the pages of the object into kernel space */ |
| void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj, |
| enum i915_map_type type) |
| { |
| enum i915_map_type has_type; |
| bool pinned; |
| void *ptr; |
| int err; |
| |
| if (!i915_gem_object_has_struct_page(obj) && |
| !i915_gem_object_has_iomem(obj)) |
| return ERR_PTR(-ENXIO); |
| |
| if (WARN_ON_ONCE(obj->flags & I915_BO_ALLOC_GPU_ONLY)) |
| return ERR_PTR(-EINVAL); |
| |
| assert_object_held(obj); |
| |
| pinned = !(type & I915_MAP_OVERRIDE); |
| type &= ~I915_MAP_OVERRIDE; |
| |
| if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) { |
| if (unlikely(!i915_gem_object_has_pages(obj))) { |
| GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj)); |
| |
| err = ____i915_gem_object_get_pages(obj); |
| if (err) |
| return ERR_PTR(err); |
| |
| smp_mb__before_atomic(); |
| } |
| atomic_inc(&obj->mm.pages_pin_count); |
| pinned = false; |
| } |
| GEM_BUG_ON(!i915_gem_object_has_pages(obj)); |
| |
| /* |
| * For discrete our CPU mappings needs to be consistent in order to |
| * function correctly on !x86. When mapping things through TTM, we use |
| * the same rules to determine the caching type. |
| * |
| * The caching rules, starting from DG1: |
| * |
| * - If the object can be placed in device local-memory, then the |
| * pages should be allocated and mapped as write-combined only. |
| * |
| * - Everything else is always allocated and mapped as write-back, |
| * with the guarantee that everything is also coherent with the |
| * GPU. |
| * |
| * Internal users of lmem are already expected to get this right, so no |
| * fudging needed there. |
| */ |
| if (i915_gem_object_placement_possible(obj, INTEL_MEMORY_LOCAL)) { |
| if (type != I915_MAP_WC && !obj->mm.n_placements) { |
| ptr = ERR_PTR(-ENODEV); |
| goto err_unpin; |
| } |
| |
| type = I915_MAP_WC; |
| } else if (IS_DGFX(to_i915(obj->base.dev))) { |
| type = I915_MAP_WB; |
| } |
| |
| ptr = page_unpack_bits(obj->mm.mapping, &has_type); |
| if (ptr && has_type != type) { |
| if (pinned) { |
| ptr = ERR_PTR(-EBUSY); |
| goto err_unpin; |
| } |
| |
| unmap_object(obj, ptr); |
| |
| ptr = obj->mm.mapping = NULL; |
| } |
| |
| if (!ptr) { |
| err = i915_gem_object_wait_moving_fence(obj, true); |
| if (err) { |
| ptr = ERR_PTR(err); |
| goto err_unpin; |
| } |
| |
| if (GEM_WARN_ON(type == I915_MAP_WC && !pat_enabled())) |
| ptr = ERR_PTR(-ENODEV); |
| else if (i915_gem_object_has_struct_page(obj)) |
| ptr = i915_gem_object_map_page(obj, type); |
| else |
| ptr = i915_gem_object_map_pfn(obj, type); |
| if (IS_ERR(ptr)) |
| goto err_unpin; |
| |
| obj->mm.mapping = page_pack_bits(ptr, type); |
| } |
| |
| return ptr; |
| |
| err_unpin: |
| atomic_dec(&obj->mm.pages_pin_count); |
| return ptr; |
| } |
| |
| void *i915_gem_object_pin_map_unlocked(struct drm_i915_gem_object *obj, |
| enum i915_map_type type) |
| { |
| void *ret; |
| |
| i915_gem_object_lock(obj, NULL); |
| ret = i915_gem_object_pin_map(obj, type); |
| i915_gem_object_unlock(obj); |
| |
| return ret; |
| } |
| |
| void __i915_gem_object_flush_map(struct drm_i915_gem_object *obj, |
| unsigned long offset, |
| unsigned long size) |
| { |
| enum i915_map_type has_type; |
| void *ptr; |
| |
| GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); |
| GEM_BUG_ON(range_overflows_t(typeof(obj->base.size), |
| offset, size, obj->base.size)); |
| |
| wmb(); /* let all previous writes be visible to coherent partners */ |
| obj->mm.dirty = true; |
| |
| if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE) |
| return; |
| |
| ptr = page_unpack_bits(obj->mm.mapping, &has_type); |
| if (has_type == I915_MAP_WC) |
| return; |
| |
| drm_clflush_virt_range(ptr + offset, size); |
| if (size == obj->base.size) { |
| obj->write_domain &= ~I915_GEM_DOMAIN_CPU; |
| obj->cache_dirty = false; |
| } |
| } |
| |
| void __i915_gem_object_release_map(struct drm_i915_gem_object *obj) |
| { |
| GEM_BUG_ON(!obj->mm.mapping); |
| |
| /* |
| * We allow removing the mapping from underneath pinned pages! |
| * |
| * Furthermore, since this is an unsafe operation reserved only |
| * for construction time manipulation, we ignore locking prudence. |
| */ |
| unmap_object(obj, page_mask_bits(fetch_and_zero(&obj->mm.mapping))); |
| |
| i915_gem_object_unpin_map(obj); |
| } |
| |
| struct scatterlist * |
| __i915_gem_object_get_sg(struct drm_i915_gem_object *obj, |
| struct i915_gem_object_page_iter *iter, |
| unsigned int n, |
| unsigned int *offset, |
| bool dma) |
| { |
| struct scatterlist *sg; |
| unsigned int idx, count; |
| |
| might_sleep(); |
| GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT); |
| if (!i915_gem_object_has_pinned_pages(obj)) |
| assert_object_held(obj); |
| |
| /* As we iterate forward through the sg, we record each entry in a |
| * radixtree for quick repeated (backwards) lookups. If we have seen |
| * this index previously, we will have an entry for it. |
| * |
| * Initial lookup is O(N), but this is amortized to O(1) for |
| * sequential page access (where each new request is consecutive |
| * to the previous one). Repeated lookups are O(lg(obj->base.size)), |
| * i.e. O(1) with a large constant! |
| */ |
| if (n < READ_ONCE(iter->sg_idx)) |
| goto lookup; |
| |
| mutex_lock(&iter->lock); |
| |
| /* We prefer to reuse the last sg so that repeated lookup of this |
| * (or the subsequent) sg are fast - comparing against the last |
| * sg is faster than going through the radixtree. |
| */ |
| |
| sg = iter->sg_pos; |
| idx = iter->sg_idx; |
| count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg); |
| |
| while (idx + count <= n) { |
| void *entry; |
| unsigned long i; |
| int ret; |
| |
| /* If we cannot allocate and insert this entry, or the |
| * individual pages from this range, cancel updating the |
| * sg_idx so that on this lookup we are forced to linearly |
| * scan onwards, but on future lookups we will try the |
| * insertion again (in which case we need to be careful of |
| * the error return reporting that we have already inserted |
| * this index). |
| */ |
| ret = radix_tree_insert(&iter->radix, idx, sg); |
| if (ret && ret != -EEXIST) |
| goto scan; |
| |
| entry = xa_mk_value(idx); |
| for (i = 1; i < count; i++) { |
| ret = radix_tree_insert(&iter->radix, idx + i, entry); |
| if (ret && ret != -EEXIST) |
| goto scan; |
| } |
| |
| idx += count; |
| sg = ____sg_next(sg); |
| count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg); |
| } |
| |
| scan: |
| iter->sg_pos = sg; |
| iter->sg_idx = idx; |
| |
| mutex_unlock(&iter->lock); |
| |
| if (unlikely(n < idx)) /* insertion completed by another thread */ |
| goto lookup; |
| |
| /* In case we failed to insert the entry into the radixtree, we need |
| * to look beyond the current sg. |
| */ |
| while (idx + count <= n) { |
| idx += count; |
| sg = ____sg_next(sg); |
| count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg); |
| } |
| |
| *offset = n - idx; |
| return sg; |
| |
| lookup: |
| rcu_read_lock(); |
| |
| sg = radix_tree_lookup(&iter->radix, n); |
| GEM_BUG_ON(!sg); |
| |
| /* If this index is in the middle of multi-page sg entry, |
| * the radix tree will contain a value entry that points |
| * to the start of that range. We will return the pointer to |
| * the base page and the offset of this page within the |
| * sg entry's range. |
| */ |
| *offset = 0; |
| if (unlikely(xa_is_value(sg))) { |
| unsigned long base = xa_to_value(sg); |
| |
| sg = radix_tree_lookup(&iter->radix, base); |
| GEM_BUG_ON(!sg); |
| |
| *offset = n - base; |
| } |
| |
| rcu_read_unlock(); |
| |
| return sg; |
| } |
| |
| struct page * |
| i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n) |
| { |
| struct scatterlist *sg; |
| unsigned int offset; |
| |
| GEM_BUG_ON(!i915_gem_object_has_struct_page(obj)); |
| |
| sg = i915_gem_object_get_sg(obj, n, &offset); |
| return nth_page(sg_page(sg), offset); |
| } |
| |
| /* Like i915_gem_object_get_page(), but mark the returned page dirty */ |
| struct page * |
| i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, |
| unsigned int n) |
| { |
| struct page *page; |
| |
| page = i915_gem_object_get_page(obj, n); |
| if (!obj->mm.dirty) |
| set_page_dirty(page); |
| |
| return page; |
| } |
| |
| dma_addr_t |
| i915_gem_object_get_dma_address_len(struct drm_i915_gem_object *obj, |
| unsigned long n, |
| unsigned int *len) |
| { |
| struct scatterlist *sg; |
| unsigned int offset; |
| |
| sg = i915_gem_object_get_sg_dma(obj, n, &offset); |
| |
| if (len) |
| *len = sg_dma_len(sg) - (offset << PAGE_SHIFT); |
| |
| return sg_dma_address(sg) + (offset << PAGE_SHIFT); |
| } |
| |
| dma_addr_t |
| i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, |
| unsigned long n) |
| { |
| return i915_gem_object_get_dma_address_len(obj, n, NULL); |
| } |