| // SPDX-License-Identifier: GPL-2.0 |
| /* Copyright (c) 2018, Intel Corporation. */ |
| |
| #include "ice_lib.h" |
| #include "ice_switch.h" |
| |
| #define ICE_ETH_DA_OFFSET 0 |
| #define ICE_ETH_ETHTYPE_OFFSET 12 |
| #define ICE_ETH_VLAN_TCI_OFFSET 14 |
| #define ICE_MAX_VLAN_ID 0xFFF |
| #define ICE_IPV6_ETHER_ID 0x86DD |
| |
| /* Dummy ethernet header needed in the ice_aqc_sw_rules_elem |
| * struct to configure any switch filter rules. |
| * {DA (6 bytes), SA(6 bytes), |
| * Ether type (2 bytes for header without VLAN tag) OR |
| * VLAN tag (4 bytes for header with VLAN tag) } |
| * |
| * Word on Hardcoded values |
| * byte 0 = 0x2: to identify it as locally administered DA MAC |
| * byte 6 = 0x2: to identify it as locally administered SA MAC |
| * byte 12 = 0x81 & byte 13 = 0x00: |
| * In case of VLAN filter first two bytes defines ether type (0x8100) |
| * and remaining two bytes are placeholder for programming a given VLAN ID |
| * In case of Ether type filter it is treated as header without VLAN tag |
| * and byte 12 and 13 is used to program a given Ether type instead |
| */ |
| #define DUMMY_ETH_HDR_LEN 16 |
| static const u8 dummy_eth_header[DUMMY_ETH_HDR_LEN] = { 0x2, 0, 0, 0, 0, 0, |
| 0x2, 0, 0, 0, 0, 0, |
| 0x81, 0, 0, 0}; |
| |
| enum { |
| ICE_PKT_OUTER_IPV6 = BIT(0), |
| ICE_PKT_TUN_GTPC = BIT(1), |
| ICE_PKT_TUN_GTPU = BIT(2), |
| ICE_PKT_TUN_NVGRE = BIT(3), |
| ICE_PKT_TUN_UDP = BIT(4), |
| ICE_PKT_INNER_IPV6 = BIT(5), |
| ICE_PKT_INNER_TCP = BIT(6), |
| ICE_PKT_INNER_UDP = BIT(7), |
| ICE_PKT_GTP_NOPAY = BIT(8), |
| ICE_PKT_KMALLOC = BIT(9), |
| ICE_PKT_PPPOE = BIT(10), |
| }; |
| |
| struct ice_dummy_pkt_offsets { |
| enum ice_protocol_type type; |
| u16 offset; /* ICE_PROTOCOL_LAST indicates end of list */ |
| }; |
| |
| struct ice_dummy_pkt_profile { |
| const struct ice_dummy_pkt_offsets *offsets; |
| const u8 *pkt; |
| u32 match; |
| u16 pkt_len; |
| u16 offsets_len; |
| }; |
| |
| #define ICE_DECLARE_PKT_OFFSETS(type) \ |
| static const struct ice_dummy_pkt_offsets \ |
| ice_dummy_##type##_packet_offsets[] |
| |
| #define ICE_DECLARE_PKT_TEMPLATE(type) \ |
| static const u8 ice_dummy_##type##_packet[] |
| |
| #define ICE_PKT_PROFILE(type, m) { \ |
| .match = (m), \ |
| .pkt = ice_dummy_##type##_packet, \ |
| .pkt_len = sizeof(ice_dummy_##type##_packet), \ |
| .offsets = ice_dummy_##type##_packet_offsets, \ |
| .offsets_len = sizeof(ice_dummy_##type##_packet_offsets), \ |
| } |
| |
| ICE_DECLARE_PKT_OFFSETS(vlan) = { |
| { ICE_VLAN_OFOS, 12 }, |
| }; |
| |
| ICE_DECLARE_PKT_TEMPLATE(vlan) = { |
| 0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_OFOS 12 */ |
| }; |
| |
| ICE_DECLARE_PKT_OFFSETS(qinq) = { |
| { ICE_VLAN_EX, 12 }, |
| { ICE_VLAN_IN, 16 }, |
| }; |
| |
| ICE_DECLARE_PKT_TEMPLATE(qinq) = { |
| 0x91, 0x00, 0x00, 0x00, /* ICE_VLAN_EX 12 */ |
| 0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_IN 16 */ |
| }; |
| |
| ICE_DECLARE_PKT_OFFSETS(gre_tcp) = { |
| { ICE_MAC_OFOS, 0 }, |
| { ICE_ETYPE_OL, 12 }, |
| { ICE_IPV4_OFOS, 14 }, |
| { ICE_NVGRE, 34 }, |
| { ICE_MAC_IL, 42 }, |
| { ICE_ETYPE_IL, 54 }, |
| { ICE_IPV4_IL, 56 }, |
| { ICE_TCP_IL, 76 }, |
| { ICE_PROTOCOL_LAST, 0 }, |
| }; |
| |
| ICE_DECLARE_PKT_TEMPLATE(gre_tcp) = { |
| 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x08, 0x00, /* ICE_ETYPE_OL 12 */ |
| |
| 0x45, 0x00, 0x00, 0x3E, /* ICE_IPV4_OFOS 14 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x2F, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */ |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x08, 0x00, /* ICE_ETYPE_IL 54 */ |
| |
| 0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 56 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x06, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 76 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x50, 0x02, 0x20, 0x00, |
| 0x00, 0x00, 0x00, 0x00 |
| }; |
| |
| ICE_DECLARE_PKT_OFFSETS(gre_udp) = { |
| { ICE_MAC_OFOS, 0 }, |
| { ICE_ETYPE_OL, 12 }, |
| { ICE_IPV4_OFOS, 14 }, |
| { ICE_NVGRE, 34 }, |
| { ICE_MAC_IL, 42 }, |
| { ICE_ETYPE_IL, 54 }, |
| { ICE_IPV4_IL, 56 }, |
| { ICE_UDP_ILOS, 76 }, |
| { ICE_PROTOCOL_LAST, 0 }, |
| }; |
| |
| ICE_DECLARE_PKT_TEMPLATE(gre_udp) = { |
| 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x08, 0x00, /* ICE_ETYPE_OL 12 */ |
| |
| 0x45, 0x00, 0x00, 0x3E, /* ICE_IPV4_OFOS 14 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x2F, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */ |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x08, 0x00, /* ICE_ETYPE_IL 54 */ |
| |
| 0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 56 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x11, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 76 */ |
| 0x00, 0x08, 0x00, 0x00, |
| }; |
| |
| ICE_DECLARE_PKT_OFFSETS(udp_tun_tcp) = { |
| { ICE_MAC_OFOS, 0 }, |
| { ICE_ETYPE_OL, 12 }, |
| { ICE_IPV4_OFOS, 14 }, |
| { ICE_UDP_OF, 34 }, |
| { ICE_VXLAN, 42 }, |
| { ICE_GENEVE, 42 }, |
| { ICE_VXLAN_GPE, 42 }, |
| { ICE_MAC_IL, 50 }, |
| { ICE_ETYPE_IL, 62 }, |
| { ICE_IPV4_IL, 64 }, |
| { ICE_TCP_IL, 84 }, |
| { ICE_PROTOCOL_LAST, 0 }, |
| }; |
| |
| ICE_DECLARE_PKT_TEMPLATE(udp_tun_tcp) = { |
| 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x08, 0x00, /* ICE_ETYPE_OL 12 */ |
| |
| 0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */ |
| 0x00, 0x01, 0x00, 0x00, |
| 0x40, 0x11, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */ |
| 0x00, 0x46, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */ |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x08, 0x00, /* ICE_ETYPE_IL 62 */ |
| |
| 0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_IL 64 */ |
| 0x00, 0x01, 0x00, 0x00, |
| 0x40, 0x06, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 84 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x50, 0x02, 0x20, 0x00, |
| 0x00, 0x00, 0x00, 0x00 |
| }; |
| |
| ICE_DECLARE_PKT_OFFSETS(udp_tun_udp) = { |
| { ICE_MAC_OFOS, 0 }, |
| { ICE_ETYPE_OL, 12 }, |
| { ICE_IPV4_OFOS, 14 }, |
| { ICE_UDP_OF, 34 }, |
| { ICE_VXLAN, 42 }, |
| { ICE_GENEVE, 42 }, |
| { ICE_VXLAN_GPE, 42 }, |
| { ICE_MAC_IL, 50 }, |
| { ICE_ETYPE_IL, 62 }, |
| { ICE_IPV4_IL, 64 }, |
| { ICE_UDP_ILOS, 84 }, |
| { ICE_PROTOCOL_LAST, 0 }, |
| }; |
| |
| ICE_DECLARE_PKT_TEMPLATE(udp_tun_udp) = { |
| 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x08, 0x00, /* ICE_ETYPE_OL 12 */ |
| |
| 0x45, 0x00, 0x00, 0x4e, /* ICE_IPV4_OFOS 14 */ |
| 0x00, 0x01, 0x00, 0x00, |
| 0x00, 0x11, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */ |
| 0x00, 0x3a, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */ |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x08, 0x00, /* ICE_ETYPE_IL 62 */ |
| |
| 0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_IL 64 */ |
| 0x00, 0x01, 0x00, 0x00, |
| 0x00, 0x11, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 84 */ |
| 0x00, 0x08, 0x00, 0x00, |
| }; |
| |
| ICE_DECLARE_PKT_OFFSETS(gre_ipv6_tcp) = { |
| { ICE_MAC_OFOS, 0 }, |
| { ICE_ETYPE_OL, 12 }, |
| { ICE_IPV4_OFOS, 14 }, |
| { ICE_NVGRE, 34 }, |
| { ICE_MAC_IL, 42 }, |
| { ICE_ETYPE_IL, 54 }, |
| { ICE_IPV6_IL, 56 }, |
| { ICE_TCP_IL, 96 }, |
| { ICE_PROTOCOL_LAST, 0 }, |
| }; |
| |
| ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_tcp) = { |
| 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x08, 0x00, /* ICE_ETYPE_OL 12 */ |
| |
| 0x45, 0x00, 0x00, 0x66, /* ICE_IPV4_OFOS 14 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x2F, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */ |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x86, 0xdd, /* ICE_ETYPE_IL 54 */ |
| |
| 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */ |
| 0x00, 0x08, 0x06, 0x40, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 96 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x50, 0x02, 0x20, 0x00, |
| 0x00, 0x00, 0x00, 0x00 |
| }; |
| |
| ICE_DECLARE_PKT_OFFSETS(gre_ipv6_udp) = { |
| { ICE_MAC_OFOS, 0 }, |
| { ICE_ETYPE_OL, 12 }, |
| { ICE_IPV4_OFOS, 14 }, |
| { ICE_NVGRE, 34 }, |
| { ICE_MAC_IL, 42 }, |
| { ICE_ETYPE_IL, 54 }, |
| { ICE_IPV6_IL, 56 }, |
| { ICE_UDP_ILOS, 96 }, |
| { ICE_PROTOCOL_LAST, 0 }, |
| }; |
| |
| ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_udp) = { |
| 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x08, 0x00, /* ICE_ETYPE_OL 12 */ |
| |
| 0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x2F, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */ |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x86, 0xdd, /* ICE_ETYPE_IL 54 */ |
| |
| 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */ |
| 0x00, 0x08, 0x11, 0x40, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 96 */ |
| 0x00, 0x08, 0x00, 0x00, |
| }; |
| |
| ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_tcp) = { |
| { ICE_MAC_OFOS, 0 }, |
| { ICE_ETYPE_OL, 12 }, |
| { ICE_IPV4_OFOS, 14 }, |
| { ICE_UDP_OF, 34 }, |
| { ICE_VXLAN, 42 }, |
| { ICE_GENEVE, 42 }, |
| { ICE_VXLAN_GPE, 42 }, |
| { ICE_MAC_IL, 50 }, |
| { ICE_ETYPE_IL, 62 }, |
| { ICE_IPV6_IL, 64 }, |
| { ICE_TCP_IL, 104 }, |
| { ICE_PROTOCOL_LAST, 0 }, |
| }; |
| |
| ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_tcp) = { |
| 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x08, 0x00, /* ICE_ETYPE_OL 12 */ |
| |
| 0x45, 0x00, 0x00, 0x6e, /* ICE_IPV4_OFOS 14 */ |
| 0x00, 0x01, 0x00, 0x00, |
| 0x40, 0x11, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */ |
| 0x00, 0x5a, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */ |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x86, 0xdd, /* ICE_ETYPE_IL 62 */ |
| |
| 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */ |
| 0x00, 0x08, 0x06, 0x40, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 104 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x50, 0x02, 0x20, 0x00, |
| 0x00, 0x00, 0x00, 0x00 |
| }; |
| |
| ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_udp) = { |
| { ICE_MAC_OFOS, 0 }, |
| { ICE_ETYPE_OL, 12 }, |
| { ICE_IPV4_OFOS, 14 }, |
| { ICE_UDP_OF, 34 }, |
| { ICE_VXLAN, 42 }, |
| { ICE_GENEVE, 42 }, |
| { ICE_VXLAN_GPE, 42 }, |
| { ICE_MAC_IL, 50 }, |
| { ICE_ETYPE_IL, 62 }, |
| { ICE_IPV6_IL, 64 }, |
| { ICE_UDP_ILOS, 104 }, |
| { ICE_PROTOCOL_LAST, 0 }, |
| }; |
| |
| ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_udp) = { |
| 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x08, 0x00, /* ICE_ETYPE_OL 12 */ |
| |
| 0x45, 0x00, 0x00, 0x62, /* ICE_IPV4_OFOS 14 */ |
| 0x00, 0x01, 0x00, 0x00, |
| 0x00, 0x11, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */ |
| 0x00, 0x4e, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */ |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x86, 0xdd, /* ICE_ETYPE_IL 62 */ |
| |
| 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */ |
| 0x00, 0x08, 0x11, 0x40, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 104 */ |
| 0x00, 0x08, 0x00, 0x00, |
| }; |
| |
| /* offset info for MAC + IPv4 + UDP dummy packet */ |
| ICE_DECLARE_PKT_OFFSETS(udp) = { |
| { ICE_MAC_OFOS, 0 }, |
| { ICE_ETYPE_OL, 12 }, |
| { ICE_IPV4_OFOS, 14 }, |
| { ICE_UDP_ILOS, 34 }, |
| { ICE_PROTOCOL_LAST, 0 }, |
| }; |
| |
| /* Dummy packet for MAC + IPv4 + UDP */ |
| ICE_DECLARE_PKT_TEMPLATE(udp) = { |
| 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x08, 0x00, /* ICE_ETYPE_OL 12 */ |
| |
| 0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 14 */ |
| 0x00, 0x01, 0x00, 0x00, |
| 0x00, 0x11, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 34 */ |
| 0x00, 0x08, 0x00, 0x00, |
| |
| 0x00, 0x00, /* 2 bytes for 4 byte alignment */ |
| }; |
| |
| /* offset info for MAC + IPv4 + TCP dummy packet */ |
| ICE_DECLARE_PKT_OFFSETS(tcp) = { |
| { ICE_MAC_OFOS, 0 }, |
| { ICE_ETYPE_OL, 12 }, |
| { ICE_IPV4_OFOS, 14 }, |
| { ICE_TCP_IL, 34 }, |
| { ICE_PROTOCOL_LAST, 0 }, |
| }; |
| |
| /* Dummy packet for MAC + IPv4 + TCP */ |
| ICE_DECLARE_PKT_TEMPLATE(tcp) = { |
| 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x08, 0x00, /* ICE_ETYPE_OL 12 */ |
| |
| 0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 14 */ |
| 0x00, 0x01, 0x00, 0x00, |
| 0x00, 0x06, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 34 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x50, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, /* 2 bytes for 4 byte alignment */ |
| }; |
| |
| ICE_DECLARE_PKT_OFFSETS(tcp_ipv6) = { |
| { ICE_MAC_OFOS, 0 }, |
| { ICE_ETYPE_OL, 12 }, |
| { ICE_IPV6_OFOS, 14 }, |
| { ICE_TCP_IL, 54 }, |
| { ICE_PROTOCOL_LAST, 0 }, |
| }; |
| |
| ICE_DECLARE_PKT_TEMPLATE(tcp_ipv6) = { |
| 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x86, 0xDD, /* ICE_ETYPE_OL 12 */ |
| |
| 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */ |
| 0x00, 0x14, 0x06, 0x00, /* Next header is TCP */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 54 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x50, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, /* 2 bytes for 4 byte alignment */ |
| }; |
| |
| /* IPv6 + UDP */ |
| ICE_DECLARE_PKT_OFFSETS(udp_ipv6) = { |
| { ICE_MAC_OFOS, 0 }, |
| { ICE_ETYPE_OL, 12 }, |
| { ICE_IPV6_OFOS, 14 }, |
| { ICE_UDP_ILOS, 54 }, |
| { ICE_PROTOCOL_LAST, 0 }, |
| }; |
| |
| /* IPv6 + UDP dummy packet */ |
| ICE_DECLARE_PKT_TEMPLATE(udp_ipv6) = { |
| 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x86, 0xDD, /* ICE_ETYPE_OL 12 */ |
| |
| 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */ |
| 0x00, 0x10, 0x11, 0x00, /* Next header UDP */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 54 */ |
| 0x00, 0x10, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x00, 0x00, /* needed for ESP packets */ |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, /* 2 bytes for 4 byte alignment */ |
| }; |
| |
| /* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner TCP */ |
| ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_tcp) = { |
| { ICE_MAC_OFOS, 0 }, |
| { ICE_IPV4_OFOS, 14 }, |
| { ICE_UDP_OF, 34 }, |
| { ICE_GTP, 42 }, |
| { ICE_IPV4_IL, 62 }, |
| { ICE_TCP_IL, 82 }, |
| { ICE_PROTOCOL_LAST, 0 }, |
| }; |
| |
| ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_tcp) = { |
| 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x08, 0x00, |
| |
| 0x45, 0x00, 0x00, 0x58, /* IP 14 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x11, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x08, 0x68, /* UDP 34 */ |
| 0x00, 0x44, 0x00, 0x00, |
| |
| 0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 42 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x85, |
| |
| 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */ |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x45, 0x00, 0x00, 0x28, /* IP 62 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x06, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x00, 0x00, /* TCP 82 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x50, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, /* 2 bytes for 4 byte alignment */ |
| }; |
| |
| /* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner UDP */ |
| ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_udp) = { |
| { ICE_MAC_OFOS, 0 }, |
| { ICE_IPV4_OFOS, 14 }, |
| { ICE_UDP_OF, 34 }, |
| { ICE_GTP, 42 }, |
| { ICE_IPV4_IL, 62 }, |
| { ICE_UDP_ILOS, 82 }, |
| { ICE_PROTOCOL_LAST, 0 }, |
| }; |
| |
| ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_udp) = { |
| 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x08, 0x00, |
| |
| 0x45, 0x00, 0x00, 0x4c, /* IP 14 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x11, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x08, 0x68, /* UDP 34 */ |
| 0x00, 0x38, 0x00, 0x00, |
| |
| 0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 42 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x85, |
| |
| 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */ |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x45, 0x00, 0x00, 0x1c, /* IP 62 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x11, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x00, 0x00, /* UDP 82 */ |
| 0x00, 0x08, 0x00, 0x00, |
| |
| 0x00, 0x00, /* 2 bytes for 4 byte alignment */ |
| }; |
| |
| /* Outer IPv6 + Outer UDP + GTP + Inner IPv4 + Inner TCP */ |
| ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_tcp) = { |
| { ICE_MAC_OFOS, 0 }, |
| { ICE_IPV4_OFOS, 14 }, |
| { ICE_UDP_OF, 34 }, |
| { ICE_GTP, 42 }, |
| { ICE_IPV6_IL, 62 }, |
| { ICE_TCP_IL, 102 }, |
| { ICE_PROTOCOL_LAST, 0 }, |
| }; |
| |
| ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_tcp) = { |
| 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x08, 0x00, |
| |
| 0x45, 0x00, 0x00, 0x6c, /* IP 14 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x11, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x08, 0x68, /* UDP 34 */ |
| 0x00, 0x58, 0x00, 0x00, |
| |
| 0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 42 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x85, |
| |
| 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */ |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x60, 0x00, 0x00, 0x00, /* IPv6 62 */ |
| 0x00, 0x14, 0x06, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x00, 0x00, /* TCP 102 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x50, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, /* 2 bytes for 4 byte alignment */ |
| }; |
| |
| ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_udp) = { |
| { ICE_MAC_OFOS, 0 }, |
| { ICE_IPV4_OFOS, 14 }, |
| { ICE_UDP_OF, 34 }, |
| { ICE_GTP, 42 }, |
| { ICE_IPV6_IL, 62 }, |
| { ICE_UDP_ILOS, 102 }, |
| { ICE_PROTOCOL_LAST, 0 }, |
| }; |
| |
| ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_udp) = { |
| 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x08, 0x00, |
| |
| 0x45, 0x00, 0x00, 0x60, /* IP 14 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x11, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x08, 0x68, /* UDP 34 */ |
| 0x00, 0x4c, 0x00, 0x00, |
| |
| 0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 42 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x85, |
| |
| 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */ |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x60, 0x00, 0x00, 0x00, /* IPv6 62 */ |
| 0x00, 0x08, 0x11, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x00, 0x00, /* UDP 102 */ |
| 0x00, 0x08, 0x00, 0x00, |
| |
| 0x00, 0x00, /* 2 bytes for 4 byte alignment */ |
| }; |
| |
| ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_tcp) = { |
| { ICE_MAC_OFOS, 0 }, |
| { ICE_IPV6_OFOS, 14 }, |
| { ICE_UDP_OF, 54 }, |
| { ICE_GTP, 62 }, |
| { ICE_IPV4_IL, 82 }, |
| { ICE_TCP_IL, 102 }, |
| { ICE_PROTOCOL_LAST, 0 }, |
| }; |
| |
| ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_tcp) = { |
| 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x86, 0xdd, |
| |
| 0x60, 0x00, 0x00, 0x00, /* IPv6 14 */ |
| 0x00, 0x44, 0x11, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x08, 0x68, /* UDP 54 */ |
| 0x00, 0x44, 0x00, 0x00, |
| |
| 0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 62 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x85, |
| |
| 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */ |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x45, 0x00, 0x00, 0x28, /* IP 82 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x06, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x00, 0x00, /* TCP 102 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x50, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, /* 2 bytes for 4 byte alignment */ |
| }; |
| |
| ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_udp) = { |
| { ICE_MAC_OFOS, 0 }, |
| { ICE_IPV6_OFOS, 14 }, |
| { ICE_UDP_OF, 54 }, |
| { ICE_GTP, 62 }, |
| { ICE_IPV4_IL, 82 }, |
| { ICE_UDP_ILOS, 102 }, |
| { ICE_PROTOCOL_LAST, 0 }, |
| }; |
| |
| ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_udp) = { |
| 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x86, 0xdd, |
| |
| 0x60, 0x00, 0x00, 0x00, /* IPv6 14 */ |
| 0x00, 0x38, 0x11, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x08, 0x68, /* UDP 54 */ |
| 0x00, 0x38, 0x00, 0x00, |
| |
| 0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 62 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x85, |
| |
| 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */ |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x45, 0x00, 0x00, 0x1c, /* IP 82 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x11, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x00, 0x00, /* UDP 102 */ |
| 0x00, 0x08, 0x00, 0x00, |
| |
| 0x00, 0x00, /* 2 bytes for 4 byte alignment */ |
| }; |
| |
| ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_tcp) = { |
| { ICE_MAC_OFOS, 0 }, |
| { ICE_IPV6_OFOS, 14 }, |
| { ICE_UDP_OF, 54 }, |
| { ICE_GTP, 62 }, |
| { ICE_IPV6_IL, 82 }, |
| { ICE_TCP_IL, 122 }, |
| { ICE_PROTOCOL_LAST, 0 }, |
| }; |
| |
| ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_tcp) = { |
| 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x86, 0xdd, |
| |
| 0x60, 0x00, 0x00, 0x00, /* IPv6 14 */ |
| 0x00, 0x58, 0x11, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x08, 0x68, /* UDP 54 */ |
| 0x00, 0x58, 0x00, 0x00, |
| |
| 0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 62 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x85, |
| |
| 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */ |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x60, 0x00, 0x00, 0x00, /* IPv6 82 */ |
| 0x00, 0x14, 0x06, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x00, 0x00, /* TCP 122 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x50, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, /* 2 bytes for 4 byte alignment */ |
| }; |
| |
| ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_udp) = { |
| { ICE_MAC_OFOS, 0 }, |
| { ICE_IPV6_OFOS, 14 }, |
| { ICE_UDP_OF, 54 }, |
| { ICE_GTP, 62 }, |
| { ICE_IPV6_IL, 82 }, |
| { ICE_UDP_ILOS, 122 }, |
| { ICE_PROTOCOL_LAST, 0 }, |
| }; |
| |
| ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_udp) = { |
| 0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x86, 0xdd, |
| |
| 0x60, 0x00, 0x00, 0x00, /* IPv6 14 */ |
| 0x00, 0x4c, 0x11, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x08, 0x68, /* UDP 54 */ |
| 0x00, 0x4c, 0x00, 0x00, |
| |
| 0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 62 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x85, |
| |
| 0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */ |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x60, 0x00, 0x00, 0x00, /* IPv6 82 */ |
| 0x00, 0x08, 0x11, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x00, 0x00, /* UDP 122 */ |
| 0x00, 0x08, 0x00, 0x00, |
| |
| 0x00, 0x00, /* 2 bytes for 4 byte alignment */ |
| }; |
| |
| ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4) = { |
| { ICE_MAC_OFOS, 0 }, |
| { ICE_IPV4_OFOS, 14 }, |
| { ICE_UDP_OF, 34 }, |
| { ICE_GTP_NO_PAY, 42 }, |
| { ICE_PROTOCOL_LAST, 0 }, |
| }; |
| |
| ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4) = { |
| 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x08, 0x00, |
| |
| 0x45, 0x00, 0x00, 0x44, /* ICE_IPV4_OFOS 14 */ |
| 0x00, 0x00, 0x40, 0x00, |
| 0x40, 0x11, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 34 */ |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x34, 0xff, 0x00, 0x28, /* ICE_GTP 42 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x85, |
| |
| 0x02, 0x00, 0x00, 0x00, /* PDU Session extension header */ |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 62 */ |
| 0x00, 0x00, 0x40, 0x00, |
| 0x40, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, |
| }; |
| |
| ICE_DECLARE_PKT_OFFSETS(ipv6_gtp) = { |
| { ICE_MAC_OFOS, 0 }, |
| { ICE_IPV6_OFOS, 14 }, |
| { ICE_UDP_OF, 54 }, |
| { ICE_GTP_NO_PAY, 62 }, |
| { ICE_PROTOCOL_LAST, 0 }, |
| }; |
| |
| ICE_DECLARE_PKT_TEMPLATE(ipv6_gtp) = { |
| 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x86, 0xdd, |
| |
| 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 14 */ |
| 0x00, 0x6c, 0x11, 0x00, /* Next header UDP*/ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 54 */ |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x30, 0x00, 0x00, 0x28, /* ICE_GTP 62 */ |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, |
| }; |
| |
| ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_tcp) = { |
| { ICE_MAC_OFOS, 0 }, |
| { ICE_ETYPE_OL, 12 }, |
| { ICE_PPPOE, 14 }, |
| { ICE_IPV4_OFOS, 22 }, |
| { ICE_TCP_IL, 42 }, |
| { ICE_PROTOCOL_LAST, 0 }, |
| }; |
| |
| ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_tcp) = { |
| 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x88, 0x64, /* ICE_ETYPE_OL 12 */ |
| |
| 0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */ |
| 0x00, 0x16, |
| |
| 0x00, 0x21, /* PPP Link Layer 20 */ |
| |
| 0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 22 */ |
| 0x00, 0x01, 0x00, 0x00, |
| 0x00, 0x06, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 42 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x50, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, /* 2 bytes for 4 bytes alignment */ |
| }; |
| |
| ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_udp) = { |
| { ICE_MAC_OFOS, 0 }, |
| { ICE_ETYPE_OL, 12 }, |
| { ICE_PPPOE, 14 }, |
| { ICE_IPV4_OFOS, 22 }, |
| { ICE_UDP_ILOS, 42 }, |
| { ICE_PROTOCOL_LAST, 0 }, |
| }; |
| |
| ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_udp) = { |
| 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x88, 0x64, /* ICE_ETYPE_OL 12 */ |
| |
| 0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */ |
| 0x00, 0x16, |
| |
| 0x00, 0x21, /* PPP Link Layer 20 */ |
| |
| 0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 22 */ |
| 0x00, 0x01, 0x00, 0x00, |
| 0x00, 0x11, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 42 */ |
| 0x00, 0x08, 0x00, 0x00, |
| |
| 0x00, 0x00, /* 2 bytes for 4 bytes alignment */ |
| }; |
| |
| ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_tcp) = { |
| { ICE_MAC_OFOS, 0 }, |
| { ICE_ETYPE_OL, 12 }, |
| { ICE_PPPOE, 14 }, |
| { ICE_IPV6_OFOS, 22 }, |
| { ICE_TCP_IL, 62 }, |
| { ICE_PROTOCOL_LAST, 0 }, |
| }; |
| |
| ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_tcp) = { |
| 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x88, 0x64, /* ICE_ETYPE_OL 12 */ |
| |
| 0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */ |
| 0x00, 0x2a, |
| |
| 0x00, 0x57, /* PPP Link Layer 20 */ |
| |
| 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */ |
| 0x00, 0x14, 0x06, 0x00, /* Next header is TCP */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 62 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x50, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, /* 2 bytes for 4 bytes alignment */ |
| }; |
| |
| ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_udp) = { |
| { ICE_MAC_OFOS, 0 }, |
| { ICE_ETYPE_OL, 12 }, |
| { ICE_PPPOE, 14 }, |
| { ICE_IPV6_OFOS, 22 }, |
| { ICE_UDP_ILOS, 62 }, |
| { ICE_PROTOCOL_LAST, 0 }, |
| }; |
| |
| ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_udp) = { |
| 0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x88, 0x64, /* ICE_ETYPE_OL 12 */ |
| |
| 0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */ |
| 0x00, 0x2a, |
| |
| 0x00, 0x57, /* PPP Link Layer 20 */ |
| |
| 0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */ |
| 0x00, 0x08, 0x11, 0x00, /* Next header UDP*/ |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| |
| 0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 62 */ |
| 0x00, 0x08, 0x00, 0x00, |
| |
| 0x00, 0x00, /* 2 bytes for 4 bytes alignment */ |
| }; |
| |
| static const struct ice_dummy_pkt_profile ice_dummy_pkt_profiles[] = { |
| ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPU | ICE_PKT_OUTER_IPV6 | |
| ICE_PKT_GTP_NOPAY), |
| ICE_PKT_PROFILE(ipv6_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU | |
| ICE_PKT_OUTER_IPV6 | |
| ICE_PKT_INNER_IPV6 | |
| ICE_PKT_INNER_UDP), |
| ICE_PKT_PROFILE(ipv6_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU | |
| ICE_PKT_OUTER_IPV6 | |
| ICE_PKT_INNER_IPV6), |
| ICE_PKT_PROFILE(ipv6_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU | |
| ICE_PKT_OUTER_IPV6 | |
| ICE_PKT_INNER_UDP), |
| ICE_PKT_PROFILE(ipv6_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU | |
| ICE_PKT_OUTER_IPV6), |
| ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPU | ICE_PKT_GTP_NOPAY), |
| ICE_PKT_PROFILE(ipv4_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU | |
| ICE_PKT_INNER_IPV6 | |
| ICE_PKT_INNER_UDP), |
| ICE_PKT_PROFILE(ipv4_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU | |
| ICE_PKT_INNER_IPV6), |
| ICE_PKT_PROFILE(ipv4_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU | |
| ICE_PKT_INNER_UDP), |
| ICE_PKT_PROFILE(ipv4_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU), |
| ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPC | ICE_PKT_OUTER_IPV6), |
| ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPC), |
| ICE_PKT_PROFILE(pppoe_ipv6_udp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6 | |
| ICE_PKT_INNER_UDP), |
| ICE_PKT_PROFILE(pppoe_ipv6_tcp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6), |
| ICE_PKT_PROFILE(pppoe_ipv4_udp, ICE_PKT_PPPOE | ICE_PKT_INNER_UDP), |
| ICE_PKT_PROFILE(pppoe_ipv4_tcp, ICE_PKT_PPPOE), |
| ICE_PKT_PROFILE(gre_ipv6_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6 | |
| ICE_PKT_INNER_TCP), |
| ICE_PKT_PROFILE(gre_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_TCP), |
| ICE_PKT_PROFILE(gre_ipv6_udp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6), |
| ICE_PKT_PROFILE(gre_udp, ICE_PKT_TUN_NVGRE), |
| ICE_PKT_PROFILE(udp_tun_ipv6_tcp, ICE_PKT_TUN_UDP | |
| ICE_PKT_INNER_IPV6 | |
| ICE_PKT_INNER_TCP), |
| ICE_PKT_PROFILE(udp_tun_tcp, ICE_PKT_TUN_UDP | ICE_PKT_INNER_TCP), |
| ICE_PKT_PROFILE(udp_tun_ipv6_udp, ICE_PKT_TUN_UDP | |
| ICE_PKT_INNER_IPV6), |
| ICE_PKT_PROFILE(udp_tun_udp, ICE_PKT_TUN_UDP), |
| ICE_PKT_PROFILE(udp_ipv6, ICE_PKT_OUTER_IPV6 | ICE_PKT_INNER_UDP), |
| ICE_PKT_PROFILE(udp, ICE_PKT_INNER_UDP), |
| ICE_PKT_PROFILE(tcp_ipv6, ICE_PKT_OUTER_IPV6), |
| ICE_PKT_PROFILE(tcp, 0), |
| }; |
| |
| #define ICE_SW_RULE_RX_TX_HDR_SIZE(s, l) struct_size((s), hdr_data, (l)) |
| #define ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s) \ |
| ICE_SW_RULE_RX_TX_HDR_SIZE((s), DUMMY_ETH_HDR_LEN) |
| #define ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s) \ |
| ICE_SW_RULE_RX_TX_HDR_SIZE((s), 0) |
| #define ICE_SW_RULE_LG_ACT_SIZE(s, n) struct_size((s), act, (n)) |
| #define ICE_SW_RULE_VSI_LIST_SIZE(s, n) struct_size((s), vsi, (n)) |
| |
| /* this is a recipe to profile association bitmap */ |
| static DECLARE_BITMAP(recipe_to_profile[ICE_MAX_NUM_RECIPES], |
| ICE_MAX_NUM_PROFILES); |
| |
| /* this is a profile to recipe association bitmap */ |
| static DECLARE_BITMAP(profile_to_recipe[ICE_MAX_NUM_PROFILES], |
| ICE_MAX_NUM_RECIPES); |
| |
| /** |
| * ice_init_def_sw_recp - initialize the recipe book keeping tables |
| * @hw: pointer to the HW struct |
| * |
| * Allocate memory for the entire recipe table and initialize the structures/ |
| * entries corresponding to basic recipes. |
| */ |
| int ice_init_def_sw_recp(struct ice_hw *hw) |
| { |
| struct ice_sw_recipe *recps; |
| u8 i; |
| |
| recps = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_NUM_RECIPES, |
| sizeof(*recps), GFP_KERNEL); |
| if (!recps) |
| return -ENOMEM; |
| |
| for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) { |
| recps[i].root_rid = i; |
| INIT_LIST_HEAD(&recps[i].filt_rules); |
| INIT_LIST_HEAD(&recps[i].filt_replay_rules); |
| INIT_LIST_HEAD(&recps[i].rg_list); |
| mutex_init(&recps[i].filt_rule_lock); |
| } |
| |
| hw->switch_info->recp_list = recps; |
| |
| return 0; |
| } |
| |
| /** |
| * ice_aq_get_sw_cfg - get switch configuration |
| * @hw: pointer to the hardware structure |
| * @buf: pointer to the result buffer |
| * @buf_size: length of the buffer available for response |
| * @req_desc: pointer to requested descriptor |
| * @num_elems: pointer to number of elements |
| * @cd: pointer to command details structure or NULL |
| * |
| * Get switch configuration (0x0200) to be placed in buf. |
| * This admin command returns information such as initial VSI/port number |
| * and switch ID it belongs to. |
| * |
| * NOTE: *req_desc is both an input/output parameter. |
| * The caller of this function first calls this function with *request_desc set |
| * to 0. If the response from f/w has *req_desc set to 0, all the switch |
| * configuration information has been returned; if non-zero (meaning not all |
| * the information was returned), the caller should call this function again |
| * with *req_desc set to the previous value returned by f/w to get the |
| * next block of switch configuration information. |
| * |
| * *num_elems is output only parameter. This reflects the number of elements |
| * in response buffer. The caller of this function to use *num_elems while |
| * parsing the response buffer. |
| */ |
| static int |
| ice_aq_get_sw_cfg(struct ice_hw *hw, struct ice_aqc_get_sw_cfg_resp_elem *buf, |
| u16 buf_size, u16 *req_desc, u16 *num_elems, |
| struct ice_sq_cd *cd) |
| { |
| struct ice_aqc_get_sw_cfg *cmd; |
| struct ice_aq_desc desc; |
| int status; |
| |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sw_cfg); |
| cmd = &desc.params.get_sw_conf; |
| cmd->element = cpu_to_le16(*req_desc); |
| |
| status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); |
| if (!status) { |
| *req_desc = le16_to_cpu(cmd->element); |
| *num_elems = le16_to_cpu(cmd->num_elems); |
| } |
| |
| return status; |
| } |
| |
| /** |
| * ice_aq_add_vsi |
| * @hw: pointer to the HW struct |
| * @vsi_ctx: pointer to a VSI context struct |
| * @cd: pointer to command details structure or NULL |
| * |
| * Add a VSI context to the hardware (0x0210) |
| */ |
| static int |
| ice_aq_add_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx, |
| struct ice_sq_cd *cd) |
| { |
| struct ice_aqc_add_update_free_vsi_resp *res; |
| struct ice_aqc_add_get_update_free_vsi *cmd; |
| struct ice_aq_desc desc; |
| int status; |
| |
| cmd = &desc.params.vsi_cmd; |
| res = &desc.params.add_update_free_vsi_res; |
| |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_vsi); |
| |
| if (!vsi_ctx->alloc_from_pool) |
| cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | |
| ICE_AQ_VSI_IS_VALID); |
| cmd->vf_id = vsi_ctx->vf_num; |
| |
| cmd->vsi_flags = cpu_to_le16(vsi_ctx->flags); |
| |
| desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); |
| |
| status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info, |
| sizeof(vsi_ctx->info), cd); |
| |
| if (!status) { |
| vsi_ctx->vsi_num = le16_to_cpu(res->vsi_num) & ICE_AQ_VSI_NUM_M; |
| vsi_ctx->vsis_allocd = le16_to_cpu(res->vsi_used); |
| vsi_ctx->vsis_unallocated = le16_to_cpu(res->vsi_free); |
| } |
| |
| return status; |
| } |
| |
| /** |
| * ice_aq_free_vsi |
| * @hw: pointer to the HW struct |
| * @vsi_ctx: pointer to a VSI context struct |
| * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources |
| * @cd: pointer to command details structure or NULL |
| * |
| * Free VSI context info from hardware (0x0213) |
| */ |
| static int |
| ice_aq_free_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx, |
| bool keep_vsi_alloc, struct ice_sq_cd *cd) |
| { |
| struct ice_aqc_add_update_free_vsi_resp *resp; |
| struct ice_aqc_add_get_update_free_vsi *cmd; |
| struct ice_aq_desc desc; |
| int status; |
| |
| cmd = &desc.params.vsi_cmd; |
| resp = &desc.params.add_update_free_vsi_res; |
| |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_free_vsi); |
| |
| cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID); |
| if (keep_vsi_alloc) |
| cmd->cmd_flags = cpu_to_le16(ICE_AQ_VSI_KEEP_ALLOC); |
| |
| status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd); |
| if (!status) { |
| vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used); |
| vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free); |
| } |
| |
| return status; |
| } |
| |
| /** |
| * ice_aq_update_vsi |
| * @hw: pointer to the HW struct |
| * @vsi_ctx: pointer to a VSI context struct |
| * @cd: pointer to command details structure or NULL |
| * |
| * Update VSI context in the hardware (0x0211) |
| */ |
| static int |
| ice_aq_update_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx, |
| struct ice_sq_cd *cd) |
| { |
| struct ice_aqc_add_update_free_vsi_resp *resp; |
| struct ice_aqc_add_get_update_free_vsi *cmd; |
| struct ice_aq_desc desc; |
| int status; |
| |
| cmd = &desc.params.vsi_cmd; |
| resp = &desc.params.add_update_free_vsi_res; |
| |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_vsi); |
| |
| cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID); |
| |
| desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); |
| |
| status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info, |
| sizeof(vsi_ctx->info), cd); |
| |
| if (!status) { |
| vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used); |
| vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free); |
| } |
| |
| return status; |
| } |
| |
| /** |
| * ice_is_vsi_valid - check whether the VSI is valid or not |
| * @hw: pointer to the HW struct |
| * @vsi_handle: VSI handle |
| * |
| * check whether the VSI is valid or not |
| */ |
| bool ice_is_vsi_valid(struct ice_hw *hw, u16 vsi_handle) |
| { |
| return vsi_handle < ICE_MAX_VSI && hw->vsi_ctx[vsi_handle]; |
| } |
| |
| /** |
| * ice_get_hw_vsi_num - return the HW VSI number |
| * @hw: pointer to the HW struct |
| * @vsi_handle: VSI handle |
| * |
| * return the HW VSI number |
| * Caution: call this function only if VSI is valid (ice_is_vsi_valid) |
| */ |
| u16 ice_get_hw_vsi_num(struct ice_hw *hw, u16 vsi_handle) |
| { |
| return hw->vsi_ctx[vsi_handle]->vsi_num; |
| } |
| |
| /** |
| * ice_get_vsi_ctx - return the VSI context entry for a given VSI handle |
| * @hw: pointer to the HW struct |
| * @vsi_handle: VSI handle |
| * |
| * return the VSI context entry for a given VSI handle |
| */ |
| struct ice_vsi_ctx *ice_get_vsi_ctx(struct ice_hw *hw, u16 vsi_handle) |
| { |
| return (vsi_handle >= ICE_MAX_VSI) ? NULL : hw->vsi_ctx[vsi_handle]; |
| } |
| |
| /** |
| * ice_save_vsi_ctx - save the VSI context for a given VSI handle |
| * @hw: pointer to the HW struct |
| * @vsi_handle: VSI handle |
| * @vsi: VSI context pointer |
| * |
| * save the VSI context entry for a given VSI handle |
| */ |
| static void |
| ice_save_vsi_ctx(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi) |
| { |
| hw->vsi_ctx[vsi_handle] = vsi; |
| } |
| |
| /** |
| * ice_clear_vsi_q_ctx - clear VSI queue contexts for all TCs |
| * @hw: pointer to the HW struct |
| * @vsi_handle: VSI handle |
| */ |
| static void ice_clear_vsi_q_ctx(struct ice_hw *hw, u16 vsi_handle) |
| { |
| struct ice_vsi_ctx *vsi; |
| u8 i; |
| |
| vsi = ice_get_vsi_ctx(hw, vsi_handle); |
| if (!vsi) |
| return; |
| ice_for_each_traffic_class(i) { |
| if (vsi->lan_q_ctx[i]) { |
| devm_kfree(ice_hw_to_dev(hw), vsi->lan_q_ctx[i]); |
| vsi->lan_q_ctx[i] = NULL; |
| } |
| if (vsi->rdma_q_ctx[i]) { |
| devm_kfree(ice_hw_to_dev(hw), vsi->rdma_q_ctx[i]); |
| vsi->rdma_q_ctx[i] = NULL; |
| } |
| } |
| } |
| |
| /** |
| * ice_clear_vsi_ctx - clear the VSI context entry |
| * @hw: pointer to the HW struct |
| * @vsi_handle: VSI handle |
| * |
| * clear the VSI context entry |
| */ |
| static void ice_clear_vsi_ctx(struct ice_hw *hw, u16 vsi_handle) |
| { |
| struct ice_vsi_ctx *vsi; |
| |
| vsi = ice_get_vsi_ctx(hw, vsi_handle); |
| if (vsi) { |
| ice_clear_vsi_q_ctx(hw, vsi_handle); |
| devm_kfree(ice_hw_to_dev(hw), vsi); |
| hw->vsi_ctx[vsi_handle] = NULL; |
| } |
| } |
| |
| /** |
| * ice_clear_all_vsi_ctx - clear all the VSI context entries |
| * @hw: pointer to the HW struct |
| */ |
| void ice_clear_all_vsi_ctx(struct ice_hw *hw) |
| { |
| u16 i; |
| |
| for (i = 0; i < ICE_MAX_VSI; i++) |
| ice_clear_vsi_ctx(hw, i); |
| } |
| |
| /** |
| * ice_add_vsi - add VSI context to the hardware and VSI handle list |
| * @hw: pointer to the HW struct |
| * @vsi_handle: unique VSI handle provided by drivers |
| * @vsi_ctx: pointer to a VSI context struct |
| * @cd: pointer to command details structure or NULL |
| * |
| * Add a VSI context to the hardware also add it into the VSI handle list. |
| * If this function gets called after reset for existing VSIs then update |
| * with the new HW VSI number in the corresponding VSI handle list entry. |
| */ |
| int |
| ice_add_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx, |
| struct ice_sq_cd *cd) |
| { |
| struct ice_vsi_ctx *tmp_vsi_ctx; |
| int status; |
| |
| if (vsi_handle >= ICE_MAX_VSI) |
| return -EINVAL; |
| status = ice_aq_add_vsi(hw, vsi_ctx, cd); |
| if (status) |
| return status; |
| tmp_vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); |
| if (!tmp_vsi_ctx) { |
| /* Create a new VSI context */ |
| tmp_vsi_ctx = devm_kzalloc(ice_hw_to_dev(hw), |
| sizeof(*tmp_vsi_ctx), GFP_KERNEL); |
| if (!tmp_vsi_ctx) { |
| ice_aq_free_vsi(hw, vsi_ctx, false, cd); |
| return -ENOMEM; |
| } |
| *tmp_vsi_ctx = *vsi_ctx; |
| ice_save_vsi_ctx(hw, vsi_handle, tmp_vsi_ctx); |
| } else { |
| /* update with new HW VSI num */ |
| tmp_vsi_ctx->vsi_num = vsi_ctx->vsi_num; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_free_vsi- free VSI context from hardware and VSI handle list |
| * @hw: pointer to the HW struct |
| * @vsi_handle: unique VSI handle |
| * @vsi_ctx: pointer to a VSI context struct |
| * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources |
| * @cd: pointer to command details structure or NULL |
| * |
| * Free VSI context info from hardware as well as from VSI handle list |
| */ |
| int |
| ice_free_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx, |
| bool keep_vsi_alloc, struct ice_sq_cd *cd) |
| { |
| int status; |
| |
| if (!ice_is_vsi_valid(hw, vsi_handle)) |
| return -EINVAL; |
| vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle); |
| status = ice_aq_free_vsi(hw, vsi_ctx, keep_vsi_alloc, cd); |
| if (!status) |
| ice_clear_vsi_ctx(hw, vsi_handle); |
| return status; |
| } |
| |
| /** |
| * ice_update_vsi |
| * @hw: pointer to the HW struct |
| * @vsi_handle: unique VSI handle |
| * @vsi_ctx: pointer to a VSI context struct |
| * @cd: pointer to command details structure or NULL |
| * |
| * Update VSI context in the hardware |
| */ |
| int |
| ice_update_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx, |
| struct ice_sq_cd *cd) |
| { |
| if (!ice_is_vsi_valid(hw, vsi_handle)) |
| return -EINVAL; |
| vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle); |
| return ice_aq_update_vsi(hw, vsi_ctx, cd); |
| } |
| |
| /** |
| * ice_cfg_rdma_fltr - enable/disable RDMA filtering on VSI |
| * @hw: pointer to HW struct |
| * @vsi_handle: VSI SW index |
| * @enable: boolean for enable/disable |
| */ |
| int |
| ice_cfg_rdma_fltr(struct ice_hw *hw, u16 vsi_handle, bool enable) |
| { |
| struct ice_vsi_ctx *ctx; |
| |
| ctx = ice_get_vsi_ctx(hw, vsi_handle); |
| if (!ctx) |
| return -EIO; |
| |
| if (enable) |
| ctx->info.q_opt_flags |= ICE_AQ_VSI_Q_OPT_PE_FLTR_EN; |
| else |
| ctx->info.q_opt_flags &= ~ICE_AQ_VSI_Q_OPT_PE_FLTR_EN; |
| |
| return ice_update_vsi(hw, vsi_handle, ctx, NULL); |
| } |
| |
| /** |
| * ice_aq_alloc_free_vsi_list |
| * @hw: pointer to the HW struct |
| * @vsi_list_id: VSI list ID returned or used for lookup |
| * @lkup_type: switch rule filter lookup type |
| * @opc: switch rules population command type - pass in the command opcode |
| * |
| * allocates or free a VSI list resource |
| */ |
| static int |
| ice_aq_alloc_free_vsi_list(struct ice_hw *hw, u16 *vsi_list_id, |
| enum ice_sw_lkup_type lkup_type, |
| enum ice_adminq_opc opc) |
| { |
| struct ice_aqc_alloc_free_res_elem *sw_buf; |
| struct ice_aqc_res_elem *vsi_ele; |
| u16 buf_len; |
| int status; |
| |
| buf_len = struct_size(sw_buf, elem, 1); |
| sw_buf = devm_kzalloc(ice_hw_to_dev(hw), buf_len, GFP_KERNEL); |
| if (!sw_buf) |
| return -ENOMEM; |
| sw_buf->num_elems = cpu_to_le16(1); |
| |
| if (lkup_type == ICE_SW_LKUP_MAC || |
| lkup_type == ICE_SW_LKUP_MAC_VLAN || |
| lkup_type == ICE_SW_LKUP_ETHERTYPE || |
| lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC || |
| lkup_type == ICE_SW_LKUP_PROMISC || |
| lkup_type == ICE_SW_LKUP_PROMISC_VLAN || |
| lkup_type == ICE_SW_LKUP_DFLT) { |
| sw_buf->res_type = cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_REP); |
| } else if (lkup_type == ICE_SW_LKUP_VLAN) { |
| sw_buf->res_type = |
| cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE); |
| } else { |
| status = -EINVAL; |
| goto ice_aq_alloc_free_vsi_list_exit; |
| } |
| |
| if (opc == ice_aqc_opc_free_res) |
| sw_buf->elem[0].e.sw_resp = cpu_to_le16(*vsi_list_id); |
| |
| status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len, opc, NULL); |
| if (status) |
| goto ice_aq_alloc_free_vsi_list_exit; |
| |
| if (opc == ice_aqc_opc_alloc_res) { |
| vsi_ele = &sw_buf->elem[0]; |
| *vsi_list_id = le16_to_cpu(vsi_ele->e.sw_resp); |
| } |
| |
| ice_aq_alloc_free_vsi_list_exit: |
| devm_kfree(ice_hw_to_dev(hw), sw_buf); |
| return status; |
| } |
| |
| /** |
| * ice_aq_sw_rules - add/update/remove switch rules |
| * @hw: pointer to the HW struct |
| * @rule_list: pointer to switch rule population list |
| * @rule_list_sz: total size of the rule list in bytes |
| * @num_rules: number of switch rules in the rule_list |
| * @opc: switch rules population command type - pass in the command opcode |
| * @cd: pointer to command details structure or NULL |
| * |
| * Add(0x02a0)/Update(0x02a1)/Remove(0x02a2) switch rules commands to firmware |
| */ |
| int |
| ice_aq_sw_rules(struct ice_hw *hw, void *rule_list, u16 rule_list_sz, |
| u8 num_rules, enum ice_adminq_opc opc, struct ice_sq_cd *cd) |
| { |
| struct ice_aq_desc desc; |
| int status; |
| |
| if (opc != ice_aqc_opc_add_sw_rules && |
| opc != ice_aqc_opc_update_sw_rules && |
| opc != ice_aqc_opc_remove_sw_rules) |
| return -EINVAL; |
| |
| ice_fill_dflt_direct_cmd_desc(&desc, opc); |
| |
| desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); |
| desc.params.sw_rules.num_rules_fltr_entry_index = |
| cpu_to_le16(num_rules); |
| status = ice_aq_send_cmd(hw, &desc, rule_list, rule_list_sz, cd); |
| if (opc != ice_aqc_opc_add_sw_rules && |
| hw->adminq.sq_last_status == ICE_AQ_RC_ENOENT) |
| status = -ENOENT; |
| |
| return status; |
| } |
| |
| /** |
| * ice_aq_add_recipe - add switch recipe |
| * @hw: pointer to the HW struct |
| * @s_recipe_list: pointer to switch rule population list |
| * @num_recipes: number of switch recipes in the list |
| * @cd: pointer to command details structure or NULL |
| * |
| * Add(0x0290) |
| */ |
| static int |
| ice_aq_add_recipe(struct ice_hw *hw, |
| struct ice_aqc_recipe_data_elem *s_recipe_list, |
| u16 num_recipes, struct ice_sq_cd *cd) |
| { |
| struct ice_aqc_add_get_recipe *cmd; |
| struct ice_aq_desc desc; |
| u16 buf_size; |
| |
| cmd = &desc.params.add_get_recipe; |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_recipe); |
| |
| cmd->num_sub_recipes = cpu_to_le16(num_recipes); |
| desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); |
| |
| buf_size = num_recipes * sizeof(*s_recipe_list); |
| |
| return ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd); |
| } |
| |
| /** |
| * ice_aq_get_recipe - get switch recipe |
| * @hw: pointer to the HW struct |
| * @s_recipe_list: pointer to switch rule population list |
| * @num_recipes: pointer to the number of recipes (input and output) |
| * @recipe_root: root recipe number of recipe(s) to retrieve |
| * @cd: pointer to command details structure or NULL |
| * |
| * Get(0x0292) |
| * |
| * On input, *num_recipes should equal the number of entries in s_recipe_list. |
| * On output, *num_recipes will equal the number of entries returned in |
| * s_recipe_list. |
| * |
| * The caller must supply enough space in s_recipe_list to hold all possible |
| * recipes and *num_recipes must equal ICE_MAX_NUM_RECIPES. |
| */ |
| static int |
| ice_aq_get_recipe(struct ice_hw *hw, |
| struct ice_aqc_recipe_data_elem *s_recipe_list, |
| u16 *num_recipes, u16 recipe_root, struct ice_sq_cd *cd) |
| { |
| struct ice_aqc_add_get_recipe *cmd; |
| struct ice_aq_desc desc; |
| u16 buf_size; |
| int status; |
| |
| if (*num_recipes != ICE_MAX_NUM_RECIPES) |
| return -EINVAL; |
| |
| cmd = &desc.params.add_get_recipe; |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe); |
| |
| cmd->return_index = cpu_to_le16(recipe_root); |
| cmd->num_sub_recipes = 0; |
| |
| buf_size = *num_recipes * sizeof(*s_recipe_list); |
| |
| status = ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd); |
| *num_recipes = le16_to_cpu(cmd->num_sub_recipes); |
| |
| return status; |
| } |
| |
| /** |
| * ice_update_recipe_lkup_idx - update a default recipe based on the lkup_idx |
| * @hw: pointer to the HW struct |
| * @params: parameters used to update the default recipe |
| * |
| * This function only supports updating default recipes and it only supports |
| * updating a single recipe based on the lkup_idx at a time. |
| * |
| * This is done as a read-modify-write operation. First, get the current recipe |
| * contents based on the recipe's ID. Then modify the field vector index and |
| * mask if it's valid at the lkup_idx. Finally, use the add recipe AQ to update |
| * the pre-existing recipe with the modifications. |
| */ |
| int |
| ice_update_recipe_lkup_idx(struct ice_hw *hw, |
| struct ice_update_recipe_lkup_idx_params *params) |
| { |
| struct ice_aqc_recipe_data_elem *rcp_list; |
| u16 num_recps = ICE_MAX_NUM_RECIPES; |
| int status; |
| |
| rcp_list = kcalloc(num_recps, sizeof(*rcp_list), GFP_KERNEL); |
| if (!rcp_list) |
| return -ENOMEM; |
| |
| /* read current recipe list from firmware */ |
| rcp_list->recipe_indx = params->rid; |
| status = ice_aq_get_recipe(hw, rcp_list, &num_recps, params->rid, NULL); |
| if (status) { |
| ice_debug(hw, ICE_DBG_SW, "Failed to get recipe %d, status %d\n", |
| params->rid, status); |
| goto error_out; |
| } |
| |
| /* only modify existing recipe's lkup_idx and mask if valid, while |
| * leaving all other fields the same, then update the recipe firmware |
| */ |
| rcp_list->content.lkup_indx[params->lkup_idx] = params->fv_idx; |
| if (params->mask_valid) |
| rcp_list->content.mask[params->lkup_idx] = |
| cpu_to_le16(params->mask); |
| |
| if (params->ignore_valid) |
| rcp_list->content.lkup_indx[params->lkup_idx] |= |
| ICE_AQ_RECIPE_LKUP_IGNORE; |
| |
| status = ice_aq_add_recipe(hw, &rcp_list[0], 1, NULL); |
| if (status) |
| ice_debug(hw, ICE_DBG_SW, "Failed to update recipe %d lkup_idx %d fv_idx %d mask %d mask_valid %s, status %d\n", |
| params->rid, params->lkup_idx, params->fv_idx, |
| params->mask, params->mask_valid ? "true" : "false", |
| status); |
| |
| error_out: |
| kfree(rcp_list); |
| return status; |
| } |
| |
| /** |
| * ice_aq_map_recipe_to_profile - Map recipe to packet profile |
| * @hw: pointer to the HW struct |
| * @profile_id: package profile ID to associate the recipe with |
| * @r_bitmap: Recipe bitmap filled in and need to be returned as response |
| * @cd: pointer to command details structure or NULL |
| * Recipe to profile association (0x0291) |
| */ |
| static int |
| ice_aq_map_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u8 *r_bitmap, |
| struct ice_sq_cd *cd) |
| { |
| struct ice_aqc_recipe_to_profile *cmd; |
| struct ice_aq_desc desc; |
| |
| cmd = &desc.params.recipe_to_profile; |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_recipe_to_profile); |
| cmd->profile_id = cpu_to_le16(profile_id); |
| /* Set the recipe ID bit in the bitmask to let the device know which |
| * profile we are associating the recipe to |
| */ |
| memcpy(cmd->recipe_assoc, r_bitmap, sizeof(cmd->recipe_assoc)); |
| |
| return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); |
| } |
| |
| /** |
| * ice_aq_get_recipe_to_profile - Map recipe to packet profile |
| * @hw: pointer to the HW struct |
| * @profile_id: package profile ID to associate the recipe with |
| * @r_bitmap: Recipe bitmap filled in and need to be returned as response |
| * @cd: pointer to command details structure or NULL |
| * Associate profile ID with given recipe (0x0293) |
| */ |
| static int |
| ice_aq_get_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u8 *r_bitmap, |
| struct ice_sq_cd *cd) |
| { |
| struct ice_aqc_recipe_to_profile *cmd; |
| struct ice_aq_desc desc; |
| int status; |
| |
| cmd = &desc.params.recipe_to_profile; |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe_to_profile); |
| cmd->profile_id = cpu_to_le16(profile_id); |
| |
| status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd); |
| if (!status) |
| memcpy(r_bitmap, cmd->recipe_assoc, sizeof(cmd->recipe_assoc)); |
| |
| return status; |
| } |
| |
| /** |
| * ice_alloc_recipe - add recipe resource |
| * @hw: pointer to the hardware structure |
| * @rid: recipe ID returned as response to AQ call |
| */ |
| static int ice_alloc_recipe(struct ice_hw *hw, u16 *rid) |
| { |
| struct ice_aqc_alloc_free_res_elem *sw_buf; |
| u16 buf_len; |
| int status; |
| |
| buf_len = struct_size(sw_buf, elem, 1); |
| sw_buf = kzalloc(buf_len, GFP_KERNEL); |
| if (!sw_buf) |
| return -ENOMEM; |
| |
| sw_buf->num_elems = cpu_to_le16(1); |
| sw_buf->res_type = cpu_to_le16((ICE_AQC_RES_TYPE_RECIPE << |
| ICE_AQC_RES_TYPE_S) | |
| ICE_AQC_RES_TYPE_FLAG_SHARED); |
| status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len, |
| ice_aqc_opc_alloc_res, NULL); |
| if (!status) |
| *rid = le16_to_cpu(sw_buf->elem[0].e.sw_resp); |
| kfree(sw_buf); |
| |
| return status; |
| } |
| |
| /** |
| * ice_get_recp_to_prof_map - updates recipe to profile mapping |
| * @hw: pointer to hardware structure |
| * |
| * This function is used to populate recipe_to_profile matrix where index to |
| * this array is the recipe ID and the element is the mapping of which profiles |
| * is this recipe mapped to. |
| */ |
| static void ice_get_recp_to_prof_map(struct ice_hw *hw) |
| { |
| DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES); |
| u16 i; |
| |
| for (i = 0; i < hw->switch_info->max_used_prof_index + 1; i++) { |
| u16 j; |
| |
| bitmap_zero(profile_to_recipe[i], ICE_MAX_NUM_RECIPES); |
| bitmap_zero(r_bitmap, ICE_MAX_NUM_RECIPES); |
| if (ice_aq_get_recipe_to_profile(hw, i, (u8 *)r_bitmap, NULL)) |
| continue; |
| bitmap_copy(profile_to_recipe[i], r_bitmap, |
| ICE_MAX_NUM_RECIPES); |
| for_each_set_bit(j, r_bitmap, ICE_MAX_NUM_RECIPES) |
| set_bit(i, recipe_to_profile[j]); |
| } |
| } |
| |
| /** |
| * ice_collect_result_idx - copy result index values |
| * @buf: buffer that contains the result index |
| * @recp: the recipe struct to copy data into |
| */ |
| static void |
| ice_collect_result_idx(struct ice_aqc_recipe_data_elem *buf, |
| struct ice_sw_recipe *recp) |
| { |
| if (buf->content.result_indx & ICE_AQ_RECIPE_RESULT_EN) |
| set_bit(buf->content.result_indx & ~ICE_AQ_RECIPE_RESULT_EN, |
| recp->res_idxs); |
| } |
| |
| /** |
| * ice_get_recp_frm_fw - update SW bookkeeping from FW recipe entries |
| * @hw: pointer to hardware structure |
| * @recps: struct that we need to populate |
| * @rid: recipe ID that we are populating |
| * @refresh_required: true if we should get recipe to profile mapping from FW |
| * |
| * This function is used to populate all the necessary entries into our |
| * bookkeeping so that we have a current list of all the recipes that are |
| * programmed in the firmware. |
| */ |
| static int |
| ice_get_recp_frm_fw(struct ice_hw *hw, struct ice_sw_recipe *recps, u8 rid, |
| bool *refresh_required) |
| { |
| DECLARE_BITMAP(result_bm, ICE_MAX_FV_WORDS); |
| struct ice_aqc_recipe_data_elem *tmp; |
| u16 num_recps = ICE_MAX_NUM_RECIPES; |
| struct ice_prot_lkup_ext *lkup_exts; |
| u8 fv_word_idx = 0; |
| u16 sub_recps; |
| int status; |
| |
| bitmap_zero(result_bm, ICE_MAX_FV_WORDS); |
| |
| /* we need a buffer big enough to accommodate all the recipes */ |
| tmp = kcalloc(ICE_MAX_NUM_RECIPES, sizeof(*tmp), GFP_KERNEL); |
| if (!tmp) |
| return -ENOMEM; |
| |
| tmp[0].recipe_indx = rid; |
| status = ice_aq_get_recipe(hw, tmp, &num_recps, rid, NULL); |
| /* non-zero status meaning recipe doesn't exist */ |
| if (status) |
| goto err_unroll; |
| |
| /* Get recipe to profile map so that we can get the fv from lkups that |
| * we read for a recipe from FW. Since we want to minimize the number of |
| * times we make this FW call, just make one call and cache the copy |
| * until a new recipe is added. This operation is only required the |
| * first time to get the changes from FW. Then to search existing |
| * entries we don't need to update the cache again until another recipe |
| * gets added. |
| */ |
| if (*refresh_required) { |
| ice_get_recp_to_prof_map(hw); |
| *refresh_required = false; |
| } |
| |
| /* Start populating all the entries for recps[rid] based on lkups from |
| * firmware. Note that we are only creating the root recipe in our |
| * database. |
| */ |
| lkup_exts = &recps[rid].lkup_exts; |
| |
| for (sub_recps = 0; sub_recps < num_recps; sub_recps++) { |
| struct ice_aqc_recipe_data_elem root_bufs = tmp[sub_recps]; |
| struct ice_recp_grp_entry *rg_entry; |
| u8 i, prof, idx, prot = 0; |
| bool is_root; |
| u16 off = 0; |
| |
| rg_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rg_entry), |
| GFP_KERNEL); |
| if (!rg_entry) { |
| status = -ENOMEM; |
| goto err_unroll; |
| } |
| |
| idx = root_bufs.recipe_indx; |
| is_root = root_bufs.content.rid & ICE_AQ_RECIPE_ID_IS_ROOT; |
| |
| /* Mark all result indices in this chain */ |
| if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN) |
| set_bit(root_bufs.content.result_indx & ~ICE_AQ_RECIPE_RESULT_EN, |
| result_bm); |
| |
| /* get the first profile that is associated with rid */ |
| prof = find_first_bit(recipe_to_profile[idx], |
| ICE_MAX_NUM_PROFILES); |
| for (i = 0; i < ICE_NUM_WORDS_RECIPE; i++) { |
| u8 lkup_indx = root_bufs.content.lkup_indx[i + 1]; |
| |
| rg_entry->fv_idx[i] = lkup_indx; |
| rg_entry->fv_mask[i] = |
| le16_to_cpu(root_bufs.content.mask[i + 1]); |
| |
| /* If the recipe is a chained recipe then all its |
| * child recipe's result will have a result index. |
| * To fill fv_words we should not use those result |
| * index, we only need the protocol ids and offsets. |
| * We will skip all the fv_idx which stores result |
| * index in them. We also need to skip any fv_idx which |
| * has ICE_AQ_RECIPE_LKUP_IGNORE or 0 since it isn't a |
| * valid offset value. |
| */ |
| if (test_bit(rg_entry->fv_idx[i], hw->switch_info->prof_res_bm[prof]) || |
| rg_entry->fv_idx[i] & ICE_AQ_RECIPE_LKUP_IGNORE || |
| rg_entry->fv_idx[i] == 0) |
| continue; |
| |
| ice_find_prot_off(hw, ICE_BLK_SW, prof, |
| rg_entry->fv_idx[i], &prot, &off); |
| lkup_exts->fv_words[fv_word_idx].prot_id = prot; |
| lkup_exts->fv_words[fv_word_idx].off = off; |
| lkup_exts->field_mask[fv_word_idx] = |
| rg_entry->fv_mask[i]; |
| fv_word_idx++; |
| } |
| /* populate rg_list with the data from the child entry of this |
| * recipe |
| */ |
| list_add(&rg_entry->l_entry, &recps[rid].rg_list); |
| |
| /* Propagate some data to the recipe database */ |
| recps[idx].is_root = !!is_root; |
| recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority; |
| bitmap_zero(recps[idx].res_idxs, ICE_MAX_FV_WORDS); |
| if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN) { |
| recps[idx].chain_idx = root_bufs.content.result_indx & |
| ~ICE_AQ_RECIPE_RESULT_EN; |
| set_bit(recps[idx].chain_idx, recps[idx].res_idxs); |
| } else { |
| recps[idx].chain_idx = ICE_INVAL_CHAIN_IND; |
| } |
| |
| if (!is_root) |
| continue; |
| |
| /* Only do the following for root recipes entries */ |
| memcpy(recps[idx].r_bitmap, root_bufs.recipe_bitmap, |
| sizeof(recps[idx].r_bitmap)); |
| recps[idx].root_rid = root_bufs.content.rid & |
| ~ICE_AQ_RECIPE_ID_IS_ROOT; |
| recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority; |
| } |
| |
| /* Complete initialization of the root recipe entry */ |
| lkup_exts->n_val_words = fv_word_idx; |
| recps[rid].big_recp = (num_recps > 1); |
| recps[rid].n_grp_count = (u8)num_recps; |
| recps[rid].root_buf = devm_kmemdup(ice_hw_to_dev(hw), tmp, |
| recps[rid].n_grp_count * sizeof(*recps[rid].root_buf), |
| GFP_KERNEL); |
| if (!recps[rid].root_buf) { |
| status = -ENOMEM; |
| goto err_unroll; |
| } |
| |
| /* Copy result indexes */ |
| bitmap_copy(recps[rid].res_idxs, result_bm, ICE_MAX_FV_WORDS); |
| recps[rid].recp_created = true; |
| |
| err_unroll: |
| kfree(tmp); |
| return status; |
| } |
| |
| /* ice_init_port_info - Initialize port_info with switch configuration data |
| * @pi: pointer to port_info |
| * @vsi_port_num: VSI number or port number |
| * @type: Type of switch element (port or VSI) |
| * @swid: switch ID of the switch the element is attached to |
| * @pf_vf_num: PF or VF number |
| * @is_vf: true if the element is a VF, false otherwise |
| */ |
| static void |
| ice_init_port_info(struct ice_port_info *pi, u16 vsi_port_num, u8 type, |
| u16 swid, u16 pf_vf_num, bool is_vf) |
| { |
| switch (type) { |
| case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT: |
| pi->lport = (u8)(vsi_port_num & ICE_LPORT_MASK); |
| pi->sw_id = swid; |
| pi->pf_vf_num = pf_vf_num; |
| pi->is_vf = is_vf; |
| break; |
| default: |
| ice_debug(pi->hw, ICE_DBG_SW, "incorrect VSI/port type received\n"); |
| break; |
| } |
| } |
| |
| /* ice_get_initial_sw_cfg - Get initial port and default VSI data |
| * @hw: pointer to the hardware structure |
| */ |
| int ice_get_initial_sw_cfg(struct ice_hw *hw) |
| { |
| struct ice_aqc_get_sw_cfg_resp_elem *rbuf; |
| u16 req_desc = 0; |
| u16 num_elems; |
| int status; |
| u16 i; |
| |
| rbuf = devm_kzalloc(ice_hw_to_dev(hw), ICE_SW_CFG_MAX_BUF_LEN, |
| GFP_KERNEL); |
| |
| if (!rbuf) |
| return -ENOMEM; |
| |
| /* Multiple calls to ice_aq_get_sw_cfg may be required |
| * to get all the switch configuration information. The need |
| * for additional calls is indicated by ice_aq_get_sw_cfg |
| * writing a non-zero value in req_desc |
| */ |
| do { |
| struct ice_aqc_get_sw_cfg_resp_elem *ele; |
| |
| status = ice_aq_get_sw_cfg(hw, rbuf, ICE_SW_CFG_MAX_BUF_LEN, |
| &req_desc, &num_elems, NULL); |
| |
| if (status) |
| break; |
| |
| for (i = 0, ele = rbuf; i < num_elems; i++, ele++) { |
| u16 pf_vf_num, swid, vsi_port_num; |
| bool is_vf = false; |
| u8 res_type; |
| |
| vsi_port_num = le16_to_cpu(ele->vsi_port_num) & |
| ICE_AQC_GET_SW_CONF_RESP_VSI_PORT_NUM_M; |
| |
| pf_vf_num = le16_to_cpu(ele->pf_vf_num) & |
| ICE_AQC_GET_SW_CONF_RESP_FUNC_NUM_M; |
| |
| swid = le16_to_cpu(ele->swid); |
| |
| if (le16_to_cpu(ele->pf_vf_num) & |
| ICE_AQC_GET_SW_CONF_RESP_IS_VF) |
| is_vf = true; |
| |
| res_type = (u8)(le16_to_cpu(ele->vsi_port_num) >> |
| ICE_AQC_GET_SW_CONF_RESP_TYPE_S); |
| |
| if (res_type == ICE_AQC_GET_SW_CONF_RESP_VSI) { |
| /* FW VSI is not needed. Just continue. */ |
| continue; |
| } |
| |
| ice_init_port_info(hw->port_info, vsi_port_num, |
| res_type, swid, pf_vf_num, is_vf); |
| } |
| } while (req_desc && !status); |
| |
| devm_kfree(ice_hw_to_dev(hw), rbuf); |
| return status; |
| } |
| |
| /** |
| * ice_fill_sw_info - Helper function to populate lb_en and lan_en |
| * @hw: pointer to the hardware structure |
| * @fi: filter info structure to fill/update |
| * |
| * This helper function populates the lb_en and lan_en elements of the provided |
| * ice_fltr_info struct using the switch's type and characteristics of the |
| * switch rule being configured. |
| */ |
| static void ice_fill_sw_info(struct ice_hw *hw, struct ice_fltr_info *fi) |
| { |
| fi->lb_en = false; |
| fi->lan_en = false; |
| if ((fi->flag & ICE_FLTR_TX) && |
| (fi->fltr_act == ICE_FWD_TO_VSI || |
| fi->fltr_act == ICE_FWD_TO_VSI_LIST || |
| fi->fltr_act == ICE_FWD_TO_Q || |
| fi->fltr_act == ICE_FWD_TO_QGRP)) { |
| /* Setting LB for prune actions will result in replicated |
| * packets to the internal switch that will be dropped. |
| */ |
| if (fi->lkup_type != ICE_SW_LKUP_VLAN) |
| fi->lb_en = true; |
| |
| /* Set lan_en to TRUE if |
| * 1. The switch is a VEB AND |
| * 2 |
| * 2.1 The lookup is a directional lookup like ethertype, |
| * promiscuous, ethertype-MAC, promiscuous-VLAN |
| * and default-port OR |
| * 2.2 The lookup is VLAN, OR |
| * 2.3 The lookup is MAC with mcast or bcast addr for MAC, OR |
| * 2.4 The lookup is MAC_VLAN with mcast or bcast addr for MAC. |
| * |
| * OR |
| * |
| * The switch is a VEPA. |
| * |
| * In all other cases, the LAN enable has to be set to false. |
| */ |
| if (hw->evb_veb) { |
| if (fi->lkup_type == ICE_SW_LKUP_ETHERTYPE || |
| fi->lkup_type == ICE_SW_LKUP_PROMISC || |
| fi->lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC || |
| fi->lkup_type == ICE_SW_LKUP_PROMISC_VLAN || |
| fi->lkup_type == ICE_SW_LKUP_DFLT || |
| fi->lkup_type == ICE_SW_LKUP_VLAN || |
| (fi->lkup_type == ICE_SW_LKUP_MAC && |
| !is_unicast_ether_addr(fi->l_data.mac.mac_addr)) || |
| (fi->lkup_type == ICE_SW_LKUP_MAC_VLAN && |
| !is_unicast_ether_addr(fi->l_data.mac.mac_addr))) |
| fi->lan_en = true; |
| } else { |
| fi->lan_en = true; |
| } |
| } |
| } |
| |
| /** |
| * ice_fill_sw_rule - Helper function to fill switch rule structure |
| * @hw: pointer to the hardware structure |
| * @f_info: entry containing packet forwarding information |
| * @s_rule: switch rule structure to be filled in based on mac_entry |
| * @opc: switch rules population command type - pass in the command opcode |
| */ |
| static void |
| ice_fill_sw_rule(struct ice_hw *hw, struct ice_fltr_info *f_info, |
| struct ice_sw_rule_lkup_rx_tx *s_rule, |
| enum ice_adminq_opc opc) |
| { |
| u16 vlan_id = ICE_MAX_VLAN_ID + 1; |
| u16 vlan_tpid = ETH_P_8021Q; |
| void *daddr = NULL; |
| u16 eth_hdr_sz; |
| u8 *eth_hdr; |
| u32 act = 0; |
| __be16 *off; |
| u8 q_rgn; |
| |
| if (opc == ice_aqc_opc_remove_sw_rules) { |
| s_rule->act = 0; |
| s_rule->index = cpu_to_le16(f_info->fltr_rule_id); |
| s_rule->hdr_len = 0; |
| return; |
| } |
| |
| eth_hdr_sz = sizeof(dummy_eth_header); |
| eth_hdr = s_rule->hdr_data; |
| |
| /* initialize the ether header with a dummy header */ |
| memcpy(eth_hdr, dummy_eth_header, eth_hdr_sz); |
| ice_fill_sw_info(hw, f_info); |
| |
| switch (f_info->fltr_act) { |
| case ICE_FWD_TO_VSI: |
| act |= (f_info->fwd_id.hw_vsi_id << ICE_SINGLE_ACT_VSI_ID_S) & |
| ICE_SINGLE_ACT_VSI_ID_M; |
| if (f_info->lkup_type != ICE_SW_LKUP_VLAN) |
| act |= ICE_SINGLE_ACT_VSI_FORWARDING | |
| ICE_SINGLE_ACT_VALID_BIT; |
| break; |
| case ICE_FWD_TO_VSI_LIST: |
| act |= ICE_SINGLE_ACT_VSI_LIST; |
| act |= (f_info->fwd_id.vsi_list_id << |
| ICE_SINGLE_ACT_VSI_LIST_ID_S) & |
| ICE_SINGLE_ACT_VSI_LIST_ID_M; |
| if (f_info->lkup_type != ICE_SW_LKUP_VLAN) |
| act |= ICE_SINGLE_ACT_VSI_FORWARDING | |
| ICE_SINGLE_ACT_VALID_BIT; |
| break; |
| case ICE_FWD_TO_Q: |
| act |= ICE_SINGLE_ACT_TO_Q; |
| act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) & |
| ICE_SINGLE_ACT_Q_INDEX_M; |
| break; |
| case ICE_DROP_PACKET: |
| act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP | |
| ICE_SINGLE_ACT_VALID_BIT; |
| break; |
| case ICE_FWD_TO_QGRP: |
| q_rgn = f_info->qgrp_size > 0 ? |
| (u8)ilog2(f_info->qgrp_size) : 0; |
| act |= ICE_SINGLE_ACT_TO_Q; |
| act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) & |
| ICE_SINGLE_ACT_Q_INDEX_M; |
| act |= (q_rgn << ICE_SINGLE_ACT_Q_REGION_S) & |
| ICE_SINGLE_ACT_Q_REGION_M; |
| break; |
| default: |
| return; |
| } |
| |
| if (f_info->lb_en) |
| act |= ICE_SINGLE_ACT_LB_ENABLE; |
| if (f_info->lan_en) |
| act |= ICE_SINGLE_ACT_LAN_ENABLE; |
| |
| switch (f_info->lkup_type) { |
| case ICE_SW_LKUP_MAC: |
| daddr = f_info->l_data.mac.mac_addr; |
| break; |
| case ICE_SW_LKUP_VLAN: |
| vlan_id = f_info->l_data.vlan.vlan_id; |
| if (f_info->l_data.vlan.tpid_valid) |
| vlan_tpid = f_info->l_data.vlan.tpid; |
| if (f_info->fltr_act == ICE_FWD_TO_VSI || |
| f_info->fltr_act == ICE_FWD_TO_VSI_LIST) { |
| act |= ICE_SINGLE_ACT_PRUNE; |
| act |= ICE_SINGLE_ACT_EGRESS | ICE_SINGLE_ACT_INGRESS; |
| } |
| break; |
| case ICE_SW_LKUP_ETHERTYPE_MAC: |
| daddr = f_info->l_data.ethertype_mac.mac_addr; |
| fallthrough; |
| case ICE_SW_LKUP_ETHERTYPE: |
| off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET); |
| *off = cpu_to_be16(f_info->l_data.ethertype_mac.ethertype); |
| break; |
| case ICE_SW_LKUP_MAC_VLAN: |
| daddr = f_info->l_data.mac_vlan.mac_addr; |
| vlan_id = f_info->l_data.mac_vlan.vlan_id; |
| break; |
| case ICE_SW_LKUP_PROMISC_VLAN: |
| vlan_id = f_info->l_data.mac_vlan.vlan_id; |
| fallthrough; |
| case ICE_SW_LKUP_PROMISC: |
| daddr = f_info->l_data.mac_vlan.mac_addr; |
| break; |
| default: |
| break; |
| } |
| |
| s_rule->hdr.type = (f_info->flag & ICE_FLTR_RX) ? |
| cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX) : |
| cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX); |
| |
| /* Recipe set depending on lookup type */ |
| s_rule->recipe_id = cpu_to_le16(f_info->lkup_type); |
| s_rule->src = cpu_to_le16(f_info->src); |
| s_rule->act = cpu_to_le32(act); |
| |
| if (daddr) |
| ether_addr_copy(eth_hdr + ICE_ETH_DA_OFFSET, daddr); |
| |
| if (!(vlan_id > ICE_MAX_VLAN_ID)) { |
| off = (__force __be16 *)(eth_hdr + ICE_ETH_VLAN_TCI_OFFSET); |
| *off = cpu_to_be16(vlan_id); |
| off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET); |
| *off = cpu_to_be16(vlan_tpid); |
| } |
| |
| /* Create the switch rule with the final dummy Ethernet header */ |
| if (opc != ice_aqc_opc_update_sw_rules) |
| s_rule->hdr_len = cpu_to_le16(eth_hdr_sz); |
| } |
| |
| /** |
| * ice_add_marker_act |
| * @hw: pointer to the hardware structure |
| * @m_ent: the management entry for which sw marker needs to be added |
| * @sw_marker: sw marker to tag the Rx descriptor with |
| * @l_id: large action resource ID |
| * |
| * Create a large action to hold software marker and update the switch rule |
| * entry pointed by m_ent with newly created large action |
| */ |
| static int |
| ice_add_marker_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent, |
| u16 sw_marker, u16 l_id) |
| { |
| struct ice_sw_rule_lkup_rx_tx *rx_tx; |
| struct ice_sw_rule_lg_act *lg_act; |
| /* For software marker we need 3 large actions |
| * 1. FWD action: FWD TO VSI or VSI LIST |
| * 2. GENERIC VALUE action to hold the profile ID |
| * 3. GENERIC VALUE action to hold the software marker ID |
| */ |
| const u16 num_lg_acts = 3; |
| u16 lg_act_size; |
| u16 rules_size; |
| int status; |
| u32 act; |
| u16 id; |
| |
| if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC) |
| return -EINVAL; |
| |
| /* Create two back-to-back switch rules and submit them to the HW using |
| * one memory buffer: |
| * 1. Large Action |
| * 2. Look up Tx Rx |
| */ |
| lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(lg_act, num_lg_acts); |
| rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(rx_tx); |
| lg_act = devm_kzalloc(ice_hw_to_dev(hw), rules_size, GFP_KERNEL); |
| if (!lg_act) |
| return -ENOMEM; |
| |
| rx_tx = (typeof(rx_tx))((u8 *)lg_act + lg_act_size); |
| |
| /* Fill in the first switch rule i.e. large action */ |
| lg_act->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LG_ACT); |
| lg_act->index = cpu_to_le16(l_id); |
| lg_act->size = cpu_to_le16(num_lg_acts); |
| |
| /* First action VSI forwarding or VSI list forwarding depending on how |
| * many VSIs |
| */ |
| id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id : |
| m_ent->fltr_info.fwd_id.hw_vsi_id; |
| |
| act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT; |
| act |= (id << ICE_LG_ACT_VSI_LIST_ID_S) & ICE_LG_ACT_VSI_LIST_ID_M; |
| if (m_ent->vsi_count > 1) |
| act |= ICE_LG_ACT_VSI_LIST; |
| lg_act->act[0] = cpu_to_le32(act); |
| |
| /* Second action descriptor type */ |
| act = ICE_LG_ACT_GENERIC; |
| |
| act |= (1 << ICE_LG_ACT_GENERIC_VALUE_S) & ICE_LG_ACT_GENERIC_VALUE_M; |
| lg_act->act[1] = cpu_to_le32(act); |
| |
| act = (ICE_LG_ACT_GENERIC_OFF_RX_DESC_PROF_IDX << |
| ICE_LG_ACT_GENERIC_OFFSET_S) & ICE_LG_ACT_GENERIC_OFFSET_M; |
| |
| /* Third action Marker value */ |
| act |= ICE_LG_ACT_GENERIC; |
| act |= (sw_marker << ICE_LG_ACT_GENERIC_VALUE_S) & |
| ICE_LG_ACT_GENERIC_VALUE_M; |
| |
| lg_act->act[2] = cpu_to_le32(act); |
| |
| /* call the fill switch rule to fill the lookup Tx Rx structure */ |
| ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx, |
| ice_aqc_opc_update_sw_rules); |
| |
| /* Update the action to point to the large action ID */ |
| rx_tx->act = cpu_to_le32(ICE_SINGLE_ACT_PTR | |
| ((l_id << ICE_SINGLE_ACT_PTR_VAL_S) & |
| ICE_SINGLE_ACT_PTR_VAL_M)); |
| |
| /* Use the filter rule ID of the previously created rule with single |
| * act. Once the update happens, hardware will treat this as large |
| * action |
| */ |
| rx_tx->index = cpu_to_le16(m_ent->fltr_info.fltr_rule_id); |
| |
| status = ice_aq_sw_rules(hw, lg_act, rules_size, 2, |
| ice_aqc_opc_update_sw_rules, NULL); |
| if (!status) { |
| m_ent->lg_act_idx = l_id; |
| m_ent->sw_marker_id = sw_marker; |
| } |
| |
| devm_kfree(ice_hw_to_dev(hw), lg_act); |
| return status; |
| } |
| |
| /** |
| * ice_create_vsi_list_map |
| * @hw: pointer to the hardware structure |
| * @vsi_handle_arr: array of VSI handles to set in the VSI mapping |
| * @num_vsi: number of VSI handles in the array |
| * @vsi_list_id: VSI list ID generated as part of allocate resource |
| * |
| * Helper function to create a new entry of VSI list ID to VSI mapping |
| * using the given VSI list ID |
| */ |
| static struct ice_vsi_list_map_info * |
| ice_create_vsi_list_map(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi, |
| u16 vsi_list_id) |
| { |
| struct ice_switch_info *sw = hw->switch_info; |
| struct ice_vsi_list_map_info *v_map; |
| int i; |
| |
| v_map = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*v_map), GFP_KERNEL); |
| if (!v_map) |
| return NULL; |
| |
| v_map->vsi_list_id = vsi_list_id; |
| v_map->ref_cnt = 1; |
| for (i = 0; i < num_vsi; i++) |
| set_bit(vsi_handle_arr[i], v_map->vsi_map); |
| |
| list_add(&v_map->list_entry, &sw->vsi_list_map_head); |
| return v_map; |
| } |
| |
| /** |
| * ice_update_vsi_list_rule |
| * @hw: pointer to the hardware structure |
| * @vsi_handle_arr: array of VSI handles to form a VSI list |
| * @num_vsi: number of VSI handles in the array |
| * @vsi_list_id: VSI list ID generated as part of allocate resource |
| * @remove: Boolean value to indicate if this is a remove action |
| * @opc: switch rules population command type - pass in the command opcode |
| * @lkup_type: lookup type of the filter |
| * |
| * Call AQ command to add a new switch rule or update existing switch rule |
| * using the given VSI list ID |
| */ |
| static int |
| ice_update_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi, |
| u16 vsi_list_id, bool remove, enum ice_adminq_opc opc, |
| enum ice_sw_lkup_type lkup_type) |
| { |
| struct ice_sw_rule_vsi_list *s_rule; |
| u16 s_rule_size; |
| u16 rule_type; |
| int status; |
| int i; |
| |
| if (!num_vsi) |
| return -EINVAL; |
| |
| if (lkup_type == ICE_SW_LKUP_MAC || |
| lkup_type == ICE_SW_LKUP_MAC_VLAN || |
| lkup_type == ICE_SW_LKUP_ETHERTYPE || |
| lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC || |
| lkup_type == ICE_SW_LKUP_PROMISC || |
| lkup_type == ICE_SW_LKUP_PROMISC_VLAN || |
| lkup_type == ICE_SW_LKUP_DFLT) |
| rule_type = remove ? ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR : |
| ICE_AQC_SW_RULES_T_VSI_LIST_SET; |
| else if (lkup_type == ICE_SW_LKUP_VLAN) |
| rule_type = remove ? ICE_AQC_SW_RULES_T_PRUNE_LIST_CLEAR : |
| ICE_AQC_SW_RULES_T_PRUNE_LIST_SET; |
| else |
| return -EINVAL; |
| |
| s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, num_vsi); |
| s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL); |
| if (!s_rule) |
| return -ENOMEM; |
| for (i = 0; i < num_vsi; i++) { |
| if (!ice_is_vsi_valid(hw, vsi_handle_arr[i])) { |
| status = -EINVAL; |
| goto exit; |
| } |
| /* AQ call requires hw_vsi_id(s) */ |
| s_rule->vsi[i] = |
| cpu_to_le16(ice_get_hw_vsi_num(hw, vsi_handle_arr[i])); |
| } |
| |
| s_rule->hdr.type = cpu_to_le16(rule_type); |
| s_rule->number_vsi = cpu_to_le16(num_vsi); |
| s_rule->index = cpu_to_le16(vsi_list_id); |
| |
| status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opc, NULL); |
| |
| exit: |
| devm_kfree(ice_hw_to_dev(hw), s_rule); |
| return status; |
| } |
| |
| /** |
| * ice_create_vsi_list_rule - Creates and populates a VSI list rule |
| * @hw: pointer to the HW struct |
| * @vsi_handle_arr: array of VSI handles to form a VSI list |
| * @num_vsi: number of VSI handles in the array |
| * @vsi_list_id: stores the ID of the VSI list to be created |
| * @lkup_type: switch rule filter's lookup type |
| */ |
| static int |
| ice_create_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi, |
| u16 *vsi_list_id, enum ice_sw_lkup_type lkup_type) |
| { |
| int status; |
| |
| status = ice_aq_alloc_free_vsi_list(hw, vsi_list_id, lkup_type, |
| ice_aqc_opc_alloc_res); |
| if (status) |
| return status; |
| |
| /* Update the newly created VSI list to include the specified VSIs */ |
| return ice_update_vsi_list_rule(hw, vsi_handle_arr, num_vsi, |
| *vsi_list_id, false, |
| ice_aqc_opc_add_sw_rules, lkup_type); |
| } |
| |
| /** |
| * ice_create_pkt_fwd_rule |
| * @hw: pointer to the hardware structure |
| * @f_entry: entry containing packet forwarding information |
| * |
| * Create switch rule with given filter information and add an entry |
| * to the corresponding filter management list to track this switch rule |
| * and VSI mapping |
| */ |
| static int |
| ice_create_pkt_fwd_rule(struct ice_hw *hw, |
| struct ice_fltr_list_entry *f_entry) |
| { |
| struct ice_fltr_mgmt_list_entry *fm_entry; |
| struct ice_sw_rule_lkup_rx_tx *s_rule; |
| enum ice_sw_lkup_type l_type; |
| struct ice_sw_recipe *recp; |
| int status; |
| |
| s_rule = devm_kzalloc(ice_hw_to_dev(hw), |
| ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), |
| GFP_KERNEL); |
| if (!s_rule) |
| return -ENOMEM; |
| fm_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*fm_entry), |
| GFP_KERNEL); |
| if (!fm_entry) { |
| status = -ENOMEM; |
| goto ice_create_pkt_fwd_rule_exit; |
| } |
| |
| fm_entry->fltr_info = f_entry->fltr_info; |
| |
| /* Initialize all the fields for the management entry */ |
| fm_entry->vsi_count = 1; |
| fm_entry->lg_act_idx = ICE_INVAL_LG_ACT_INDEX; |
| fm_entry->sw_marker_id = ICE_INVAL_SW_MARKER_ID; |
| fm_entry->counter_index = ICE_INVAL_COUNTER_ID; |
| |
| ice_fill_sw_rule(hw, &fm_entry->fltr_info, s_rule, |
| ice_aqc_opc_add_sw_rules); |
| |
| status = ice_aq_sw_rules(hw, s_rule, |
| ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1, |
| ice_aqc_opc_add_sw_rules, NULL); |
| if (status) { |
| devm_kfree(ice_hw_to_dev(hw), fm_entry); |
| goto ice_create_pkt_fwd_rule_exit; |
| } |
| |
| f_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index); |
| fm_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index); |
| |
| /* The book keeping entries will get removed when base driver |
| * calls remove filter AQ command |
| */ |
| l_type = fm_entry->fltr_info.lkup_type; |
| recp = &hw->switch_info->recp_list[l_type]; |
| list_add(&fm_entry->list_entry, &recp->filt_rules); |
| |
| ice_create_pkt_fwd_rule_exit: |
| devm_kfree(ice_hw_to_dev(hw), s_rule); |
| return status; |
| } |
| |
| /** |
| * ice_update_pkt_fwd_rule |
| * @hw: pointer to the hardware structure |
| * @f_info: filter information for switch rule |
| * |
| * Call AQ command to update a previously created switch rule with a |
| * VSI list ID |
| */ |
| static int |
| ice_update_pkt_fwd_rule(struct ice_hw *hw, struct ice_fltr_info *f_info) |
| { |
| struct ice_sw_rule_lkup_rx_tx *s_rule; |
| int status; |
| |
| s_rule = devm_kzalloc(ice_hw_to_dev(hw), |
| ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), |
| GFP_KERNEL); |
| if (!s_rule) |
| return -ENOMEM; |
| |
| ice_fill_sw_rule(hw, f_info, s_rule, ice_aqc_opc_update_sw_rules); |
| |
| s_rule->index = cpu_to_le16(f_info->fltr_rule_id); |
| |
| /* Update switch rule with new rule set to forward VSI list */ |
| status = ice_aq_sw_rules(hw, s_rule, |
| ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1, |
| ice_aqc_opc_update_sw_rules, NULL); |
| |
| devm_kfree(ice_hw_to_dev(hw), s_rule); |
| return status; |
| } |
| |
| /** |
| * ice_update_sw_rule_bridge_mode |
| * @hw: pointer to the HW struct |
| * |
| * Updates unicast switch filter rules based on VEB/VEPA mode |
| */ |
| int ice_update_sw_rule_bridge_mode(struct ice_hw *hw) |
| { |
| struct ice_switch_info *sw = hw->switch_info; |
| struct ice_fltr_mgmt_list_entry *fm_entry; |
| struct list_head *rule_head; |
| struct mutex *rule_lock; /* Lock to protect filter rule list */ |
| int status = 0; |
| |
| rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock; |
| rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules; |
| |
| mutex_lock(rule_lock); |
| list_for_each_entry(fm_entry, rule_head, list_entry) { |
| struct ice_fltr_info *fi = &fm_entry->fltr_info; |
| u8 *addr = fi->l_data.mac.mac_addr; |
| |
| /* Update unicast Tx rules to reflect the selected |
| * VEB/VEPA mode |
| */ |
| if ((fi->flag & ICE_FLTR_TX) && is_unicast_ether_addr(addr) && |
| (fi->fltr_act == ICE_FWD_TO_VSI || |
| fi->fltr_act == ICE_FWD_TO_VSI_LIST || |
| fi->fltr_act == ICE_FWD_TO_Q || |
| fi->fltr_act == ICE_FWD_TO_QGRP)) { |
| status = ice_update_pkt_fwd_rule(hw, fi); |
| if (status) |
| break; |
| } |
| } |
| |
| mutex_unlock(rule_lock); |
| |
| return status; |
| } |
| |
| /** |
| * ice_add_update_vsi_list |
| * @hw: pointer to the hardware structure |
| * @m_entry: pointer to current filter management list entry |
| * @cur_fltr: filter information from the book keeping entry |
| * @new_fltr: filter information with the new VSI to be added |
| * |
| * Call AQ command to add or update previously created VSI list with new VSI. |
| * |
| * Helper function to do book keeping associated with adding filter information |
| * The algorithm to do the book keeping is described below : |
| * When a VSI needs to subscribe to a given filter (MAC/VLAN/Ethtype etc.) |
| * if only one VSI has been added till now |
| * Allocate a new VSI list and add two VSIs |
| * to this list using switch rule command |
| * Update the previously created switch rule with the |
| * newly created VSI list ID |
| * if a VSI list was previously created |
| * Add the new VSI to the previously created VSI list set |
| * using the update switch rule command |
| */ |
| static int |
| ice_add_update_vsi_list(struct ice_hw *hw, |
| struct ice_fltr_mgmt_list_entry *m_entry, |
| struct ice_fltr_info *cur_fltr, |
| struct ice_fltr_info *new_fltr) |
| { |
| u16 vsi_list_id = 0; |
| int status = 0; |
| |
| if ((cur_fltr->fltr_act == ICE_FWD_TO_Q || |
| cur_fltr->fltr_act == ICE_FWD_TO_QGRP)) |
| return -EOPNOTSUPP; |
| |
| if ((new_fltr->fltr_act == ICE_FWD_TO_Q || |
| new_fltr->fltr_act == ICE_FWD_TO_QGRP) && |
| (cur_fltr->fltr_act == ICE_FWD_TO_VSI || |
| cur_fltr->fltr_act == ICE_FWD_TO_VSI_LIST)) |
| return -EOPNOTSUPP; |
| |
| if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) { |
| /* Only one entry existed in the mapping and it was not already |
| * a part of a VSI list. So, create a VSI list with the old and |
| * new VSIs. |
| */ |
| struct ice_fltr_info tmp_fltr; |
| u16 vsi_handle_arr[2]; |
| |
| /* A rule already exists with the new VSI being added */ |
| if (cur_fltr->fwd_id.hw_vsi_id == new_fltr->fwd_id.hw_vsi_id) |
| return -EEXIST; |
| |
| vsi_handle_arr[0] = cur_fltr->vsi_handle; |
| vsi_handle_arr[1] = new_fltr->vsi_handle; |
| status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2, |
| &vsi_list_id, |
| new_fltr->lkup_type); |
| if (status) |
| return status; |
| |
| tmp_fltr = *new_fltr; |
| tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id; |
| tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST; |
| tmp_fltr.fwd_id.vsi_list_id = vsi_list_id; |
| /* Update the previous switch rule of "MAC forward to VSI" to |
| * "MAC fwd to VSI list" |
| */ |
| status = ice_update_pkt_fwd_rule(hw, &tmp_fltr); |
| if (status) |
| return status; |
| |
| cur_fltr->fwd_id.vsi_list_id = vsi_list_id; |
| cur_fltr->fltr_act = ICE_FWD_TO_VSI_LIST; |
| m_entry->vsi_list_info = |
| ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2, |
| vsi_list_id); |
| |
| if (!m_entry->vsi_list_info) |
| return -ENOMEM; |
| |
| /* If this entry was large action then the large action needs |
| * to be updated to point to FWD to VSI list |
| */ |
| if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID) |
| status = |
| ice_add_marker_act(hw, m_entry, |
| m_entry->sw_marker_id, |
| m_entry->lg_act_idx); |
| } else { |
| u16 vsi_handle = new_fltr->vsi_handle; |
| enum ice_adminq_opc opcode; |
| |
| if (!m_entry->vsi_list_info) |
| return -EIO; |
| |
| /* A rule already exists with the new VSI being added */ |
| if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map)) |
| return 0; |
| |
| /* Update the previously created VSI list set with |
| * the new VSI ID passed in |
| */ |
| vsi_list_id = cur_fltr->fwd_id.vsi_list_id; |
| opcode = ice_aqc_opc_update_sw_rules; |
| |
| status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, |
| vsi_list_id, false, opcode, |
| new_fltr->lkup_type); |
| /* update VSI list mapping info with new VSI ID */ |
| if (!status) |
| set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map); |
| } |
| if (!status) |
| m_entry->vsi_count++; |
| return status; |
| } |
| |
| /** |
| * ice_find_rule_entry - Search a rule entry |
| * @hw: pointer to the hardware structure |
| * @recp_id: lookup type for which the specified rule needs to be searched |
| * @f_info: rule information |
| * |
| * Helper function to search for a given rule entry |
| * Returns pointer to entry storing the rule if found |
| */ |
| static struct ice_fltr_mgmt_list_entry * |
| ice_find_rule_entry(struct ice_hw *hw, u8 recp_id, struct ice_fltr_info *f_info) |
| { |
| struct ice_fltr_mgmt_list_entry *list_itr, *ret = NULL; |
| struct ice_switch_info *sw = hw->switch_info; |
| struct list_head *list_head; |
| |
| list_head = &sw->recp_list[recp_id].filt_rules; |
| list_for_each_entry(list_itr, list_head, list_entry) { |
| if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data, |
| sizeof(f_info->l_data)) && |
| f_info->flag == list_itr->fltr_info.flag) { |
| ret = list_itr; |
| break; |
| } |
| } |
| return ret; |
| } |
| |
| /** |
| * ice_find_vsi_list_entry - Search VSI list map with VSI count 1 |
| * @hw: pointer to the hardware structure |
| * @recp_id: lookup type for which VSI lists needs to be searched |
| * @vsi_handle: VSI handle to be found in VSI list |
| * @vsi_list_id: VSI list ID found containing vsi_handle |
| * |
| * Helper function to search a VSI list with single entry containing given VSI |
| * handle element. This can be extended further to search VSI list with more |
| * than 1 vsi_count. Returns pointer to VSI list entry if found. |
| */ |
| static struct ice_vsi_list_map_info * |
| ice_find_vsi_list_entry(struct ice_hw *hw, u8 recp_id, u16 vsi_handle, |
| u16 *vsi_list_id) |
| { |
| struct ice_vsi_list_map_info *map_info = NULL; |
| struct ice_switch_info *sw = hw->switch_info; |
| struct ice_fltr_mgmt_list_entry *list_itr; |
| struct list_head *list_head; |
| |
| list_head = &sw->recp_list[recp_id].filt_rules; |
| list_for_each_entry(list_itr, list_head, list_entry) { |
| if (list_itr->vsi_count == 1 && list_itr->vsi_list_info) { |
| map_info = list_itr->vsi_list_info; |
| if (test_bit(vsi_handle, map_info->vsi_map)) { |
| *vsi_list_id = map_info->vsi_list_id; |
| return map_info; |
| } |
| } |
| } |
| return NULL; |
| } |
| |
| /** |
| * ice_add_rule_internal - add rule for a given lookup type |
| * @hw: pointer to the hardware structure |
| * @recp_id: lookup type (recipe ID) for which rule has to be added |
| * @f_entry: structure containing MAC forwarding information |
| * |
| * Adds or updates the rule lists for a given recipe |
| */ |
| static int |
| ice_add_rule_internal(struct ice_hw *hw, u8 recp_id, |
| struct ice_fltr_list_entry *f_entry) |
| { |
| struct ice_switch_info *sw = hw->switch_info; |
| struct ice_fltr_info *new_fltr, *cur_fltr; |
| struct ice_fltr_mgmt_list_entry *m_entry; |
| struct mutex *rule_lock; /* Lock to protect filter rule list */ |
| int status = 0; |
| |
| if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle)) |
| return -EINVAL; |
| f_entry->fltr_info.fwd_id.hw_vsi_id = |
| ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle); |
| |
| rule_lock = &sw->recp_list[recp_id].filt_rule_lock; |
| |
| mutex_lock(rule_lock); |
| new_fltr = &f_entry->fltr_info; |
| if (new_fltr->flag & ICE_FLTR_RX) |
| new_fltr->src = hw->port_info->lport; |
| else if (new_fltr->flag & ICE_FLTR_TX) |
| new_fltr->src = f_entry->fltr_info.fwd_id.hw_vsi_id; |
| |
| m_entry = ice_find_rule_entry(hw, recp_id, new_fltr); |
| if (!m_entry) { |
| mutex_unlock(rule_lock); |
| return ice_create_pkt_fwd_rule(hw, f_entry); |
| } |
| |
| cur_fltr = &m_entry->fltr_info; |
| status = ice_add_update_vsi_list(hw, m_entry, cur_fltr, new_fltr); |
| mutex_unlock(rule_lock); |
| |
| return status; |
| } |
| |
| /** |
| * ice_remove_vsi_list_rule |
| * @hw: pointer to the hardware structure |
| * @vsi_list_id: VSI list ID generated as part of allocate resource |
| * @lkup_type: switch rule filter lookup type |
| * |
| * The VSI list should be emptied before this function is called to remove the |
| * VSI list. |
| */ |
| static int |
| ice_remove_vsi_list_rule(struct ice_hw *hw, u16 vsi_list_id, |
| enum ice_sw_lkup_type lkup_type) |
| { |
| struct ice_sw_rule_vsi_list *s_rule; |
| u16 s_rule_size; |
| int status; |
| |
| s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, 0); |
| s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL); |
| if (!s_rule) |
| return -ENOMEM; |
| |
| s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR); |
| s_rule->index = cpu_to_le16(vsi_list_id); |
| |
| /* Free the vsi_list resource that we allocated. It is assumed that the |
| * list is empty at this point. |
| */ |
| status = ice_aq_alloc_free_vsi_list(hw, &vsi_list_id, lkup_type, |
| ice_aqc_opc_free_res); |
| |
| devm_kfree(ice_hw_to_dev(hw), s_rule); |
| return status; |
| } |
| |
| /** |
| * ice_rem_update_vsi_list |
| * @hw: pointer to the hardware structure |
| * @vsi_handle: VSI handle of the VSI to remove |
| * @fm_list: filter management entry for which the VSI list management needs to |
| * be done |
| */ |
| static int |
| ice_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle, |
| struct ice_fltr_mgmt_list_entry *fm_list) |
| { |
| enum ice_sw_lkup_type lkup_type; |
| u16 vsi_list_id; |
| int status = 0; |
| |
| if (fm_list->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST || |
| fm_list->vsi_count == 0) |
| return -EINVAL; |
| |
| /* A rule with the VSI being removed does not exist */ |
| if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map)) |
| return -ENOENT; |
| |
| lkup_type = fm_list->fltr_info.lkup_type; |
| vsi_list_id = fm_list->fltr_info.fwd_id.vsi_list_id; |
| status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true, |
| ice_aqc_opc_update_sw_rules, |
| lkup_type); |
| if (status) |
| return status; |
| |
| fm_list->vsi_count--; |
| clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map); |
| |
| if (fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) { |
| struct ice_fltr_info tmp_fltr_info = fm_list->fltr_info; |
| struct ice_vsi_list_map_info *vsi_list_info = |
| fm_list->vsi_list_info; |
| u16 rem_vsi_handle; |
| |
| rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map, |
| ICE_MAX_VSI); |
| if (!ice_is_vsi_valid(hw, rem_vsi_handle)) |
| return -EIO; |
| |
| /* Make sure VSI list is empty before removing it below */ |
| status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1, |
| vsi_list_id, true, |
| ice_aqc_opc_update_sw_rules, |
| lkup_type); |
| if (status) |
| return status; |
| |
| tmp_fltr_info.fltr_act = ICE_FWD_TO_VSI; |
| tmp_fltr_info.fwd_id.hw_vsi_id = |
| ice_get_hw_vsi_num(hw, rem_vsi_handle); |
| tmp_fltr_info.vsi_handle = rem_vsi_handle; |
| status = ice_update_pkt_fwd_rule(hw, &tmp_fltr_info); |
| if (status) { |
| ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n", |
| tmp_fltr_info.fwd_id.hw_vsi_id, status); |
| return status; |
| } |
| |
| fm_list->fltr_info = tmp_fltr_info; |
| } |
| |
| if ((fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) || |
| (fm_list->vsi_count == 0 && lkup_type == ICE_SW_LKUP_VLAN)) { |
| struct ice_vsi_list_map_info *vsi_list_info = |
| fm_list->vsi_list_info; |
| |
| /* Remove the VSI list since it is no longer used */ |
| status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type); |
| if (status) { |
| ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n", |
| vsi_list_id, status); |
| return status; |
| } |
| |
| list_del(&vsi_list_info->list_entry); |
| devm_kfree(ice_hw_to_dev(hw), vsi_list_info); |
| fm_list->vsi_list_info = NULL; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * ice_remove_rule_internal - Remove a filter rule of a given type |
| * @hw: pointer to the hardware structure |
| * @recp_id: recipe ID for which the rule needs to removed |
| * @f_entry: rule entry containing filter information |
| */ |
| static int |
| ice_remove_rule_internal(struct ice_hw *hw, u8 recp_id, |
| struct ice_fltr_list_entry *f_entry) |
| { |
| struct ice_switch_info *sw = hw->switch_info; |
| struct ice_fltr_mgmt_list_entry *list_elem; |
| struct mutex *rule_lock; /* Lock to protect filter rule list */ |
| bool remove_rule = false; |
| u16 vsi_handle; |
| int status = 0; |
| |
| if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle)) |
| return -EINVAL; |
| f_entry->fltr_info.fwd_id.hw_vsi_id = |
| ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle); |
| |
| rule_lock = &sw->recp_list[recp_id].filt_rule_lock; |
| mutex_lock(rule_lock); |
| list_elem = ice_find_rule_entry(hw, recp_id, &f_entry->fltr_info); |
| if (!list_elem) { |
| status = -ENOENT; |
| goto exit; |
| } |
| |
| if (list_elem->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST) { |
| remove_rule = true; |
| } else if (!list_elem->vsi_list_info) { |
| status = -ENOENT; |
| goto exit; |
| } else if (list_elem->vsi_list_info->ref_cnt > 1) { |
| /* a ref_cnt > 1 indicates that the vsi_list is being |
| * shared by multiple rules. Decrement the ref_cnt and |
| * remove this rule, but do not modify the list, as it |
| * is in-use by other rules. |
| */ |
| list_elem->vsi_list_info->ref_cnt--; |
| remove_rule = true; |
| } else { |
| /* a ref_cnt of 1 indicates the vsi_list is only used |
| * by one rule. However, the original removal request is only |
| * for a single VSI. Update the vsi_list first, and only |
| * remove the rule if there are no further VSIs in this list. |
| */ |
| vsi_handle = f_entry->fltr_info.vsi_handle; |
| status = ice_rem_update_vsi_list(hw, vsi_handle, list_elem); |
| if (status) |
| goto exit; |
| /* if VSI count goes to zero after updating the VSI list */ |
| if (list_elem->vsi_count == 0) |
| remove_rule = true; |
| } |
| |
| if (remove_rule) { |
| /* Remove the lookup rule */ |
| struct ice_sw_rule_lkup_rx_tx *s_rule; |
| |
| s_rule = devm_kzalloc(ice_hw_to_dev(hw), |
| ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule), |
| GFP_KERNEL); |
| if (!s_rule) { |
| status = -ENOMEM; |
| goto exit; |
| } |
| |
| ice_fill_sw_rule(hw, &list_elem->fltr_info, s_rule, |
| ice_aqc_opc_remove_sw_rules); |
| |
| status = ice_aq_sw_rules(hw, s_rule, |
| ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule), |
| 1, ice_aqc_opc_remove_sw_rules, NULL); |
| |
| /* Remove a book keeping from the list */ |
| devm_kfree(ice_hw_to_dev(hw), s_rule); |
| |
| if (status) |
| goto exit; |
| |
| list_del(&list_elem->list_entry); |
| devm_kfree(ice_hw_to_dev(hw), list_elem); |
| } |
| exit: |
| mutex_unlock(rule_lock); |
| return status; |
| } |
| |
| /** |
| * ice_mac_fltr_exist - does this MAC filter exist for given VSI |
| * @hw: pointer to the hardware structure |
| * @mac: MAC address to be checked (for MAC filter) |
| * @vsi_handle: check MAC filter for this VSI |
| */ |
| bool ice_mac_fltr_exist(struct ice_hw *hw, u8 *mac, u16 vsi_handle) |
| { |
| struct ice_fltr_mgmt_list_entry *entry; |
| struct list_head *rule_head; |
| struct ice_switch_info *sw; |
| struct mutex *rule_lock; /* Lock to protect filter rule list */ |
| u16 hw_vsi_id; |
| |
| if (!ice_is_vsi_valid(hw, vsi_handle)) |
| return false; |
| |
| hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); |
| sw = hw->switch_info; |
| rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules; |
| if (!rule_head) |
| return false; |
| |
| rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock; |
| mutex_lock(rule_lock); |
| list_for_each_entry(entry, rule_head, list_entry) { |
| struct ice_fltr_info *f_info = &entry->fltr_info; |
| u8 *mac_addr = &f_info->l_data.mac.mac_addr[0]; |
| |
| if (is_zero_ether_addr(mac_addr)) |
| continue; |
| |
| if (f_info->flag != ICE_FLTR_TX || |
| f_info->src_id != ICE_SRC_ID_VSI || |
| f_info->lkup_type != ICE_SW_LKUP_MAC || |
| f_info->fltr_act != ICE_FWD_TO_VSI || |
| hw_vsi_id != f_info->fwd_id.hw_vsi_id) |
| continue; |
| |
| if (ether_addr_equal(mac, mac_addr)) { |
| mutex_unlock(rule_lock); |
| return true; |
| } |
| } |
| mutex_unlock(rule_lock); |
| return false; |
| } |
| |
| /** |
| * ice_vlan_fltr_exist - does this VLAN filter exist for given VSI |
| * @hw: pointer to the hardware structure |
| * @vlan_id: VLAN ID |
| * @vsi_handle: check MAC filter for this VSI |
| */ |
| bool ice_vlan_fltr_exist(struct ice_hw *hw, u16 vlan_id, u16 vsi_handle) |
| { |
| struct ice_fltr_mgmt_list_entry *entry; |
| struct list_head *rule_head; |
| struct ice_switch_info *sw; |
| struct mutex *rule_lock; /* Lock to protect filter rule list */ |
| u16 hw_vsi_id; |
| |
| if (vlan_id > ICE_MAX_VLAN_ID) |
| return false; |
| |
| if (!ice_is_vsi_valid(hw, vsi_handle)) |
| return false; |
| |
| hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); |
| sw = hw->switch_info; |
| rule_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules; |
| if (!rule_head) |
| return false; |
| |
| rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock; |
| mutex_lock(rule_lock); |
| list_for_each_entry(entry, rule_head, list_entry) { |
| struct ice_fltr_info *f_info = &entry->fltr_info; |
| u16 entry_vlan_id = f_info->l_data.vlan.vlan_id; |
| struct ice_vsi_list_map_info *map_info; |
| |
| if (entry_vlan_id > ICE_MAX_VLAN_ID) |
| continue; |
| |
| if (f_info->flag != ICE_FLTR_TX || |
| f_info->src_id != ICE_SRC_ID_VSI || |
| f_info->lkup_type != ICE_SW_LKUP_VLAN) |
| continue; |
| |
| /* Only allowed filter action are FWD_TO_VSI/_VSI_LIST */ |
| if (f_info->fltr_act != ICE_FWD_TO_VSI && |
| f_info->fltr_act != ICE_FWD_TO_VSI_LIST) |
| continue; |
| |
| if (f_info->fltr_act == ICE_FWD_TO_VSI) { |
| if (hw_vsi_id != f_info->fwd_id.hw_vsi_id) |
| continue; |
| } else if (f_info->fltr_act == ICE_FWD_TO_VSI_LIST) { |
| /* If filter_action is FWD_TO_VSI_LIST, make sure |
| * that VSI being checked is part of VSI list |
| */ |
| if (entry->vsi_count == 1 && |
| entry->vsi_list_info) { |
| map_info = entry->vsi_list_info; |
| if (!test_bit(vsi_handle, map_info->vsi_map)) |
| continue; |
| } |
| } |
| |
| if (vlan_id == entry_vlan_id) { |
| mutex_unlock(rule_lock); |
| return true; |
| } |
| } |
| mutex_unlock(rule_lock); |
| |
| return false; |
| } |
| |
| /** |
| * ice_add_mac - Add a MAC address based filter rule |
| * @hw: pointer to the hardware structure |
| * @m_list: list of MAC addresses and forwarding information |
| * |
| * IMPORTANT: When the ucast_shared flag is set to false and m_list has |
| * multiple unicast addresses, the function assumes that all the |
| * addresses are unique in a given add_mac call. It doesn't |
| * check for duplicates in this case, removing duplicates from a given |
| * list should be taken care of in the caller of this function. |
| */ |
| int ice_add_mac(struct ice_hw *hw, struct list_head *m_list) |
| { |
| struct ice_sw_rule_lkup_rx_tx *s_rule, *r_iter; |
| struct ice_fltr_list_entry *m_list_itr; |
| struct list_head *rule_head; |
| u16 total_elem_left, s_rule_size; |
| struct ice_switch_info *sw; |
| struct mutex *rule_lock; /* Lock to protect filter rule list */ |
| u16 num_unicast = 0; |
| int status = 0; |
| u8 elem_sent; |
| |
| if (!m_list || !hw) |
| return -EINVAL; |
| |
| s_rule = NULL; |
| sw = hw->switch_info; |
| rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock; |
| list_for_each_entry(m_list_itr, m_list, list_entry) { |
| u8 *add = &m_list_itr->fltr_info.l_data.mac.mac_addr[0]; |
| u16 vsi_handle; |
| u16 hw_vsi_id; |
| |
| m_list_itr->fltr_info.flag = ICE_FLTR_TX; |
| vsi_handle = m_list_itr->fltr_info.vsi_handle; |
| if (!ice_is_vsi_valid(hw, vsi_handle)) |
| return -EINVAL; |
| hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); |
| m_list_itr->fltr_info.fwd_id.hw_vsi_id = hw_vsi_id; |
| /* update the src in case it is VSI num */ |
| if (m_list_itr->fltr_info.src_id != ICE_SRC_ID_VSI) |
| return -EINVAL; |
| m_list_itr->fltr_info.src = hw_vsi_id; |
| if (m_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_MAC || |
| is_zero_ether_addr(add)) |
| return -EINVAL; |
| if (is_unicast_ether_addr(add) && !hw->ucast_shared) { |
| /* Don't overwrite the unicast address */ |
| mutex_lock(rule_lock); |
| if (ice_find_rule_entry(hw, ICE_SW_LKUP_MAC, |
| &m_list_itr->fltr_info)) { |
| mutex_unlock(rule_lock); |
| return -EEXIST; |
| } |
| mutex_unlock(rule_lock); |
| num_unicast++; |
| } else if (is_multicast_ether_addr(add) || |
| (is_unicast_ether_addr(add) && hw->ucast_shared)) { |
| m_list_itr->status = |
| ice_add_rule_internal(hw, ICE_SW_LKUP_MAC, |
| m_list_itr); |
| if (m_list_itr->status) |
| return m_list_itr->status; |
| } |
| } |
| |
| mutex_lock(rule_lock); |
| /* Exit if no suitable entries were found for adding bulk switch rule */ |
| if (!num_unicast) { |
| status = 0; |
| goto ice_add_mac_exit; |
| } |
| |
| rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules; |
| |
| /* Allocate switch rule buffer for the bulk update for unicast */ |
| s_rule_size = ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule); |
| s_rule = devm_kcalloc(ice_hw_to_dev(hw), num_unicast, s_rule_size, |
| GFP_KERNEL); |
| if (!s_rule) { |
| status = -ENOMEM; |
| goto ice_add_mac_exit; |
| } |
| |
| r_iter = s_rule; |
| list_for_each_entry(m_list_itr, m_list, list_entry) { |
| struct ice_fltr_info *f_info = &m_list_itr->fltr_info; |
| u8 *mac_addr = &f_info->l_data.mac.mac_addr[0]; |
| |
| if (is_unicast_ether_addr(mac_addr)) { |
| ice_fill_sw_rule(hw, &m_list_itr->fltr_info, r_iter, |
| ice_aqc_opc_add_sw_rules); |
| r_iter = (typeof(s_rule))((u8 *)r_iter + s_rule_size); |
| } |
| } |
| |
| /* Call AQ bulk switch rule update for all unicast addresses */ |
| r_iter = s_rule; |
| /* Call AQ switch rule in AQ_MAX chunk */ |
| for (total_elem_left = num_unicast; total_elem_left > 0; |
| total_elem_left -= elem_sent) { |
| struct ice_sw_rule_lkup_rx_tx *entry = r_iter; |
| |
| elem_sent = min_t(u8, total_elem_left, |
| (ICE_AQ_MAX_BUF_LEN / s_rule_size)); |
| status = ice_aq_sw_rules(hw, entry, elem_sent * s_rule_size, |
| elem_sent, ice_aqc_opc_add_sw_rules, |
| NULL); |
| if (status) |
| goto ice_add_mac_exit; |
| r_iter = (typeof(s_rule)) |
| ((u8 *)r_iter + (elem_sent * s_rule_size)); |
| } |
| |
| /* Fill up rule ID based on the value returned from FW */ |
| r_iter = s_rule; |
| list_for_each_entry(m_list_itr, m_list, list_entry) { |
| struct ice_fltr_info *f_info = &m_list_itr->fltr_info; |
| u8 *mac_addr = &f_info->l_data.mac.mac_addr[0]; |
| struct ice_fltr_mgmt_list_entry *fm_entry; |
| |
| if (is_unicast_ether_addr(mac_addr)) { |
| f_info->fltr_rule_id = le16_to_cpu(r_iter->index); |
| f_info->fltr_act = ICE_FWD_TO_VSI; |
| /* Create an entry to track this MAC address */ |
| fm_entry = devm_kzalloc(ice_hw_to_dev(hw), |
| sizeof(*fm_entry), GFP_KERNEL); |
| if (!fm_entry) { |
| status = -ENOMEM; |
| goto ice_add_mac_exit; |
| } |
| fm_entry->fltr_info = *f_info; |
| fm_entry->vsi_count = 1; |
| /* The book keeping entries will get removed when |
| * base driver calls remove filter AQ command |
| */ |
| |
| list_add(&fm_entry->list_entry, rule_head); |
| r_iter = (typeof(s_rule))((u8 *)r_iter + s_rule_size); |
| } |
| } |
| |
| ice_add_mac_exit: |
| mutex_unlock(rule_lock); |
| if (s_rule) |
| devm_kfree(ice_hw_to_dev(hw), s_rule); |
| return status; |
| } |
| |
| /** |
| * ice_add_vlan_internal - Add one VLAN based filter rule |
| * @hw: pointer to the hardware structure |
| * @f_entry: filter entry containing one VLAN information |
| */ |
| static int |
| ice_add_vlan_internal(struct ice_hw *hw, struct ice_fltr_list_entry *f_entry) |
| { |
| struct ice_switch_info *sw = hw->switch_info; |
| struct ice_fltr_mgmt_list_entry *v_list_itr; |
| struct ice_fltr_info *new_fltr, *cur_fltr; |
| enum ice_sw_lkup_type lkup_type; |
| u16 vsi_list_id = 0, vsi_handle; |
| struct mutex *rule_lock; /* Lock to protect filter rule list */ |
| int status = 0; |
| |
| if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle)) |
| return -EINVAL; |
| |
| f_entry->fltr_info.fwd_id.hw_vsi_id = |
| ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle); |
| new_fltr = &f_entry->fltr_info; |
| |
| /* VLAN ID should only be 12 bits */ |
| if (new_fltr->l_data.vlan.vlan_id > ICE_MAX_VLAN_ID) |
| return -EINVAL; |
| |
| if (new_fltr->src_id != ICE_SRC_ID_VSI) |
| return -EINVAL; |
| |
| new_fltr->src = new_fltr->fwd_id.hw_vsi_id; |
| lkup_type = new_fltr->lkup_type; |
| vsi_handle = new_fltr->vsi_handle; |
| rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock; |
| mutex_lock(rule_lock); |
| v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN, new_fltr); |
| if (!v_list_itr) { |
| struct ice_vsi_list_map_info *map_info = NULL; |
| |
| if (new_fltr->fltr_act == ICE_FWD_TO_VSI) { |
| /* All VLAN pruning rules use a VSI list. Check if |
| * there is already a VSI list containing VSI that we |
| * want to add. If found, use the same vsi_list_id for |
| * this new VLAN rule or else create a new list. |
| */ |
| map_info = ice_find_vsi_list_entry(hw, ICE_SW_LKUP_VLAN, |
| vsi_handle, |
| &vsi_list_id); |
| if (!map_info) { |
| status = ice_create_vsi_list_rule(hw, |
| &vsi_handle, |
| 1, |
| &vsi_list_id, |
| lkup_type); |
| if (status) |
| goto exit; |
| } |
| /* Convert the action to forwarding to a VSI list. */ |
| new_fltr->fltr_act = ICE_FWD_TO_VSI_LIST; |
| new_fltr->fwd_id.vsi_list_id = vsi_list_id; |
| } |
| |
| status = ice_create_pkt_fwd_rule(hw, f_entry); |
| if (!status) { |
| v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN, |
| new_fltr); |
| if (!v_list_itr) { |
| status = -ENOENT; |
| goto exit; |
| } |
| /* reuse VSI list for new rule and increment ref_cnt */ |
| if (map_info) { |
| v_list_itr->vsi_list_info = map_info; |
| map_info->ref_cnt++; |
| } else { |
| v_list_itr->vsi_list_info = |
| ice_create_vsi_list_map(hw, &vsi_handle, |
| 1, vsi_list_id); |
| } |
| } |
| } else if (v_list_itr->vsi_list_info->ref_cnt == 1) { |
| /* Update existing VSI list to add new VSI ID only if it used |
| * by one VLAN rule. |
| */ |
| cur_fltr = &v_list_itr->fltr_info; |
| status = ice_add_update_vsi_list(hw, v_list_itr, cur_fltr, |
| new_fltr); |
| } else { |
| /* If VLAN rule exists and VSI list being used by this rule is |
| * referenced by more than 1 VLAN rule. Then create a new VSI |
| * list appending previous VSI with new VSI and update existing |
| * VLAN rule to point to new VSI list ID |
| */ |
| struct ice_fltr_info tmp_fltr; |
| u16 vsi_handle_arr[2]; |
| u16 cur_handle; |
| |
| /* Current implementation only supports reusing VSI list with |
| * one VSI count. We should never hit below condition |
| */ |
| if (v_list_itr->vsi_count > 1 && |
| v_list_itr->vsi_list_info->ref_cnt > 1) { |
| ice_debug(hw, ICE_DBG_SW, "Invalid configuration: Optimization to reuse VSI list with more than one VSI is not being done yet\n"); |
| status = -EIO; |
| goto exit; |
| } |
| |
| cur_handle = |
| find_first_bit(v_list_itr->vsi_list_info->vsi_map, |
| ICE_MAX_VSI); |
| |
| /* A rule already exists with the new VSI being added */ |
| if (cur_handle == vsi_handle) { |
| status = -EEXIST; |
| goto exit; |
| } |
| |
| vsi_handle_arr[0] = cur_handle; |
| vsi_handle_arr[1] = vsi_handle; |
| status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2, |
| &vsi_list_id, lkup_type); |
| if (status) |
| goto exit; |
| |
| tmp_fltr = v_list_itr->fltr_info; |
| tmp_fltr.fltr_rule_id = v_list_itr->fltr_info.fltr_rule_id; |
| tmp_fltr.fwd_id.vsi_list_id = vsi_list_id; |
| tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST; |
| /* Update the previous switch rule to a new VSI list which |
| * includes current VSI that is requested |
| */ |
| status = ice_update_pkt_fwd_rule(hw, &tmp_fltr); |
| if (status) |
| goto exit; |
| |
| /* before overriding VSI list map info. decrement ref_cnt of |
| * previous VSI list |
| */ |
| v_list_itr->vsi_list_info->ref_cnt--; |
| |
| /* now update to newly created list */ |
| v_list_itr->fltr_info.fwd_id.vsi_list_id = vsi_list_id; |
| v_list_itr->vsi_list_info = |
| ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2, |
| vsi_list_id); |
| v_list_itr->vsi_count++; |
| } |
| |
| exit: |
| mutex_unlock(rule_lock); |
| return status; |
| } |
| |
| /** |
| * ice_add_vlan - Add VLAN based filter rule |
| * @hw: pointer to the hardware structure |
| * @v_list: list of VLAN entries and forwarding information |
| */ |
| int ice_add_vlan(struct ice_hw *hw, struct list_head *v_list) |
| { |
| struct ice_fltr_list_entry *v_list_itr; |
| |
| if (!v_list || !hw) |
| return -EINVAL; |
| |
| list_for_each_entry(v_list_itr, v_list, list_entry) { |
| if (v_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_VLAN) |
| return -EINVAL; |
| v_list_itr->fltr_info.flag = ICE_FLTR_TX; |
| v_list_itr->status = ice_add_vlan_internal(hw, v_list_itr); |
| if (v_list_itr->status) |
| return v_list_itr->status; |
| } |
| return 0; |
| } |
| |
| /** |
| * ice_add_eth_mac - Add ethertype and MAC based filter rule |
| * @hw: pointer to the hardware structure |
| * @em_list: list of ether type MAC filter, MAC is optional |
| * |
| * This function requires the caller to populate the entries in |
| * the filter list with the necessary fields (including flags to |
| * indicate Tx or Rx rules). |
| */ |
| int ice_add_eth_mac(struct ice_hw *hw, struct list_head *em_list) |
| { |
| struct ice_fltr_list_entry *em_list_itr; |
| |
| if (!em_list || !hw) |
| return -EINVAL; |
| |
| list_for_each_entry(em_list_itr, em_list, list_entry) { |
| enum ice_sw_lkup_type l_type = |
| em_list_itr->fltr_info.lkup_type; |
| |
| if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC && |
| l_type != ICE_SW_LKUP_ETHERTYPE) |
| return -EINVAL; |
| |
| em_list_itr->status = ice_add_rule_internal(hw, l_type, |
| em_list_itr); |
| if (em_list_itr->status) |
| return em_list_itr->status; |
| } |
| return 0; |
| } |
| |
| /** |
| * ice_remove_eth_mac - Remove an ethertype (or MAC) based filter rule |
| * @hw: pointer to the hardware structure |
| * @em_list: list of ethertype or ethertype MAC entries |
| */ |
| int ice_remove_eth_mac(struct ice_hw *hw, struct list_head *em_list) |
| { |
| struct ice_fltr_list_entry *em_list_itr, *tmp; |
| |
| if (!em_list || !hw) |
| return -EINVAL; |
| |
| list_for_each_entry_safe(em_list_itr, tmp, em_list, list_entry) { |
| enum ice_sw_lkup_type l_type = |
| em_list_itr->fltr_info.lkup_type; |
| |
| if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC && |
| l_type != ICE_SW_LKUP_ETHERTYPE) |
| return -EINVAL; |
| |
| em_list_itr->status = ice_remove_rule_internal(hw, l_type, |
| em_list_itr); |
| if (em_list_itr->status) |
| return em_list_itr->status; |
| } |
| return 0; |
| } |
| |
| /** |
| * ice_rem_sw_rule_info |
| * @hw: pointer to the hardware structure |
| * @rule_head: pointer to the switch list structure that we want to delete |
| */ |
| static void |
| ice_rem_sw_rule_info(struct ice_hw *hw, struct list_head *rule_head) |
| { |
| if (!list_empty(rule_head)) { |
| struct ice_fltr_mgmt_list_entry *entry; |
| struct ice_fltr_mgmt_list_entry *tmp; |
| |
| list_for_each_entry_safe(entry, tmp, rule_head, list_entry) { |
| list_del(&entry->list_entry); |
| devm_kfree(ice_hw_to_dev(hw), entry); |
| } |
| } |
| } |
| |
| /** |
| * ice_rem_adv_rule_info |
| * @hw: pointer to the hardware structure |
| * @rule_head: pointer to the switch list structure that we want to delete |
| */ |
| static void |
| ice_rem_adv_rule_info(struct ice_hw *hw, struct list_head *rule_head) |
| { |
| struct ice_adv_fltr_mgmt_list_entry *tmp_entry; |
| struct ice_adv_fltr_mgmt_list_entry *lst_itr; |
| |
| if (list_empty(rule_head)) |
| return; |
| |
| list_for_each_entry_safe(lst_itr, tmp_entry, rule_head, list_entry) { |
| list_del(&lst_itr->list_entry); |
| devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups); |
| devm_kfree(ice_hw_to_dev(hw), lst_itr); |
| } |
| } |
| |
| /** |
| * ice_cfg_dflt_vsi - change state of VSI to set/clear default |
| * @pi: pointer to the port_info structure |
| * @vsi_handle: VSI handle to set as default |
| * @set: true to add the above mentioned switch rule, false to remove it |
| * @direction: ICE_FLTR_RX or ICE_FLTR_TX |
| * |
| * add filter rule to set/unset given VSI as default VSI for the switch |
| * (represented by swid) |
| */ |
| int |
| ice_cfg_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle, bool set, |
| u8 direction) |
| { |
| struct ice_fltr_list_entry f_list_entry; |
| struct ice_fltr_info f_info; |
| struct ice_hw *hw = pi->hw; |
| u16 hw_vsi_id; |
| int status; |
| |
| if (!ice_is_vsi_valid(hw, vsi_handle)) |
| return -EINVAL; |
| |
| hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); |
| |
| memset(&f_info, 0, sizeof(f_info)); |
| |
| f_info.lkup_type = ICE_SW_LKUP_DFLT; |
| f_info.flag = direction; |
| f_info.fltr_act = ICE_FWD_TO_VSI; |
| f_info.fwd_id.hw_vsi_id = hw_vsi_id; |
| f_info.vsi_handle = vsi_handle; |
| |
| if (f_info.flag & ICE_FLTR_RX) { |
| f_info.src = hw->port_info->lport; |
| f_info.src_id = ICE_SRC_ID_LPORT; |
| } else if (f_info.flag & ICE_FLTR_TX) { |
| f_info.src_id = ICE_SRC_ID_VSI; |
| f_info.src = hw_vsi_id; |
| } |
| f_list_entry.fltr_info = f_info; |
| |
| if (set) |
| status = ice_add_rule_internal(hw, ICE_SW_LKUP_DFLT, |
| &f_list_entry); |
| else |
| status = ice_remove_rule_internal(hw, ICE_SW_LKUP_DFLT, |
| &f_list_entry); |
| |
| return status; |
| } |
| |
| /** |
| * ice_vsi_uses_fltr - Determine if given VSI uses specified filter |
| * @fm_entry: filter entry to inspect |
| * @vsi_handle: VSI handle to compare with filter info |
| */ |
| static bool |
| ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry *fm_entry, u16 vsi_handle) |
| { |
| return ((fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI && |
| fm_entry->fltr_info.vsi_handle == vsi_handle) || |
| (fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI_LIST && |
| fm_entry->vsi_list_info && |
| (test_bit(vsi_handle, fm_entry->vsi_list_info->vsi_map)))); |
| } |
| |
| /** |
| * ice_check_if_dflt_vsi - check if VSI is default VSI |
| * @pi: pointer to the port_info structure |
| * @vsi_handle: vsi handle to check for in filter list |
| * @rule_exists: indicates if there are any VSI's in the rule list |
| * |
| * checks if the VSI is in a default VSI list, and also indicates |
| * if the default VSI list is empty |
| */ |
| bool |
| ice_check_if_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle, |
| bool *rule_exists) |
| { |
| struct ice_fltr_mgmt_list_entry *fm_entry; |
| struct ice_sw_recipe *recp_list; |
| struct list_head *rule_head; |
| struct mutex *rule_lock; /* Lock to protect filter rule list */ |
| bool ret = false; |
| |
| recp_list = &pi->hw->switch_info->recp_list[ICE_SW_LKUP_DFLT]; |
| rule_lock = &recp_list->filt_rule_lock; |
| rule_head = &recp_list->filt_rules; |
| |
| mutex_lock(rule_lock); |
| |
| if (rule_exists && !list_empty(rule_head)) |
| *rule_exists = true; |
| |
| list_for_each_entry(fm_entry, rule_head, list_entry) { |
| if (ice_vsi_uses_fltr(fm_entry, vsi_handle)) { |
| ret = true; |
| break; |
| } |
| } |
| |
| mutex_unlock(rule_lock); |
| |
| return ret; |
| } |
| |
| /** |
| * ice_find_ucast_rule_entry - Search for a unicast MAC filter rule entry |
| * @hw: pointer to the hardware structure |
| * @recp_id: lookup type for which the specified rule needs to be searched |
| * @f_info: rule information |
| * |
| * Helper function to search for a unicast rule entry - this is to be used |
| * to remove unicast MAC filter that is not shared with other VSIs on the |
| * PF switch. |
| * |
| * Returns pointer to entry storing the rule if found |
| */ |
| static struct ice_fltr_mgmt_list_entry * |
| ice_find_ucast_rule_entry(struct ice_hw *hw, u8 recp_id, |
| struct ice_fltr_info *f_info) |
| { |
| struct ice_switch_info *sw = hw->switch_info; |
| struct ice_fltr_mgmt_list_entry *list_itr; |
| struct list_head *list_head; |
| |
| list_head = &sw->recp_list[recp_id].filt_rules; |
| list_for_each_entry(list_itr, list_head, list_entry) { |
| if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data, |
| sizeof(f_info->l_data)) && |
| f_info->fwd_id.hw_vsi_id == |
| list_itr->fltr_info.fwd_id.hw_vsi_id && |
| f_info->flag == list_itr->fltr_info.flag) |
| return list_itr; |
| } |
| return NULL; |
| } |
| |
| /** |
| * ice_remove_mac - remove a MAC address based filter rule |
| * @hw: pointer to the hardware structure |
| * @m_list: list of MAC addresses and forwarding information |
| * |
| * This function removes either a MAC filter rule or a specific VSI from a |
| * VSI list for a multicast MAC address. |
| * |
| * Returns -ENOENT if a given entry was not added by ice_add_mac. Caller should |
| * be aware that this call will only work if all the entries passed into m_list |
| * were added previously. It will not attempt to do a partial remove of entries |
| * that were found. |
| */ |
| int ice_remove_mac(struct ice_hw *hw, struct list_head *m_list) |
| { |
| struct ice_fltr_list_entry *list_itr, *tmp; |
| struct mutex *rule_lock; /* Lock to protect filter rule list */ |
| |
| if (!m_list) |
| return -EINVAL; |
| |
| rule_lock = &hw->switch_info->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock; |
| list_for_each_entry_safe(list_itr, tmp, m_list, list_entry) { |
| enum ice_sw_lkup_type l_type = list_itr->fltr_info.lkup_type; |
| u8 *add = &list_itr->fltr_info.l_data.mac.mac_addr[0]; |
| u16 vsi_handle; |
| |
| if (l_type != ICE_SW_LKUP_MAC) |
| return -EINVAL; |
| |
| vsi_handle = list_itr->fltr_info.vsi_handle; |
| if (!ice_is_vsi_valid(hw, vsi_handle)) |
| return -EINVAL; |
| |
| list_itr->fltr_info.fwd_id.hw_vsi_id = |
| ice_get_hw_vsi_num(hw, vsi_handle); |
| if (is_unicast_ether_addr(add) && !hw->ucast_shared) { |
| /* Don't remove the unicast address that belongs to |
| * another VSI on the switch, since it is not being |
| * shared... |
| */ |
| mutex_lock(rule_lock); |
| if (!ice_find_ucast_rule_entry(hw, ICE_SW_LKUP_MAC, |
| &list_itr->fltr_info)) { |
| mutex_unlock(rule_lock); |
| return -ENOENT; |
| } |
| mutex_unlock(rule_lock); |
| } |
| list_itr->status = ice_remove_rule_internal(hw, |
| ICE_SW_LKUP_MAC, |
| list_itr); |
| if (list_itr->status) |
| return list_itr->status; |
| } |
| return 0; |
| } |
| |
| /** |
| * ice_remove_vlan - Remove VLAN based filter rule |
| * @hw: pointer to the hardware structure |
| * @v_list: list of VLAN entries and forwarding information |
| */ |
| int ice_remove_vlan(struct ice_hw *hw, struct list_head *v_list) |
| { |
| struct ice_fltr_list_entry *v_list_itr, *tmp; |
| |
| if (!v_list || !hw) |
| return -EINVAL; |
| |
| list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) { |
| enum ice_sw_lkup_type l_type = v_list_itr->fltr_info.lkup_type; |
| |
| if (l_type != ICE_SW_LKUP_VLAN) |
| return -EINVAL; |
| v_list_itr->status = ice_remove_rule_internal(hw, |
| ICE_SW_LKUP_VLAN, |
| v_list_itr); |
| if (v_list_itr->status) |
| return v_list_itr->status; |
| } |
| return 0; |
| } |
| |
| /** |
| * ice_add_entry_to_vsi_fltr_list - Add copy of fltr_list_entry to remove list |
| * @hw: pointer to the hardware structure |
| * @vsi_handle: VSI handle to remove filters from |
| * @vsi_list_head: pointer to the list to add entry to |
| * @fi: pointer to fltr_info of filter entry to copy & add |
| * |
| * Helper function, used when creating a list of filters to remove from |
| * a specific VSI. The entry added to vsi_list_head is a COPY of the |
| * original filter entry, with the exception of fltr_info.fltr_act and |
| * fltr_info.fwd_id fields. These are set such that later logic can |
| * extract which VSI to remove the fltr from, and pass on that information. |
| */ |
| static int |
| ice_add_entry_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle, |
| struct list_head *vsi_list_head, |
| struct ice_fltr_info *fi) |
| { |
| struct ice_fltr_list_entry *tmp; |
| |
| /* this memory is freed up in the caller function |
| * once filters for this VSI are removed |
| */ |
| tmp = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*tmp), GFP_KERNEL); |
| if (!tmp) |
| return -ENOMEM; |
| |
| tmp->fltr_info = *fi; |
| |
| /* Overwrite these fields to indicate which VSI to remove filter from, |
| * so find and remove logic can extract the information from the |
| * list entries. Note that original entries will still have proper |
| * values. |
| */ |
| tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI; |
| tmp->fltr_info.vsi_handle = vsi_handle; |
| tmp->fltr_info.fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); |
| |
| list_add(&tmp->list_entry, vsi_list_head); |
| |
| return 0; |
| } |
| |
| /** |
| * ice_add_to_vsi_fltr_list - Add VSI filters to the list |
| * @hw: pointer to the hardware structure |
| * @vsi_handle: VSI handle to remove filters from |
| * @lkup_list_head: pointer to the list that has certain lookup type filters |
| * @vsi_list_head: pointer to the list pertaining to VSI with vsi_handle |
| * |
| * Locates all filters in lkup_list_head that are used by the given VSI, |
| * and adds COPIES of those entries to vsi_list_head (intended to be used |
| * to remove the listed filters). |
| * Note that this means all entries in vsi_list_head must be explicitly |
| * deallocated by the caller when done with list. |
| */ |
| static int |
| ice_add_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle, |
| struct list_head *lkup_list_head, |
| struct list_head *vsi_list_head) |
| { |
| struct ice_fltr_mgmt_list_entry *fm_entry; |
| int status = 0; |
| |
| /* check to make sure VSI ID is valid and within boundary */ |
| if (!ice_is_vsi_valid(hw, vsi_handle)) |
| return -EINVAL; |
| |
| list_for_each_entry(fm_entry, lkup_list_head, list_entry) { |
| if (!ice_vsi_uses_fltr(fm_entry, vsi_handle)) |
| continue; |
| |
| status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle, |
| vsi_list_head, |
| &fm_entry->fltr_info); |
| if (status) |
| return status; |
| } |
| return status; |
| } |
| |
| /** |
| * ice_determine_promisc_mask |
| * @fi: filter info to parse |
| * |
| * Helper function to determine which ICE_PROMISC_ mask corresponds |
| * to given filter into. |
| */ |
| static u8 ice_determine_promisc_mask(struct ice_fltr_info *fi) |
| { |
| u16 vid = fi->l_data.mac_vlan.vlan_id; |
| u8 *macaddr = fi->l_data.mac.mac_addr; |
| bool is_tx_fltr = false; |
| u8 promisc_mask = 0; |
| |
| if (fi->flag == ICE_FLTR_TX) |
| is_tx_fltr = true; |
| |
| if (is_broadcast_ether_addr(macaddr)) |
| promisc_mask |= is_tx_fltr ? |
| ICE_PROMISC_BCAST_TX : ICE_PROMISC_BCAST_RX; |
| else if (is_multicast_ether_addr(macaddr)) |
| promisc_mask |= is_tx_fltr ? |
| ICE_PROMISC_MCAST_TX : ICE_PROMISC_MCAST_RX; |
| else if (is_unicast_ether_addr(macaddr)) |
| promisc_mask |= is_tx_fltr ? |
| ICE_PROMISC_UCAST_TX : ICE_PROMISC_UCAST_RX; |
| if (vid) |
| promisc_mask |= is_tx_fltr ? |
| ICE_PROMISC_VLAN_TX : ICE_PROMISC_VLAN_RX; |
| |
| return promisc_mask; |
| } |
| |
| /** |
| * ice_remove_promisc - Remove promisc based filter rules |
| * @hw: pointer to the hardware structure |
| * @recp_id: recipe ID for which the rule needs to removed |
| * @v_list: list of promisc entries |
| */ |
| static int |
| ice_remove_promisc(struct ice_hw *hw, u8 recp_id, struct list_head *v_list) |
| { |
| struct ice_fltr_list_entry *v_list_itr, *tmp; |
| |
| list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) { |
| v_list_itr->status = |
| ice_remove_rule_internal(hw, recp_id, v_list_itr); |
| if (v_list_itr->status) |
| return v_list_itr->status; |
| } |
| return 0; |
| } |
| |
| /** |
| * ice_clear_vsi_promisc - clear specified promiscuous mode(s) for given VSI |
| * @hw: pointer to the hardware structure |
| * @vsi_handle: VSI handle to clear mode |
| * @promisc_mask: mask of promiscuous config bits to clear |
| * @vid: VLAN ID to clear VLAN promiscuous |
| */ |
| int |
| ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, |
| u16 vid) |
| { |
| struct ice_switch_info *sw = hw->switch_info; |
| struct ice_fltr_list_entry *fm_entry, *tmp; |
| struct list_head remove_list_head; |
| struct ice_fltr_mgmt_list_entry *itr; |
| struct list_head *rule_head; |
| struct mutex *rule_lock; /* Lock to protect filter rule list */ |
| int status = 0; |
| u8 recipe_id; |
| |
| if (!ice_is_vsi_valid(hw, vsi_handle)) |
| return -EINVAL; |
| |
| if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) |
| recipe_id = ICE_SW_LKUP_PROMISC_VLAN; |
| else |
| recipe_id = ICE_SW_LKUP_PROMISC; |
| |
| rule_head = &sw->recp_list[recipe_id].filt_rules; |
| rule_lock = &sw->recp_list[recipe_id].filt_rule_lock; |
| |
| INIT_LIST_HEAD(&remove_list_head); |
| |
| mutex_lock(rule_lock); |
| list_for_each_entry(itr, rule_head, list_entry) { |
| struct ice_fltr_info *fltr_info; |
| u8 fltr_promisc_mask = 0; |
| |
| if (!ice_vsi_uses_fltr(itr, vsi_handle)) |
| continue; |
| fltr_info = &itr->fltr_info; |
| |
| if (recipe_id == ICE_SW_LKUP_PROMISC_VLAN && |
| vid != fltr_info->l_data.mac_vlan.vlan_id) |
| continue; |
| |
| fltr_promisc_mask |= ice_determine_promisc_mask(fltr_info); |
| |
| /* Skip if filter is not completely specified by given mask */ |
| if (fltr_promisc_mask & ~promisc_mask) |
| continue; |
| |
| status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle, |
| &remove_list_head, |
| fltr_info); |
| if (status) { |
| mutex_unlock(rule_lock); |
| goto free_fltr_list; |
| } |
| } |
| mutex_unlock(rule_lock); |
| |
| status = ice_remove_promisc(hw, recipe_id, &remove_list_head); |
| |
| free_fltr_list: |
| list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) { |
| list_del(&fm_entry->list_entry); |
| devm_kfree(ice_hw_to_dev(hw), fm_entry); |
| } |
| |
| return status; |
| } |
| |
| /** |
| * ice_set_vsi_promisc - set given VSI to given promiscuous mode(s) |
| * @hw: pointer to the hardware structure |
| * @vsi_handle: VSI handle to configure |
| * @promisc_mask: mask of promiscuous config bits |
| * @vid: VLAN ID to set VLAN promiscuous |
| */ |
| int |
| ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, u16 vid) |
| { |
| enum { UCAST_FLTR = 1, MCAST_FLTR, BCAST_FLTR }; |
| struct ice_fltr_list_entry f_list_entry; |
| struct ice_fltr_info new_fltr; |
| bool is_tx_fltr; |
| int status = 0; |
| u16 hw_vsi_id; |
| int pkt_type; |
| u8 recipe_id; |
| |
| if (!ice_is_vsi_valid(hw, vsi_handle)) |
| return -EINVAL; |
| hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); |
| |
| memset(&new_fltr, 0, sizeof(new_fltr)); |
| |
| if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) { |
| new_fltr.lkup_type = ICE_SW_LKUP_PROMISC_VLAN; |
| new_fltr.l_data.mac_vlan.vlan_id = vid; |
| recipe_id = ICE_SW_LKUP_PROMISC_VLAN; |
| } else { |
| new_fltr.lkup_type = ICE_SW_LKUP_PROMISC; |
| recipe_id = ICE_SW_LKUP_PROMISC; |
| } |
| |
| /* Separate filters must be set for each direction/packet type |
| * combination, so we will loop over the mask value, store the |
| * individual type, and clear it out in the input mask as it |
| * is found. |
| */ |
| while (promisc_mask) { |
| u8 *mac_addr; |
| |
| pkt_type = 0; |
| is_tx_fltr = false; |
| |
| if (promisc_mask & ICE_PROMISC_UCAST_RX) { |
| promisc_mask &= ~ICE_PROMISC_UCAST_RX; |
| pkt_type = UCAST_FLTR; |
| } else if (promisc_mask & ICE_PROMISC_UCAST_TX) { |
| promisc_mask &= ~ICE_PROMISC_UCAST_TX; |
| pkt_type = UCAST_FLTR; |
| is_tx_fltr = true; |
| } else if (promisc_mask & ICE_PROMISC_MCAST_RX) { |
| promisc_mask &= ~ICE_PROMISC_MCAST_RX; |
| pkt_type = MCAST_FLTR; |
| } else if (promisc_mask & ICE_PROMISC_MCAST_TX) { |
| promisc_mask &= ~ICE_PROMISC_MCAST_TX; |
| pkt_type = MCAST_FLTR; |
| is_tx_fltr = true; |
| } else if (promisc_mask & ICE_PROMISC_BCAST_RX) { |
| promisc_mask &= ~ICE_PROMISC_BCAST_RX; |
| pkt_type = BCAST_FLTR; |
| } else if (promisc_mask & ICE_PROMISC_BCAST_TX) { |
| promisc_mask &= ~ICE_PROMISC_BCAST_TX; |
| pkt_type = BCAST_FLTR; |
| is_tx_fltr = true; |
| } |
| |
| /* Check for VLAN promiscuous flag */ |
| if (promisc_mask & ICE_PROMISC_VLAN_RX) { |
| promisc_mask &= ~ICE_PROMISC_VLAN_RX; |
| } else if (promisc_mask & ICE_PROMISC_VLAN_TX) { |
| promisc_mask &= ~ICE_PROMISC_VLAN_TX; |
| is_tx_fltr = true; |
| } |
| |
| /* Set filter DA based on packet type */ |
| mac_addr = new_fltr.l_data.mac.mac_addr; |
| if (pkt_type == BCAST_FLTR) { |
| eth_broadcast_addr(mac_addr); |
| } else if (pkt_type == MCAST_FLTR || |
| pkt_type == UCAST_FLTR) { |
| /* Use the dummy ether header DA */ |
| ether_addr_copy(mac_addr, dummy_eth_header); |
| if (pkt_type == MCAST_FLTR) |
| mac_addr[0] |= 0x1; /* Set multicast bit */ |
| } |
| |
| /* Need to reset this to zero for all iterations */ |
| new_fltr.flag = 0; |
| if (is_tx_fltr) { |
| new_fltr.flag |= ICE_FLTR_TX; |
| new_fltr.src = hw_vsi_id; |
| } else { |
| new_fltr.flag |= ICE_FLTR_RX; |
| new_fltr.src = hw->port_info->lport; |
| } |
| |
| new_fltr.fltr_act = ICE_FWD_TO_VSI; |
| new_fltr.vsi_handle = vsi_handle; |
| new_fltr.fwd_id.hw_vsi_id = hw_vsi_id; |
| f_list_entry.fltr_info = new_fltr; |
| |
| status = ice_add_rule_internal(hw, recipe_id, &f_list_entry); |
| if (status) |
| goto set_promisc_exit; |
| } |
| |
| set_promisc_exit: |
| return status; |
| } |
| |
| /** |
| * ice_set_vlan_vsi_promisc |
| * @hw: pointer to the hardware structure |
| * @vsi_handle: VSI handle to configure |
| * @promisc_mask: mask of promiscuous config bits |
| * @rm_vlan_promisc: Clear VLANs VSI promisc mode |
| * |
| * Configure VSI with all associated VLANs to given promiscuous mode(s) |
| */ |
| int |
| ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, |
| bool rm_vlan_promisc) |
| { |
| struct ice_switch_info *sw = hw->switch_info; |
| struct ice_fltr_list_entry *list_itr, *tmp; |
| struct list_head vsi_list_head; |
| struct list_head *vlan_head; |
| struct mutex *vlan_lock; /* Lock to protect filter rule list */ |
| u16 vlan_id; |
| int status; |
| |
| INIT_LIST_HEAD(&vsi_list_head); |
| vlan_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock; |
| vlan_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules; |
| mutex_lock(vlan_lock); |
| status = ice_add_to_vsi_fltr_list(hw, vsi_handle, vlan_head, |
| &vsi_list_head); |
| mutex_unlock(vlan_lock); |
| if (status) |
| goto free_fltr_list; |
| |
| list_for_each_entry(list_itr, &vsi_list_head, list_entry) { |
| vlan_id = list_itr->fltr_info.l_data.vlan.vlan_id; |
| if (rm_vlan_promisc) |
| status = ice_clear_vsi_promisc(hw, vsi_handle, |
| promisc_mask, vlan_id); |
| else |
| status = ice_set_vsi_promisc(hw, vsi_handle, |
| promisc_mask, vlan_id); |
| if (status) |
| break; |
| } |
| |
| free_fltr_list: |
| list_for_each_entry_safe(list_itr, tmp, &vsi_list_head, list_entry) { |
| list_del(&list_itr->list_entry); |
| devm_kfree(ice_hw_to_dev(hw), list_itr); |
| } |
| return status; |
| } |
| |
| /** |
| * ice_remove_vsi_lkup_fltr - Remove lookup type filters for a VSI |
| * @hw: pointer to the hardware structure |
| * @vsi_handle: VSI handle to remove filters from |
| * @lkup: switch rule filter lookup type |
| */ |
| static void |
| ice_remove_vsi_lkup_fltr(struct ice_hw *hw, u16 vsi_handle, |
| enum ice_sw_lkup_type lkup) |
| { |
| struct ice_switch_info *sw = hw->switch_info; |
| struct ice_fltr_list_entry *fm_entry; |
| struct list_head remove_list_head; |
| struct list_head *rule_head; |
| struct ice_fltr_list_entry *tmp; |
| struct mutex *rule_lock; /* Lock to protect filter rule list */ |
| int status; |
| |
| INIT_LIST_HEAD(&remove_list_head); |
| rule_lock = &sw->recp_list[lkup].filt_rule_lock; |
| rule_head = &sw->recp_list[lkup].filt_rules; |
| mutex_lock(rule_lock); |
| status = ice_add_to_vsi_fltr_list(hw, vsi_handle, rule_head, |
| &remove_list_head); |
| mutex_unlock(rule_lock); |
| if (status) |
| goto free_fltr_list; |
| |
| switch (lkup) { |
| case ICE_SW_LKUP_MAC: |
| ice_remove_mac(hw, &remove_list_head); |
| break; |
| case ICE_SW_LKUP_VLAN: |
| ice_remove_vlan(hw, &remove_list_head); |
| break; |
| case ICE_SW_LKUP_PROMISC: |
| case ICE_SW_LKUP_PROMISC_VLAN: |
| ice_remove_promisc(hw, lkup, &remove_list_head); |
| break; |
| case ICE_SW_LKUP_MAC_VLAN: |
| case ICE_SW_LKUP_ETHERTYPE: |
| case ICE_SW_LKUP_ETHERTYPE_MAC: |
| case ICE_SW_LKUP_DFLT: |
| case ICE_SW_LKUP_LAST: |
| default: |
| ice_debug(hw, ICE_DBG_SW, "Unsupported lookup type %d\n", lkup); |
| break; |
| } |
| |
| free_fltr_list: |
| list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) { |
| list_del(&fm_entry->list_entry); |
| devm_kfree(ice_hw_to_dev(hw), fm_entry); |
| } |
| } |
| |
| /** |
| * ice_remove_vsi_fltr - Remove all filters for a VSI |
| * @hw: pointer to the hardware structure |
| * @vsi_handle: VSI handle to remove filters from |
| */ |
| void ice_remove_vsi_fltr(struct ice_hw *hw, u16 vsi_handle) |
| { |
| ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC); |
| ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC_VLAN); |
| ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC); |
| ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_VLAN); |
| ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_DFLT); |
| ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE); |
| ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE_MAC); |
| ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC_VLAN); |
| } |
| |
| /** |
| * ice_alloc_res_cntr - allocating resource counter |
| * @hw: pointer to the hardware structure |
| * @type: type of resource |
| * @alloc_shared: if set it is shared else dedicated |
| * @num_items: number of entries requested for FD resource type |
| * @counter_id: counter index returned by AQ call |
| */ |
| int |
| ice_alloc_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items, |
| u16 *counter_id) |
| { |
| struct ice_aqc_alloc_free_res_elem *buf; |
| u16 buf_len; |
| int status; |
| |
| /* Allocate resource */ |
| buf_len = struct_size(buf, elem, 1); |
| buf = kzalloc(buf_len, GFP_KERNEL); |
| if (!buf) |
| return -ENOMEM; |
| |
| buf->num_elems = cpu_to_le16(num_items); |
| buf->res_type = cpu_to_le16(((type << ICE_AQC_RES_TYPE_S) & |
| ICE_AQC_RES_TYPE_M) | alloc_shared); |
| |
| status = ice_aq_alloc_free_res(hw, 1, buf, buf_len, |
| ice_aqc_opc_alloc_res, NULL); |
| if (status) |
| goto exit; |
| |
| *counter_id = le16_to_cpu(buf->elem[0].e.sw_resp); |
| |
| exit: |
| kfree(buf); |
| return status; |
| } |
| |
| /** |
| * ice_free_res_cntr - free resource counter |
| * @hw: pointer to the hardware structure |
| * @type: type of resource |
| * @alloc_shared: if set it is shared else dedicated |
| * @num_items: number of entries to be freed for FD resource type |
| * @counter_id: counter ID resource which needs to be freed |
| */ |
| int |
| ice_free_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items, |
| u16 counter_id) |
| { |
| struct ice_aqc_alloc_free_res_elem *buf; |
| u16 buf_len; |
| int status; |
| |
| /* Free resource */ |
| buf_len = struct_size(buf, elem, 1); |
| buf = kzalloc(buf_len, GFP_KERNEL); |
| if (!buf) |
| return -ENOMEM; |
| |
| buf->num_elems = cpu_to_le16(num_items); |
| buf->res_type = cpu_to_le16(((type << ICE_AQC_RES_TYPE_S) & |
| ICE_AQC_RES_TYPE_M) | alloc_shared); |
| buf->elem[0].e.sw_resp = cpu_to_le16(counter_id); |
| |
| status = ice_aq_alloc_free_res(hw, 1, buf, buf_len, |
| ice_aqc_opc_free_res, NULL); |
| if (status) |
| ice_debug(hw, ICE_DBG_SW, "counter resource could not be freed\n"); |
| |
| kfree(buf); |
| return status; |
| } |
| |
| /* This is mapping table entry that maps every word within a given protocol |
| * structure to the real byte offset as per the specification of that |
| * protocol header. |
| * for example dst address is 3 words in ethertype header and corresponding |
| * bytes are 0, 2, 3 in the actual packet header and src address is at 4, 6, 8 |
| * IMPORTANT: Every structure part of "ice_prot_hdr" union should have a |
| * matching entry describing its field. This needs to be updated if new |
| * structure is added to that union. |
| */ |
| static const struct ice_prot_ext_tbl_entry ice_prot_ext[ICE_PROTOCOL_LAST] = { |
| { ICE_MAC_OFOS, { 0, 2, 4, 6, 8, 10, 12 } }, |
| { ICE_MAC_IL, { 0, 2, 4, 6, 8, 10, 12 } }, |
| { ICE_ETYPE_OL, { 0 } }, |
| { ICE_ETYPE_IL, { 0 } }, |
| { ICE_VLAN_OFOS, { 2, 0 } }, |
| { ICE_IPV4_OFOS, { 0, 2, 4, 6, 8, 10, 12, 14, 16, 18 } }, |
| { ICE_IPV4_IL, { 0, 2, 4, 6, 8, 10, 12, 14, 16, 18 } }, |
| { ICE_IPV6_OFOS, { 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, |
| 26, 28, 30, 32, 34, 36, 38 } }, |
| { ICE_IPV6_IL, { 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, |
| 26, 28, 30, 32, 34, 36, 38 } }, |
| { ICE_TCP_IL, { 0, 2 } }, |
| { ICE_UDP_OF, { 0, 2 } }, |
| { ICE_UDP_ILOS, { 0, 2 } }, |
| { ICE_VXLAN, { 8, 10, 12, 14 } }, |
| { ICE_GENEVE, { 8, 10, 12, 14 } }, |
| { ICE_NVGRE, { 0, 2, 4, 6 } }, |
| { ICE_GTP, { 8, 10, 12, 14, 16, 18, 20, 22 } }, |
| { ICE_GTP_NO_PAY, { 8, 10, 12, 14 } }, |
| { ICE_PPPOE, { 0, 2, 4, 6 } }, |
| { ICE_VLAN_EX, { 2, 0 } }, |
| { ICE_VLAN_IN, { 2, 0 } }, |
| }; |
| |
| static struct ice_protocol_entry ice_prot_id_tbl[ICE_PROTOCOL_LAST] = { |
| { ICE_MAC_OFOS, ICE_MAC_OFOS_HW }, |
| { ICE_MAC_IL, ICE_MAC_IL_HW }, |
| { ICE_ETYPE_OL, ICE_ETYPE_OL_HW }, |
| { ICE_ETYPE_IL, ICE_ETYPE_IL_HW }, |
| { ICE_VLAN_OFOS, ICE_VLAN_OL_HW }, |
| { ICE_IPV4_OFOS, ICE_IPV4_OFOS_HW }, |
| { ICE_IPV4_IL, ICE_IPV4_IL_HW }, |
| { ICE_IPV6_OFOS, ICE_IPV6_OFOS_HW }, |
| { ICE_IPV6_IL, ICE_IPV6_IL_HW }, |
| { ICE_TCP_IL, ICE_TCP_IL_HW }, |
| { ICE_UDP_OF, ICE_UDP_OF_HW }, |
| { ICE_UDP_ILOS, ICE_UDP_ILOS_HW }, |
| { ICE_VXLAN, ICE_UDP_OF_HW }, |
| { ICE_GENEVE, ICE_UDP_OF_HW }, |
| { ICE_NVGRE, ICE_GRE_OF_HW }, |
| { ICE_GTP, ICE_UDP_OF_HW }, |
| { ICE_GTP_NO_PAY, ICE_UDP_ILOS_HW }, |
| { ICE_PPPOE, ICE_PPPOE_HW }, |
| { ICE_VLAN_EX, ICE_VLAN_OF_HW }, |
| { ICE_VLAN_IN, ICE_VLAN_OL_HW }, |
| }; |
| |
| /** |
| * ice_find_recp - find a recipe |
| * @hw: pointer to the hardware structure |
| * @lkup_exts: extension sequence to match |
| * @tun_type: type of recipe tunnel |
| * |
| * Returns index of matching recipe, or ICE_MAX_NUM_RECIPES if not found. |
| */ |
| static u16 |
| ice_find_recp(struct ice_hw *hw, struct ice_prot_lkup_ext *lkup_exts, |
| enum ice_sw_tunnel_type tun_type) |
| { |
| bool refresh_required = true; |
| struct ice_sw_recipe *recp; |
| u8 i; |
| |
| /* Walk through existing recipes to find a match */ |
| recp = hw->switch_info->recp_list; |
| for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) { |
| /* If recipe was not created for this ID, in SW bookkeeping, |
| * check if FW has an entry for this recipe. If the FW has an |
| * entry update it in our SW bookkeeping and continue with the |
| * matching. |
| */ |
| if (!recp[i].recp_created) |
| if (ice_get_recp_frm_fw(hw, |
| hw->switch_info->recp_list, i, |
| &refresh_required)) |
| continue; |
| |
| /* Skip inverse action recipes */ |
| if (recp[i].root_buf && recp[i].root_buf->content.act_ctrl & |
| ICE_AQ_RECIPE_ACT_INV_ACT) |
| continue; |
| |
| /* if number of words we are looking for match */ |
| if (lkup_exts->n_val_words == recp[i].lkup_exts.n_val_words) { |
| struct ice_fv_word *ar = recp[i].lkup_exts.fv_words; |
| struct ice_fv_word *be = lkup_exts->fv_words; |
| u16 *cr = recp[i].lkup_exts.field_mask; |
| u16 *de = lkup_exts->field_mask; |
| bool found = true; |
| u8 pe, qr; |
| |
| /* ar, cr, and qr are related to the recipe words, while |
| * be, de, and pe are related to the lookup words |
| */ |
| for (pe = 0; pe < lkup_exts->n_val_words; pe++) { |
| for (qr = 0; qr < recp[i].lkup_exts.n_val_words; |
| qr++) { |
| if (ar[qr].off == be[pe].off && |
| ar[qr].prot_id == be[pe].prot_id && |
| cr[qr] == de[pe]) |
| /* Found the "pe"th word in the |
| * given recipe |
| */ |
| break; |
| } |
| /* After walking through all the words in the |
| * "i"th recipe if "p"th word was not found then |
| * this recipe is not what we are looking for. |
| * So break out from this loop and try the next |
| * recipe |
| */ |
| if (qr >= recp[i].lkup_exts.n_val_words) { |
| found = false; |
| break; |
| } |
| } |
| /* If for "i"th recipe the found was never set to false |
| * then it means we found our match |
| * Also tun type of recipe needs to be checked |
| */ |
| if (found && recp[i].tun_type == tun_type) |
| return i; /* Return the recipe ID */ |
| } |
| } |
| return ICE_MAX_NUM_RECIPES; |
| } |
| |
| /** |
| * ice_change_proto_id_to_dvm - change proto id in prot_id_tbl |
| * |
| * As protocol id for outer vlan is different in dvm and svm, if dvm is |
| * supported protocol array record for outer vlan has to be modified to |
| * reflect the value proper for DVM. |
| */ |
| void ice_change_proto_id_to_dvm(void) |
| { |
| u8 i; |
| |
| for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++) |
| if (ice_prot_id_tbl[i].type == ICE_VLAN_OFOS && |
| ice_prot_id_tbl[i].protocol_id != ICE_VLAN_OF_HW) |
| ice_prot_id_tbl[i].protocol_id = ICE_VLAN_OF_HW; |
| } |
| |
| /** |
| * ice_prot_type_to_id - get protocol ID from protocol type |
| * @type: protocol type |
| * @id: pointer to variable that will receive the ID |
| * |
| * Returns true if found, false otherwise |
| */ |
| static bool ice_prot_type_to_id(enum ice_protocol_type type, u8 *id) |
| { |
| u8 i; |
| |
| for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++) |
| if (ice_prot_id_tbl[i].type == type) { |
| *id = ice_prot_id_tbl[i].protocol_id; |
| return true; |
| } |
| return false; |
| } |
| |
| /** |
| * ice_fill_valid_words - count valid words |
| * @rule: advanced rule with lookup information |
| * @lkup_exts: byte offset extractions of the words that are valid |
| * |
| * calculate valid words in a lookup rule using mask value |
| */ |
| static u8 |
| ice_fill_valid_words(struct ice_adv_lkup_elem *rule, |
| struct ice_prot_lkup_ext *lkup_exts) |
| { |
| u8 j, word, prot_id, ret_val; |
| |
| if (!ice_prot_type_to_id(rule->type, &prot_id)) |
| return 0; |
| |
| word = lkup_exts->n_val_words; |
| |
| for (j = 0; j < sizeof(rule->m_u) / sizeof(u16); j++) |
| if (((u16 *)&rule->m_u)[j] && |
| rule->type < ARRAY_SIZE(ice_prot_ext)) { |
| /* No more space to accommodate */ |
| if (word >= ICE_MAX_CHAIN_WORDS) |
| return 0; |
| lkup_exts->fv_words[word].off = |
| ice_prot_ext[rule->type].offs[j]; |
| lkup_exts->fv_words[word].prot_id = |
| ice_prot_id_tbl[rule->type].protocol_id; |
| lkup_exts->field_mask[word] = |
| be16_to_cpu(((__force __be16 *)&rule->m_u)[j]); |
| word++; |
| } |
| |
| ret_val = word - lkup_exts->n_val_words; |
| lkup_exts->n_val_words = word; |
| |
| return ret_val; |
| } |
| |
| /** |
| * ice_create_first_fit_recp_def - Create a recipe grouping |
| * @hw: pointer to the hardware structure |
| * @lkup_exts: an array of protocol header extractions |
| * @rg_list: pointer to a list that stores new recipe groups |
| * @recp_cnt: pointer to a variable that stores returned number of recipe groups |
| * |
| * Using first fit algorithm, take all the words that are still not done |
| * and start grouping them in 4-word groups. Each group makes up one |
| * recipe. |
| */ |
| static int |
| ice_create_first_fit_recp_def(struct ice_hw *hw, |
| struct ice_prot_lkup_ext *lkup_exts, |
| struct list_head *rg_list, |
| u8 *recp_cnt) |
| { |
| struct ice_pref_recipe_group *grp = NULL; |
| u8 j; |
| |
| *recp_cnt = 0; |
| |
| /* Walk through every word in the rule to check if it is not done. If so |
| * then this word needs to be part of a new recipe. |
| */ |
| for (j = 0; j < lkup_exts->n_val_words; j++) |
| if (!test_bit(j, lkup_exts->done)) { |
| if (!grp || |
| grp->n_val_pairs == ICE_NUM_WORDS_RECIPE) { |
| struct ice_recp_grp_entry *entry; |
| |
| entry = devm_kzalloc(ice_hw_to_dev(hw), |
| sizeof(*entry), |
| GFP_KERNEL); |
| if (!entry) |
| return -ENOMEM; |
| list_add(&entry->l_entry, rg_list); |
| grp = &entry->r_group; |
| (*recp_cnt)++; |
| } |
| |
| grp->pairs[grp->n_val_pairs].prot_id = |
| lkup_exts->fv_words[j].prot_id; |
| grp->pairs[grp->n_val_pairs].off = |
| lkup_exts->fv_words[j].off; |
| grp->mask[grp->n_val_pairs] = lkup_exts->field_mask[j]; |
| grp->n_val_pairs++; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_fill_fv_word_index - fill in the field vector indices for a recipe group |
| * @hw: pointer to the hardware structure |
| * @fv_list: field vector with the extraction sequence information |
| * @rg_list: recipe groupings with protocol-offset pairs |
| * |
| * Helper function to fill in the field vector indices for protocol-offset |
| * pairs. These indexes are then ultimately programmed into a recipe. |
| */ |
| static int |
| ice_fill_fv_word_index(struct ice_hw *hw, struct list_head *fv_list, |
| struct list_head *rg_list) |
| { |
| struct ice_sw_fv_list_entry *fv; |
| struct ice_recp_grp_entry *rg; |
| struct ice_fv_word *fv_ext; |
| |
| if (list_empty(fv_list)) |
| return 0; |
| |
| fv = list_first_entry(fv_list, struct ice_sw_fv_list_entry, |
| list_entry); |
| fv_ext = fv->fv_ptr->ew; |
| |
| list_for_each_entry(rg, rg_list, l_entry) { |
| u8 i; |
| |
| for (i = 0; i < rg->r_group.n_val_pairs; i++) { |
| struct ice_fv_word *pr; |
| bool found = false; |
| u16 mask; |
| u8 j; |
| |
| pr = &rg->r_group.pairs[i]; |
| mask = rg->r_group.mask[i]; |
| |
| for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++) |
| if (fv_ext[j].prot_id == pr->prot_id && |
| fv_ext[j].off == pr->off) { |
| found = true; |
| |
| /* Store index of field vector */ |
| rg->fv_idx[i] = j; |
| rg->fv_mask[i] = mask; |
| break; |
| } |
| |
| /* Protocol/offset could not be found, caller gave an |
| * invalid pair |
| */ |
| if (!found) |
| return -EINVAL; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_find_free_recp_res_idx - find free result indexes for recipe |
| * @hw: pointer to hardware structure |
| * @profiles: bitmap of profiles that will be associated with the new recipe |
| * @free_idx: pointer to variable to receive the free index bitmap |
| * |
| * The algorithm used here is: |
| * 1. When creating a new recipe, create a set P which contains all |
| * Profiles that will be associated with our new recipe |
| * |
| * 2. For each Profile p in set P: |
| * a. Add all recipes associated with Profile p into set R |
| * b. Optional : PossibleIndexes &= profile[p].possibleIndexes |
| * [initially PossibleIndexes should be 0xFFFFFFFFFFFFFFFF] |
| * i. Or just assume they all have the same possible indexes: |
| * 44, 45, 46, 47 |
| * i.e., PossibleIndexes = 0x0000F00000000000 |
| * |
| * 3. For each Recipe r in set R: |
| * a. UsedIndexes |= (bitwise or ) recipe[r].res_indexes |
| * b. FreeIndexes = UsedIndexes ^ PossibleIndexes |
| * |
| * FreeIndexes will contain the bits indicating the indexes free for use, |
| * then the code needs to update the recipe[r].used_result_idx_bits to |
| * indicate which indexes were selected for use by this recipe. |
| */ |
| static u16 |
| ice_find_free_recp_res_idx(struct ice_hw *hw, const unsigned long *profiles, |
| unsigned long *free_idx) |
| { |
| DECLARE_BITMAP(possible_idx, ICE_MAX_FV_WORDS); |
| DECLARE_BITMAP(recipes, ICE_MAX_NUM_RECIPES); |
| DECLARE_BITMAP(used_idx, ICE_MAX_FV_WORDS); |
| u16 bit; |
| |
| bitmap_zero(recipes, ICE_MAX_NUM_RECIPES); |
| bitmap_zero(used_idx, ICE_MAX_FV_WORDS); |
| |
| bitmap_fill(possible_idx, ICE_MAX_FV_WORDS); |
| |
| /* For each profile we are going to associate the recipe with, add the |
| * recipes that are associated with that profile. This will give us |
| * the set of recipes that our recipe may collide with. Also, determine |
| * what possible result indexes are usable given this set of profiles. |
| */ |
| for_each_set_bit(bit, profiles, ICE_MAX_NUM_PROFILES) { |
| bitmap_or(recipes, recipes, profile_to_recipe[bit], |
| ICE_MAX_NUM_RECIPES); |
| bitmap_and(possible_idx, possible_idx, |
| hw->switch_info->prof_res_bm[bit], |
| ICE_MAX_FV_WORDS); |
| } |
| |
| /* For each recipe that our new recipe may collide with, determine |
| * which indexes have been used. |
| */ |
| for_each_set_bit(bit, recipes, ICE_MAX_NUM_RECIPES) |
| bitmap_or(used_idx, used_idx, |
| hw->switch_info->recp_list[bit].res_idxs, |
| ICE_MAX_FV_WORDS); |
| |
| bitmap_xor(free_idx, used_idx, possible_idx, ICE_MAX_FV_WORDS); |
| |
| /* return number of free indexes */ |
| return (u16)bitmap_weight(free_idx, ICE_MAX_FV_WORDS); |
| } |
| |
| /** |
| * ice_add_sw_recipe - function to call AQ calls to create switch recipe |
| * @hw: pointer to hardware structure |
| * @rm: recipe management list entry |
| * @profiles: bitmap of profiles that will be associated. |
| */ |
| static int |
| ice_add_sw_recipe(struct ice_hw *hw, struct ice_sw_recipe *rm, |
| unsigned long *profiles) |
| { |
| DECLARE_BITMAP(result_idx_bm, ICE_MAX_FV_WORDS); |
| struct ice_aqc_recipe_data_elem *tmp; |
| struct ice_aqc_recipe_data_elem *buf; |
| struct ice_recp_grp_entry *entry; |
| u16 free_res_idx; |
| u16 recipe_count; |
| u8 chain_idx; |
| u8 recps = 0; |
| int status; |
| |
| /* When more than one recipe are required, another recipe is needed to |
| * chain them together. Matching a tunnel metadata ID takes up one of |
| * the match fields in the chaining recipe reducing the number of |
| * chained recipes by one. |
| */ |
| /* check number of free result indices */ |
| bitmap_zero(result_idx_bm, ICE_MAX_FV_WORDS); |
| free_res_idx = ice_find_free_recp_res_idx(hw, profiles, result_idx_bm); |
| |
| ice_debug(hw, ICE_DBG_SW, "Result idx slots: %d, need %d\n", |
| free_res_idx, rm->n_grp_count); |
| |
| if (rm->n_grp_count > 1) { |
| if (rm->n_grp_count > free_res_idx) |
| return -ENOSPC; |
| |
| rm->n_grp_count++; |
| } |
| |
| if (rm->n_grp_count > ICE_MAX_CHAIN_RECIPE) |
| return -ENOSPC; |
| |
| tmp = kcalloc(ICE_MAX_NUM_RECIPES, sizeof(*tmp), GFP_KERNEL); |
| if (!tmp) |
| return -ENOMEM; |
| |
| buf = devm_kcalloc(ice_hw_to_dev(hw), rm->n_grp_count, sizeof(*buf), |
| GFP_KERNEL); |
| if (!buf) { |
| status = -ENOMEM; |
| goto err_mem; |
| } |
| |
| bitmap_zero(rm->r_bitmap, ICE_MAX_NUM_RECIPES); |
| recipe_count = ICE_MAX_NUM_RECIPES; |
| status = ice_aq_get_recipe(hw, tmp, &recipe_count, ICE_SW_LKUP_MAC, |
| NULL); |
| if (status || recipe_count == 0) |
| goto err_unroll; |
| |
| /* Allocate the recipe resources, and configure them according to the |
| * match fields from protocol headers and extracted field vectors. |
| */ |
| chain_idx = find_first_bit(result_idx_bm, ICE_MAX_FV_WORDS); |
| list_for_each_entry(entry, &rm->rg_list, l_entry) { |
| u8 i; |
| |
| status = ice_alloc_recipe(hw, &entry->rid); |
| if (status) |
| goto err_unroll; |
| |
| /* Clear the result index of the located recipe, as this will be |
| * updated, if needed, later in the recipe creation process. |
| */ |
| tmp[0].content.result_indx = 0; |
| |
| buf[recps] = tmp[0]; |
| buf[recps].recipe_indx = (u8)entry->rid; |
| /* if the recipe is a non-root recipe RID should be programmed |
| * as 0 for the rules to be applied correctly. |
| */ |
| buf[recps].content.rid = 0; |
| memset(&buf[recps].content.lkup_indx, 0, |
| sizeof(buf[recps].content.lkup_indx)); |
| |
| /* All recipes use look-up index 0 to match switch ID. */ |
| buf[recps].content.lkup_indx[0] = ICE_AQ_SW_ID_LKUP_IDX; |
| buf[recps].content.mask[0] = |
| cpu_to_le16(ICE_AQ_SW_ID_LKUP_MASK); |
| /* Setup lkup_indx 1..4 to INVALID/ignore and set the mask |
| * to be 0 |
| */ |
| for (i = 1; i <= ICE_NUM_WORDS_RECIPE; i++) { |
| buf[recps].content.lkup_indx[i] = 0x80; |
| buf[recps].content.mask[i] = 0; |
| } |
| |
| for (i = 0; i < entry->r_group.n_val_pairs; i++) { |
| buf[recps].content.lkup_indx[i + 1] = entry->fv_idx[i]; |
| buf[recps].content.mask[i + 1] = |
| cpu_to_le16(entry->fv_mask[i]); |
| } |
| |
| if (rm->n_grp_count > 1) { |
| /* Checks to see if there really is a valid result index |
| * that can be used. |
| */ |
| if (chain_idx >= ICE_MAX_FV_WORDS) { |
| ice_debug(hw, ICE_DBG_SW, "No chain index available\n"); |
| status = -ENOSPC; |
| goto err_unroll; |
| } |
| |
| entry->chain_idx = chain_idx; |
| buf[recps].content.result_indx = |
| ICE_AQ_RECIPE_RESULT_EN | |
| ((chain_idx << ICE_AQ_RECIPE_RESULT_DATA_S) & |
| ICE_AQ_RECIPE_RESULT_DATA_M); |
| clear_bit(chain_idx, result_idx_bm); |
| chain_idx = find_first_bit(result_idx_bm, |
| ICE_MAX_FV_WORDS); |
| } |
| |
| /* fill recipe dependencies */ |
| bitmap_zero((unsigned long *)buf[recps].recipe_bitmap, |
| ICE_MAX_NUM_RECIPES); |
| set_bit(buf[recps].recipe_indx, |
| (unsigned long *)buf[recps].recipe_bitmap); |
| buf[recps].content.act_ctrl_fwd_priority = rm->priority; |
| recps++; |
| } |
| |
| if (rm->n_grp_count == 1) { |
| rm->root_rid = buf[0].recipe_indx; |
| set_bit(buf[0].recipe_indx, rm->r_bitmap); |
| buf[0].content.rid = rm->root_rid | ICE_AQ_RECIPE_ID_IS_ROOT; |
| if (sizeof(buf[0].recipe_bitmap) >= sizeof(rm->r_bitmap)) { |
| memcpy(buf[0].recipe_bitmap, rm->r_bitmap, |
| sizeof(buf[0].recipe_bitmap)); |
| } else { |
| status = -EINVAL; |
| goto err_unroll; |
| } |
| /* Applicable only for ROOT_RECIPE, set the fwd_priority for |
| * the recipe which is getting created if specified |
| * by user. Usually any advanced switch filter, which results |
| * into new extraction sequence, ended up creating a new recipe |
| * of type ROOT and usually recipes are associated with profiles |
| * Switch rule referreing newly created recipe, needs to have |
| * either/or 'fwd' or 'join' priority, otherwise switch rule |
| * evaluation will not happen correctly. In other words, if |
| * switch rule to be evaluated on priority basis, then recipe |
| * needs to have priority, otherwise it will be evaluated last. |
| */ |
| buf[0].content.act_ctrl_fwd_priority = rm->priority; |
| } else { |
| struct ice_recp_grp_entry *last_chain_entry; |
| u16 rid, i; |
| |
| /* Allocate the last recipe that will chain the outcomes of the |
| * other recipes together |
| */ |
| status = ice_alloc_recipe(hw, &rid); |
| if (status) |
| goto err_unroll; |
| |
| buf[recps].recipe_indx = (u8)rid; |
| buf[recps].content.rid = (u8)rid; |
| buf[recps].content.rid |= ICE_AQ_RECIPE_ID_IS_ROOT; |
| /* the new entry created should also be part of rg_list to |
| * make sure we have complete recipe |
| */ |
| last_chain_entry = devm_kzalloc(ice_hw_to_dev(hw), |
| sizeof(*last_chain_entry), |
| GFP_KERNEL); |
| if (!last_chain_entry) { |
| status = -ENOMEM; |
| goto err_unroll; |
| } |
| last_chain_entry->rid = rid; |
| memset(&buf[recps].content.lkup_indx, 0, |
| sizeof(buf[recps].content.lkup_indx)); |
| /* All recipes use look-up index 0 to match switch ID. */ |
| buf[recps].content.lkup_indx[0] = ICE_AQ_SW_ID_LKUP_IDX; |
| buf[recps].content.mask[0] = |
| cpu_to_le16(ICE_AQ_SW_ID_LKUP_MASK); |
| for (i = 1; i <= ICE_NUM_WORDS_RECIPE; i++) { |
| buf[recps].content.lkup_indx[i] = |
| ICE_AQ_RECIPE_LKUP_IGNORE; |
| buf[recps].content.mask[i] = 0; |
| } |
| |
| i = 1; |
| /* update r_bitmap with the recp that is used for chaining */ |
| set_bit(rid, rm->r_bitmap); |
| /* this is the recipe that chains all the other recipes so it |
| * should not have a chaining ID to indicate the same |
| */ |
| last_chain_entry->chain_idx = ICE_INVAL_CHAIN_IND; |
| list_for_each_entry(entry, &rm->rg_list, l_entry) { |
| last_chain_entry->fv_idx[i] = entry->chain_idx; |
| buf[recps].content.lkup_indx[i] = entry->chain_idx; |
| buf[recps].content.mask[i++] = cpu_to_le16(0xFFFF); |
| set_bit(entry->rid, rm->r_bitmap); |
| } |
| list_add(&last_chain_entry->l_entry, &rm->rg_list); |
| if (sizeof(buf[recps].recipe_bitmap) >= |
| sizeof(rm->r_bitmap)) { |
| memcpy(buf[recps].recipe_bitmap, rm->r_bitmap, |
| sizeof(buf[recps].recipe_bitmap)); |
| } else { |
| status = -EINVAL; |
| goto err_unroll; |
| } |
| buf[recps].content.act_ctrl_fwd_priority = rm->priority; |
| |
| recps++; |
| rm->root_rid = (u8)rid; |
| } |
| status = ice_acquire_change_lock(hw, ICE_RES_WRITE); |
| if (status) |
| goto err_unroll; |
| |
| status = ice_aq_add_recipe(hw, buf, rm->n_grp_count, NULL); |
| ice_release_change_lock(hw); |
| if (status) |
| goto err_unroll; |
| |
| /* Every recipe that just got created add it to the recipe |
| * book keeping list |
| */ |
| list_for_each_entry(entry, &rm->rg_list, l_entry) { |
| struct ice_switch_info *sw = hw->switch_info; |
| bool is_root, idx_found = false; |
| struct ice_sw_recipe *recp; |
| u16 idx, buf_idx = 0; |
| |
| /* find buffer index for copying some data */ |
| for (idx = 0; idx < rm->n_grp_count; idx++) |
| if (buf[idx].recipe_indx == entry->rid) { |
| buf_idx = idx; |
| idx_found = true; |
| } |
| |
| if (!idx_found) { |
| status = -EIO; |
| goto err_unroll; |
| } |
| |
| recp = &sw->recp_list[entry->rid]; |
| is_root = (rm->root_rid == entry->rid); |
| recp->is_root = is_root; |
| |
| recp->root_rid = entry->rid; |
| recp->big_recp = (is_root && rm->n_grp_count > 1); |
| |
| memcpy(&recp->ext_words, entry->r_group.pairs, |
| entry->r_group.n_val_pairs * sizeof(struct ice_fv_word)); |
| |
| memcpy(recp->r_bitmap, buf[buf_idx].recipe_bitmap, |
| sizeof(recp->r_bitmap)); |
| |
| /* Copy non-result fv index values and masks to recipe. This |
| * call will also update the result recipe bitmask. |
| */ |
| ice_collect_result_idx(&buf[buf_idx], recp); |
| |
| /* for non-root recipes, also copy to the root, this allows |
| * easier matching of a complete chained recipe |
| */ |
| if (!is_root) |
| ice_collect_result_idx(&buf[buf_idx], |
| &sw->recp_list[rm->root_rid]); |
| |
| recp->n_ext_words = entry->r_group.n_val_pairs; |
| recp->chain_idx = entry->chain_idx; |
| recp->priority = buf[buf_idx].content.act_ctrl_fwd_priority; |
| recp->n_grp_count = rm->n_grp_count; |
| recp->tun_type = rm->tun_type; |
| recp->recp_created = true; |
| } |
| rm->root_buf = buf; |
| kfree(tmp); |
| return status; |
| |
| err_unroll: |
| err_mem: |
| kfree(tmp); |
| devm_kfree(ice_hw_to_dev(hw), buf); |
| return status; |
| } |
| |
| /** |
| * ice_create_recipe_group - creates recipe group |
| * @hw: pointer to hardware structure |
| * @rm: recipe management list entry |
| * @lkup_exts: lookup elements |
| */ |
| static int |
| ice_create_recipe_group(struct ice_hw *hw, struct ice_sw_recipe *rm, |
| struct ice_prot_lkup_ext *lkup_exts) |
| { |
| u8 recp_count = 0; |
| int status; |
| |
| rm->n_grp_count = 0; |
| |
| /* Create recipes for words that are marked not done by packing them |
| * as best fit. |
| */ |
| status = ice_create_first_fit_recp_def(hw, lkup_exts, |
| &rm->rg_list, &recp_count); |
| if (!status) { |
| rm->n_grp_count += recp_count; |
| rm->n_ext_words = lkup_exts->n_val_words; |
| memcpy(&rm->ext_words, lkup_exts->fv_words, |
| sizeof(rm->ext_words)); |
| memcpy(rm->word_masks, lkup_exts->field_mask, |
| sizeof(rm->word_masks)); |
| } |
| |
| return status; |
| } |
| |
| /** |
| * ice_tun_type_match_word - determine if tun type needs a match mask |
| * @tun_type: tunnel type |
| * @mask: mask to be used for the tunnel |
| */ |
| static bool ice_tun_type_match_word(enum ice_sw_tunnel_type tun_type, u16 *mask) |
| { |
| switch (tun_type) { |
| case ICE_SW_TUN_GENEVE: |
| case ICE_SW_TUN_VXLAN: |
| case ICE_SW_TUN_NVGRE: |
| case ICE_SW_TUN_GTPU: |
| case ICE_SW_TUN_GTPC: |
| *mask = ICE_TUN_FLAG_MASK; |
| return true; |
| |
| default: |
| *mask = 0; |
| return false; |
| } |
| } |
| |
| /** |
| * ice_add_special_words - Add words that are not protocols, such as metadata |
| * @rinfo: other information regarding the rule e.g. priority and action info |
| * @lkup_exts: lookup word structure |
| * @dvm_ena: is double VLAN mode enabled |
| */ |
| static int |
| ice_add_special_words(struct ice_adv_rule_info *rinfo, |
| struct ice_prot_lkup_ext *lkup_exts, bool dvm_ena) |
| { |
| u16 mask; |
| |
| /* If this is a tunneled packet, then add recipe index to match the |
| * tunnel bit in the packet metadata flags. |
| */ |
| if (ice_tun_type_match_word(rinfo->tun_type, &mask)) { |
| if (lkup_exts->n_val_words < ICE_MAX_CHAIN_WORDS) { |
| u8 word = lkup_exts->n_val_words++; |
| |
| lkup_exts->fv_words[word].prot_id = ICE_META_DATA_ID_HW; |
| lkup_exts->fv_words[word].off = ICE_TUN_FLAG_MDID_OFF; |
| lkup_exts->field_mask[word] = mask; |
| } else { |
| return -ENOSPC; |
| } |
| } |
| |
| if (rinfo->vlan_type != 0 && dvm_ena) { |
| if (lkup_exts->n_val_words < ICE_MAX_CHAIN_WORDS) { |
| u8 word = lkup_exts->n_val_words++; |
| |
| lkup_exts->fv_words[word].prot_id = ICE_META_DATA_ID_HW; |
| lkup_exts->fv_words[word].off = ICE_VLAN_FLAG_MDID_OFF; |
| lkup_exts->field_mask[word] = |
| ICE_PKT_FLAGS_0_TO_15_VLAN_FLAGS_MASK; |
| } else { |
| return -ENOSPC; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* ice_get_compat_fv_bitmap - Get compatible field vector bitmap for rule |
| * @hw: pointer to hardware structure |
| * @rinfo: other information regarding the rule e.g. priority and action info |
| * @bm: pointer to memory for returning the bitmap of field vectors |
| */ |
| static void |
| ice_get_compat_fv_bitmap(struct ice_hw *hw, struct ice_adv_rule_info *rinfo, |
| unsigned long *bm) |
| { |
| enum ice_prof_type prof_type; |
| |
| bitmap_zero(bm, ICE_MAX_NUM_PROFILES); |
| |
| switch (rinfo->tun_type) { |
| case ICE_NON_TUN: |
| prof_type = ICE_PROF_NON_TUN; |
| break; |
| case ICE_ALL_TUNNELS: |
| prof_type = ICE_PROF_TUN_ALL; |
| break; |
| case ICE_SW_TUN_GENEVE: |
| case ICE_SW_TUN_VXLAN: |
| prof_type = ICE_PROF_TUN_UDP; |
| break; |
| case ICE_SW_TUN_NVGRE: |
| prof_type = ICE_PROF_TUN_GRE; |
| break; |
| case ICE_SW_TUN_GTPU: |
| prof_type = ICE_PROF_TUN_GTPU; |
| break; |
| case ICE_SW_TUN_GTPC: |
| prof_type = ICE_PROF_TUN_GTPC; |
| break; |
| case ICE_SW_TUN_AND_NON_TUN: |
| default: |
| prof_type = ICE_PROF_ALL; |
| break; |
| } |
| |
| ice_get_sw_fv_bitmap(hw, prof_type, bm); |
| } |
| |
| /** |
| * ice_add_adv_recipe - Add an advanced recipe that is not part of the default |
| * @hw: pointer to hardware structure |
| * @lkups: lookup elements or match criteria for the advanced recipe, one |
| * structure per protocol header |
| * @lkups_cnt: number of protocols |
| * @rinfo: other information regarding the rule e.g. priority and action info |
| * @rid: return the recipe ID of the recipe created |
| */ |
| static int |
| ice_add_adv_recipe(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups, |
| u16 lkups_cnt, struct ice_adv_rule_info *rinfo, u16 *rid) |
| { |
| DECLARE_BITMAP(fv_bitmap, ICE_MAX_NUM_PROFILES); |
| DECLARE_BITMAP(profiles, ICE_MAX_NUM_PROFILES); |
| struct ice_prot_lkup_ext *lkup_exts; |
| struct ice_recp_grp_entry *r_entry; |
| struct ice_sw_fv_list_entry *fvit; |
| struct ice_recp_grp_entry *r_tmp; |
| struct ice_sw_fv_list_entry *tmp; |
| struct ice_sw_recipe *rm; |
| int status = 0; |
| u8 i; |
| |
| if (!lkups_cnt) |
| return -EINVAL; |
| |
| lkup_exts = kzalloc(sizeof(*lkup_exts), GFP_KERNEL); |
| if (!lkup_exts) |
| return -ENOMEM; |
| |
| /* Determine the number of words to be matched and if it exceeds a |
| * recipe's restrictions |
| */ |
| for (i = 0; i < lkups_cnt; i++) { |
| u16 count; |
| |
| if (lkups[i].type >= ICE_PROTOCOL_LAST) { |
| status = -EIO; |
| goto err_free_lkup_exts; |
| } |
| |
| count = ice_fill_valid_words(&lkups[i], lkup_exts); |
| if (!count) { |
| status = -EIO; |
| goto err_free_lkup_exts; |
| } |
| } |
| |
| rm = kzalloc(sizeof(*rm), GFP_KERNEL); |
| if (!rm) { |
| status = -ENOMEM; |
| goto err_free_lkup_exts; |
| } |
| |
| /* Get field vectors that contain fields extracted from all the protocol |
| * headers being programmed. |
| */ |
| INIT_LIST_HEAD(&rm->fv_list); |
| INIT_LIST_HEAD(&rm->rg_list); |
| |
| /* Get bitmap of field vectors (profiles) that are compatible with the |
| * rule request; only these will be searched in the subsequent call to |
| * ice_get_sw_fv_list. |
| */ |
| ice_get_compat_fv_bitmap(hw, rinfo, fv_bitmap); |
| |
| status = ice_get_sw_fv_list(hw, lkup_exts, fv_bitmap, &rm->fv_list); |
| if (status) |
| goto err_unroll; |
| |
| /* Create any special protocol/offset pairs, such as looking at tunnel |
| * bits by extracting metadata |
| */ |
| status = ice_add_special_words(rinfo, lkup_exts, ice_is_dvm_ena(hw)); |
| if (status) |
| goto err_free_lkup_exts; |
| |
| /* Group match words into recipes using preferred recipe grouping |
| * criteria. |
| */ |
| status = ice_create_recipe_group(hw, rm, lkup_exts); |
| if (status) |
| goto err_unroll; |
| |
| /* set the recipe priority if specified */ |
| rm->priority = (u8)rinfo->priority; |
| |
| /* Find offsets from the field vector. Pick the first one for all the |
| * recipes. |
| */ |
| status = ice_fill_fv_word_index(hw, &rm->fv_list, &rm->rg_list); |
| if (status) |
| goto err_unroll; |
| |
| /* get bitmap of all profiles the recipe will be associated with */ |
| bitmap_zero(profiles, ICE_MAX_NUM_PROFILES); |
| list_for_each_entry(fvit, &rm->fv_list, list_entry) { |
| ice_debug(hw, ICE_DBG_SW, "profile: %d\n", fvit->profile_id); |
| set_bit((u16)fvit->profile_id, profiles); |
| } |
| |
| /* Look for a recipe which matches our requested fv / mask list */ |
| *rid = ice_find_recp(hw, lkup_exts, rinfo->tun_type); |
| if (*rid < ICE_MAX_NUM_RECIPES) |
| /* Success if found a recipe that match the existing criteria */ |
| goto err_unroll; |
| |
| rm->tun_type = rinfo->tun_type; |
| /* Recipe we need does not exist, add a recipe */ |
| status = ice_add_sw_recipe(hw, rm, profiles); |
| if (status) |
| goto err_unroll; |
| |
| /* Associate all the recipes created with all the profiles in the |
| * common field vector. |
| */ |
| list_for_each_entry(fvit, &rm->fv_list, list_entry) { |
| DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES); |
| u16 j; |
| |
| status = ice_aq_get_recipe_to_profile(hw, fvit->profile_id, |
| (u8 *)r_bitmap, NULL); |
| if (status) |
| goto err_unroll; |
| |
| bitmap_or(r_bitmap, r_bitmap, rm->r_bitmap, |
| ICE_MAX_NUM_RECIPES); |
| status = ice_acquire_change_lock(hw, ICE_RES_WRITE); |
| if (status) |
| goto err_unroll; |
| |
| status = ice_aq_map_recipe_to_profile(hw, fvit->profile_id, |
| (u8 *)r_bitmap, |
| NULL); |
| ice_release_change_lock(hw); |
| |
| if (status) |
| goto err_unroll; |
| |
| /* Update profile to recipe bitmap array */ |
| bitmap_copy(profile_to_recipe[fvit->profile_id], r_bitmap, |
| ICE_MAX_NUM_RECIPES); |
| |
| /* Update recipe to profile bitmap array */ |
| for_each_set_bit(j, rm->r_bitmap, ICE_MAX_NUM_RECIPES) |
| set_bit((u16)fvit->profile_id, recipe_to_profile[j]); |
| } |
| |
| *rid = rm->root_rid; |
| memcpy(&hw->switch_info->recp_list[*rid].lkup_exts, lkup_exts, |
| sizeof(*lkup_exts)); |
| err_unroll: |
| list_for_each_entry_safe(r_entry, r_tmp, &rm->rg_list, l_entry) { |
| list_del(&r_entry->l_entry); |
| devm_kfree(ice_hw_to_dev(hw), r_entry); |
| } |
| |
| list_for_each_entry_safe(fvit, tmp, &rm->fv_list, list_entry) { |
| list_del(&fvit->list_entry); |
| devm_kfree(ice_hw_to_dev(hw), fvit); |
| } |
| |
| if (rm->root_buf) |
| devm_kfree(ice_hw_to_dev(hw), rm->root_buf); |
| |
| kfree(rm); |
| |
| err_free_lkup_exts: |
| kfree(lkup_exts); |
| |
| return status; |
| } |
| |
| /** |
| * ice_dummy_packet_add_vlan - insert VLAN header to dummy pkt |
| * |
| * @dummy_pkt: dummy packet profile pattern to which VLAN tag(s) will be added |
| * @num_vlan: number of VLAN tags |
| */ |
| static struct ice_dummy_pkt_profile * |
| ice_dummy_packet_add_vlan(const struct ice_dummy_pkt_profile *dummy_pkt, |
| u32 num_vlan) |
| { |
| struct ice_dummy_pkt_profile *profile; |
| struct ice_dummy_pkt_offsets *offsets; |
| u32 buf_len, off, etype_off, i; |
| u8 *pkt; |
| |
| if (num_vlan < 1 || num_vlan > 2) |
| return ERR_PTR(-EINVAL); |
| |
| off = num_vlan * VLAN_HLEN; |
| |
| buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet_offsets)) + |
| dummy_pkt->offsets_len; |
| offsets = kzalloc(buf_len, GFP_KERNEL); |
| if (!offsets) |
| return ERR_PTR(-ENOMEM); |
| |
| offsets[0] = dummy_pkt->offsets[0]; |
| if (num_vlan == 2) { |
| offsets[1] = ice_dummy_qinq_packet_offsets[0]; |
| offsets[2] = ice_dummy_qinq_packet_offsets[1]; |
| } else if (num_vlan == 1) { |
| offsets[1] = ice_dummy_vlan_packet_offsets[0]; |
| } |
| |
| for (i = 1; dummy_pkt->offsets[i].type != ICE_PROTOCOL_LAST; i++) { |
| offsets[i + num_vlan].type = dummy_pkt->offsets[i].type; |
| offsets[i + num_vlan].offset = |
| dummy_pkt->offsets[i].offset + off; |
| } |
| offsets[i + num_vlan] = dummy_pkt->offsets[i]; |
| |
| etype_off = dummy_pkt->offsets[1].offset; |
| |
| buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet)) + |
| dummy_pkt->pkt_len; |
| pkt = kzalloc(buf_len, GFP_KERNEL); |
| if (!pkt) { |
| kfree(offsets); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| memcpy(pkt, dummy_pkt->pkt, etype_off); |
| memcpy(pkt + etype_off, |
| num_vlan == 2 ? ice_dummy_qinq_packet : ice_dummy_vlan_packet, |
| off); |
| memcpy(pkt + etype_off + off, dummy_pkt->pkt + etype_off, |
| dummy_pkt->pkt_len - etype_off); |
| |
| profile = kzalloc(sizeof(*profile), GFP_KERNEL); |
| if (!profile) { |
| kfree(offsets); |
| kfree(pkt); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| profile->offsets = offsets; |
| profile->pkt = pkt; |
| profile->pkt_len = buf_len; |
| profile->match |= ICE_PKT_KMALLOC; |
| |
| return profile; |
| } |
| |
| /** |
| * ice_find_dummy_packet - find dummy packet |
| * |
| * @lkups: lookup elements or match criteria for the advanced recipe, one |
| * structure per protocol header |
| * @lkups_cnt: number of protocols |
| * @tun_type: tunnel type |
| * |
| * Returns the &ice_dummy_pkt_profile corresponding to these lookup params. |
| */ |
| static const struct ice_dummy_pkt_profile * |
| ice_find_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt, |
| enum ice_sw_tunnel_type tun_type) |
| { |
| const struct ice_dummy_pkt_profile *ret = ice_dummy_pkt_profiles; |
| u32 match = 0, vlan_count = 0; |
| u16 i; |
| |
| switch (tun_type) { |
| case ICE_SW_TUN_GTPC: |
| match |= ICE_PKT_TUN_GTPC; |
| break; |
| case ICE_SW_TUN_GTPU: |
| match |= ICE_PKT_TUN_GTPU; |
| break; |
| case ICE_SW_TUN_NVGRE: |
| match |= ICE_PKT_TUN_NVGRE; |
| break; |
| case ICE_SW_TUN_GENEVE: |
| case ICE_SW_TUN_VXLAN: |
| match |= ICE_PKT_TUN_UDP; |
| break; |
| default: |
| break; |
| } |
| |
| for (i = 0; i < lkups_cnt; i++) { |
| if (lkups[i].type == ICE_UDP_ILOS) |
| match |= ICE_PKT_INNER_UDP; |
| else if (lkups[i].type == ICE_TCP_IL) |
| match |= ICE_PKT_INNER_TCP; |
| else if (lkups[i].type == ICE_IPV6_OFOS) |
| match |= ICE_PKT_OUTER_IPV6; |
| else if (lkups[i].type == ICE_VLAN_OFOS || |
| lkups[i].type == ICE_VLAN_EX) |
| vlan_count++; |
| else if (lkups[i].type == ICE_VLAN_IN) |
| vlan_count++; |
| else if (lkups[i].type == ICE_ETYPE_OL && |
| lkups[i].h_u.ethertype.ethtype_id == |
| cpu_to_be16(ICE_IPV6_ETHER_ID) && |
| lkups[i].m_u.ethertype.ethtype_id == |
| cpu_to_be16(0xFFFF)) |
| match |= ICE_PKT_OUTER_IPV6; |
| else if (lkups[i].type == ICE_ETYPE_IL && |
| lkups[i].h_u.ethertype.ethtype_id == |
| cpu_to_be16(ICE_IPV6_ETHER_ID) && |
| lkups[i].m_u.ethertype.ethtype_id == |
| cpu_to_be16(0xFFFF)) |
| match |= ICE_PKT_INNER_IPV6; |
| else if (lkups[i].type == ICE_IPV6_IL) |
| match |= ICE_PKT_INNER_IPV6; |
| else if (lkups[i].type == ICE_GTP_NO_PAY) |
| match |= ICE_PKT_GTP_NOPAY; |
| else if (lkups[i].type == ICE_PPPOE) { |
| match |= ICE_PKT_PPPOE; |
| if (lkups[i].h_u.pppoe_hdr.ppp_prot_id == |
| htons(PPP_IPV6)) |
| match |= ICE_PKT_OUTER_IPV6; |
| } |
| } |
| |
| while (ret->match && (match & ret->match) != ret->match) |
| ret++; |
| |
| if (vlan_count != 0) |
| ret = ice_dummy_packet_add_vlan(ret, vlan_count); |
| |
| return ret; |
| } |
| |
| /** |
| * ice_fill_adv_dummy_packet - fill a dummy packet with given match criteria |
| * |
| * @lkups: lookup elements or match criteria for the advanced recipe, one |
| * structure per protocol header |
| * @lkups_cnt: number of protocols |
| * @s_rule: stores rule information from the match criteria |
| * @profile: dummy packet profile (the template, its size and header offsets) |
| */ |
| static int |
| ice_fill_adv_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt, |
| struct ice_sw_rule_lkup_rx_tx *s_rule, |
| const struct ice_dummy_pkt_profile *profile) |
| { |
| u8 *pkt; |
| u16 i; |
| |
| /* Start with a packet with a pre-defined/dummy content. Then, fill |
| * in the header values to be looked up or matched. |
| */ |
| pkt = s_rule->hdr_data; |
| |
| memcpy(pkt, profile->pkt, profile->pkt_len); |
| |
| for (i = 0; i < lkups_cnt; i++) { |
| const struct ice_dummy_pkt_offsets *offsets = profile->offsets; |
| enum ice_protocol_type type; |
| u16 offset = 0, len = 0, j; |
| bool found = false; |
| |
| /* find the start of this layer; it should be found since this |
| * was already checked when search for the dummy packet |
| */ |
| type = lkups[i].type; |
| for (j = 0; offsets[j].type != ICE_PROTOCOL_LAST; j++) { |
| if (type == offsets[j].type) { |
| offset = offsets[j].offset; |
| found = true; |
| break; |
| } |
| } |
| /* this should never happen in a correct calling sequence */ |
| if (!found) |
| return -EINVAL; |
| |
| switch (lkups[i].type) { |
| case ICE_MAC_OFOS: |
| case ICE_MAC_IL: |
| len = sizeof(struct ice_ether_hdr); |
| break; |
| case ICE_ETYPE_OL: |
| case ICE_ETYPE_IL: |
| len = sizeof(struct ice_ethtype_hdr); |
| break; |
| case ICE_VLAN_OFOS: |
| case ICE_VLAN_EX: |
| case ICE_VLAN_IN: |
| len = sizeof(struct ice_vlan_hdr); |
| break; |
| case ICE_IPV4_OFOS: |
| case ICE_IPV4_IL: |
| len = sizeof(struct ice_ipv4_hdr); |
| break; |
| case ICE_IPV6_OFOS: |
| case ICE_IPV6_IL: |
| len = sizeof(struct ice_ipv6_hdr); |
| break; |
| case ICE_TCP_IL: |
| case ICE_UDP_OF: |
| case ICE_UDP_ILOS: |
| len = sizeof(struct ice_l4_hdr); |
| break; |
| case ICE_SCTP_IL: |
| len = sizeof(struct ice_sctp_hdr); |
| break; |
| case ICE_NVGRE: |
| len = sizeof(struct ice_nvgre_hdr); |
| break; |
| case ICE_VXLAN: |
| case ICE_GENEVE: |
| len = sizeof(struct ice_udp_tnl_hdr); |
| break; |
| case ICE_GTP_NO_PAY: |
| case ICE_GTP: |
| len = sizeof(struct ice_udp_gtp_hdr); |
| break; |
| case ICE_PPPOE: |
| len = sizeof(struct ice_pppoe_hdr); |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| /* the length should be a word multiple */ |
| if (len % ICE_BYTES_PER_WORD) |
| return -EIO; |
| |
| /* We have the offset to the header start, the length, the |
| * caller's header values and mask. Use this information to |
| * copy the data into the dummy packet appropriately based on |
| * the mask. Note that we need to only write the bits as |
| * indicated by the mask to make sure we don't improperly write |
| * over any significant packet data. |
| */ |
| for (j = 0; j < len / sizeof(u16); j++) { |
| u16 *ptr = (u16 *)(pkt + offset); |
| u16 mask = lkups[i].m_raw[j]; |
| |
| if (!mask) |
| continue; |
| |
| ptr[j] = (ptr[j] & ~mask) | (lkups[i].h_raw[j] & mask); |
| } |
| } |
| |
| s_rule->hdr_len = cpu_to_le16(profile->pkt_len); |
| |
| return 0; |
| } |
| |
| /** |
| * ice_fill_adv_packet_tun - fill dummy packet with udp tunnel port |
| * @hw: pointer to the hardware structure |
| * @tun_type: tunnel type |
| * @pkt: dummy packet to fill in |
| * @offsets: offset info for the dummy packet |
| */ |
| static int |
| ice_fill_adv_packet_tun(struct ice_hw *hw, enum ice_sw_tunnel_type tun_type, |
| u8 *pkt, const struct ice_dummy_pkt_offsets *offsets) |
| { |
| u16 open_port, i; |
| |
| switch (tun_type) { |
| case ICE_SW_TUN_VXLAN: |
| if (!ice_get_open_tunnel_port(hw, &open_port, TNL_VXLAN)) |
| return -EIO; |
| break; |
| case ICE_SW_TUN_GENEVE: |
| if (!ice_get_open_tunnel_port(hw, &open_port, TNL_GENEVE)) |
| return -EIO; |
| break; |
| default: |
| /* Nothing needs to be done for this tunnel type */ |
| return 0; |
| } |
| |
| /* Find the outer UDP protocol header and insert the port number */ |
| for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) { |
| if (offsets[i].type == ICE_UDP_OF) { |
| struct ice_l4_hdr *hdr; |
| u16 offset; |
| |
| offset = offsets[i].offset; |
| hdr = (struct ice_l4_hdr *)&pkt[offset]; |
| hdr->dst_port = cpu_to_be16(open_port); |
| |
| return 0; |
| } |
| } |
| |
| return -EIO; |
| } |
| |
| /** |
| * ice_fill_adv_packet_vlan - fill dummy packet with VLAN tag type |
| * @vlan_type: VLAN tag type |
| * @pkt: dummy packet to fill in |
| * @offsets: offset info for the dummy packet |
| */ |
| static int |
| ice_fill_adv_packet_vlan(u16 vlan_type, u8 *pkt, |
| const struct ice_dummy_pkt_offsets *offsets) |
| { |
| u16 i; |
| |
| /* Find VLAN header and insert VLAN TPID */ |
| for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) { |
| if (offsets[i].type == ICE_VLAN_OFOS || |
| offsets[i].type == ICE_VLAN_EX) { |
| struct ice_vlan_hdr *hdr; |
| u16 offset; |
| |
| offset = offsets[i].offset; |
| hdr = (struct ice_vlan_hdr *)&pkt[offset]; |
| hdr->type = cpu_to_be16(vlan_type); |
| |
| return 0; |
| } |
| } |
| |
| return -EIO; |
| } |
| |
| /** |
| * ice_find_adv_rule_entry - Search a rule entry |
| * @hw: pointer to the hardware structure |
| * @lkups: lookup elements or match criteria for the advanced recipe, one |
| * structure per protocol header |
| * @lkups_cnt: number of protocols |
| * @recp_id: recipe ID for which we are finding the rule |
| * @rinfo: other information regarding the rule e.g. priority and action info |
| * |
| * Helper function to search for a given advance rule entry |
| * Returns pointer to entry storing the rule if found |
| */ |
| static struct ice_adv_fltr_mgmt_list_entry * |
| ice_find_adv_rule_entry(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups, |
| u16 lkups_cnt, u16 recp_id, |
| struct ice_adv_rule_info *rinfo) |
| { |
| struct ice_adv_fltr_mgmt_list_entry *list_itr; |
| struct ice_switch_info *sw = hw->switch_info; |
| int i; |
| |
| list_for_each_entry(list_itr, &sw->recp_list[recp_id].filt_rules, |
| list_entry) { |
| bool lkups_matched = true; |
| |
| if (lkups_cnt != list_itr->lkups_cnt) |
| continue; |
| for (i = 0; i < list_itr->lkups_cnt; i++) |
| if (memcmp(&list_itr->lkups[i], &lkups[i], |
| sizeof(*lkups))) { |
| lkups_matched = false; |
| break; |
| } |
| if (rinfo->sw_act.flag == list_itr->rule_info.sw_act.flag && |
| rinfo->tun_type == list_itr->rule_info.tun_type && |
| rinfo->vlan_type == list_itr->rule_info.vlan_type && |
| lkups_matched) |
| return list_itr; |
| } |
| return NULL; |
| } |
| |
| /** |
| * ice_adv_add_update_vsi_list |
| * @hw: pointer to the hardware structure |
| * @m_entry: pointer to current adv filter management list entry |
| * @cur_fltr: filter information from the book keeping entry |
| * @new_fltr: filter information with the new VSI to be added |
| * |
| * Call AQ command to add or update previously created VSI list with new VSI. |
| * |
| * Helper function to do book keeping associated with adding filter information |
| * The algorithm to do the booking keeping is described below : |
| * When a VSI needs to subscribe to a given advanced filter |
| * if only one VSI has been added till now |
| * Allocate a new VSI list and add two VSIs |
| * to this list using switch rule command |
| * Update the previously created switch rule with the |
| * newly created VSI list ID |
| * if a VSI list was previously created |
| * Add the new VSI to the previously created VSI list set |
| * using the update switch rule command |
| */ |
| static int |
| ice_adv_add_update_vsi_list(struct ice_hw *hw, |
| struct ice_adv_fltr_mgmt_list_entry *m_entry, |
| struct ice_adv_rule_info *cur_fltr, |
| struct ice_adv_rule_info *new_fltr) |
| { |
| u16 vsi_list_id = 0; |
| int status; |
| |
| if (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_Q || |
| cur_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP || |
| cur_fltr->sw_act.fltr_act == ICE_DROP_PACKET) |
| return -EOPNOTSUPP; |
| |
| if ((new_fltr->sw_act.fltr_act == ICE_FWD_TO_Q || |
| new_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP) && |
| (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI || |
| cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI_LIST)) |
| return -EOPNOTSUPP; |
| |
| if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) { |
| /* Only one entry existed in the mapping and it was not already |
| * a part of a VSI list. So, create a VSI list with the old and |
| * new VSIs. |
| */ |
| struct ice_fltr_info tmp_fltr; |
| u16 vsi_handle_arr[2]; |
| |
| /* A rule already exists with the new VSI being added */ |
| if (cur_fltr->sw_act.fwd_id.hw_vsi_id == |
| new_fltr->sw_act.fwd_id.hw_vsi_id) |
| return -EEXIST; |
| |
| vsi_handle_arr[0] = cur_fltr->sw_act.vsi_handle; |
| vsi_handle_arr[1] = new_fltr->sw_act.vsi_handle; |
| status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2, |
| &vsi_list_id, |
| ICE_SW_LKUP_LAST); |
| if (status) |
| return status; |
| |
| memset(&tmp_fltr, 0, sizeof(tmp_fltr)); |
| tmp_fltr.flag = m_entry->rule_info.sw_act.flag; |
| tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id; |
| tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST; |
| tmp_fltr.fwd_id.vsi_list_id = vsi_list_id; |
| tmp_fltr.lkup_type = ICE_SW_LKUP_LAST; |
| |
| /* Update the previous switch rule of "forward to VSI" to |
| * "fwd to VSI list" |
| */ |
| status = ice_update_pkt_fwd_rule(hw, &tmp_fltr); |
| if (status) |
| return status; |
| |
| cur_fltr->sw_act.fwd_id.vsi_list_id = vsi_list_id; |
| cur_fltr->sw_act.fltr_act = ICE_FWD_TO_VSI_LIST; |
| m_entry->vsi_list_info = |
| ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2, |
| vsi_list_id); |
| } else { |
| u16 vsi_handle = new_fltr->sw_act.vsi_handle; |
| |
| if (!m_entry->vsi_list_info) |
| return -EIO; |
| |
| /* A rule already exists with the new VSI being added */ |
| if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map)) |
| return 0; |
| |
| /* Update the previously created VSI list set with |
| * the new VSI ID passed in |
| */ |
| vsi_list_id = cur_fltr->sw_act.fwd_id.vsi_list_id; |
| |
| status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, |
| vsi_list_id, false, |
| ice_aqc_opc_update_sw_rules, |
| ICE_SW_LKUP_LAST); |
| /* update VSI list mapping info with new VSI ID */ |
| if (!status) |
| set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map); |
| } |
| if (!status) |
| m_entry->vsi_count++; |
| return status; |
| } |
| |
| /** |
| * ice_add_adv_rule - helper function to create an advanced switch rule |
| * @hw: pointer to the hardware structure |
| * @lkups: information on the words that needs to be looked up. All words |
| * together makes one recipe |
| * @lkups_cnt: num of entries in the lkups array |
| * @rinfo: other information related to the rule that needs to be programmed |
| * @added_entry: this will return recipe_id, rule_id and vsi_handle. should be |
| * ignored is case of error. |
| * |
| * This function can program only 1 rule at a time. The lkups is used to |
| * describe the all the words that forms the "lookup" portion of the recipe. |
| * These words can span multiple protocols. Callers to this function need to |
| * pass in a list of protocol headers with lookup information along and mask |
| * that determines which words are valid from the given protocol header. |
| * rinfo describes other information related to this rule such as forwarding |
| * IDs, priority of this rule, etc. |
| */ |
| int |
| ice_add_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups, |
| u16 lkups_cnt, struct ice_adv_rule_info *rinfo, |
| struct ice_rule_query_data *added_entry) |
| { |
| struct ice_adv_fltr_mgmt_list_entry *m_entry, *adv_fltr = NULL; |
| struct ice_sw_rule_lkup_rx_tx *s_rule = NULL; |
| const struct ice_dummy_pkt_profile *profile; |
| u16 rid = 0, i, rule_buf_sz, vsi_handle; |
| struct list_head *rule_head; |
| struct ice_switch_info *sw; |
| u16 word_cnt; |
| u32 act = 0; |
| int status; |
| u8 q_rgn; |
| |
| /* Initialize profile to result index bitmap */ |
| if (!hw->switch_info->prof_res_bm_init) { |
| hw->switch_info->prof_res_bm_init = 1; |
| ice_init_prof_result_bm(hw); |
| } |
| |
| if (!lkups_cnt) |
| return -EINVAL; |
| |
| /* get # of words we need to match */ |
| word_cnt = 0; |
| for (i = 0; i < lkups_cnt; i++) { |
| u16 j; |
| |
| for (j = 0; j < ARRAY_SIZE(lkups->m_raw); j++) |
| if (lkups[i].m_raw[j]) |
| word_cnt++; |
| } |
| |
| if (!word_cnt) |
| return -EINVAL; |
| |
| if (word_cnt > ICE_MAX_CHAIN_WORDS) |
| return -ENOSPC; |
| |
| /* locate a dummy packet */ |
| profile = ice_find_dummy_packet(lkups, lkups_cnt, rinfo->tun_type); |
| if (IS_ERR(profile)) |
| return PTR_ERR(profile); |
| |
| if (!(rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI || |
| rinfo->sw_act.fltr_act == ICE_FWD_TO_Q || |
| rinfo->sw_act.fltr_act == ICE_FWD_TO_QGRP || |
| rinfo->sw_act.fltr_act == ICE_DROP_PACKET)) { |
| status = -EIO; |
| goto free_pkt_profile; |
| } |
| |
| vsi_handle = rinfo->sw_act.vsi_handle; |
| if (!ice_is_vsi_valid(hw, vsi_handle)) { |
| status = -EINVAL; |
| goto free_pkt_profile; |
| } |
| |
| if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI) |
| rinfo->sw_act.fwd_id.hw_vsi_id = |
| ice_get_hw_vsi_num(hw, vsi_handle); |
| if (rinfo->sw_act.flag & ICE_FLTR_TX) |
| rinfo->sw_act.src = ice_get_hw_vsi_num(hw, vsi_handle); |
| |
| status = ice_add_adv_recipe(hw, lkups, lkups_cnt, rinfo, &rid); |
| if (status) |
| goto free_pkt_profile; |
| m_entry = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo); |
| if (m_entry) { |
| /* we have to add VSI to VSI_LIST and increment vsi_count. |
| * Also Update VSI list so that we can change forwarding rule |
| * if the rule already exists, we will check if it exists with |
| * same vsi_id, if not then add it to the VSI list if it already |
| * exists if not then create a VSI list and add the existing VSI |
| * ID and the new VSI ID to the list |
| * We will add that VSI to the list |
| */ |
| status = ice_adv_add_update_vsi_list(hw, m_entry, |
| &m_entry->rule_info, |
| rinfo); |
| if (added_entry) { |
| added_entry->rid = rid; |
| added_entry->rule_id = m_entry->rule_info.fltr_rule_id; |
| added_entry->vsi_handle = rinfo->sw_act.vsi_handle; |
| } |
| goto free_pkt_profile; |
| } |
| rule_buf_sz = ICE_SW_RULE_RX_TX_HDR_SIZE(s_rule, profile->pkt_len); |
| s_rule = kzalloc(rule_buf_sz, GFP_KERNEL); |
| if (!s_rule) { |
| status = -ENOMEM; |
| goto free_pkt_profile; |
| } |
| if (!rinfo->flags_info.act_valid) { |
| act |= ICE_SINGLE_ACT_LAN_ENABLE; |
| act |= ICE_SINGLE_ACT_LB_ENABLE; |
| } else { |
| act |= rinfo->flags_info.act & (ICE_SINGLE_ACT_LAN_ENABLE | |
| ICE_SINGLE_ACT_LB_ENABLE); |
| } |
| |
| switch (rinfo->sw_act.fltr_act) { |
| case ICE_FWD_TO_VSI: |
| act |= (rinfo->sw_act.fwd_id.hw_vsi_id << |
| ICE_SINGLE_ACT_VSI_ID_S) & ICE_SINGLE_ACT_VSI_ID_M; |
| act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_VALID_BIT; |
| break; |
| case ICE_FWD_TO_Q: |
| act |= ICE_SINGLE_ACT_TO_Q; |
| act |= (rinfo->sw_act.fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) & |
| ICE_SINGLE_ACT_Q_INDEX_M; |
| break; |
| case ICE_FWD_TO_QGRP: |
| q_rgn = rinfo->sw_act.qgrp_size > 0 ? |
| (u8)ilog2(rinfo->sw_act.qgrp_size) : 0; |
| act |= ICE_SINGLE_ACT_TO_Q; |
| act |= (rinfo->sw_act.fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) & |
| ICE_SINGLE_ACT_Q_INDEX_M; |
| act |= (q_rgn << ICE_SINGLE_ACT_Q_REGION_S) & |
| ICE_SINGLE_ACT_Q_REGION_M; |
| break; |
| case ICE_DROP_PACKET: |
| act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP | |
| ICE_SINGLE_ACT_VALID_BIT; |
| break; |
| default: |
| status = -EIO; |
| goto err_ice_add_adv_rule; |
| } |
| |
| /* set the rule LOOKUP type based on caller specified 'Rx' |
| * instead of hardcoding it to be either LOOKUP_TX/RX |
| * |
| * for 'Rx' set the source to be the port number |
| * for 'Tx' set the source to be the source HW VSI number (determined |
| * by caller) |
| */ |
| if (rinfo->rx) { |
| s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX); |
| s_rule->src = cpu_to_le16(hw->port_info->lport); |
| } else { |
| s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX); |
| s_rule->src = cpu_to_le16(rinfo->sw_act.src); |
| } |
| |
| s_rule->recipe_id = cpu_to_le16(rid); |
| s_rule->act = cpu_to_le32(act); |
| |
| status = ice_fill_adv_dummy_packet(lkups, lkups_cnt, s_rule, profile); |
| if (status) |
| goto err_ice_add_adv_rule; |
| |
| if (rinfo->tun_type != ICE_NON_TUN && |
| rinfo->tun_type != ICE_SW_TUN_AND_NON_TUN) { |
| status = ice_fill_adv_packet_tun(hw, rinfo->tun_type, |
| s_rule->hdr_data, |
| profile->offsets); |
| if (status) |
| goto err_ice_add_adv_rule; |
| } |
| |
| if (rinfo->vlan_type != 0 && ice_is_dvm_ena(hw)) { |
| status = ice_fill_adv_packet_vlan(rinfo->vlan_type, |
| s_rule->hdr_data, |
| profile->offsets); |
| if (status) |
| goto err_ice_add_adv_rule; |
| } |
| |
| status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule, |
| rule_buf_sz, 1, ice_aqc_opc_add_sw_rules, |
| NULL); |
| if (status) |
| goto err_ice_add_adv_rule; |
| adv_fltr = devm_kzalloc(ice_hw_to_dev(hw), |
| sizeof(struct ice_adv_fltr_mgmt_list_entry), |
| GFP_KERNEL); |
| if (!adv_fltr) { |
| status = -ENOMEM; |
| goto err_ice_add_adv_rule; |
| } |
| |
| adv_fltr->lkups = devm_kmemdup(ice_hw_to_dev(hw), lkups, |
| lkups_cnt * sizeof(*lkups), GFP_KERNEL); |
| if (!adv_fltr->lkups) { |
| status = -ENOMEM; |
| goto err_ice_add_adv_rule; |
| } |
| |
| adv_fltr->lkups_cnt = lkups_cnt; |
| adv_fltr->rule_info = *rinfo; |
| adv_fltr->rule_info.fltr_rule_id = le16_to_cpu(s_rule->index); |
| sw = hw->switch_info; |
| sw->recp_list[rid].adv_rule = true; |
| rule_head = &sw->recp_list[rid].filt_rules; |
| |
| if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI) |
| adv_fltr->vsi_count = 1; |
| |
| /* Add rule entry to book keeping list */ |
| list_add(&adv_fltr->list_entry, rule_head); |
| if (added_entry) { |
| added_entry->rid = rid; |
| added_entry->rule_id = adv_fltr->rule_info.fltr_rule_id; |
| added_entry->vsi_handle = rinfo->sw_act.vsi_handle; |
| } |
| err_ice_add_adv_rule: |
| if (status && adv_fltr) { |
| devm_kfree(ice_hw_to_dev(hw), adv_fltr->lkups); |
| devm_kfree(ice_hw_to_dev(hw), adv_fltr); |
| } |
| |
| kfree(s_rule); |
| |
| free_pkt_profile: |
| if (profile->match & ICE_PKT_KMALLOC) { |
| kfree(profile->offsets); |
| kfree(profile->pkt); |
| kfree(profile); |
| } |
| |
| return status; |
| } |
| |
| /** |
| * ice_replay_vsi_fltr - Replay filters for requested VSI |
| * @hw: pointer to the hardware structure |
| * @vsi_handle: driver VSI handle |
| * @recp_id: Recipe ID for which rules need to be replayed |
| * @list_head: list for which filters need to be replayed |
| * |
| * Replays the filter of recipe recp_id for a VSI represented via vsi_handle. |
| * It is required to pass valid VSI handle. |
| */ |
| static int |
| ice_replay_vsi_fltr(struct ice_hw *hw, u16 vsi_handle, u8 recp_id, |
| struct list_head *list_head) |
| { |
| struct ice_fltr_mgmt_list_entry *itr; |
| int status = 0; |
| u16 hw_vsi_id; |
| |
| if (list_empty(list_head)) |
| return status; |
| hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); |
| |
| list_for_each_entry(itr, list_head, list_entry) { |
| struct ice_fltr_list_entry f_entry; |
| |
| f_entry.fltr_info = itr->fltr_info; |
| if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN && |
| itr->fltr_info.vsi_handle == vsi_handle) { |
| /* update the src in case it is VSI num */ |
| if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI) |
| f_entry.fltr_info.src = hw_vsi_id; |
| status = ice_add_rule_internal(hw, recp_id, &f_entry); |
| if (status) |
| goto end; |
| continue; |
| } |
| if (!itr->vsi_list_info || |
| !test_bit(vsi_handle, itr->vsi_list_info->vsi_map)) |
| continue; |
| /* Clearing it so that the logic can add it back */ |
| clear_bit(vsi_handle, itr->vsi_list_info->vsi_map); |
| f_entry.fltr_info.vsi_handle = vsi_handle; |
| f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI; |
| /* update the src in case it is VSI num */ |
| if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI) |
| f_entry.fltr_info.src = hw_vsi_id; |
| if (recp_id == ICE_SW_LKUP_VLAN) |
| status = ice_add_vlan_internal(hw, &f_entry); |
| else |
| status = ice_add_rule_internal(hw, recp_id, &f_entry); |
| if (status) |
| goto end; |
| } |
| end: |
| return status; |
| } |
| |
| /** |
| * ice_adv_rem_update_vsi_list |
| * @hw: pointer to the hardware structure |
| * @vsi_handle: VSI handle of the VSI to remove |
| * @fm_list: filter management entry for which the VSI list management needs to |
| * be done |
| */ |
| static int |
| ice_adv_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle, |
| struct ice_adv_fltr_mgmt_list_entry *fm_list) |
| { |
| struct ice_vsi_list_map_info *vsi_list_info; |
| enum ice_sw_lkup_type lkup_type; |
| u16 vsi_list_id; |
| int status; |
| |
| if (fm_list->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST || |
| fm_list->vsi_count == 0) |
| return -EINVAL; |
| |
| /* A rule with the VSI being removed does not exist */ |
| if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map)) |
| return -ENOENT; |
| |
| lkup_type = ICE_SW_LKUP_LAST; |
| vsi_list_id = fm_list->rule_info.sw_act.fwd_id.vsi_list_id; |
| status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true, |
| ice_aqc_opc_update_sw_rules, |
| lkup_type); |
| if (status) |
| return status; |
| |
| fm_list->vsi_count--; |
| clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map); |
| vsi_list_info = fm_list->vsi_list_info; |
| if (fm_list->vsi_count == 1) { |
| struct ice_fltr_info tmp_fltr; |
| u16 rem_vsi_handle; |
| |
| rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map, |
| ICE_MAX_VSI); |
| if (!ice_is_vsi_valid(hw, rem_vsi_handle)) |
| return -EIO; |
| |
| /* Make sure VSI list is empty before removing it below */ |
| status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1, |
| vsi_list_id, true, |
| ice_aqc_opc_update_sw_rules, |
| lkup_type); |
| if (status) |
| return status; |
| |
| memset(&tmp_fltr, 0, sizeof(tmp_fltr)); |
| tmp_fltr.flag = fm_list->rule_info.sw_act.flag; |
| tmp_fltr.fltr_rule_id = fm_list->rule_info.fltr_rule_id; |
| fm_list->rule_info.sw_act.fltr_act = ICE_FWD_TO_VSI; |
| tmp_fltr.fltr_act = ICE_FWD_TO_VSI; |
| tmp_fltr.fwd_id.hw_vsi_id = |
| ice_get_hw_vsi_num(hw, rem_vsi_handle); |
| fm_list->rule_info.sw_act.fwd_id.hw_vsi_id = |
| ice_get_hw_vsi_num(hw, rem_vsi_handle); |
| fm_list->rule_info.sw_act.vsi_handle = rem_vsi_handle; |
| |
| /* Update the previous switch rule of "MAC forward to VSI" to |
| * "MAC fwd to VSI list" |
| */ |
| status = ice_update_pkt_fwd_rule(hw, &tmp_fltr); |
| if (status) { |
| ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n", |
| tmp_fltr.fwd_id.hw_vsi_id, status); |
| return status; |
| } |
| fm_list->vsi_list_info->ref_cnt--; |
| |
| /* Remove the VSI list since it is no longer used */ |
| status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type); |
| if (status) { |
| ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n", |
| vsi_list_id, status); |
| return status; |
| } |
| |
| list_del(&vsi_list_info->list_entry); |
| devm_kfree(ice_hw_to_dev(hw), vsi_list_info); |
| fm_list->vsi_list_info = NULL; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * ice_rem_adv_rule - removes existing advanced switch rule |
| * @hw: pointer to the hardware structure |
| * @lkups: information on the words that needs to be looked up. All words |
| * together makes one recipe |
| * @lkups_cnt: num of entries in the lkups array |
| * @rinfo: Its the pointer to the rule information for the rule |
| * |
| * This function can be used to remove 1 rule at a time. The lkups is |
| * used to describe all the words that forms the "lookup" portion of the |
| * rule. These words can span multiple protocols. Callers to this function |
| * need to pass in a list of protocol headers with lookup information along |
| * and mask that determines which words are valid from the given protocol |
| * header. rinfo describes other information related to this rule such as |
| * forwarding IDs, priority of this rule, etc. |
| */ |
| static int |
| ice_rem_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups, |
| u16 lkups_cnt, struct ice_adv_rule_info *rinfo) |
| { |
| struct ice_adv_fltr_mgmt_list_entry *list_elem; |
| struct ice_prot_lkup_ext lkup_exts; |
| bool remove_rule = false; |
| struct mutex *rule_lock; /* Lock to protect filter rule list */ |
| u16 i, rid, vsi_handle; |
| int status = 0; |
| |
| memset(&lkup_exts, 0, sizeof(lkup_exts)); |
| for (i = 0; i < lkups_cnt; i++) { |
| u16 count; |
| |
| if (lkups[i].type >= ICE_PROTOCOL_LAST) |
| return -EIO; |
| |
| count = ice_fill_valid_words(&lkups[i], &lkup_exts); |
| if (!count) |
| return -EIO; |
| } |
| |
| /* Create any special protocol/offset pairs, such as looking at tunnel |
| * bits by extracting metadata |
| */ |
| status = ice_add_special_words(rinfo, &lkup_exts, ice_is_dvm_ena(hw)); |
| if (status) |
| return status; |
| |
| rid = ice_find_recp(hw, &lkup_exts, rinfo->tun_type); |
| /* If did not find a recipe that match the existing criteria */ |
| if (rid == ICE_MAX_NUM_RECIPES) |
| return -EINVAL; |
| |
| rule_lock = &hw->switch_info->recp_list[rid].filt_rule_lock; |
| list_elem = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo); |
| /* the rule is already removed */ |
| if (!list_elem) |
| return 0; |
| mutex_lock(rule_lock); |
| if (list_elem->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST) { |
| remove_rule = true; |
| } else if (list_elem->vsi_count > 1) { |
| remove_rule = false; |
| vsi_handle = rinfo->sw_act.vsi_handle; |
| status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem); |
| } else { |
| vsi_handle = rinfo->sw_act.vsi_handle; |
| status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem); |
| if (status) { |
| mutex_unlock(rule_lock); |
| return status; |
| } |
| if (list_elem->vsi_count == 0) |
| remove_rule = true; |
| } |
| mutex_unlock(rule_lock); |
| if (remove_rule) { |
| struct ice_sw_rule_lkup_rx_tx *s_rule; |
| u16 rule_buf_sz; |
| |
| rule_buf_sz = ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule); |
| s_rule = kzalloc(rule_buf_sz, GFP_KERNEL); |
| if (!s_rule) |
| return -ENOMEM; |
| s_rule->act = 0; |
| s_rule->index = cpu_to_le16(list_elem->rule_info.fltr_rule_id); |
| s_rule->hdr_len = 0; |
| status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule, |
| rule_buf_sz, 1, |
| ice_aqc_opc_remove_sw_rules, NULL); |
| if (!status || status == -ENOENT) { |
| struct ice_switch_info *sw = hw->switch_info; |
| |
| mutex_lock(rule_lock); |
| list_del(&list_elem->list_entry); |
| devm_kfree(ice_hw_to_dev(hw), list_elem->lkups); |
| devm_kfree(ice_hw_to_dev(hw), list_elem); |
| mutex_unlock(rule_lock); |
| if (list_empty(&sw->recp_list[rid].filt_rules)) |
| sw->recp_list[rid].adv_rule = false; |
| } |
| kfree(s_rule); |
| } |
| return status; |
| } |
| |
| /** |
| * ice_rem_adv_rule_by_id - removes existing advanced switch rule by ID |
| * @hw: pointer to the hardware structure |
| * @remove_entry: data struct which holds rule_id, VSI handle and recipe ID |
| * |
| * This function is used to remove 1 rule at a time. The removal is based on |
| * the remove_entry parameter. This function will remove rule for a given |
| * vsi_handle with a given rule_id which is passed as parameter in remove_entry |
| */ |
| int |
| ice_rem_adv_rule_by_id(struct ice_hw *hw, |
| struct ice_rule_query_data *remove_entry) |
| { |
| struct ice_adv_fltr_mgmt_list_entry *list_itr; |
| struct list_head *list_head; |
| struct ice_adv_rule_info rinfo; |
| struct ice_switch_info *sw; |
| |
| sw = hw->switch_info; |
| if (!sw->recp_list[remove_entry->rid].recp_created) |
| return -EINVAL; |
| list_head = &sw->recp_list[remove_entry->rid].filt_rules; |
| list_for_each_entry(list_itr, list_head, list_entry) { |
| if (list_itr->rule_info.fltr_rule_id == |
| remove_entry->rule_id) { |
| rinfo = list_itr->rule_info; |
| rinfo.sw_act.vsi_handle = remove_entry->vsi_handle; |
| return ice_rem_adv_rule(hw, list_itr->lkups, |
| list_itr->lkups_cnt, &rinfo); |
| } |
| } |
| /* either list is empty or unable to find rule */ |
| return -ENOENT; |
| } |
| |
| /** |
| * ice_rem_adv_rule_for_vsi - removes existing advanced switch rules for a |
| * given VSI handle |
| * @hw: pointer to the hardware structure |
| * @vsi_handle: VSI handle for which we are supposed to remove all the rules. |
| * |
| * This function is used to remove all the rules for a given VSI and as soon |
| * as removing a rule fails, it will return immediately with the error code, |
| * else it will return success. |
| */ |
| int ice_rem_adv_rule_for_vsi(struct ice_hw *hw, u16 vsi_handle) |
| { |
| struct ice_adv_fltr_mgmt_list_entry *list_itr, *tmp_entry; |
| struct ice_vsi_list_map_info *map_info; |
| struct ice_adv_rule_info rinfo; |
| struct list_head *list_head; |
| struct ice_switch_info *sw; |
| int status; |
| u8 rid; |
| |
| sw = hw->switch_info; |
| for (rid = 0; rid < ICE_MAX_NUM_RECIPES; rid++) { |
| if (!sw->recp_list[rid].recp_created) |
| continue; |
| if (!sw->recp_list[rid].adv_rule) |
| continue; |
| |
| list_head = &sw->recp_list[rid].filt_rules; |
| list_for_each_entry_safe(list_itr, tmp_entry, list_head, |
| list_entry) { |
| rinfo = list_itr->rule_info; |
| |
| if (rinfo.sw_act.fltr_act == ICE_FWD_TO_VSI_LIST) { |
| map_info = list_itr->vsi_list_info; |
| if (!map_info) |
| continue; |
| |
| if (!test_bit(vsi_handle, map_info->vsi_map)) |
| continue; |
| } else if (rinfo.sw_act.vsi_handle != vsi_handle) { |
| continue; |
| } |
| |
| rinfo.sw_act.vsi_handle = vsi_handle; |
| status = ice_rem_adv_rule(hw, list_itr->lkups, |
| list_itr->lkups_cnt, &rinfo); |
| if (status) |
| return status; |
| } |
| } |
| return 0; |
| } |
| |
| /** |
| * ice_replay_vsi_adv_rule - Replay advanced rule for requested VSI |
| * @hw: pointer to the hardware structure |
| * @vsi_handle: driver VSI handle |
| * @list_head: list for which filters need to be replayed |
| * |
| * Replay the advanced rule for the given VSI. |
| */ |
| static int |
| ice_replay_vsi_adv_rule(struct ice_hw *hw, u16 vsi_handle, |
| struct list_head *list_head) |
| { |
| struct ice_rule_query_data added_entry = { 0 }; |
| struct ice_adv_fltr_mgmt_list_entry *adv_fltr; |
| int status = 0; |
| |
| if (list_empty(list_head)) |
| return status; |
| list_for_each_entry(adv_fltr, list_head, list_entry) { |
| struct ice_adv_rule_info *rinfo = &adv_fltr->rule_info; |
| u16 lk_cnt = adv_fltr->lkups_cnt; |
| |
| if (vsi_handle != rinfo->sw_act.vsi_handle) |
| continue; |
| status = ice_add_adv_rule(hw, adv_fltr->lkups, lk_cnt, rinfo, |
| &added_entry); |
| if (status) |
| break; |
| } |
| return status; |
| } |
| |
| /** |
| * ice_replay_vsi_all_fltr - replay all filters stored in bookkeeping lists |
| * @hw: pointer to the hardware structure |
| * @vsi_handle: driver VSI handle |
| * |
| * Replays filters for requested VSI via vsi_handle. |
| */ |
| int ice_replay_vsi_all_fltr(struct ice_hw *hw, u16 vsi_handle) |
| { |
| struct ice_switch_info *sw = hw->switch_info; |
| int status; |
| u8 i; |
| |
| for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) { |
| struct list_head *head; |
| |
| head = &sw->recp_list[i].filt_replay_rules; |
| if (!sw->recp_list[i].adv_rule) |
| status = ice_replay_vsi_fltr(hw, vsi_handle, i, head); |
| else |
| status = ice_replay_vsi_adv_rule(hw, vsi_handle, head); |
| if (status) |
| return status; |
| } |
| return status; |
| } |
| |
| /** |
| * ice_rm_all_sw_replay_rule_info - deletes filter replay rules |
| * @hw: pointer to the HW struct |
| * |
| * Deletes the filter replay rules. |
| */ |
| void ice_rm_all_sw_replay_rule_info(struct ice_hw *hw) |
| { |
| struct ice_switch_info *sw = hw->switch_info; |
| u8 i; |
| |
| if (!sw) |
| return; |
| |
| for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) { |
| if (!list_empty(&sw->recp_list[i].filt_replay_rules)) { |
| struct list_head *l_head; |
| |
| l_head = &sw->recp_list[i].filt_replay_rules; |
| if (!sw->recp_list[i].adv_rule) |
| ice_rem_sw_rule_info(hw, l_head); |
| else |
| ice_rem_adv_rule_info(hw, l_head); |
| } |
| } |
| } |