blob: 773e415cc2de61cb0f26f840c078934ebc8643c2 [file] [log] [blame]
// SPDX-License-Identifier: (GPL-2.0 OR MIT)
/*
* Copyright (c) 2018 Synopsys, Inc. and/or its affiliates.
* stmmac TC Handling (HW only)
*/
#include <net/pkt_cls.h>
#include <net/tc_act/tc_gact.h>
#include "common.h"
#include "dwmac4.h"
#include "dwmac5.h"
#include "stmmac.h"
static void tc_fill_all_pass_entry(struct stmmac_tc_entry *entry)
{
memset(entry, 0, sizeof(*entry));
entry->in_use = true;
entry->is_last = true;
entry->is_frag = false;
entry->prio = ~0x0;
entry->handle = 0;
entry->val.match_data = 0x0;
entry->val.match_en = 0x0;
entry->val.af = 1;
entry->val.dma_ch_no = 0x0;
}
static struct stmmac_tc_entry *tc_find_entry(struct stmmac_priv *priv,
struct tc_cls_u32_offload *cls,
bool free)
{
struct stmmac_tc_entry *entry, *first = NULL, *dup = NULL;
u32 loc = cls->knode.handle;
int i;
for (i = 0; i < priv->tc_entries_max; i++) {
entry = &priv->tc_entries[i];
if (!entry->in_use && !first && free)
first = entry;
if ((entry->handle == loc) && !free && !entry->is_frag)
dup = entry;
}
if (dup)
return dup;
if (first) {
first->handle = loc;
first->in_use = true;
/* Reset HW values */
memset(&first->val, 0, sizeof(first->val));
}
return first;
}
static int tc_fill_actions(struct stmmac_tc_entry *entry,
struct stmmac_tc_entry *frag,
struct tc_cls_u32_offload *cls)
{
struct stmmac_tc_entry *action_entry = entry;
const struct tc_action *act;
struct tcf_exts *exts;
int i;
exts = cls->knode.exts;
if (!tcf_exts_has_actions(exts))
return -EINVAL;
if (frag)
action_entry = frag;
tcf_exts_for_each_action(i, act, exts) {
/* Accept */
if (is_tcf_gact_ok(act)) {
action_entry->val.af = 1;
break;
}
/* Drop */
if (is_tcf_gact_shot(act)) {
action_entry->val.rf = 1;
break;
}
/* Unsupported */
return -EINVAL;
}
return 0;
}
static int tc_fill_entry(struct stmmac_priv *priv,
struct tc_cls_u32_offload *cls)
{
struct stmmac_tc_entry *entry, *frag = NULL;
struct tc_u32_sel *sel = cls->knode.sel;
u32 off, data, mask, real_off, rem;
u32 prio = cls->common.prio << 16;
int ret;
/* Only 1 match per entry */
if (sel->nkeys <= 0 || sel->nkeys > 1)
return -EINVAL;
off = sel->keys[0].off << sel->offshift;
data = sel->keys[0].val;
mask = sel->keys[0].mask;
switch (ntohs(cls->common.protocol)) {
case ETH_P_ALL:
break;
case ETH_P_IP:
off += ETH_HLEN;
break;
default:
return -EINVAL;
}
if (off > priv->tc_off_max)
return -EINVAL;
real_off = off / 4;
rem = off % 4;
entry = tc_find_entry(priv, cls, true);
if (!entry)
return -EINVAL;
if (rem) {
frag = tc_find_entry(priv, cls, true);
if (!frag) {
ret = -EINVAL;
goto err_unuse;
}
entry->frag_ptr = frag;
entry->val.match_en = (mask << (rem * 8)) &
GENMASK(31, rem * 8);
entry->val.match_data = (data << (rem * 8)) &
GENMASK(31, rem * 8);
entry->val.frame_offset = real_off;
entry->prio = prio;
frag->val.match_en = (mask >> (rem * 8)) &
GENMASK(rem * 8 - 1, 0);
frag->val.match_data = (data >> (rem * 8)) &
GENMASK(rem * 8 - 1, 0);
frag->val.frame_offset = real_off + 1;
frag->prio = prio;
frag->is_frag = true;
} else {
entry->frag_ptr = NULL;
entry->val.match_en = mask;
entry->val.match_data = data;
entry->val.frame_offset = real_off;
entry->prio = prio;
}
ret = tc_fill_actions(entry, frag, cls);
if (ret)
goto err_unuse;
return 0;
err_unuse:
if (frag)
frag->in_use = false;
entry->in_use = false;
return ret;
}
static void tc_unfill_entry(struct stmmac_priv *priv,
struct tc_cls_u32_offload *cls)
{
struct stmmac_tc_entry *entry;
entry = tc_find_entry(priv, cls, false);
if (!entry)
return;
entry->in_use = false;
if (entry->frag_ptr) {
entry = entry->frag_ptr;
entry->is_frag = false;
entry->in_use = false;
}
}
static int tc_config_knode(struct stmmac_priv *priv,
struct tc_cls_u32_offload *cls)
{
int ret;
ret = tc_fill_entry(priv, cls);
if (ret)
return ret;
ret = stmmac_rxp_config(priv, priv->hw->pcsr, priv->tc_entries,
priv->tc_entries_max);
if (ret)
goto err_unfill;
return 0;
err_unfill:
tc_unfill_entry(priv, cls);
return ret;
}
static int tc_delete_knode(struct stmmac_priv *priv,
struct tc_cls_u32_offload *cls)
{
/* Set entry and fragments as not used */
tc_unfill_entry(priv, cls);
return stmmac_rxp_config(priv, priv->hw->pcsr, priv->tc_entries,
priv->tc_entries_max);
}
static int tc_setup_cls_u32(struct stmmac_priv *priv,
struct tc_cls_u32_offload *cls)
{
switch (cls->command) {
case TC_CLSU32_REPLACE_KNODE:
tc_unfill_entry(priv, cls);
fallthrough;
case TC_CLSU32_NEW_KNODE:
return tc_config_knode(priv, cls);
case TC_CLSU32_DELETE_KNODE:
return tc_delete_knode(priv, cls);
default:
return -EOPNOTSUPP;
}
}
static int tc_rfs_init(struct stmmac_priv *priv)
{
int i;
priv->rfs_entries_max[STMMAC_RFS_T_VLAN] = 8;
priv->rfs_entries_max[STMMAC_RFS_T_LLDP] = 1;
priv->rfs_entries_max[STMMAC_RFS_T_1588] = 1;
for (i = 0; i < STMMAC_RFS_T_MAX; i++)
priv->rfs_entries_total += priv->rfs_entries_max[i];
priv->rfs_entries = devm_kcalloc(priv->device,
priv->rfs_entries_total,
sizeof(*priv->rfs_entries),
GFP_KERNEL);
if (!priv->rfs_entries)
return -ENOMEM;
dev_info(priv->device, "Enabled RFS Flow TC (entries=%d)\n",
priv->rfs_entries_total);
return 0;
}
static int tc_init(struct stmmac_priv *priv)
{
struct dma_features *dma_cap = &priv->dma_cap;
unsigned int count;
int ret, i;
if (dma_cap->l3l4fnum) {
priv->flow_entries_max = dma_cap->l3l4fnum;
priv->flow_entries = devm_kcalloc(priv->device,
dma_cap->l3l4fnum,
sizeof(*priv->flow_entries),
GFP_KERNEL);
if (!priv->flow_entries)
return -ENOMEM;
for (i = 0; i < priv->flow_entries_max; i++)
priv->flow_entries[i].idx = i;
dev_info(priv->device, "Enabled L3L4 Flow TC (entries=%d)\n",
priv->flow_entries_max);
}
ret = tc_rfs_init(priv);
if (ret)
return -ENOMEM;
if (!priv->plat->fpe_cfg) {
priv->plat->fpe_cfg = devm_kzalloc(priv->device,
sizeof(*priv->plat->fpe_cfg),
GFP_KERNEL);
if (!priv->plat->fpe_cfg)
return -ENOMEM;
} else {
memset(priv->plat->fpe_cfg, 0, sizeof(*priv->plat->fpe_cfg));
}
/* Fail silently as we can still use remaining features, e.g. CBS */
if (!dma_cap->frpsel)
return 0;
switch (dma_cap->frpbs) {
case 0x0:
priv->tc_off_max = 64;
break;
case 0x1:
priv->tc_off_max = 128;
break;
case 0x2:
priv->tc_off_max = 256;
break;
default:
return -EINVAL;
}
switch (dma_cap->frpes) {
case 0x0:
count = 64;
break;
case 0x1:
count = 128;
break;
case 0x2:
count = 256;
break;
default:
return -EINVAL;
}
/* Reserve one last filter which lets all pass */
priv->tc_entries_max = count;
priv->tc_entries = devm_kcalloc(priv->device,
count, sizeof(*priv->tc_entries), GFP_KERNEL);
if (!priv->tc_entries)
return -ENOMEM;
tc_fill_all_pass_entry(&priv->tc_entries[count - 1]);
dev_info(priv->device, "Enabling HW TC (entries=%d, max_off=%d)\n",
priv->tc_entries_max, priv->tc_off_max);
return 0;
}
static int tc_setup_cbs(struct stmmac_priv *priv,
struct tc_cbs_qopt_offload *qopt)
{
u32 tx_queues_count = priv->plat->tx_queues_to_use;
u32 queue = qopt->queue;
u32 ptr, speed_div;
u32 mode_to_use;
u64 value;
int ret;
/* Queue 0 is not AVB capable */
if (queue <= 0 || queue >= tx_queues_count)
return -EINVAL;
if (!priv->dma_cap.av)
return -EOPNOTSUPP;
/* Port Transmit Rate and Speed Divider */
switch (priv->speed) {
case SPEED_10000:
ptr = 32;
speed_div = 10000000;
break;
case SPEED_5000:
ptr = 32;
speed_div = 5000000;
break;
case SPEED_2500:
ptr = 8;
speed_div = 2500000;
break;
case SPEED_1000:
ptr = 8;
speed_div = 1000000;
break;
case SPEED_100:
ptr = 4;
speed_div = 100000;
break;
default:
return -EOPNOTSUPP;
}
mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
if (mode_to_use == MTL_QUEUE_DCB && qopt->enable) {
ret = stmmac_dma_qmode(priv, priv->ioaddr, queue, MTL_QUEUE_AVB);
if (ret)
return ret;
priv->plat->tx_queues_cfg[queue].mode_to_use = MTL_QUEUE_AVB;
} else if (!qopt->enable) {
ret = stmmac_dma_qmode(priv, priv->ioaddr, queue,
MTL_QUEUE_DCB);
if (ret)
return ret;
priv->plat->tx_queues_cfg[queue].mode_to_use = MTL_QUEUE_DCB;
}
/* Final adjustments for HW */
value = div_s64(qopt->idleslope * 1024ll * ptr, speed_div);
priv->plat->tx_queues_cfg[queue].idle_slope = value & GENMASK(31, 0);
value = div_s64(-qopt->sendslope * 1024ll * ptr, speed_div);
priv->plat->tx_queues_cfg[queue].send_slope = value & GENMASK(31, 0);
value = qopt->hicredit * 1024ll * 8;
priv->plat->tx_queues_cfg[queue].high_credit = value & GENMASK(31, 0);
value = qopt->locredit * 1024ll * 8;
priv->plat->tx_queues_cfg[queue].low_credit = value & GENMASK(31, 0);
ret = stmmac_config_cbs(priv, priv->hw,
priv->plat->tx_queues_cfg[queue].send_slope,
priv->plat->tx_queues_cfg[queue].idle_slope,
priv->plat->tx_queues_cfg[queue].high_credit,
priv->plat->tx_queues_cfg[queue].low_credit,
queue);
if (ret)
return ret;
dev_info(priv->device, "CBS queue %d: send %d, idle %d, hi %d, lo %d\n",
queue, qopt->sendslope, qopt->idleslope,
qopt->hicredit, qopt->locredit);
return 0;
}
static int tc_parse_flow_actions(struct stmmac_priv *priv,
struct flow_action *action,
struct stmmac_flow_entry *entry,
struct netlink_ext_ack *extack)
{
struct flow_action_entry *act;
int i;
if (!flow_action_has_entries(action))
return -EINVAL;
if (!flow_action_basic_hw_stats_check(action, extack))
return -EOPNOTSUPP;
flow_action_for_each(i, act, action) {
switch (act->id) {
case FLOW_ACTION_DROP:
entry->action |= STMMAC_FLOW_ACTION_DROP;
return 0;
default:
break;
}
}
/* Nothing to do, maybe inverse filter ? */
return 0;
}
#define ETHER_TYPE_FULL_MASK cpu_to_be16(~0)
static int tc_add_basic_flow(struct stmmac_priv *priv,
struct flow_cls_offload *cls,
struct stmmac_flow_entry *entry)
{
struct flow_rule *rule = flow_cls_offload_flow_rule(cls);
struct flow_dissector *dissector = rule->match.dissector;
struct flow_match_basic match;
/* Nothing to do here */
if (!dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_BASIC))
return -EINVAL;
flow_rule_match_basic(rule, &match);
entry->ip_proto = match.key->ip_proto;
return 0;
}
static int tc_add_ip4_flow(struct stmmac_priv *priv,
struct flow_cls_offload *cls,
struct stmmac_flow_entry *entry)
{
struct flow_rule *rule = flow_cls_offload_flow_rule(cls);
struct flow_dissector *dissector = rule->match.dissector;
bool inv = entry->action & STMMAC_FLOW_ACTION_DROP;
struct flow_match_ipv4_addrs match;
u32 hw_match;
int ret;
/* Nothing to do here */
if (!dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS))
return -EINVAL;
flow_rule_match_ipv4_addrs(rule, &match);
hw_match = ntohl(match.key->src) & ntohl(match.mask->src);
if (hw_match) {
ret = stmmac_config_l3_filter(priv, priv->hw, entry->idx, true,
false, true, inv, hw_match);
if (ret)
return ret;
}
hw_match = ntohl(match.key->dst) & ntohl(match.mask->dst);
if (hw_match) {
ret = stmmac_config_l3_filter(priv, priv->hw, entry->idx, true,
false, false, inv, hw_match);
if (ret)
return ret;
}
return 0;
}
static int tc_add_ports_flow(struct stmmac_priv *priv,
struct flow_cls_offload *cls,
struct stmmac_flow_entry *entry)
{
struct flow_rule *rule = flow_cls_offload_flow_rule(cls);
struct flow_dissector *dissector = rule->match.dissector;
bool inv = entry->action & STMMAC_FLOW_ACTION_DROP;
struct flow_match_ports match;
u32 hw_match;
bool is_udp;
int ret;
/* Nothing to do here */
if (!dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_PORTS))
return -EINVAL;
switch (entry->ip_proto) {
case IPPROTO_TCP:
is_udp = false;
break;
case IPPROTO_UDP:
is_udp = true;
break;
default:
return -EINVAL;
}
flow_rule_match_ports(rule, &match);
hw_match = ntohs(match.key->src) & ntohs(match.mask->src);
if (hw_match) {
ret = stmmac_config_l4_filter(priv, priv->hw, entry->idx, true,
is_udp, true, inv, hw_match);
if (ret)
return ret;
}
hw_match = ntohs(match.key->dst) & ntohs(match.mask->dst);
if (hw_match) {
ret = stmmac_config_l4_filter(priv, priv->hw, entry->idx, true,
is_udp, false, inv, hw_match);
if (ret)
return ret;
}
entry->is_l4 = true;
return 0;
}
static struct stmmac_flow_entry *tc_find_flow(struct stmmac_priv *priv,
struct flow_cls_offload *cls,
bool get_free)
{
int i;
for (i = 0; i < priv->flow_entries_max; i++) {
struct stmmac_flow_entry *entry = &priv->flow_entries[i];
if (entry->cookie == cls->cookie)
return entry;
if (get_free && (entry->in_use == false))
return entry;
}
return NULL;
}
static struct {
int (*fn)(struct stmmac_priv *priv, struct flow_cls_offload *cls,
struct stmmac_flow_entry *entry);
} tc_flow_parsers[] = {
{ .fn = tc_add_basic_flow },
{ .fn = tc_add_ip4_flow },
{ .fn = tc_add_ports_flow },
};
static int tc_add_flow(struct stmmac_priv *priv,
struct flow_cls_offload *cls)
{
struct stmmac_flow_entry *entry = tc_find_flow(priv, cls, false);
struct flow_rule *rule = flow_cls_offload_flow_rule(cls);
int i, ret;
if (!entry) {
entry = tc_find_flow(priv, cls, true);
if (!entry)
return -ENOENT;
}
ret = tc_parse_flow_actions(priv, &rule->action, entry,
cls->common.extack);
if (ret)
return ret;
for (i = 0; i < ARRAY_SIZE(tc_flow_parsers); i++) {
ret = tc_flow_parsers[i].fn(priv, cls, entry);
if (!ret)
entry->in_use = true;
}
if (!entry->in_use)
return -EINVAL;
entry->cookie = cls->cookie;
return 0;
}
static int tc_del_flow(struct stmmac_priv *priv,
struct flow_cls_offload *cls)
{
struct stmmac_flow_entry *entry = tc_find_flow(priv, cls, false);
int ret;
if (!entry || !entry->in_use)
return -ENOENT;
if (entry->is_l4) {
ret = stmmac_config_l4_filter(priv, priv->hw, entry->idx, false,
false, false, false, 0);
} else {
ret = stmmac_config_l3_filter(priv, priv->hw, entry->idx, false,
false, false, false, 0);
}
entry->in_use = false;
entry->cookie = 0;
entry->is_l4 = false;
return ret;
}
static struct stmmac_rfs_entry *tc_find_rfs(struct stmmac_priv *priv,
struct flow_cls_offload *cls,
bool get_free)
{
int i;
for (i = 0; i < priv->rfs_entries_total; i++) {
struct stmmac_rfs_entry *entry = &priv->rfs_entries[i];
if (entry->cookie == cls->cookie)
return entry;
if (get_free && entry->in_use == false)
return entry;
}
return NULL;
}
#define VLAN_PRIO_FULL_MASK (0x07)
static int tc_add_vlan_flow(struct stmmac_priv *priv,
struct flow_cls_offload *cls)
{
struct stmmac_rfs_entry *entry = tc_find_rfs(priv, cls, false);
struct flow_rule *rule = flow_cls_offload_flow_rule(cls);
struct flow_dissector *dissector = rule->match.dissector;
int tc = tc_classid_to_hwtc(priv->dev, cls->classid);
struct flow_match_vlan match;
if (!entry) {
entry = tc_find_rfs(priv, cls, true);
if (!entry)
return -ENOENT;
}
if (priv->rfs_entries_cnt[STMMAC_RFS_T_VLAN] >=
priv->rfs_entries_max[STMMAC_RFS_T_VLAN])
return -ENOENT;
/* Nothing to do here */
if (!dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_VLAN))
return -EINVAL;
if (tc < 0) {
netdev_err(priv->dev, "Invalid traffic class\n");
return -EINVAL;
}
flow_rule_match_vlan(rule, &match);
if (match.mask->vlan_priority) {
u32 prio;
if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
netdev_err(priv->dev, "Only full mask is supported for VLAN priority");
return -EINVAL;
}
prio = BIT(match.key->vlan_priority);
stmmac_rx_queue_prio(priv, priv->hw, prio, tc);
entry->in_use = true;
entry->cookie = cls->cookie;
entry->tc = tc;
entry->type = STMMAC_RFS_T_VLAN;
priv->rfs_entries_cnt[STMMAC_RFS_T_VLAN]++;
}
return 0;
}
static int tc_del_vlan_flow(struct stmmac_priv *priv,
struct flow_cls_offload *cls)
{
struct stmmac_rfs_entry *entry = tc_find_rfs(priv, cls, false);
if (!entry || !entry->in_use || entry->type != STMMAC_RFS_T_VLAN)
return -ENOENT;
stmmac_rx_queue_prio(priv, priv->hw, 0, entry->tc);
entry->in_use = false;
entry->cookie = 0;
entry->tc = 0;
entry->type = 0;
priv->rfs_entries_cnt[STMMAC_RFS_T_VLAN]--;
return 0;
}
static int tc_add_ethtype_flow(struct stmmac_priv *priv,
struct flow_cls_offload *cls)
{
struct stmmac_rfs_entry *entry = tc_find_rfs(priv, cls, false);
struct flow_rule *rule = flow_cls_offload_flow_rule(cls);
struct flow_dissector *dissector = rule->match.dissector;
int tc = tc_classid_to_hwtc(priv->dev, cls->classid);
struct flow_match_basic match;
if (!entry) {
entry = tc_find_rfs(priv, cls, true);
if (!entry)
return -ENOENT;
}
/* Nothing to do here */
if (!dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_BASIC))
return -EINVAL;
if (tc < 0) {
netdev_err(priv->dev, "Invalid traffic class\n");
return -EINVAL;
}
flow_rule_match_basic(rule, &match);
if (match.mask->n_proto) {
u16 etype = ntohs(match.key->n_proto);
if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
netdev_err(priv->dev, "Only full mask is supported for EthType filter");
return -EINVAL;
}
switch (etype) {
case ETH_P_LLDP:
if (priv->rfs_entries_cnt[STMMAC_RFS_T_LLDP] >=
priv->rfs_entries_max[STMMAC_RFS_T_LLDP])
return -ENOENT;
entry->type = STMMAC_RFS_T_LLDP;
priv->rfs_entries_cnt[STMMAC_RFS_T_LLDP]++;
stmmac_rx_queue_routing(priv, priv->hw,
PACKET_DCBCPQ, tc);
break;
case ETH_P_1588:
if (priv->rfs_entries_cnt[STMMAC_RFS_T_1588] >=
priv->rfs_entries_max[STMMAC_RFS_T_1588])
return -ENOENT;
entry->type = STMMAC_RFS_T_1588;
priv->rfs_entries_cnt[STMMAC_RFS_T_1588]++;
stmmac_rx_queue_routing(priv, priv->hw,
PACKET_PTPQ, tc);
break;
default:
netdev_err(priv->dev, "EthType(0x%x) is not supported", etype);
return -EINVAL;
}
entry->in_use = true;
entry->cookie = cls->cookie;
entry->tc = tc;
entry->etype = etype;
return 0;
}
return -EINVAL;
}
static int tc_del_ethtype_flow(struct stmmac_priv *priv,
struct flow_cls_offload *cls)
{
struct stmmac_rfs_entry *entry = tc_find_rfs(priv, cls, false);
if (!entry || !entry->in_use ||
entry->type < STMMAC_RFS_T_LLDP ||
entry->type > STMMAC_RFS_T_1588)
return -ENOENT;
switch (entry->etype) {
case ETH_P_LLDP:
stmmac_rx_queue_routing(priv, priv->hw,
PACKET_DCBCPQ, 0);
priv->rfs_entries_cnt[STMMAC_RFS_T_LLDP]--;
break;
case ETH_P_1588:
stmmac_rx_queue_routing(priv, priv->hw,
PACKET_PTPQ, 0);
priv->rfs_entries_cnt[STMMAC_RFS_T_1588]--;
break;
default:
netdev_err(priv->dev, "EthType(0x%x) is not supported",
entry->etype);
return -EINVAL;
}
entry->in_use = false;
entry->cookie = 0;
entry->tc = 0;
entry->etype = 0;
entry->type = 0;
return 0;
}
static int tc_add_flow_cls(struct stmmac_priv *priv,
struct flow_cls_offload *cls)
{
int ret;
ret = tc_add_flow(priv, cls);
if (!ret)
return ret;
ret = tc_add_ethtype_flow(priv, cls);
if (!ret)
return ret;
return tc_add_vlan_flow(priv, cls);
}
static int tc_del_flow_cls(struct stmmac_priv *priv,
struct flow_cls_offload *cls)
{
int ret;
ret = tc_del_flow(priv, cls);
if (!ret)
return ret;
ret = tc_del_ethtype_flow(priv, cls);
if (!ret)
return ret;
return tc_del_vlan_flow(priv, cls);
}
static int tc_setup_cls(struct stmmac_priv *priv,
struct flow_cls_offload *cls)
{
int ret = 0;
/* When RSS is enabled, the filtering will be bypassed */
if (priv->rss.enable)
return -EBUSY;
switch (cls->command) {
case FLOW_CLS_REPLACE:
ret = tc_add_flow_cls(priv, cls);
break;
case FLOW_CLS_DESTROY:
ret = tc_del_flow_cls(priv, cls);
break;
default:
return -EOPNOTSUPP;
}
return ret;
}
struct timespec64 stmmac_calc_tas_basetime(ktime_t old_base_time,
ktime_t current_time,
u64 cycle_time)
{
struct timespec64 time;
if (ktime_after(old_base_time, current_time)) {
time = ktime_to_timespec64(old_base_time);
} else {
s64 n;
ktime_t base_time;
n = div64_s64(ktime_sub_ns(current_time, old_base_time),
cycle_time);
base_time = ktime_add_ns(old_base_time,
(n + 1) * cycle_time);
time = ktime_to_timespec64(base_time);
}
return time;
}
static int tc_setup_taprio(struct stmmac_priv *priv,
struct tc_taprio_qopt_offload *qopt)
{
u32 size, wid = priv->dma_cap.estwid, dep = priv->dma_cap.estdep;
struct plat_stmmacenet_data *plat = priv->plat;
struct timespec64 time, current_time, qopt_time;
ktime_t current_time_ns;
bool fpe = false;
int i, ret = 0;
u64 ctr;
if (!priv->dma_cap.estsel)
return -EOPNOTSUPP;
switch (wid) {
case 0x1:
wid = 16;
break;
case 0x2:
wid = 20;
break;
case 0x3:
wid = 24;
break;
default:
return -EOPNOTSUPP;
}
switch (dep) {
case 0x1:
dep = 64;
break;
case 0x2:
dep = 128;
break;
case 0x3:
dep = 256;
break;
case 0x4:
dep = 512;
break;
case 0x5:
dep = 1024;
break;
default:
return -EOPNOTSUPP;
}
if (!qopt->enable)
goto disable;
if (qopt->num_entries >= dep)
return -EINVAL;
if (!qopt->cycle_time)
return -ERANGE;
if (!plat->est) {
plat->est = devm_kzalloc(priv->device, sizeof(*plat->est),
GFP_KERNEL);
if (!plat->est)
return -ENOMEM;
mutex_init(&priv->plat->est->lock);
} else {
memset(plat->est, 0, sizeof(*plat->est));
}
size = qopt->num_entries;
mutex_lock(&priv->plat->est->lock);
priv->plat->est->gcl_size = size;
priv->plat->est->enable = qopt->enable;
mutex_unlock(&priv->plat->est->lock);
for (i = 0; i < size; i++) {
s64 delta_ns = qopt->entries[i].interval;
u32 gates = qopt->entries[i].gate_mask;
if (delta_ns > GENMASK(wid, 0))
return -ERANGE;
if (gates > GENMASK(31 - wid, 0))
return -ERANGE;
switch (qopt->entries[i].command) {
case TC_TAPRIO_CMD_SET_GATES:
if (fpe)
return -EINVAL;
break;
case TC_TAPRIO_CMD_SET_AND_HOLD:
gates |= BIT(0);
fpe = true;
break;
case TC_TAPRIO_CMD_SET_AND_RELEASE:
gates &= ~BIT(0);
fpe = true;
break;
default:
return -EOPNOTSUPP;
}
priv->plat->est->gcl[i] = delta_ns | (gates << wid);
}
mutex_lock(&priv->plat->est->lock);
/* Adjust for real system time */
priv->ptp_clock_ops.gettime64(&priv->ptp_clock_ops, &current_time);
current_time_ns = timespec64_to_ktime(current_time);
time = stmmac_calc_tas_basetime(qopt->base_time, current_time_ns,
qopt->cycle_time);
priv->plat->est->btr[0] = (u32)time.tv_nsec;
priv->plat->est->btr[1] = (u32)time.tv_sec;
qopt_time = ktime_to_timespec64(qopt->base_time);
priv->plat->est->btr_reserve[0] = (u32)qopt_time.tv_nsec;
priv->plat->est->btr_reserve[1] = (u32)qopt_time.tv_sec;
ctr = qopt->cycle_time;
priv->plat->est->ctr[0] = do_div(ctr, NSEC_PER_SEC);
priv->plat->est->ctr[1] = (u32)ctr;
if (fpe && !priv->dma_cap.fpesel) {
mutex_unlock(&priv->plat->est->lock);
return -EOPNOTSUPP;
}
/* Actual FPE register configuration will be done after FPE handshake
* is success.
*/
priv->plat->fpe_cfg->enable = fpe;
ret = stmmac_est_configure(priv, priv->ioaddr, priv->plat->est,
priv->plat->clk_ptp_rate);
mutex_unlock(&priv->plat->est->lock);
if (ret) {
netdev_err(priv->dev, "failed to configure EST\n");
goto disable;
}
netdev_info(priv->dev, "configured EST\n");
if (fpe) {
stmmac_fpe_handshake(priv, true);
netdev_info(priv->dev, "start FPE handshake\n");
}
return 0;
disable:
if (priv->plat->est) {
mutex_lock(&priv->plat->est->lock);
priv->plat->est->enable = false;
stmmac_est_configure(priv, priv->ioaddr, priv->plat->est,
priv->plat->clk_ptp_rate);
mutex_unlock(&priv->plat->est->lock);
}
priv->plat->fpe_cfg->enable = false;
stmmac_fpe_configure(priv, priv->ioaddr,
priv->plat->tx_queues_to_use,
priv->plat->rx_queues_to_use,
false);
netdev_info(priv->dev, "disabled FPE\n");
stmmac_fpe_handshake(priv, false);
netdev_info(priv->dev, "stop FPE handshake\n");
return ret;
}
static int tc_setup_etf(struct stmmac_priv *priv,
struct tc_etf_qopt_offload *qopt)
{
if (!priv->dma_cap.tbssel)
return -EOPNOTSUPP;
if (qopt->queue >= priv->plat->tx_queues_to_use)
return -EINVAL;
if (!(priv->dma_conf.tx_queue[qopt->queue].tbs & STMMAC_TBS_AVAIL))
return -EINVAL;
if (qopt->enable)
priv->dma_conf.tx_queue[qopt->queue].tbs |= STMMAC_TBS_EN;
else
priv->dma_conf.tx_queue[qopt->queue].tbs &= ~STMMAC_TBS_EN;
netdev_info(priv->dev, "%s ETF for Queue %d\n",
qopt->enable ? "enabled" : "disabled", qopt->queue);
return 0;
}
const struct stmmac_tc_ops dwmac510_tc_ops = {
.init = tc_init,
.setup_cls_u32 = tc_setup_cls_u32,
.setup_cbs = tc_setup_cbs,
.setup_cls = tc_setup_cls,
.setup_taprio = tc_setup_taprio,
.setup_etf = tc_setup_etf,
};