blob: e48d4261d0bcacf3ed63f46b4815d4b8e050c138 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Linux MegaRAID driver for SAS based RAID controllers
*
* Copyright (c) 2009-2013 LSI Corporation
* Copyright (c) 2013-2016 Avago Technologies
* Copyright (c) 2016-2018 Broadcom Inc.
*
* FILE: megaraid_sas_fusion.c
*
* Authors: Broadcom Inc.
* Sumant Patro
* Adam Radford
* Kashyap Desai <kashyap.desai@broadcom.com>
* Sumit Saxena <sumit.saxena@broadcom.com>
*
* Send feedback to: megaraidlinux.pdl@broadcom.com
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/list.h>
#include <linux/moduleparam.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/uio.h>
#include <linux/uaccess.h>
#include <linux/fs.h>
#include <linux/compat.h>
#include <linux/blkdev.h>
#include <linux/mutex.h>
#include <linux/poll.h>
#include <linux/vmalloc.h>
#include <linux/workqueue.h>
#include <linux/irq_poll.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_dbg.h>
#include <linux/dmi.h>
#include "megaraid_sas_fusion.h"
#include "megaraid_sas.h"
extern void
megasas_complete_cmd(struct megasas_instance *instance,
struct megasas_cmd *cmd, u8 alt_status);
int
wait_and_poll(struct megasas_instance *instance, struct megasas_cmd *cmd,
int seconds);
int
megasas_clear_intr_fusion(struct megasas_instance *instance);
int megasas_transition_to_ready(struct megasas_instance *instance, int ocr);
extern u32 megasas_dbg_lvl;
int megasas_sriov_start_heartbeat(struct megasas_instance *instance,
int initial);
extern struct megasas_mgmt_info megasas_mgmt_info;
extern unsigned int resetwaittime;
extern unsigned int dual_qdepth_disable;
static void megasas_free_rdpq_fusion(struct megasas_instance *instance);
static void megasas_free_reply_fusion(struct megasas_instance *instance);
static inline
void megasas_configure_queue_sizes(struct megasas_instance *instance);
static void megasas_fusion_crash_dump(struct megasas_instance *instance);
/**
* megasas_adp_reset_wait_for_ready - initiate chip reset and wait for
* controller to come to ready state
* @instance: adapter's soft state
* @do_adp_reset: If true, do a chip reset
* @ocr_context: If called from OCR context this will
* be set to 1, else 0
*
* This function initates a chip reset followed by a wait for controller to
* transition to ready state.
* During this, driver will block all access to PCI config space from userspace
*/
int
megasas_adp_reset_wait_for_ready(struct megasas_instance *instance,
bool do_adp_reset,
int ocr_context)
{
int ret = FAILED;
/*
* Block access to PCI config space from userspace
* when diag reset is initiated from driver
*/
if (megasas_dbg_lvl & OCR_DEBUG)
dev_info(&instance->pdev->dev,
"Block access to PCI config space %s %d\n",
__func__, __LINE__);
pci_cfg_access_lock(instance->pdev);
if (do_adp_reset) {
if (instance->instancet->adp_reset
(instance, instance->reg_set))
goto out;
}
/* Wait for FW to become ready */
if (megasas_transition_to_ready(instance, ocr_context)) {
dev_warn(&instance->pdev->dev,
"Failed to transition controller to ready for scsi%d.\n",
instance->host->host_no);
goto out;
}
ret = SUCCESS;
out:
if (megasas_dbg_lvl & OCR_DEBUG)
dev_info(&instance->pdev->dev,
"Unlock access to PCI config space %s %d\n",
__func__, __LINE__);
pci_cfg_access_unlock(instance->pdev);
return ret;
}
/**
* megasas_check_same_4gb_region - check if allocation
* crosses same 4GB boundary or not
* @instance: adapter's soft instance
* @start_addr: start address of DMA allocation
* @size: size of allocation in bytes
* @return: true : allocation does not cross same
* 4GB boundary
* false: allocation crosses same
* 4GB boundary
*/
static inline bool megasas_check_same_4gb_region
(struct megasas_instance *instance, dma_addr_t start_addr, size_t size)
{
dma_addr_t end_addr;
end_addr = start_addr + size;
if (upper_32_bits(start_addr) != upper_32_bits(end_addr)) {
dev_err(&instance->pdev->dev,
"Failed to get same 4GB boundary: start_addr: 0x%llx end_addr: 0x%llx\n",
(unsigned long long)start_addr,
(unsigned long long)end_addr);
return false;
}
return true;
}
/**
* megasas_enable_intr_fusion - Enables interrupts
* @instance: adapter's soft instance
*/
static void
megasas_enable_intr_fusion(struct megasas_instance *instance)
{
struct megasas_register_set __iomem *regs;
regs = instance->reg_set;
instance->mask_interrupts = 0;
/* For Thunderbolt/Invader also clear intr on enable */
writel(~0, &regs->outbound_intr_status);
readl(&regs->outbound_intr_status);
writel(~MFI_FUSION_ENABLE_INTERRUPT_MASK, &(regs)->outbound_intr_mask);
/* Dummy readl to force pci flush */
dev_info(&instance->pdev->dev, "%s is called outbound_intr_mask:0x%08x\n",
__func__, readl(&regs->outbound_intr_mask));
}
/**
* megasas_disable_intr_fusion - Disables interrupt
* @instance: adapter's soft instance
*/
static void
megasas_disable_intr_fusion(struct megasas_instance *instance)
{
u32 mask = 0xFFFFFFFF;
struct megasas_register_set __iomem *regs;
regs = instance->reg_set;
instance->mask_interrupts = 1;
writel(mask, &regs->outbound_intr_mask);
/* Dummy readl to force pci flush */
dev_info(&instance->pdev->dev, "%s is called outbound_intr_mask:0x%08x\n",
__func__, readl(&regs->outbound_intr_mask));
}
int
megasas_clear_intr_fusion(struct megasas_instance *instance)
{
u32 status;
struct megasas_register_set __iomem *regs;
regs = instance->reg_set;
/*
* Check if it is our interrupt
*/
status = megasas_readl(instance,
&regs->outbound_intr_status);
if (status & 1) {
writel(status, &regs->outbound_intr_status);
readl(&regs->outbound_intr_status);
return 1;
}
if (!(status & MFI_FUSION_ENABLE_INTERRUPT_MASK))
return 0;
return 1;
}
static inline void
megasas_sdev_busy_inc(struct megasas_instance *instance,
struct scsi_cmnd *scmd)
{
if (instance->perf_mode == MR_BALANCED_PERF_MODE) {
struct MR_PRIV_DEVICE *mr_device_priv_data =
scmd->device->hostdata;
atomic_inc(&mr_device_priv_data->sdev_priv_busy);
}
}
static inline void
megasas_sdev_busy_dec(struct megasas_instance *instance,
struct scsi_cmnd *scmd)
{
if (instance->perf_mode == MR_BALANCED_PERF_MODE) {
struct MR_PRIV_DEVICE *mr_device_priv_data =
scmd->device->hostdata;
atomic_dec(&mr_device_priv_data->sdev_priv_busy);
}
}
static inline int
megasas_sdev_busy_read(struct megasas_instance *instance,
struct scsi_cmnd *scmd)
{
if (instance->perf_mode == MR_BALANCED_PERF_MODE) {
struct MR_PRIV_DEVICE *mr_device_priv_data =
scmd->device->hostdata;
return atomic_read(&mr_device_priv_data->sdev_priv_busy);
}
return 0;
}
/**
* megasas_get_cmd_fusion - Get a command from the free pool
* @instance: Adapter soft state
* @blk_tag: Command tag
*
* Returns a blk_tag indexed mpt frame
*/
inline struct megasas_cmd_fusion *megasas_get_cmd_fusion(struct megasas_instance
*instance, u32 blk_tag)
{
struct fusion_context *fusion;
fusion = instance->ctrl_context;
return fusion->cmd_list[blk_tag];
}
/**
* megasas_return_cmd_fusion - Return a cmd to free command pool
* @instance: Adapter soft state
* @cmd: Command packet to be returned to free command pool
*/
inline void megasas_return_cmd_fusion(struct megasas_instance *instance,
struct megasas_cmd_fusion *cmd)
{
cmd->scmd = NULL;
memset(cmd->io_request, 0, MEGA_MPI2_RAID_DEFAULT_IO_FRAME_SIZE);
cmd->r1_alt_dev_handle = MR_DEVHANDLE_INVALID;
cmd->cmd_completed = false;
}
/**
* megasas_write_64bit_req_desc - PCI writes 64bit request descriptor
* @instance: Adapter soft state
* @req_desc: 64bit Request descriptor
*/
static void
megasas_write_64bit_req_desc(struct megasas_instance *instance,
union MEGASAS_REQUEST_DESCRIPTOR_UNION *req_desc)
{
#if defined(writeq) && defined(CONFIG_64BIT)
u64 req_data = (((u64)le32_to_cpu(req_desc->u.high) << 32) |
le32_to_cpu(req_desc->u.low));
writeq(req_data, &instance->reg_set->inbound_low_queue_port);
#else
unsigned long flags;
spin_lock_irqsave(&instance->hba_lock, flags);
writel(le32_to_cpu(req_desc->u.low),
&instance->reg_set->inbound_low_queue_port);
writel(le32_to_cpu(req_desc->u.high),
&instance->reg_set->inbound_high_queue_port);
spin_unlock_irqrestore(&instance->hba_lock, flags);
#endif
}
/**
* megasas_fire_cmd_fusion - Sends command to the FW
* @instance: Adapter soft state
* @req_desc: 32bit or 64bit Request descriptor
*
* Perform PCI Write. AERO SERIES supports 32 bit Descriptor.
* Prior to AERO_SERIES support 64 bit Descriptor.
*/
static void
megasas_fire_cmd_fusion(struct megasas_instance *instance,
union MEGASAS_REQUEST_DESCRIPTOR_UNION *req_desc)
{
if (instance->atomic_desc_support)
writel(le32_to_cpu(req_desc->u.low),
&instance->reg_set->inbound_single_queue_port);
else
megasas_write_64bit_req_desc(instance, req_desc);
}
/**
* megasas_fusion_update_can_queue - Do all Adapter Queue depth related calculations here
* @instance: Adapter soft state
* @fw_boot_context: Whether this function called during probe or after OCR
*
* This function is only for fusion controllers.
* Update host can queue, if firmware downgrade max supported firmware commands.
* Firmware upgrade case will be skiped because underlying firmware has
* more resource than exposed to the OS.
*
*/
static void
megasas_fusion_update_can_queue(struct megasas_instance *instance, int fw_boot_context)
{
u16 cur_max_fw_cmds = 0;
u16 ldio_threshold = 0;
/* ventura FW does not fill outbound_scratch_pad_2 with queue depth */
if (instance->adapter_type < VENTURA_SERIES)
cur_max_fw_cmds =
megasas_readl(instance,
&instance->reg_set->outbound_scratch_pad_2) & 0x00FFFF;
if (dual_qdepth_disable || !cur_max_fw_cmds)
cur_max_fw_cmds = instance->instancet->read_fw_status_reg(instance) & 0x00FFFF;
else
ldio_threshold =
(instance->instancet->read_fw_status_reg(instance) & 0x00FFFF) - MEGASAS_FUSION_IOCTL_CMDS;
dev_info(&instance->pdev->dev,
"Current firmware supports maximum commands: %d\t LDIO threshold: %d\n",
cur_max_fw_cmds, ldio_threshold);
if (fw_boot_context == OCR_CONTEXT) {
cur_max_fw_cmds = cur_max_fw_cmds - 1;
if (cur_max_fw_cmds < instance->max_fw_cmds) {
instance->cur_can_queue =
cur_max_fw_cmds - (MEGASAS_FUSION_INTERNAL_CMDS +
MEGASAS_FUSION_IOCTL_CMDS);
instance->host->can_queue = instance->cur_can_queue;
instance->ldio_threshold = ldio_threshold;
}
} else {
instance->max_fw_cmds = cur_max_fw_cmds;
instance->ldio_threshold = ldio_threshold;
if (reset_devices)
instance->max_fw_cmds = min(instance->max_fw_cmds,
(u16)MEGASAS_KDUMP_QUEUE_DEPTH);
/*
* Reduce the max supported cmds by 1. This is to ensure that the
* reply_q_sz (1 more than the max cmd that driver may send)
* does not exceed max cmds that the FW can support
*/
instance->max_fw_cmds = instance->max_fw_cmds-1;
}
}
static inline void
megasas_get_msix_index(struct megasas_instance *instance,
struct scsi_cmnd *scmd,
struct megasas_cmd_fusion *cmd,
u8 data_arms)
{
if (instance->perf_mode == MR_BALANCED_PERF_MODE &&
(megasas_sdev_busy_read(instance, scmd) >
(data_arms * MR_DEVICE_HIGH_IOPS_DEPTH))) {
cmd->request_desc->SCSIIO.MSIxIndex =
mega_mod64((atomic64_add_return(1, &instance->high_iops_outstanding) /
MR_HIGH_IOPS_BATCH_COUNT), instance->low_latency_index_start);
} else if (instance->msix_load_balance) {
cmd->request_desc->SCSIIO.MSIxIndex =
(mega_mod64(atomic64_add_return(1, &instance->total_io_count),
instance->msix_vectors));
} else if (instance->host->nr_hw_queues > 1) {
u32 tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd));
cmd->request_desc->SCSIIO.MSIxIndex = blk_mq_unique_tag_to_hwq(tag) +
instance->low_latency_index_start;
} else {
cmd->request_desc->SCSIIO.MSIxIndex =
instance->reply_map[raw_smp_processor_id()];
}
}
/**
* megasas_free_cmds_fusion - Free all the cmds in the free cmd pool
* @instance: Adapter soft state
*/
void
megasas_free_cmds_fusion(struct megasas_instance *instance)
{
int i;
struct fusion_context *fusion = instance->ctrl_context;
struct megasas_cmd_fusion *cmd;
if (fusion->sense)
dma_pool_free(fusion->sense_dma_pool, fusion->sense,
fusion->sense_phys_addr);
/* SG */
if (fusion->cmd_list) {
for (i = 0; i < instance->max_mpt_cmds; i++) {
cmd = fusion->cmd_list[i];
if (cmd) {
if (cmd->sg_frame)
dma_pool_free(fusion->sg_dma_pool,
cmd->sg_frame,
cmd->sg_frame_phys_addr);
}
kfree(cmd);
}
kfree(fusion->cmd_list);
}
if (fusion->sg_dma_pool) {
dma_pool_destroy(fusion->sg_dma_pool);
fusion->sg_dma_pool = NULL;
}
if (fusion->sense_dma_pool) {
dma_pool_destroy(fusion->sense_dma_pool);
fusion->sense_dma_pool = NULL;
}
/* Reply Frame, Desc*/
if (instance->is_rdpq)
megasas_free_rdpq_fusion(instance);
else
megasas_free_reply_fusion(instance);
/* Request Frame, Desc*/
if (fusion->req_frames_desc)
dma_free_coherent(&instance->pdev->dev,
fusion->request_alloc_sz, fusion->req_frames_desc,
fusion->req_frames_desc_phys);
if (fusion->io_request_frames)
dma_pool_free(fusion->io_request_frames_pool,
fusion->io_request_frames,
fusion->io_request_frames_phys);
if (fusion->io_request_frames_pool) {
dma_pool_destroy(fusion->io_request_frames_pool);
fusion->io_request_frames_pool = NULL;
}
}
/**
* megasas_create_sg_sense_fusion - Creates DMA pool for cmd frames
* @instance: Adapter soft state
*
*/
static int megasas_create_sg_sense_fusion(struct megasas_instance *instance)
{
int i;
u16 max_cmd;
struct fusion_context *fusion;
struct megasas_cmd_fusion *cmd;
int sense_sz;
u32 offset;
fusion = instance->ctrl_context;
max_cmd = instance->max_fw_cmds;
sense_sz = instance->max_mpt_cmds * SCSI_SENSE_BUFFERSIZE;
fusion->sg_dma_pool =
dma_pool_create("mr_sg", &instance->pdev->dev,
instance->max_chain_frame_sz,
MR_DEFAULT_NVME_PAGE_SIZE, 0);
/* SCSI_SENSE_BUFFERSIZE = 96 bytes */
fusion->sense_dma_pool =
dma_pool_create("mr_sense", &instance->pdev->dev,
sense_sz, 64, 0);
if (!fusion->sense_dma_pool || !fusion->sg_dma_pool) {
dev_err(&instance->pdev->dev,
"Failed from %s %d\n", __func__, __LINE__);
return -ENOMEM;
}
fusion->sense = dma_pool_alloc(fusion->sense_dma_pool,
GFP_KERNEL, &fusion->sense_phys_addr);
if (!fusion->sense) {
dev_err(&instance->pdev->dev,
"failed from %s %d\n", __func__, __LINE__);
return -ENOMEM;
}
/* sense buffer, request frame and reply desc pool requires to be in
* same 4 gb region. Below function will check this.
* In case of failure, new pci pool will be created with updated
* alignment.
* Older allocation and pool will be destroyed.
* Alignment will be used such a way that next allocation if success,
* will always meet same 4gb region requirement.
* Actual requirement is not alignment, but we need start and end of
* DMA address must have same upper 32 bit address.
*/
if (!megasas_check_same_4gb_region(instance, fusion->sense_phys_addr,
sense_sz)) {
dma_pool_free(fusion->sense_dma_pool, fusion->sense,
fusion->sense_phys_addr);
fusion->sense = NULL;
dma_pool_destroy(fusion->sense_dma_pool);
fusion->sense_dma_pool =
dma_pool_create("mr_sense_align", &instance->pdev->dev,
sense_sz, roundup_pow_of_two(sense_sz),
0);
if (!fusion->sense_dma_pool) {
dev_err(&instance->pdev->dev,
"Failed from %s %d\n", __func__, __LINE__);
return -ENOMEM;
}
fusion->sense = dma_pool_alloc(fusion->sense_dma_pool,
GFP_KERNEL,
&fusion->sense_phys_addr);
if (!fusion->sense) {
dev_err(&instance->pdev->dev,
"failed from %s %d\n", __func__, __LINE__);
return -ENOMEM;
}
}
/*
* Allocate and attach a frame to each of the commands in cmd_list
*/
for (i = 0; i < max_cmd; i++) {
cmd = fusion->cmd_list[i];
cmd->sg_frame = dma_pool_alloc(fusion->sg_dma_pool,
GFP_KERNEL, &cmd->sg_frame_phys_addr);
offset = SCSI_SENSE_BUFFERSIZE * i;
cmd->sense = (u8 *)fusion->sense + offset;
cmd->sense_phys_addr = fusion->sense_phys_addr + offset;
if (!cmd->sg_frame) {
dev_err(&instance->pdev->dev,
"Failed from %s %d\n", __func__, __LINE__);
return -ENOMEM;
}
}
/* create sense buffer for the raid 1/10 fp */
for (i = max_cmd; i < instance->max_mpt_cmds; i++) {
cmd = fusion->cmd_list[i];
offset = SCSI_SENSE_BUFFERSIZE * i;
cmd->sense = (u8 *)fusion->sense + offset;
cmd->sense_phys_addr = fusion->sense_phys_addr + offset;
}
return 0;
}
static int
megasas_alloc_cmdlist_fusion(struct megasas_instance *instance)
{
u32 max_mpt_cmd, i, j;
struct fusion_context *fusion;
fusion = instance->ctrl_context;
max_mpt_cmd = instance->max_mpt_cmds;
/*
* fusion->cmd_list is an array of struct megasas_cmd_fusion pointers.
* Allocate the dynamic array first and then allocate individual
* commands.
*/
fusion->cmd_list =
kcalloc(max_mpt_cmd, sizeof(struct megasas_cmd_fusion *),
GFP_KERNEL);
if (!fusion->cmd_list) {
dev_err(&instance->pdev->dev,
"Failed from %s %d\n", __func__, __LINE__);
return -ENOMEM;
}
for (i = 0; i < max_mpt_cmd; i++) {
fusion->cmd_list[i] = kzalloc(sizeof(struct megasas_cmd_fusion),
GFP_KERNEL);
if (!fusion->cmd_list[i]) {
for (j = 0; j < i; j++)
kfree(fusion->cmd_list[j]);
kfree(fusion->cmd_list);
dev_err(&instance->pdev->dev,
"Failed from %s %d\n", __func__, __LINE__);
return -ENOMEM;
}
}
return 0;
}
static int
megasas_alloc_request_fusion(struct megasas_instance *instance)
{
struct fusion_context *fusion;
fusion = instance->ctrl_context;
retry_alloc:
fusion->io_request_frames_pool =
dma_pool_create("mr_ioreq", &instance->pdev->dev,
fusion->io_frames_alloc_sz, 16, 0);
if (!fusion->io_request_frames_pool) {
dev_err(&instance->pdev->dev,
"Failed from %s %d\n", __func__, __LINE__);
return -ENOMEM;
}
fusion->io_request_frames =
dma_pool_alloc(fusion->io_request_frames_pool,
GFP_KERNEL | __GFP_NOWARN,
&fusion->io_request_frames_phys);
if (!fusion->io_request_frames) {
if (instance->max_fw_cmds >= (MEGASAS_REDUCE_QD_COUNT * 2)) {
instance->max_fw_cmds -= MEGASAS_REDUCE_QD_COUNT;
dma_pool_destroy(fusion->io_request_frames_pool);
megasas_configure_queue_sizes(instance);
goto retry_alloc;
} else {
dev_err(&instance->pdev->dev,
"Failed from %s %d\n", __func__, __LINE__);
return -ENOMEM;
}
}
if (!megasas_check_same_4gb_region(instance,
fusion->io_request_frames_phys,
fusion->io_frames_alloc_sz)) {
dma_pool_free(fusion->io_request_frames_pool,
fusion->io_request_frames,
fusion->io_request_frames_phys);
fusion->io_request_frames = NULL;
dma_pool_destroy(fusion->io_request_frames_pool);
fusion->io_request_frames_pool =
dma_pool_create("mr_ioreq_align",
&instance->pdev->dev,
fusion->io_frames_alloc_sz,
roundup_pow_of_two(fusion->io_frames_alloc_sz),
0);
if (!fusion->io_request_frames_pool) {
dev_err(&instance->pdev->dev,
"Failed from %s %d\n", __func__, __LINE__);
return -ENOMEM;
}
fusion->io_request_frames =
dma_pool_alloc(fusion->io_request_frames_pool,
GFP_KERNEL | __GFP_NOWARN,
&fusion->io_request_frames_phys);
if (!fusion->io_request_frames) {
dev_err(&instance->pdev->dev,
"Failed from %s %d\n", __func__, __LINE__);
return -ENOMEM;
}
}
fusion->req_frames_desc =
dma_alloc_coherent(&instance->pdev->dev,
fusion->request_alloc_sz,
&fusion->req_frames_desc_phys, GFP_KERNEL);
if (!fusion->req_frames_desc) {
dev_err(&instance->pdev->dev,
"Failed from %s %d\n", __func__, __LINE__);
return -ENOMEM;
}
return 0;
}
static int
megasas_alloc_reply_fusion(struct megasas_instance *instance)
{
int i, count;
struct fusion_context *fusion;
union MPI2_REPLY_DESCRIPTORS_UNION *reply_desc;
fusion = instance->ctrl_context;
count = instance->msix_vectors > 0 ? instance->msix_vectors : 1;
count += instance->iopoll_q_count;
fusion->reply_frames_desc_pool =
dma_pool_create("mr_reply", &instance->pdev->dev,
fusion->reply_alloc_sz * count, 16, 0);
if (!fusion->reply_frames_desc_pool) {
dev_err(&instance->pdev->dev,
"Failed from %s %d\n", __func__, __LINE__);
return -ENOMEM;
}
fusion->reply_frames_desc[0] =
dma_pool_alloc(fusion->reply_frames_desc_pool,
GFP_KERNEL, &fusion->reply_frames_desc_phys[0]);
if (!fusion->reply_frames_desc[0]) {
dev_err(&instance->pdev->dev,
"Failed from %s %d\n", __func__, __LINE__);
return -ENOMEM;
}
if (!megasas_check_same_4gb_region(instance,
fusion->reply_frames_desc_phys[0],
(fusion->reply_alloc_sz * count))) {
dma_pool_free(fusion->reply_frames_desc_pool,
fusion->reply_frames_desc[0],
fusion->reply_frames_desc_phys[0]);
fusion->reply_frames_desc[0] = NULL;
dma_pool_destroy(fusion->reply_frames_desc_pool);
fusion->reply_frames_desc_pool =
dma_pool_create("mr_reply_align",
&instance->pdev->dev,
fusion->reply_alloc_sz * count,
roundup_pow_of_two(fusion->reply_alloc_sz * count),
0);
if (!fusion->reply_frames_desc_pool) {
dev_err(&instance->pdev->dev,
"Failed from %s %d\n", __func__, __LINE__);
return -ENOMEM;
}
fusion->reply_frames_desc[0] =
dma_pool_alloc(fusion->reply_frames_desc_pool,
GFP_KERNEL,
&fusion->reply_frames_desc_phys[0]);
if (!fusion->reply_frames_desc[0]) {
dev_err(&instance->pdev->dev,
"Failed from %s %d\n", __func__, __LINE__);
return -ENOMEM;
}
}
reply_desc = fusion->reply_frames_desc[0];
for (i = 0; i < fusion->reply_q_depth * count; i++, reply_desc++)
reply_desc->Words = cpu_to_le64(ULLONG_MAX);
/* This is not a rdpq mode, but driver still populate
* reply_frame_desc array to use same msix index in ISR path.
*/
for (i = 0; i < (count - 1); i++)
fusion->reply_frames_desc[i + 1] =
fusion->reply_frames_desc[i] +
(fusion->reply_alloc_sz)/sizeof(union MPI2_REPLY_DESCRIPTORS_UNION);
return 0;
}
static int
megasas_alloc_rdpq_fusion(struct megasas_instance *instance)
{
int i, j, k, msix_count;
struct fusion_context *fusion;
union MPI2_REPLY_DESCRIPTORS_UNION *reply_desc;
union MPI2_REPLY_DESCRIPTORS_UNION *rdpq_chunk_virt[RDPQ_MAX_CHUNK_COUNT];
dma_addr_t rdpq_chunk_phys[RDPQ_MAX_CHUNK_COUNT];
u8 dma_alloc_count, abs_index;
u32 chunk_size, array_size, offset;
fusion = instance->ctrl_context;
chunk_size = fusion->reply_alloc_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK;
array_size = sizeof(struct MPI2_IOC_INIT_RDPQ_ARRAY_ENTRY) *
MAX_MSIX_QUEUES_FUSION;
fusion->rdpq_virt = dma_alloc_coherent(&instance->pdev->dev,
array_size, &fusion->rdpq_phys,
GFP_KERNEL);
if (!fusion->rdpq_virt) {
dev_err(&instance->pdev->dev,
"Failed from %s %d\n", __func__, __LINE__);
return -ENOMEM;
}
msix_count = instance->msix_vectors > 0 ? instance->msix_vectors : 1;
msix_count += instance->iopoll_q_count;
fusion->reply_frames_desc_pool = dma_pool_create("mr_rdpq",
&instance->pdev->dev,
chunk_size, 16, 0);
fusion->reply_frames_desc_pool_align =
dma_pool_create("mr_rdpq_align",
&instance->pdev->dev,
chunk_size,
roundup_pow_of_two(chunk_size),
0);
if (!fusion->reply_frames_desc_pool ||
!fusion->reply_frames_desc_pool_align) {
dev_err(&instance->pdev->dev,
"Failed from %s %d\n", __func__, __LINE__);
return -ENOMEM;
}
/*
* For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and
* VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should be
* within 4GB boundary and also reply queues in a set must have same
* upper 32-bits in their memory address. so here driver is allocating the
* DMA'able memory for reply queues according. Driver uses limitation of
* VENTURA_SERIES to manage INVADER_SERIES as well.
*/
dma_alloc_count = DIV_ROUND_UP(msix_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK);
for (i = 0; i < dma_alloc_count; i++) {
rdpq_chunk_virt[i] =
dma_pool_alloc(fusion->reply_frames_desc_pool,
GFP_KERNEL, &rdpq_chunk_phys[i]);
if (!rdpq_chunk_virt[i]) {
dev_err(&instance->pdev->dev,
"Failed from %s %d\n", __func__, __LINE__);
return -ENOMEM;
}
/* reply desc pool requires to be in same 4 gb region.
* Below function will check this.
* In case of failure, new pci pool will be created with updated
* alignment.
* For RDPQ buffers, driver always allocate two separate pci pool.
* Alignment will be used such a way that next allocation if
* success, will always meet same 4gb region requirement.
* rdpq_tracker keep track of each buffer's physical,
* virtual address and pci pool descriptor. It will help driver
* while freeing the resources.
*
*/
if (!megasas_check_same_4gb_region(instance, rdpq_chunk_phys[i],
chunk_size)) {
dma_pool_free(fusion->reply_frames_desc_pool,
rdpq_chunk_virt[i],
rdpq_chunk_phys[i]);
rdpq_chunk_virt[i] =
dma_pool_alloc(fusion->reply_frames_desc_pool_align,
GFP_KERNEL, &rdpq_chunk_phys[i]);
if (!rdpq_chunk_virt[i]) {
dev_err(&instance->pdev->dev,
"Failed from %s %d\n",
__func__, __LINE__);
return -ENOMEM;
}
fusion->rdpq_tracker[i].dma_pool_ptr =
fusion->reply_frames_desc_pool_align;
} else {
fusion->rdpq_tracker[i].dma_pool_ptr =
fusion->reply_frames_desc_pool;
}
fusion->rdpq_tracker[i].pool_entry_phys = rdpq_chunk_phys[i];
fusion->rdpq_tracker[i].pool_entry_virt = rdpq_chunk_virt[i];
}
for (k = 0; k < dma_alloc_count; k++) {
for (i = 0; i < RDPQ_MAX_INDEX_IN_ONE_CHUNK; i++) {
abs_index = (k * RDPQ_MAX_INDEX_IN_ONE_CHUNK) + i;
if (abs_index == msix_count)
break;
offset = fusion->reply_alloc_sz * i;
fusion->rdpq_virt[abs_index].RDPQBaseAddress =
cpu_to_le64(rdpq_chunk_phys[k] + offset);
fusion->reply_frames_desc_phys[abs_index] =
rdpq_chunk_phys[k] + offset;
fusion->reply_frames_desc[abs_index] =
(union MPI2_REPLY_DESCRIPTORS_UNION *)((u8 *)rdpq_chunk_virt[k] + offset);
reply_desc = fusion->reply_frames_desc[abs_index];
for (j = 0; j < fusion->reply_q_depth; j++, reply_desc++)
reply_desc->Words = ULLONG_MAX;
}
}
return 0;
}
static void
megasas_free_rdpq_fusion(struct megasas_instance *instance) {
int i;
struct fusion_context *fusion;
fusion = instance->ctrl_context;
for (i = 0; i < RDPQ_MAX_CHUNK_COUNT; i++) {
if (fusion->rdpq_tracker[i].pool_entry_virt)
dma_pool_free(fusion->rdpq_tracker[i].dma_pool_ptr,
fusion->rdpq_tracker[i].pool_entry_virt,
fusion->rdpq_tracker[i].pool_entry_phys);
}
dma_pool_destroy(fusion->reply_frames_desc_pool);
dma_pool_destroy(fusion->reply_frames_desc_pool_align);
if (fusion->rdpq_virt)
dma_free_coherent(&instance->pdev->dev,
sizeof(struct MPI2_IOC_INIT_RDPQ_ARRAY_ENTRY) * MAX_MSIX_QUEUES_FUSION,
fusion->rdpq_virt, fusion->rdpq_phys);
}
static void
megasas_free_reply_fusion(struct megasas_instance *instance) {
struct fusion_context *fusion;
fusion = instance->ctrl_context;
if (fusion->reply_frames_desc[0])
dma_pool_free(fusion->reply_frames_desc_pool,
fusion->reply_frames_desc[0],
fusion->reply_frames_desc_phys[0]);
dma_pool_destroy(fusion->reply_frames_desc_pool);
}
/**
* megasas_alloc_cmds_fusion - Allocates the command packets
* @instance: Adapter soft state
*
*
* Each frame has a 32-bit field called context. This context is used to get
* back the megasas_cmd_fusion from the frame when a frame gets completed
* In this driver, the 32 bit values are the indices into an array cmd_list.
* This array is used only to look up the megasas_cmd_fusion given the context.
* The free commands themselves are maintained in a linked list called cmd_pool.
*
* cmds are formed in the io_request and sg_frame members of the
* megasas_cmd_fusion. The context field is used to get a request descriptor
* and is used as SMID of the cmd.
* SMID value range is from 1 to max_fw_cmds.
*/
static int
megasas_alloc_cmds_fusion(struct megasas_instance *instance)
{
int i;
struct fusion_context *fusion;
struct megasas_cmd_fusion *cmd;
u32 offset;
dma_addr_t io_req_base_phys;
u8 *io_req_base;
fusion = instance->ctrl_context;
if (megasas_alloc_request_fusion(instance))
goto fail_exit;
if (instance->is_rdpq) {
if (megasas_alloc_rdpq_fusion(instance))
goto fail_exit;
} else
if (megasas_alloc_reply_fusion(instance))
goto fail_exit;
if (megasas_alloc_cmdlist_fusion(instance))
goto fail_exit;
/* The first 256 bytes (SMID 0) is not used. Don't add to the cmd list */
io_req_base = fusion->io_request_frames + MEGA_MPI2_RAID_DEFAULT_IO_FRAME_SIZE;
io_req_base_phys = fusion->io_request_frames_phys + MEGA_MPI2_RAID_DEFAULT_IO_FRAME_SIZE;
/*
* Add all the commands to command pool (fusion->cmd_pool)
*/
/* SMID 0 is reserved. Set SMID/index from 1 */
for (i = 0; i < instance->max_mpt_cmds; i++) {
cmd = fusion->cmd_list[i];
offset = MEGA_MPI2_RAID_DEFAULT_IO_FRAME_SIZE * i;
memset(cmd, 0, sizeof(struct megasas_cmd_fusion));
cmd->index = i + 1;
cmd->scmd = NULL;
cmd->sync_cmd_idx =
(i >= instance->max_scsi_cmds && i < instance->max_fw_cmds) ?
(i - instance->max_scsi_cmds) :
(u32)ULONG_MAX; /* Set to Invalid */
cmd->instance = instance;
cmd->io_request =
(struct MPI2_RAID_SCSI_IO_REQUEST *)
(io_req_base + offset);
memset(cmd->io_request, 0,
sizeof(struct MPI2_RAID_SCSI_IO_REQUEST));
cmd->io_request_phys_addr = io_req_base_phys + offset;
cmd->r1_alt_dev_handle = MR_DEVHANDLE_INVALID;
}
if (megasas_create_sg_sense_fusion(instance))
goto fail_exit;
return 0;
fail_exit:
megasas_free_cmds_fusion(instance);
return -ENOMEM;
}
/**
* wait_and_poll - Issues a polling command
* @instance: Adapter soft state
* @cmd: Command packet to be issued
* @seconds: Maximum poll time
*
* For polling, MFI requires the cmd_status to be set to 0xFF before posting.
*/
int
wait_and_poll(struct megasas_instance *instance, struct megasas_cmd *cmd,
int seconds)
{
int i;
struct megasas_header *frame_hdr = &cmd->frame->hdr;
u32 status_reg;
u32 msecs = seconds * 1000;
/*
* Wait for cmd_status to change
*/
for (i = 0; (i < msecs) && (frame_hdr->cmd_status == 0xff); i += 20) {
rmb();
msleep(20);
if (!(i % 5000)) {
status_reg = instance->instancet->read_fw_status_reg(instance)
& MFI_STATE_MASK;
if (status_reg == MFI_STATE_FAULT)
break;
}
}
if (frame_hdr->cmd_status == MFI_STAT_INVALID_STATUS)
return DCMD_TIMEOUT;
else if (frame_hdr->cmd_status == MFI_STAT_OK)
return DCMD_SUCCESS;
else
return DCMD_FAILED;
}
/**
* megasas_ioc_init_fusion - Initializes the FW
* @instance: Adapter soft state
*
* Issues the IOC Init cmd
*/
int
megasas_ioc_init_fusion(struct megasas_instance *instance)
{
struct megasas_init_frame *init_frame;
struct MPI2_IOC_INIT_REQUEST *IOCInitMessage = NULL;
dma_addr_t ioc_init_handle;
struct megasas_cmd *cmd;
u8 ret, cur_rdpq_mode;
struct fusion_context *fusion;
union MEGASAS_REQUEST_DESCRIPTOR_UNION req_desc;
int i;
struct megasas_header *frame_hdr;
const char *sys_info;
MFI_CAPABILITIES *drv_ops;
u32 scratch_pad_1;
ktime_t time;
bool cur_fw_64bit_dma_capable;
bool cur_intr_coalescing;
fusion = instance->ctrl_context;
ioc_init_handle = fusion->ioc_init_request_phys;
IOCInitMessage = fusion->ioc_init_request;
cmd = fusion->ioc_init_cmd;
scratch_pad_1 = megasas_readl
(instance, &instance->reg_set->outbound_scratch_pad_1);
cur_rdpq_mode = (scratch_pad_1 & MR_RDPQ_MODE_OFFSET) ? 1 : 0;
if (instance->adapter_type == INVADER_SERIES) {
cur_fw_64bit_dma_capable =
(scratch_pad_1 & MR_CAN_HANDLE_64_BIT_DMA_OFFSET) ? true : false;
if (instance->consistent_mask_64bit && !cur_fw_64bit_dma_capable) {
dev_err(&instance->pdev->dev, "Driver was operating on 64bit "
"DMA mask, but upcoming FW does not support 64bit DMA mask\n");
megaraid_sas_kill_hba(instance);
ret = 1;
goto fail_fw_init;
}
}
if (instance->is_rdpq && !cur_rdpq_mode) {
dev_err(&instance->pdev->dev, "Firmware downgrade *NOT SUPPORTED*"
" from RDPQ mode to non RDPQ mode\n");
ret = 1;
goto fail_fw_init;
}
cur_intr_coalescing = (scratch_pad_1 & MR_INTR_COALESCING_SUPPORT_OFFSET) ?
true : false;
if ((instance->low_latency_index_start ==
MR_HIGH_IOPS_QUEUE_COUNT) && cur_intr_coalescing)
instance->perf_mode = MR_BALANCED_PERF_MODE;
dev_info(&instance->pdev->dev, "Performance mode :%s (latency index = %d)\n",
MEGASAS_PERF_MODE_2STR(instance->perf_mode),
instance->low_latency_index_start);
instance->fw_sync_cache_support = (scratch_pad_1 &
MR_CAN_HANDLE_SYNC_CACHE_OFFSET) ? 1 : 0;
dev_info(&instance->pdev->dev, "FW supports sync cache\t: %s\n",
instance->fw_sync_cache_support ? "Yes" : "No");
memset(IOCInitMessage, 0, sizeof(struct MPI2_IOC_INIT_REQUEST));
IOCInitMessage->Function = MPI2_FUNCTION_IOC_INIT;
IOCInitMessage->WhoInit = MPI2_WHOINIT_HOST_DRIVER;
IOCInitMessage->MsgVersion = cpu_to_le16(MPI2_VERSION);
IOCInitMessage->HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
IOCInitMessage->SystemRequestFrameSize = cpu_to_le16(MEGA_MPI2_RAID_DEFAULT_IO_FRAME_SIZE / 4);
IOCInitMessage->ReplyDescriptorPostQueueDepth = cpu_to_le16(fusion->reply_q_depth);
IOCInitMessage->ReplyDescriptorPostQueueAddress = instance->is_rdpq ?
cpu_to_le64(fusion->rdpq_phys) :
cpu_to_le64(fusion->reply_frames_desc_phys[0]);
IOCInitMessage->MsgFlags = instance->is_rdpq ?
MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE : 0;
IOCInitMessage->SystemRequestFrameBaseAddress = cpu_to_le64(fusion->io_request_frames_phys);
IOCInitMessage->SenseBufferAddressHigh = cpu_to_le32(upper_32_bits(fusion->sense_phys_addr));
IOCInitMessage->HostMSIxVectors = instance->msix_vectors + instance->iopoll_q_count;
IOCInitMessage->HostPageSize = MR_DEFAULT_NVME_PAGE_SHIFT;
time = ktime_get_real();
/* Convert to milliseconds as per FW requirement */
IOCInitMessage->TimeStamp = cpu_to_le64(ktime_to_ms(time));
init_frame = (struct megasas_init_frame *)cmd->frame;
memset(init_frame, 0, IOC_INIT_FRAME_SIZE);
frame_hdr = &cmd->frame->hdr;
frame_hdr->cmd_status = 0xFF;
frame_hdr->flags |= cpu_to_le16(MFI_FRAME_DONT_POST_IN_REPLY_QUEUE);
init_frame->cmd = MFI_CMD_INIT;
init_frame->cmd_status = 0xFF;
drv_ops = (MFI_CAPABILITIES *) &(init_frame->driver_operations);
/* driver support Extended MSIX */
if (instance->adapter_type >= INVADER_SERIES)
drv_ops->mfi_capabilities.support_additional_msix = 1;
/* driver supports HA / Remote LUN over Fast Path interface */
drv_ops->mfi_capabilities.support_fp_remote_lun = 1;
drv_ops->mfi_capabilities.support_max_255lds = 1;
drv_ops->mfi_capabilities.support_ndrive_r1_lb = 1;
drv_ops->mfi_capabilities.security_protocol_cmds_fw = 1;
if (instance->max_chain_frame_sz > MEGASAS_CHAIN_FRAME_SZ_MIN)
drv_ops->mfi_capabilities.support_ext_io_size = 1;
drv_ops->mfi_capabilities.support_fp_rlbypass = 1;
if (!dual_qdepth_disable)
drv_ops->mfi_capabilities.support_ext_queue_depth = 1;
drv_ops->mfi_capabilities.support_qd_throttling = 1;
drv_ops->mfi_capabilities.support_pd_map_target_id = 1;
drv_ops->mfi_capabilities.support_nvme_passthru = 1;
drv_ops->mfi_capabilities.support_fw_exposed_dev_list = 1;
if (instance->consistent_mask_64bit)
drv_ops->mfi_capabilities.support_64bit_mode = 1;
/* Convert capability to LE32 */
cpu_to_le32s((u32 *)&init_frame->driver_operations.mfi_capabilities);
sys_info = dmi_get_system_info(DMI_PRODUCT_UUID);
if (instance->system_info_buf && sys_info) {
memcpy(instance->system_info_buf->systemId, sys_info,
strlen(sys_info) > 64 ? 64 : strlen(sys_info));
instance->system_info_buf->systemIdLength =
strlen(sys_info) > 64 ? 64 : strlen(sys_info);
init_frame->system_info_lo = cpu_to_le32(lower_32_bits(instance->system_info_h));
init_frame->system_info_hi = cpu_to_le32(upper_32_bits(instance->system_info_h));
}
init_frame->queue_info_new_phys_addr_hi =
cpu_to_le32(upper_32_bits(ioc_init_handle));
init_frame->queue_info_new_phys_addr_lo =
cpu_to_le32(lower_32_bits(ioc_init_handle));
init_frame->data_xfer_len = cpu_to_le32(sizeof(struct MPI2_IOC_INIT_REQUEST));
/*
* Each bit in replyqueue_mask represents one group of MSI-x vectors
* (each group has 8 vectors)
*/
switch (instance->perf_mode) {
case MR_BALANCED_PERF_MODE:
init_frame->replyqueue_mask =
cpu_to_le16(~(~0 << instance->low_latency_index_start/8));
break;
case MR_IOPS_PERF_MODE:
init_frame->replyqueue_mask =
cpu_to_le16(~(~0 << instance->msix_vectors/8));
break;
}
req_desc.u.low = cpu_to_le32(lower_32_bits(cmd->frame_phys_addr));
req_desc.u.high = cpu_to_le32(upper_32_bits(cmd->frame_phys_addr));
req_desc.MFAIo.RequestFlags =
(MEGASAS_REQ_DESCRIPT_FLAGS_MFA <<
MEGASAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
/*
* disable the intr before firing the init frame
*/
instance->instancet->disable_intr(instance);
for (i = 0; i < (10 * 1000); i += 20) {
if (megasas_readl(instance, &instance->reg_set->doorbell) & 1)
msleep(20);
else
break;
}
/* For AERO also, IOC_INIT requires 64 bit descriptor write */
megasas_write_64bit_req_desc(instance, &req_desc);
wait_and_poll(instance, cmd, MFI_IO_TIMEOUT_SECS);
frame_hdr = &cmd->frame->hdr;
if (frame_hdr->cmd_status != 0) {
ret = 1;
goto fail_fw_init;
}
if (instance->adapter_type >= AERO_SERIES) {
scratch_pad_1 = megasas_readl
(instance, &instance->reg_set->outbound_scratch_pad_1);
instance->atomic_desc_support =
(scratch_pad_1 & MR_ATOMIC_DESCRIPTOR_SUPPORT_OFFSET) ? 1 : 0;
dev_info(&instance->pdev->dev, "FW supports atomic descriptor\t: %s\n",
instance->atomic_desc_support ? "Yes" : "No");
}
return 0;
fail_fw_init:
dev_err(&instance->pdev->dev,
"Init cmd return status FAILED for SCSI host %d\n",
instance->host->host_no);
return ret;
}
/**
* megasas_sync_pd_seq_num - JBOD SEQ MAP
* @instance: Adapter soft state
* @pend: set to 1, if it is pended jbod map.
*
* Issue Jbod map to the firmware. If it is pended command,
* issue command and return. If it is first instance of jbod map
* issue and receive command.
*/
int
megasas_sync_pd_seq_num(struct megasas_instance *instance, bool pend) {
int ret = 0;
size_t pd_seq_map_sz;
struct megasas_cmd *cmd;
struct megasas_dcmd_frame *dcmd;
struct fusion_context *fusion = instance->ctrl_context;
struct MR_PD_CFG_SEQ_NUM_SYNC *pd_sync;
dma_addr_t pd_seq_h;
pd_sync = (void *)fusion->pd_seq_sync[(instance->pd_seq_map_id & 1)];
pd_seq_h = fusion->pd_seq_phys[(instance->pd_seq_map_id & 1)];
pd_seq_map_sz = struct_size(pd_sync, seq, MAX_PHYSICAL_DEVICES - 1);
cmd = megasas_get_cmd(instance);
if (!cmd) {
dev_err(&instance->pdev->dev,
"Could not get mfi cmd. Fail from %s %d\n",
__func__, __LINE__);
return -ENOMEM;
}
dcmd = &cmd->frame->dcmd;
memset(pd_sync, 0, pd_seq_map_sz);
memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
if (pend) {
dcmd->mbox.b[0] = MEGASAS_DCMD_MBOX_PEND_FLAG;
dcmd->flags = MFI_FRAME_DIR_WRITE;
instance->jbod_seq_cmd = cmd;
} else {
dcmd->flags = MFI_FRAME_DIR_READ;
}
dcmd->cmd = MFI_CMD_DCMD;
dcmd->cmd_status = 0xFF;
dcmd->sge_count = 1;
dcmd->timeout = 0;
dcmd->pad_0 = 0;
dcmd->data_xfer_len = cpu_to_le32(pd_seq_map_sz);
dcmd->opcode = cpu_to_le32(MR_DCMD_SYSTEM_PD_MAP_GET_INFO);
megasas_set_dma_settings(instance, dcmd, pd_seq_h, pd_seq_map_sz);
if (pend) {
instance->instancet->issue_dcmd(instance, cmd);
return 0;
}
/* Below code is only for non pended DCMD */
if (!instance->mask_interrupts)
ret = megasas_issue_blocked_cmd(instance, cmd,
MFI_IO_TIMEOUT_SECS);
else
ret = megasas_issue_polled(instance, cmd);
if (le32_to_cpu(pd_sync->count) > MAX_PHYSICAL_DEVICES) {
dev_warn(&instance->pdev->dev,
"driver supports max %d JBOD, but FW reports %d\n",
MAX_PHYSICAL_DEVICES, le32_to_cpu(pd_sync->count));
ret = -EINVAL;
}
if (ret == DCMD_TIMEOUT)
dev_warn(&instance->pdev->dev,
"%s DCMD timed out, continue without JBOD sequence map\n",
__func__);
if (ret == DCMD_SUCCESS)
instance->pd_seq_map_id++;
megasas_return_cmd(instance, cmd);
return ret;
}
/*
* megasas_get_ld_map_info - Returns FW's ld_map structure
* @instance: Adapter soft state
* @pend: Pend the command or not
* Issues an internal command (DCMD) to get the FW's controller PD
* list structure. This information is mainly used to find out SYSTEM
* supported by the FW.
* dcmd.mbox value setting for MR_DCMD_LD_MAP_GET_INFO
* dcmd.mbox.b[0] - number of LDs being sync'd
* dcmd.mbox.b[1] - 0 - complete command immediately.
* - 1 - pend till config change
* dcmd.mbox.b[2] - 0 - supports max 64 lds and uses legacy MR_FW_RAID_MAP
* - 1 - supports max MAX_LOGICAL_DRIVES_EXT lds and
* uses extended struct MR_FW_RAID_MAP_EXT
*/
static int
megasas_get_ld_map_info(struct megasas_instance *instance)
{
int ret = 0;
struct megasas_cmd *cmd;
struct megasas_dcmd_frame *dcmd;
void *ci;
dma_addr_t ci_h = 0;
u32 size_map_info;
struct fusion_context *fusion;
cmd = megasas_get_cmd(instance);
if (!cmd) {
dev_printk(KERN_DEBUG, &instance->pdev->dev, "Failed to get cmd for map info\n");
return -ENOMEM;
}
fusion = instance->ctrl_context;
if (!fusion) {
megasas_return_cmd(instance, cmd);
return -ENXIO;
}
dcmd = &cmd->frame->dcmd;
size_map_info = fusion->current_map_sz;
ci = (void *) fusion->ld_map[(instance->map_id & 1)];
ci_h = fusion->ld_map_phys[(instance->map_id & 1)];
if (!ci) {
dev_printk(KERN_DEBUG, &instance->pdev->dev, "Failed to alloc mem for ld_map_info\n");
megasas_return_cmd(instance, cmd);
return -ENOMEM;
}
memset(ci, 0, fusion->max_map_sz);
memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
dcmd->cmd = MFI_CMD_DCMD;
dcmd->cmd_status = 0xFF;
dcmd->sge_count = 1;
dcmd->flags = MFI_FRAME_DIR_READ;
dcmd->timeout = 0;
dcmd->pad_0 = 0;
dcmd->data_xfer_len = cpu_to_le32(size_map_info);
dcmd->opcode = cpu_to_le32(MR_DCMD_LD_MAP_GET_INFO);
megasas_set_dma_settings(instance, dcmd, ci_h, size_map_info);
if (!instance->mask_interrupts)
ret = megasas_issue_blocked_cmd(instance, cmd,
MFI_IO_TIMEOUT_SECS);
else
ret = megasas_issue_polled(instance, cmd);
if (ret == DCMD_TIMEOUT)
dev_warn(&instance->pdev->dev,
"%s DCMD timed out, RAID map is disabled\n",
__func__);
megasas_return_cmd(instance, cmd);
return ret;
}
u8
megasas_get_map_info(struct megasas_instance *instance)
{
struct fusion_context *fusion = instance->ctrl_context;
fusion->fast_path_io = 0;
if (!megasas_get_ld_map_info(instance)) {
if (MR_ValidateMapInfo(instance, instance->map_id)) {
fusion->fast_path_io = 1;
return 0;
}
}
return 1;
}
/*
* megasas_sync_map_info - Returns FW's ld_map structure
* @instance: Adapter soft state
*
* Issues an internal command (DCMD) to get the FW's controller PD
* list structure. This information is mainly used to find out SYSTEM
* supported by the FW.
*/
int
megasas_sync_map_info(struct megasas_instance *instance)
{
int i;
struct megasas_cmd *cmd;
struct megasas_dcmd_frame *dcmd;
u16 num_lds;
struct fusion_context *fusion;
struct MR_LD_TARGET_SYNC *ci = NULL;
struct MR_DRV_RAID_MAP_ALL *map;
struct MR_LD_RAID *raid;
struct MR_LD_TARGET_SYNC *ld_sync;
dma_addr_t ci_h = 0;
u32 size_map_info;
cmd = megasas_get_cmd(instance);
if (!cmd) {
dev_printk(KERN_DEBUG, &instance->pdev->dev, "Failed to get cmd for sync info\n");
return -ENOMEM;
}
fusion = instance->ctrl_context;
if (!fusion) {
megasas_return_cmd(instance, cmd);
return 1;
}
map = fusion->ld_drv_map[instance->map_id & 1];
num_lds = le16_to_cpu(map->raidMap.ldCount);
dcmd = &cmd->frame->dcmd;
memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
ci = (struct MR_LD_TARGET_SYNC *)
fusion->ld_map[(instance->map_id - 1) & 1];
memset(ci, 0, fusion->max_map_sz);
ci_h = fusion->ld_map_phys[(instance->map_id - 1) & 1];
ld_sync = (struct MR_LD_TARGET_SYNC *)ci;
for (i = 0; i < num_lds; i++, ld_sync++) {
raid = MR_LdRaidGet(i, map);
ld_sync->targetId = MR_GetLDTgtId(i, map);
ld_sync->seqNum = raid->seqNum;
}
size_map_info = fusion->current_map_sz;
dcmd->cmd = MFI_CMD_DCMD;
dcmd->cmd_status = 0xFF;
dcmd->sge_count = 1;
dcmd->flags = MFI_FRAME_DIR_WRITE;
dcmd->timeout = 0;
dcmd->pad_0 = 0;
dcmd->data_xfer_len = cpu_to_le32(size_map_info);
dcmd->mbox.b[0] = num_lds;
dcmd->mbox.b[1] = MEGASAS_DCMD_MBOX_PEND_FLAG;
dcmd->opcode = cpu_to_le32(MR_DCMD_LD_MAP_GET_INFO);
megasas_set_dma_settings(instance, dcmd, ci_h, size_map_info);
instance->map_update_cmd = cmd;
instance->instancet->issue_dcmd(instance, cmd);
return 0;
}
/*
* meagasas_display_intel_branding - Display branding string
* @instance: per adapter object
*
* Return nothing.
*/
static void
megasas_display_intel_branding(struct megasas_instance *instance)
{
if (instance->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
return;
switch (instance->pdev->device) {
case PCI_DEVICE_ID_LSI_INVADER:
switch (instance->pdev->subsystem_device) {
case MEGARAID_INTEL_RS3DC080_SSDID:
dev_info(&instance->pdev->dev, "scsi host %d: %s\n",
instance->host->host_no,
MEGARAID_INTEL_RS3DC080_BRANDING);
break;
case MEGARAID_INTEL_RS3DC040_SSDID:
dev_info(&instance->pdev->dev, "scsi host %d: %s\n",
instance->host->host_no,
MEGARAID_INTEL_RS3DC040_BRANDING);
break;
case MEGARAID_INTEL_RS3SC008_SSDID:
dev_info(&instance->pdev->dev, "scsi host %d: %s\n",
instance->host->host_no,
MEGARAID_INTEL_RS3SC008_BRANDING);
break;
case MEGARAID_INTEL_RS3MC044_SSDID:
dev_info(&instance->pdev->dev, "scsi host %d: %s\n",
instance->host->host_no,
MEGARAID_INTEL_RS3MC044_BRANDING);
break;
default:
break;
}
break;
case PCI_DEVICE_ID_LSI_FURY:
switch (instance->pdev->subsystem_device) {
case MEGARAID_INTEL_RS3WC080_SSDID:
dev_info(&instance->pdev->dev, "scsi host %d: %s\n",
instance->host->host_no,
MEGARAID_INTEL_RS3WC080_BRANDING);
break;
case MEGARAID_INTEL_RS3WC040_SSDID:
dev_info(&instance->pdev->dev, "scsi host %d: %s\n",
instance->host->host_no,
MEGARAID_INTEL_RS3WC040_BRANDING);
break;
default:
break;
}
break;
case PCI_DEVICE_ID_LSI_CUTLASS_52:
case PCI_DEVICE_ID_LSI_CUTLASS_53:
switch (instance->pdev->subsystem_device) {
case MEGARAID_INTEL_RMS3BC160_SSDID:
dev_info(&instance->pdev->dev, "scsi host %d: %s\n",
instance->host->host_no,
MEGARAID_INTEL_RMS3BC160_BRANDING);
break;
default:
break;
}
break;
default:
break;
}
}
/**
* megasas_allocate_raid_maps - Allocate memory for RAID maps
* @instance: Adapter soft state
*
* return: if success: return 0
* failed: return -ENOMEM
*/
static inline int megasas_allocate_raid_maps(struct megasas_instance *instance)
{
struct fusion_context *fusion;
int i = 0;
fusion = instance->ctrl_context;
fusion->drv_map_pages = get_order(fusion->drv_map_sz);
for (i = 0; i < 2; i++) {
fusion->ld_map[i] = NULL;
fusion->ld_drv_map[i] = (void *)
__get_free_pages(__GFP_ZERO | GFP_KERNEL,
fusion->drv_map_pages);
if (!fusion->ld_drv_map[i]) {
fusion->ld_drv_map[i] = vzalloc(fusion->drv_map_sz);
if (!fusion->ld_drv_map[i]) {
dev_err(&instance->pdev->dev,
"Could not allocate memory for local map"
" size requested: %d\n",
fusion->drv_map_sz);
goto ld_drv_map_alloc_fail;
}
}
}
for (i = 0; i < 2; i++) {
fusion->ld_map[i] = dma_alloc_coherent(&instance->pdev->dev,
fusion->max_map_sz,
&fusion->ld_map_phys[i],
GFP_KERNEL);
if (!fusion->ld_map[i]) {
dev_err(&instance->pdev->dev,
"Could not allocate memory for map info %s:%d\n",
__func__, __LINE__);
goto ld_map_alloc_fail;
}
}
return 0;
ld_map_alloc_fail:
for (i = 0; i < 2; i++) {
if (fusion->ld_map[i])
dma_free_coherent(&instance->pdev->dev,
fusion->max_map_sz,
fusion->ld_map[i],
fusion->ld_map_phys[i]);
}
ld_drv_map_alloc_fail:
for (i = 0; i < 2; i++) {
if (fusion->ld_drv_map[i]) {
if (is_vmalloc_addr(fusion->ld_drv_map[i]))
vfree(fusion->ld_drv_map[i]);
else
free_pages((ulong)fusion->ld_drv_map[i],
fusion->drv_map_pages);
}
}
return -ENOMEM;
}
/**
* megasas_configure_queue_sizes - Calculate size of request desc queue,
* reply desc queue,
* IO request frame queue, set can_queue.
* @instance: Adapter soft state
* @return: void
*/
static inline
void megasas_configure_queue_sizes(struct megasas_instance *instance)
{
struct fusion_context *fusion;
u16 max_cmd;
fusion = instance->ctrl_context;
max_cmd = instance->max_fw_cmds;
if (instance->adapter_type >= VENTURA_SERIES)
instance->max_mpt_cmds = instance->max_fw_cmds * RAID_1_PEER_CMDS;
else
instance->max_mpt_cmds = instance->max_fw_cmds;
instance->max_scsi_cmds = instance->max_fw_cmds - instance->max_mfi_cmds;
instance->cur_can_queue = instance->max_scsi_cmds;
instance->host->can_queue = instance->cur_can_queue;
fusion->reply_q_depth = 2 * ((max_cmd + 1 + 15) / 16) * 16;
fusion->request_alloc_sz = sizeof(union MEGASAS_REQUEST_DESCRIPTOR_UNION) *
instance->max_mpt_cmds;
fusion->reply_alloc_sz = sizeof(union MPI2_REPLY_DESCRIPTORS_UNION) *
(fusion->reply_q_depth);
fusion->io_frames_alloc_sz = MEGA_MPI2_RAID_DEFAULT_IO_FRAME_SIZE +
(MEGA_MPI2_RAID_DEFAULT_IO_FRAME_SIZE
* (instance->max_mpt_cmds + 1)); /* Extra 1 for SMID 0 */
}
static int megasas_alloc_ioc_init_frame(struct megasas_instance *instance)
{
struct fusion_context *fusion;
struct megasas_cmd *cmd;
fusion = instance->ctrl_context;
cmd = kzalloc(sizeof(struct megasas_cmd), GFP_KERNEL);
if (!cmd) {
dev_err(&instance->pdev->dev, "Failed from func: %s line: %d\n",
__func__, __LINE__);
return -ENOMEM;
}
cmd->frame = dma_alloc_coherent(&instance->pdev->dev,
IOC_INIT_FRAME_SIZE,
&cmd->frame_phys_addr, GFP_KERNEL);
if (!cmd->frame) {
dev_err(&instance->pdev->dev, "Failed from func: %s line: %d\n",
__func__, __LINE__);
kfree(cmd);
return -ENOMEM;
}
fusion->ioc_init_cmd = cmd;
return 0;
}
/**
* megasas_free_ioc_init_cmd - Free IOC INIT command frame
* @instance: Adapter soft state
*/
static inline void megasas_free_ioc_init_cmd(struct megasas_instance *instance)
{
struct fusion_context *fusion;
fusion = instance->ctrl_context;
if (fusion->ioc_init_cmd && fusion->ioc_init_cmd->frame)
dma_free_coherent(&instance->pdev->dev,
IOC_INIT_FRAME_SIZE,
fusion->ioc_init_cmd->frame,
fusion->ioc_init_cmd->frame_phys_addr);
kfree(fusion->ioc_init_cmd);
}
/**
* megasas_init_adapter_fusion - Initializes the FW
* @instance: Adapter soft state
*
* This is the main function for initializing firmware.
*/
static u32
megasas_init_adapter_fusion(struct megasas_instance *instance)
{
struct fusion_context *fusion;
u32 scratch_pad_1;
int i = 0, count;
u32 status_reg;
fusion = instance->ctrl_context;
megasas_fusion_update_can_queue(instance, PROBE_CONTEXT);
/*
* Only Driver's internal DCMDs and IOCTL DCMDs needs to have MFI frames
*/
instance->max_mfi_cmds =
MEGASAS_FUSION_INTERNAL_CMDS + MEGASAS_FUSION_IOCTL_CMDS;
megasas_configure_queue_sizes(instance);
scratch_pad_1 = megasas_readl(instance,
&instance->reg_set->outbound_scratch_pad_1);
/* If scratch_pad_1 & MEGASAS_MAX_CHAIN_SIZE_UNITS_MASK is set,
* Firmware support extended IO chain frame which is 4 times more than
* legacy Firmware.
* Legacy Firmware - Frame size is (8 * 128) = 1K
* 1M IO Firmware - Frame size is (8 * 128 * 4) = 4K
*/
if (scratch_pad_1 & MEGASAS_MAX_CHAIN_SIZE_UNITS_MASK)
instance->max_chain_frame_sz =
((scratch_pad_1 & MEGASAS_MAX_CHAIN_SIZE_MASK) >>
MEGASAS_MAX_CHAIN_SHIFT) * MEGASAS_1MB_IO;
else
instance->max_chain_frame_sz =
((scratch_pad_1 & MEGASAS_MAX_CHAIN_SIZE_MASK) >>
MEGASAS_MAX_CHAIN_SHIFT) * MEGASAS_256K_IO;
if (instance->max_chain_frame_sz < MEGASAS_CHAIN_FRAME_SZ_MIN) {
dev_warn(&instance->pdev->dev, "frame size %d invalid, fall back to legacy max frame size %d\n",
instance->max_chain_frame_sz,
MEGASAS_CHAIN_FRAME_SZ_MIN);
instance->max_chain_frame_sz = MEGASAS_CHAIN_FRAME_SZ_MIN;
}
fusion->max_sge_in_main_msg =
(MEGA_MPI2_RAID_DEFAULT_IO_FRAME_SIZE
- offsetof(struct MPI2_RAID_SCSI_IO_REQUEST, SGL))/16;
fusion->max_sge_in_chain =
instance->max_chain_frame_sz
/ sizeof(union MPI2_SGE_IO_UNION);
instance->max_num_sge =
rounddown_pow_of_two(fusion->max_sge_in_main_msg
+ fusion->max_sge_in_chain - 2);
/* Used for pass thru MFI frame (DCMD) */
fusion->chain_offset_mfi_pthru =
offsetof(struct MPI2_RAID_SCSI_IO_REQUEST, SGL)/16;
fusion->chain_offset_io_request =
(MEGA_MPI2_RAID_DEFAULT_IO_FRAME_SIZE -
sizeof(union MPI2_SGE_IO_UNION))/16;
count = instance->msix_vectors > 0 ? instance->msix_vectors : 1;
count += instance->iopoll_q_count;
for (i = 0 ; i < count; i++)
fusion->last_reply_idx[i] = 0;
/*
* For fusion adapters, 3 commands for IOCTL and 8 commands
* for driver's internal DCMDs.
*/
instance->max_scsi_cmds = instance->max_fw_cmds -
(MEGASAS_FUSION_INTERNAL_CMDS +
MEGASAS_FUSION_IOCTL_CMDS);
sema_init(&instance->ioctl_sem, MEGASAS_FUSION_IOCTL_CMDS);
for (i = 0; i < MAX_MSIX_QUEUES_FUSION; i++)
atomic_set(&fusion->busy_mq_poll[i], 0);
if (megasas_alloc_ioc_init_frame(instance))
return 1;
/*
* Allocate memory for descriptors
* Create a pool of commands
*/
if (megasas_alloc_cmds(instance))
goto fail_alloc_mfi_cmds;
if (megasas_alloc_cmds_fusion(instance))
goto fail_alloc_cmds;
if (megasas_ioc_init_fusion(instance)) {
status_reg = instance->instancet->read_fw_status_reg(instance);
if (((status_reg & MFI_STATE_MASK) == MFI_STATE_FAULT) &&
(status_reg & MFI_RESET_ADAPTER)) {
/* Do a chip reset and then retry IOC INIT once */
if (megasas_adp_reset_wait_for_ready
(instance, true, 0) == FAILED)
goto fail_ioc_init;
if (megasas_ioc_init_fusion(instance))
goto fail_ioc_init;
} else {
goto fail_ioc_init;
}
}
megasas_display_intel_branding(instance);
if (megasas_get_ctrl_info(instance)) {
dev_err(&instance->pdev->dev,
"Could not get controller info. Fail from %s %d\n",
__func__, __LINE__);
goto fail_ioc_init;
}
instance->flag_ieee = 1;
instance->r1_ldio_hint_default = MR_R1_LDIO_PIGGYBACK_DEFAULT;
instance->threshold_reply_count = instance->max_fw_cmds / 4;
fusion->fast_path_io = 0;
if (megasas_allocate_raid_maps(instance))
goto fail_ioc_init;
if (!megasas_get_map_info(instance))
megasas_sync_map_info(instance);
return 0;
fail_ioc_init:
megasas_free_cmds_fusion(instance);
fail_alloc_cmds:
megasas_free_cmds(instance);
fail_alloc_mfi_cmds:
megasas_free_ioc_init_cmd(instance);
return 1;
}
/**
* megasas_fault_detect_work - Worker function of
* FW fault handling workqueue.
* @work: FW fault work struct
*/
static void
megasas_fault_detect_work(struct work_struct *work)
{
struct megasas_instance *instance =
container_of(work, struct megasas_instance,
fw_fault_work.work);
u32 fw_state, dma_state, status;
/* Check the fw state */
fw_state = instance->instancet->read_fw_status_reg(instance) &
MFI_STATE_MASK;
if (fw_state == MFI_STATE_FAULT) {
dma_state = instance->instancet->read_fw_status_reg(instance) &
MFI_STATE_DMADONE;
/* Start collecting crash, if DMA bit is done */
if (instance->crash_dump_drv_support &&
instance->crash_dump_app_support && dma_state) {
megasas_fusion_crash_dump(instance);
} else {
if (instance->unload == 0) {
status = megasas_reset_fusion(instance->host, 0);
if (status != SUCCESS) {
dev_err(&instance->pdev->dev,
"Failed from %s %d, do not re-arm timer\n",
__func__, __LINE__);
return;
}
}
}
}
if (instance->fw_fault_work_q)
queue_delayed_work(instance->fw_fault_work_q,
&instance->fw_fault_work,
msecs_to_jiffies(MEGASAS_WATCHDOG_THREAD_INTERVAL));
}
int
megasas_fusion_start_watchdog(struct megasas_instance *instance)
{
/* Check if the Fault WQ is already started */
if (instance->fw_fault_work_q)
return SUCCESS;
INIT_DELAYED_WORK(&instance->fw_fault_work, megasas_fault_detect_work);
snprintf(instance->fault_handler_work_q_name,
sizeof(instance->fault_handler_work_q_name),
"poll_megasas%d_status", instance->host->host_no);
instance->fw_fault_work_q =
create_singlethread_workqueue(instance->fault_handler_work_q_name);
if (!instance->fw_fault_work_q) {
dev_err(&instance->pdev->dev, "Failed from %s %d\n",
__func__, __LINE__);
return FAILED;
}
queue_delayed_work(instance->fw_fault_work_q,
&instance->fw_fault_work,
msecs_to_jiffies(MEGASAS_WATCHDOG_THREAD_INTERVAL));
return SUCCESS;
}
void
megasas_fusion_stop_watchdog(struct megasas_instance *instance)
{
struct workqueue_struct *wq;
if (instance->fw_fault_work_q) {
wq = instance->fw_fault_work_q;
instance->fw_fault_work_q = NULL;
if (!cancel_delayed_work_sync(&instance->fw_fault_work))
flush_workqueue(wq);
destroy_workqueue(wq);
}
}
/**
* map_cmd_status - Maps FW cmd status to OS cmd status
* @fusion: fusion context
* @scmd: Pointer to cmd
* @status: status of cmd returned by FW
* @ext_status: ext status of cmd returned by FW
* @data_length: command data length
* @sense: command sense data
*/
static void
map_cmd_status(struct fusion_context *fusion,
struct scsi_cmnd *scmd, u8 status, u8 ext_status,
u32 data_length, u8 *sense)
{
u8 cmd_type;
int resid;
cmd_type = megasas_cmd_type(scmd);
switch (status) {
case MFI_STAT_OK:
scmd->result = DID_OK << 16;
break;
case MFI_STAT_SCSI_IO_FAILED:
case MFI_STAT_LD_INIT_IN_PROGRESS:
scmd->result = (DID_ERROR << 16) | ext_status;
break;
case MFI_STAT_SCSI_DONE_WITH_ERROR:
scmd->result = (DID_OK << 16) | ext_status;
if (ext_status == SAM_STAT_CHECK_CONDITION) {
memcpy(scmd->sense_buffer, sense,
SCSI_SENSE_BUFFERSIZE);
}
/*
* If the IO request is partially completed, then MR FW will
* update "io_request->DataLength" field with actual number of
* bytes transferred.Driver will set residual bytes count in
* SCSI command structure.
*/
resid = (scsi_bufflen(scmd) - data_length);
scsi_set_resid(scmd, resid);
if (resid &&
((cmd_type == READ_WRITE_LDIO) ||
(cmd_type == READ_WRITE_SYSPDIO)))
scmd_printk(KERN_INFO, scmd, "BRCM Debug mfi stat 0x%x, data len"
" requested/completed 0x%x/0x%x\n",
status, scsi_bufflen(scmd), data_length);
break;
case MFI_STAT_LD_OFFLINE:
case MFI_STAT_DEVICE_NOT_FOUND:
scmd->result = DID_BAD_TARGET << 16;
break;
case MFI_STAT_CONFIG_SEQ_MISMATCH:
scmd->result = DID_IMM_RETRY << 16;
break;
default:
scmd->result = DID_ERROR << 16;
break;
}
}
/**
* megasas_is_prp_possible -
* Checks if native NVMe PRPs can be built for the IO
*
* @instance: Adapter soft state
* @scmd: SCSI command from the mid-layer
* @sge_count: scatter gather element count.
*
* Returns: true: PRPs can be built
* false: IEEE SGLs needs to be built
*/
static bool
megasas_is_prp_possible(struct megasas_instance *instance,
struct scsi_cmnd *scmd, int sge_count)
{
u32 data_length = 0;
struct scatterlist *sg_scmd;
bool build_prp = false;
u32 mr_nvme_pg_size;
mr_nvme_pg_size = max_t(u32, instance->nvme_page_size,
MR_DEFAULT_NVME_PAGE_SIZE);
data_length = scsi_bufflen(scmd);
sg_scmd = scsi_sglist(scmd);
/*
* NVMe uses one PRP for each page (or part of a page)
* look at the data length - if 4 pages or less then IEEE is OK
* if > 5 pages then we need to build a native SGL
* if > 4 and <= 5 pages, then check physical address of 1st SG entry
* if this first size in the page is >= the residual beyond 4 pages
* then use IEEE, otherwise use native SGL
*/
if (data_length > (mr_nvme_pg_size * 5)) {
build_prp = true;
} else if ((data_length > (mr_nvme_pg_size * 4)) &&
(data_length <= (mr_nvme_pg_size * 5))) {
/* check if 1st SG entry size is < residual beyond 4 pages */
if (sg_dma_len(sg_scmd) < (data_length - (mr_nvme_pg_size * 4)))
build_prp = true;
}
return build_prp;
}
/**
* megasas_make_prp_nvme -
* Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only
*
* @instance: Adapter soft state
* @scmd: SCSI command from the mid-layer
* @sgl_ptr: SGL to be filled in
* @cmd: Fusion command frame
* @sge_count: scatter gather element count.
*
* Returns: true: PRPs are built
* false: IEEE SGLs needs to be built
*/
static bool
megasas_make_prp_nvme(struct megasas_instance *instance, struct scsi_cmnd *scmd,
struct MPI25_IEEE_SGE_CHAIN64 *sgl_ptr,
struct megasas_cmd_fusion *cmd, int sge_count)
{
int sge_len, offset, num_prp_in_chain = 0;
struct MPI25_IEEE_SGE_CHAIN64 *main_chain_element, *ptr_first_sgl;
u64 *ptr_sgl;
dma_addr_t ptr_sgl_phys;
u64 sge_addr;
u32 page_mask, page_mask_result;
struct scatterlist *sg_scmd;
u32 first_prp_len;
bool build_prp = false;
int data_len = scsi_bufflen(scmd);
u32 mr_nvme_pg_size = max_t(u32, instance->nvme_page_size,
MR_DEFAULT_NVME_PAGE_SIZE);
build_prp = megasas_is_prp_possible(instance, scmd, sge_count);
if (!build_prp)
return false;
/*
* Nvme has a very convoluted prp format. One prp is required
* for each page or partial page. Driver need to split up OS sg_list
* entries if it is longer than one page or cross a page
* boundary. Driver also have to insert a PRP list pointer entry as
* the last entry in each physical page of the PRP list.
*
* NOTE: The first PRP "entry" is actually placed in the first
* SGL entry in the main message as IEEE 64 format. The 2nd
* entry in the main message is the chain element, and the rest
* of the PRP entries are built in the contiguous pcie buffer.
*/
page_mask = mr_nvme_pg_size - 1;
ptr_sgl = (u64 *)cmd->sg_frame;
ptr_sgl_phys = cmd->sg_frame_phys_addr;
memset(ptr_sgl, 0, instance->max_chain_frame_sz);
/* Build chain frame element which holds all prps except first*/
main_chain_element = (struct MPI25_IEEE_SGE_CHAIN64 *)
((u8 *)sgl_ptr + sizeof(struct MPI25_IEEE_SGE_CHAIN64));
main_chain_element->Address = cpu_to_le64(ptr_sgl_phys);
main_chain_element->NextChainOffset = 0;
main_chain_element->Flags = IEEE_SGE_FLAGS_CHAIN_ELEMENT |
IEEE_SGE_FLAGS_SYSTEM_ADDR |
MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
/* Build first prp, sge need not to be page aligned*/
ptr_first_sgl = sgl_ptr;
sg_scmd = scsi_sglist(scmd);
sge_addr = sg_dma_address(sg_scmd);
sge_len = sg_dma_len(sg_scmd);
offset = (u32)(sge_addr & page_mask);
first_prp_len = mr_nvme_pg_size - offset;
ptr_first_sgl->Address = cpu_to_le64(sge_addr);
ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
data_len -= first_prp_len;
if (sge_len > first_prp_len) {
sge_addr += first_prp_len;
sge_len -= first_prp_len;
} else if (sge_len == first_prp_len) {
sg_scmd = sg_next(sg_scmd);
sge_addr = sg_dma_address(sg_scmd);
sge_len = sg_dma_len(sg_scmd);
}
for (;;) {
offset = (u32)(sge_addr & page_mask);
/* Put PRP pointer due to page boundary*/
page_mask_result = (uintptr_t)(ptr_sgl + 1) & page_mask;
if (unlikely(!page_mask_result)) {
scmd_printk(KERN_NOTICE,
scmd, "page boundary ptr_sgl: 0x%p\n",
ptr_sgl);
ptr_sgl_phys += 8;
*ptr_sgl = cpu_to_le64(ptr_sgl_phys);
ptr_sgl++;
num_prp_in_chain++;
}
*ptr_sgl = cpu_to_le64(sge_addr);
ptr_sgl++;
ptr_sgl_phys += 8;
num_prp_in_chain++;
sge_addr += mr_nvme_pg_size;
sge_len -= mr_nvme_pg_size;
data_len -= mr_nvme_pg_size;
if (data_len <= 0)
break;
if (sge_len > 0)
continue;
sg_scmd = sg_next(sg_scmd);
sge_addr = sg_dma_address(sg_scmd);
sge_len = sg_dma_len(sg_scmd);
}
main_chain_element->Length =
cpu_to_le32(num_prp_in_chain * sizeof(u64));
return build_prp;
}
/**
* megasas_make_sgl_fusion - Prepares 32-bit SGL
* @instance: Adapter soft state
* @scp: SCSI command from the mid-layer
* @sgl_ptr: SGL to be filled in
* @cmd: cmd we are working on
* @sge_count: sge count
*
*/
static void
megasas_make_sgl_fusion(struct megasas_instance *instance,
struct scsi_cmnd *scp,
struct MPI25_IEEE_SGE_CHAIN64 *sgl_ptr,
struct megasas_cmd_fusion *cmd, int sge_count)
{
int i, sg_processed;
struct scatterlist *os_sgl;
struct fusion_context *fusion;
fusion = instance->ctrl_context;
if (instance->adapter_type >= INVADER_SERIES) {
struct MPI25_IEEE_SGE_CHAIN64 *sgl_ptr_end = sgl_ptr;
sgl_ptr_end += fusion->max_sge_in_main_msg - 1;
sgl_ptr_end->Flags = 0;
}
scsi_for_each_sg(scp, os_sgl, sge_count, i) {
sgl_ptr->Length = cpu_to_le32(sg_dma_len(os_sgl));
sgl_ptr->Address = cpu_to_le64(sg_dma_address(os_sgl));
sgl_ptr->Flags = 0;
if (instance->adapter_type >= INVADER_SERIES)
if (i == sge_count - 1)
sgl_ptr->Flags = IEEE_SGE_FLAGS_END_OF_LIST;
sgl_ptr++;
sg_processed = i + 1;
if ((sg_processed == (fusion->max_sge_in_main_msg - 1)) &&
(sge_count > fusion->max_sge_in_main_msg)) {
struct MPI25_IEEE_SGE_CHAIN64 *sg_chain;
if (instance->adapter_type >= INVADER_SERIES) {
if ((le16_to_cpu(cmd->io_request->IoFlags) &
MPI25_SAS_DEVICE0_FLAGS_ENABLED_FAST_PATH) !=
MPI25_SAS_DEVICE0_FLAGS_ENABLED_FAST_PATH)
cmd->io_request->ChainOffset =
fusion->
chain_offset_io_request;
else
cmd->io_request->ChainOffset = 0;
} else
cmd->io_request->ChainOffset =
fusion->chain_offset_io_request;
sg_chain = sgl_ptr;
/* Prepare chain element */
sg_chain->NextChainOffset = 0;
if (instance->adapter_type >= INVADER_SERIES)
sg_chain->Flags = IEEE_SGE_FLAGS_CHAIN_ELEMENT;
else
sg_chain->Flags =
(IEEE_SGE_FLAGS_CHAIN_ELEMENT |
MPI2_IEEE_SGE_FLAGS_IOCPLBNTA_ADDR);
sg_chain->Length = cpu_to_le32((sizeof(union MPI2_SGE_IO_UNION) * (sge_count - sg_processed)));
sg_chain->Address = cpu_to_le64(cmd->sg_frame_phys_addr);
sgl_ptr =
(struct MPI25_IEEE_SGE_CHAIN64 *)cmd->sg_frame;
memset(sgl_ptr, 0, instance->max_chain_frame_sz);
}
}
}
/**
* megasas_make_sgl - Build Scatter Gather List(SGLs)
* @scp: SCSI command pointer
* @instance: Soft instance of controller
* @cmd: Fusion command pointer
*
* This function will build sgls based on device type.
* For nvme drives, there is different way of building sgls in nvme native
* format- PRPs(Physical Region Page).
*
* Returns the number of sg lists actually used, zero if the sg lists
* is NULL, or -ENOMEM if the mapping failed
*/
static
int megasas_make_sgl(struct megasas_instance *instance, struct scsi_cmnd *scp,
struct megasas_cmd_fusion *cmd)
{
int sge_count;
bool build_prp = false;
struct MPI25_IEEE_SGE_CHAIN64 *sgl_chain64;
sge_count = scsi_dma_map(scp);
if ((sge_count > instance->max_num_sge) || (sge_count <= 0))
return sge_count;
sgl_chain64 = (struct MPI25_IEEE_SGE_CHAIN64 *)&cmd->io_request->SGL;
if ((le16_to_cpu(cmd->io_request->IoFlags) &
MPI25_SAS_DEVICE0_FLAGS_ENABLED_FAST_PATH) &&
(cmd->pd_interface == NVME_PD))
build_prp = megasas_make_prp_nvme(instance, scp, sgl_chain64,
cmd, sge_count);
if (!build_prp)
megasas_make_sgl_fusion(instance, scp, sgl_chain64,
cmd, sge_count);
return sge_count;
}
/**
* megasas_set_pd_lba - Sets PD LBA
* @io_request: IO request
* @cdb_len: cdb length
* @io_info: IO information
* @scp: SCSI command
* @local_map_ptr: Raid map
* @ref_tag: Primary reference tag
*
* Used to set the PD LBA in CDB for FP IOs
*/
static void
megasas_set_pd_lba(struct MPI2_RAID_SCSI_IO_REQUEST *io_request, u8 cdb_len,
struct IO_REQUEST_INFO *io_info, struct scsi_cmnd *scp,
struct MR_DRV_RAID_MAP_ALL *local_map_ptr, u32 ref_tag)
{
struct MR_LD_RAID *raid;
u16 ld;
u64 start_blk = io_info->pdBlock;
u8 *cdb = io_request->CDB.CDB32;
u32 num_blocks = io_info->numBlocks;
u8 opcode = 0, flagvals = 0, groupnum = 0, control = 0;
/* Check if T10 PI (DIF) is enabled for this LD */
ld = MR_TargetIdToLdGet(io_info->ldTgtId, local_map_ptr);
raid = MR_LdRaidGet(ld, local_map_ptr);
if (raid->capability.ldPiMode == MR_PROT_INFO_TYPE_CONTROLLER) {
memset(cdb, 0, sizeof(io_request->CDB.CDB32));
cdb[0] = MEGASAS_SCSI_VARIABLE_LENGTH_CMD;
cdb[7] = MEGASAS_SCSI_ADDL_CDB_LEN;
if (scp->sc_data_direction == DMA_FROM_DEVICE)
cdb[9] = MEGASAS_SCSI_SERVICE_ACTION_READ32;
else
cdb[9] = MEGASAS_SCSI_SERVICE_ACTION_WRITE32;
cdb[10] = MEGASAS_RD_WR_PROTECT_CHECK_ALL;
/* LBA */
cdb[12] = (u8)((start_blk >> 56) & 0xff);
cdb[13] = (u8)((start_blk >> 48) & 0xff);
cdb[14] = (u8)((start_blk >> 40) & 0xff);
cdb[15] = (u8)((start_blk >> 32) & 0xff);
cdb[16] = (u8)((start_blk >> 24) & 0xff);
cdb[17] = (u8)((start_blk >> 16) & 0xff);
cdb[18] = (u8)((start_blk >> 8) & 0xff);
cdb[19] = (u8)(start_blk & 0xff);
/* Logical block reference tag */
io_request->CDB.EEDP32.PrimaryReferenceTag =
cpu_to_be32(ref_tag);
io_request->CDB.EEDP32.PrimaryApplicationTagMask = cpu_to_be16(0xffff);
io_request->IoFlags = cpu_to_le16(32); /* Specify 32-byte cdb */
/* Transfer length */
cdb[28] = (u8)((num_blocks >> 24) & 0xff);
cdb[29] = (u8)((num_blocks >> 16) & 0xff);
cdb[30] = (u8)((num_blocks >> 8) & 0xff);
cdb[31] = (u8)(num_blocks & 0xff);
/* set SCSI IO EEDPFlags */
if (scp->sc_data_direction == DMA_FROM_DEVICE) {
io_request->EEDPFlags = cpu_to_le16(
MPI2_SCSIIO_EEDPFLAGS_INC_PRI_REFTAG |
MPI2_SCSIIO_EEDPFLAGS_CHECK_REFTAG |
MPI2_SCSIIO_EEDPFLAGS_CHECK_REMOVE_OP |
MPI2_SCSIIO_EEDPFLAGS_CHECK_APPTAG |
MPI25_SCSIIO_EEDPFLAGS_DO_NOT_DISABLE_MODE |
MPI2_SCSIIO_EEDPFLAGS_CHECK_GUARD);
} else {
io_request->EEDPFlags = cpu_to_le16(
MPI2_SCSIIO_EEDPFLAGS_INC_PRI_REFTAG |
MPI2_SCSIIO_EEDPFLAGS_INSERT_OP);
}
io_request->Control |= cpu_to_le32((0x4 << 26));
io_request->EEDPBlockSize = cpu_to_le32(scp->device->sector_size);
} else {
/* Some drives don't support 16/12 byte CDB's, convert to 10 */
if (((cdb_len == 12) || (cdb_len == 16)) &&
(start_blk <= 0xffffffff)) {
if (cdb_len == 16) {
opcode = cdb[0] == READ_16 ? READ_10 : WRITE_10;
flagvals = cdb[1];
groupnum = cdb[14];
control = cdb[15];
} else {
opcode = cdb[0] == READ_12 ? READ_10 : WRITE_10;
flagvals = cdb[1];
groupnum = cdb[10];
control = cdb[11];
}
memset(cdb, 0, sizeof(io_request->CDB.CDB32));
cdb[0] = opcode;
cdb[1] = flagvals;
cdb[6] = groupnum;
cdb[9] = control;
/* Transfer length */
cdb[8] = (u8)(num_blocks & 0xff);
cdb[7] = (u8)((num_blocks >> 8) & 0xff);
io_request->IoFlags = cpu_to_le16(10); /* Specify 10-byte cdb */
cdb_len = 10;
} else if ((cdb_len < 16) && (start_blk > 0xffffffff)) {
/* Convert to 16 byte CDB for large LBA's */
switch (cdb_len) {
case 6:
opcode = cdb[0] == READ_6 ? READ_16 : WRITE_16;
control = cdb[5];
break;
case 10:
opcode =
cdb[0] == READ_10 ? READ_16 : WRITE_16;
flagvals = cdb[1];
groupnum = cdb[6];
control = cdb[9];
break;
case 12:
opcode =
cdb[0] == READ_12 ? READ_16 : WRITE_16;
flagvals = cdb[1];
groupnum = cdb[10];
control = cdb[11];
break;
}
memset(cdb, 0, sizeof(io_request->CDB.CDB32));
cdb[0] = opcode;
cdb[1] = flagvals;
cdb[14] = groupnum;
cdb[15] = control;
/* Transfer length */
cdb[13] = (u8)(num_blocks & 0xff);
cdb[12] = (u8)((num_blocks >> 8) & 0xff);
cdb[11] = (u8)((num_blocks >> 16) & 0xff);
cdb[10] = (u8)((num_blocks >> 24) & 0xff);
io_request->IoFlags = cpu_to_le16(16); /* Specify 16-byte cdb */
cdb_len = 16;
}
/* Normal case, just load LBA here */
switch (cdb_len) {
case 6:
{
u8 val = cdb[1] & 0xE0;
cdb[3] = (u8)(start_blk & 0xff);
cdb[2] = (u8)((start_blk >> 8) & 0xff);
cdb[1] = val | ((u8)(start_blk >> 16) & 0x1f);
break;
}
case 10:
cdb[5] = (u8)(start_blk & 0xff);
cdb[4] = (u8)((start_blk >> 8) & 0xff);
cdb[3] = (u8)((start_blk >> 16) & 0xff);
cdb[2] = (u8)((start_blk >> 24) & 0xff);
break;
case 12:
cdb[5] = (u8)(start_blk & 0xff);
cdb[4] = (u8)((start_blk >> 8) & 0xff);
cdb[3] = (u8)((start_blk >> 16) & 0xff);
cdb[2] = (u8)((start_blk >> 24) & 0xff);
break;
case 16:
cdb[9] = (u8)(start_blk & 0xff);
cdb[8] = (u8)((start_blk >> 8) & 0xff);
cdb[7] = (u8)((start_blk >> 16) & 0xff);
cdb[6] = (u8)((start_blk >> 24) & 0xff);
cdb[5] = (u8)((start_blk >> 32) & 0xff);
cdb[4] = (u8)((start_blk >> 40) & 0xff);
cdb[3] = (u8)((start_blk >> 48) & 0xff);
cdb[2] = (u8)((start_blk >> 56) & 0xff);
break;
}
}
}
/**
* megasas_stream_detect - stream detection on read and and write IOs
* @instance: Adapter soft state
* @cmd: Command to be prepared
* @io_info: IO Request info
*
*/
/** stream detection on read and and write IOs */
static void megasas_stream_detect(struct megasas_instance *instance,
struct megasas_cmd_fusion *cmd,
struct IO_REQUEST_INFO *io_info)
{
struct fusion_context *fusion = instance->ctrl_context;
u32 device_id = io_info->ldTgtId;
struct LD_STREAM_DETECT *current_ld_sd
= fusion->stream_detect_by_ld[device_id];
u32 *track_stream = &current_ld_sd->mru_bit_map, stream_num;
u32 shifted_values, unshifted_values;
u32 index_value_mask, shifted_values_mask;
int i;
bool is_read_ahead = false;
struct STREAM_DETECT *current_sd;
/* find possible stream */
for (i = 0; i < MAX_STREAMS_TRACKED; ++i) {
stream_num = (*track_stream >>
(i * BITS_PER_INDEX_STREAM)) &
STREAM_MASK;
current_sd = &current_ld_sd->stream_track[stream_num];
/* if we found a stream, update the raid
* context and also update the mruBitMap
*/
/* boundary condition */
if ((current_sd->next_seq_lba) &&
(io_info->ldStartBlock >= current_sd->next_seq_lba) &&
(io_info->ldStartBlock <= (current_sd->next_seq_lba + 32)) &&
(current_sd->is_read == io_info->isRead)) {
if ((io_info->ldStartBlock != current_sd->next_seq_lba) &&
((!io_info->isRead) || (!is_read_ahead)))
/*
* Once the API availible we need to change this.
* At this point we are not allowing any gap
*/
continue;
SET_STREAM_DETECTED(cmd->io_request->RaidContext.raid_context_g35);
current_sd->next_seq_lba =
io_info->ldStartBlock + io_info->numBlocks;
/*
* update the mruBitMap LRU
*/
shifted_values_mask =
(1 << i * BITS_PER_INDEX_STREAM) - 1;
shifted_values = ((*track_stream & shifted_values_mask)
<< BITS_PER_INDEX_STREAM);
index_value_mask =
STREAM_MASK << i * BITS_PER_INDEX_STREAM;
unshifted_values =
*track_stream & ~(shifted_values_mask |
index_value_mask);
*track_stream =
unshifted_values | shifted_values | stream_num;
return;
}
}
/*
* if we did not find any stream, create a new one
* from the least recently used
*/
stream_num = (*track_stream >>
((MAX_STREAMS_TRACKED - 1) * BITS_PER_INDEX_STREAM)) &
STREAM_MASK;
current_sd = &current_ld_sd->stream_track[stream_num];
current_sd->is_read = io_info->isRead;
current_sd->next_seq_lba = io_info->ldStartBlock + io_info->numBlocks;
*track_stream = (((*track_stream & ZERO_LAST_STREAM) << 4) | stream_num);
return;
}
/**
* megasas_set_raidflag_cpu_affinity - This function sets the cpu
* affinity (cpu of the controller) and raid_flags in the raid context
* based on IO type.
*
* @fusion: Fusion context
* @praid_context: IO RAID context
* @raid: LD raid map
* @fp_possible: Is fast path possible?
* @is_read: Is read IO?
* @scsi_buff_len: SCSI command buffer length
*
*/
static void
megasas_set_raidflag_cpu_affinity(struct fusion_context *fusion,
union RAID_CONTEXT_UNION *praid_context,
struct MR_LD_RAID *raid, bool fp_possible,
u8 is_read, u32 scsi_buff_len)
{
u8 cpu_sel = MR_RAID_CTX_CPUSEL_0;
struct RAID_CONTEXT_G35 *rctx_g35;
rctx_g35 = &praid_context->raid_context_g35;
if (fp_possible) {
if (is_read) {
if ((raid->cpuAffinity.pdRead.cpu0) &&
(raid->cpuAffinity.pdRead.cpu1))
cpu_sel = MR_RAID_CTX_CPUSEL_FCFS;
else if (raid->cpuAffinity.pdRead.cpu1)
cpu_sel = MR_RAID_CTX_CPUSEL_1;
} else {
if ((raid->cpuAffinity.pdWrite.cpu0) &&
(raid->cpuAffinity.pdWrite.cpu1))
cpu_sel = MR_RAID_CTX_CPUSEL_FCFS;
else if (raid->cpuAffinity.pdWrite.cpu1)
cpu_sel = MR_RAID_CTX_CPUSEL_1;
/* Fast path cache by pass capable R0/R1 VD */
if ((raid->level <= 1) &&
(raid->capability.fp_cache_bypass_capable)) {
rctx_g35->routing_flags |=
(1 << MR_RAID_CTX_ROUTINGFLAGS_SLD_SHIFT);
rctx_g35->raid_flags =
(MR_RAID_FLAGS_IO_SUB_TYPE_CACHE_BYPASS
<< MR_RAID_CTX_RAID_FLAGS_IO_SUB_TYPE_SHIFT);
}
}
} else {
if (is_read) {
if ((raid->cpuAffinity.ldRead.cpu0) &&
(raid->cpuAffinity.ldRead.cpu1))
cpu_sel = MR_RAID_CTX_CPUSEL_FCFS;
else if (raid->cpuAffinity.ldRead.cpu1)
cpu_sel = MR_RAID_CTX_CPUSEL_1;
} else {
if ((raid->cpuAffinity.ldWrite.cpu0) &&
(raid->cpuAffinity.ldWrite.cpu1))
cpu_sel = MR_RAID_CTX_CPUSEL_FCFS;
else if (raid->cpuAffinity.ldWrite.cpu1)
cpu_sel = MR_RAID_CTX_CPUSEL_1;
if (is_stream_detected(rctx_g35) &&
((raid->level == 5) || (raid->level == 6)) &&
(raid->writeMode == MR_RL_WRITE_THROUGH_MODE) &&
(cpu_sel == MR_RAID_CTX_CPUSEL_FCFS))
cpu_sel = MR_RAID_CTX_CPUSEL_0;
}
}
rctx_g35->routing_flags |=
(cpu_sel << MR_RAID_CTX_ROUTINGFLAGS_CPUSEL_SHIFT);
/* Always give priority to MR_RAID_FLAGS_IO_SUB_TYPE_LDIO_BW_LIMIT
* vs MR_RAID_FLAGS_IO_SUB_TYPE_CACHE_BYPASS.
* IO Subtype is not bitmap.
*/
if ((fusion->pcie_bw_limitation) && (raid->level == 1) && (!is_read) &&
(scsi_buff_len > MR_LARGE_IO_MIN_SIZE)) {
praid_context->raid_context_g35.raid_flags =
(MR_RAID_FLAGS_IO_SUB_TYPE_LDIO_BW_LIMIT
<< MR_RAID_CTX_RAID_FLAGS_IO_SUB_TYPE_SHIFT);
}
}
/**
* megasas_build_ldio_fusion - Prepares IOs to devices
* @instance: Adapter soft state
* @scp: SCSI command
* @cmd: Command to be prepared
*
* Prepares the io_request and chain elements (sg_frame) for IO
* The IO can be for PD (Fast Path) or LD
*/
static void
megasas_build_ldio_fusion(struct megasas_instance *instance,
struct scsi_cmnd *scp,
struct megasas_cmd_fusion *cmd)
{
bool fp_possible;
u16 ld;
u32 start_lba_lo, start_lba_hi, device_id, datalength = 0;
u32 scsi_buff_len;
struct MPI2_RAID_SCSI_IO_REQUEST *io_request;
struct IO_REQUEST_INFO io_info;
struct fusion_context *fusion;
struct MR_DRV_RAID_MAP_ALL *local_map_ptr;
u8 *raidLUN;
unsigned long spinlock_flags;
struct MR_LD_RAID *raid = NULL;
struct MR_PRIV_DEVICE *mrdev_priv;
struct RAID_CONTEXT *rctx;
struct RAID_CONTEXT_G35 *rctx_g35;
device_id = MEGASAS_DEV_INDEX(scp);
fusion = instance->ctrl_context;
io_request = cmd->io_request;
rctx = &io_request->RaidContext.raid_context;
rctx_g35 = &io_request->RaidContext.raid_context_g35;
rctx->virtual_disk_tgt_id = cpu_to_le16(device_id);
rctx->status = 0;
rctx->ex_status = 0;
start_lba_lo = 0;
start_lba_hi = 0;
fp_possible = false;
/*
* 6-byte READ(0x08) or WRITE(0x0A) cdb
*/
if (scp->cmd_len == 6) {
datalength = (u32) scp->cmnd[4];
start_lba_lo = ((u32) scp->cmnd[1] << 16) |
((u32) scp->cmnd[2] << 8) | (u32) scp->cmnd[3];
start_lba_lo &= 0x1FFFFF;
}
/*
* 10-byte READ(0x28) or WRITE(0x2A) cdb
*/
else if (scp->cmd_len == 10) {
datalength = (u32) scp->cmnd[8] |
((u32) scp->cmnd[7] << 8);
start_lba_lo = ((u32) scp->cmnd[2] << 24) |
((u32) scp->cmnd[3] << 16) |
((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
}
/*
* 12-byte READ(0xA8) or WRITE(0xAA) cdb
*/
else if (scp->cmd_len == 12) {
datalength = ((u32) scp->cmnd[6] << 24) |
((u32) scp->cmnd[7] << 16) |
((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
start_lba_lo = ((u32) scp->cmnd[2] << 24) |
((u32) scp->cmnd[3] << 16) |
((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
}
/*
* 16-byte READ(0x88) or WRITE(0x8A) cdb
*/
else if (scp->cmd_len == 16) {
datalength = ((u32) scp->cmnd[10] << 24) |
((u32) scp->cmnd[11] << 16) |
((u32) scp->cmnd[12] << 8) | (u32) scp->cmnd[13];
start_lba_lo = ((u32) scp->cmnd[6] << 24) |
((u32) scp->cmnd[7] << 16) |
((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
start_lba_hi = ((u32) scp->cmnd[2] << 24) |
((u32) scp->cmnd[3] << 16) |
((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
}
memset(&io_info, 0, sizeof(struct IO_REQUEST_INFO));
io_info.ldStartBlock = ((u64)start_lba_hi << 32) | start_lba_lo;
io_info.numBlocks = datalength;
io_info.ldTgtId = device_id;
io_info.r1_alt_dev_handle = MR_DEVHANDLE_INVALID;
scsi_buff_len = scsi_bufflen(scp);
io_request->DataLength = cpu_to_le32(scsi_buff_len);
io_info.data_arms = 1;
if (scp->sc_data_direction == DMA_FROM_DEVICE)
io_info.isRead = 1;
local_map_ptr = fusion->ld_drv_map[(instance->map_id & 1)];
ld = MR_TargetIdToLdGet(device_id, local_map_ptr);
if (ld < instance->fw_supported_vd_count)
raid = MR_LdRaidGet(ld, local_map_ptr);
if (!raid || (!fusion->fast_path_io)) {
rctx->reg_lock_flags = 0;
fp_possible = false;
} else {
if (MR_BuildRaidContext(instance, &io_info, rctx,
local_map_ptr, &raidLUN))
fp_possible = (io_info.fpOkForIo > 0) ? true : false;
}
megasas_get_msix_index(instance, scp, cmd, io_info.data_arms);
if (instance->adapter_type >= VENTURA_SERIES) {
/* FP for Optimal raid level 1.
* All large RAID-1 writes (> 32 KiB, both WT and WB modes)
* are built by the driver as LD I/Os.
* All small RAID-1 WT writes (<= 32 KiB) are built as FP I/Os
* (there is never a reason to process these as buffered writes)
* All small RAID-1 WB writes (<= 32 KiB) are built as FP I/Os
* with the SLD bit asserted.
*/
if (io_info.r1_alt_dev_handle != MR_DEVHANDLE_INVALID) {
mrdev_priv = scp->device->hostdata;
if (atomic_inc_return(&instance->fw_outstanding) >
(instance->host->can_queue)) {
fp_possible = false;
atomic_dec(&instance->fw_outstanding);
} else if (fusion->pcie_bw_limitation &&
((scsi_buff_len > MR_LARGE_IO_MIN_SIZE) ||
(atomic_dec_if_positive(&mrdev_priv->r1_ldio_hint) > 0))) {
fp_possible = false;
atomic_dec(&instance->fw_outstanding);
if (scsi_buff_len > MR_LARGE_IO_MIN_SIZE)
atomic_set(&mrdev_priv->r1_ldio_hint,
instance->r1_ldio_hint_default);
}
}
if (!fp_possible ||
(io_info.isRead && io_info.ra_capable)) {
spin_lock_irqsave(&instance->stream_lock,
spinlock_flags);
megasas_stream_detect(instance, cmd, &io_info);
spin_unlock_irqrestore(&instance->stream_lock,
spinlock_flags);
/* In ventura if stream detected for a read and it is
* read ahead capable make this IO as LDIO
*/
if (is_stream_detected(rctx_g35))
fp_possible = false;
}
/* If raid is NULL, set CPU affinity to default CPU0 */
if (raid)
megasas_set_raidflag_cpu_affinity(fusion, &io_request->RaidContext,
raid, fp_possible, io_info.isRead,
scsi_buff_len);
else
rctx_g35->routing_flags |=
(MR_RAID_CTX_CPUSEL_0 << MR_RAID_CTX_ROUTINGFLAGS_CPUSEL_SHIFT);
}
if (fp_possible) {
megasas_set_pd_lba(io_request, scp->cmd_len, &io_info, scp,
local_map_ptr, start_lba_lo);
io_request->Function = MPI2_FUNCTION_SCSI_IO_REQUEST;
cmd->request_desc->SCSIIO.RequestFlags =
(MPI2_REQ_DESCRIPT_FLAGS_FP_IO
<< MEGASAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
if (instance->adapter_type == INVADER_SERIES) {
rctx->type = MPI2_TYPE_CUDA;
rctx->nseg = 0x1;
io_request->IoFlags |= cpu_to_le16(MPI25_SAS_DEVICE0_FLAGS_ENABLED_FAST_PATH);
rctx->reg_lock_flags |=
(MR_RL_FLAGS_GRANT_DESTINATION_CUDA |
MR_RL_FLAGS_SEQ_NUM_ENABLE);
} else if (instance->adapter_type >= VENTURA_SERIES) {
rctx_g35->nseg_type |= (1 << RAID_CONTEXT_NSEG_SHIFT);
rctx_g35->nseg_type |= (MPI2_TYPE_CUDA << RAID_CONTEXT_TYPE_SHIFT);
rctx_g35->routing_flags |= (1 << MR_RAID_CTX_ROUTINGFLAGS_SQN_SHIFT);
io_request->IoFlags |=
cpu_to_le16(MPI25_SAS_DEVICE0_FLAGS_ENABLED_FAST_PATH);
}
if (fusion->load_balance_info &&
(fusion->load_balance_info[device_id].loadBalanceFlag) &&
(io_info.isRead)) {
io_info.devHandle =
get_updated_dev_handle(instance,
&fusion->load_balance_info[device_id],
&io_info, local_map_ptr);
megasas_priv(scp)->status |= MEGASAS_LOAD_BALANCE_FLAG;
cmd->pd_r1_lb = io_info.pd_after_lb;
if (instance->adapter_type >= VENTURA_SERIES)
rctx_g35->span_arm = io_info.span_arm;
else
rctx->span_arm = io_info.span_arm;
} else
megasas_priv(scp)->status &= ~MEGASAS_LOAD_BALANCE_FLAG;
if (instance->adapter_type >= VENTURA_SERIES)
cmd->r1_alt_dev_handle = io_info.r1_alt_dev_handle;
else
cmd->r1_alt_dev_handle = MR_DEVHANDLE_INVALID;
if ((raidLUN[0] == 1) &&
(local_map_ptr->raidMap.devHndlInfo[io_info.pd_after_lb].validHandles > 1)) {
instance->dev_handle = !(instance->dev_handle);
io_info.devHandle =
local_map_ptr->raidMap.devHndlInfo[io_info.pd_after_lb].devHandle[instance->dev_handle];
}
cmd->request_desc->SCSIIO.DevHandle = io_info.devHandle;
io_request->DevHandle = io_info.devHandle;
cmd->pd_interface = io_info.pd_interface;
/* populate the LUN field */
memcpy(io_request->LUN, raidLUN, 8);
} else {
rctx->timeout_value =
cpu_to_le16(local_map_ptr->raidMap.fpPdIoTimeoutSec);
cmd->request_desc->SCSIIO.RequestFlags =
(MEGASAS_REQ_DESCRIPT_FLAGS_LD_IO
<< MEGASAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
if (instance->adapter_type == INVADER_SERIES) {
if (io_info.do_fp_rlbypass ||
(rctx->reg_lock_flags == REGION_TYPE_UNUSED))
cmd->request_desc->SCSIIO.RequestFlags =
(MEGASAS_REQ_DESCRIPT_FLAGS_NO_LOCK <<
MEGASAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
rctx->type = MPI2_TYPE_CUDA;
rctx->reg_lock_flags |=
(MR_RL_FLAGS_GRANT_DESTINATION_CPU0 |
MR_RL_FLAGS_SEQ_NUM_ENABLE);
rctx->nseg = 0x1;
} else if (instance->adapter_type >= VENTURA_SERIES) {
rctx_g35->routing_flags |= (1 << MR_RAID_CTX_ROUTINGFLAGS_SQN_SHIFT);
rctx_g35->nseg_type |= (1 << RAID_CONTEXT_NSEG_SHIFT);
rctx_g35->nseg_type |= (MPI2_TYPE_CUDA << RAID_CONTEXT_TYPE_SHIFT);
}
io_request->Function = MEGASAS_MPI2_FUNCTION_LD_IO_REQUEST;
io_request->DevHandle = cpu_to_le16(device_id);
} /* Not FP */
}
/**
* megasas_build_ld_nonrw_fusion - prepares non rw ios for virtual disk
* @instance: Adapter soft state
* @scmd: SCSI command
* @cmd: Command to be prepared
*
* Prepares the io_request frame for non-rw io cmds for vd.
*/
static void megasas_build_ld_nonrw_fusion(struct megasas_instance *instance,
struct scsi_cmnd *scmd, struct megasas_cmd_fusion *cmd)
{
u32 device_id;
struct MPI2_RAID_SCSI_IO_REQUEST *io_request;
u16 ld;
struct MR_DRV_RAID_MAP_ALL *local_map_ptr;
struct fusion_context *fusion = instance->ctrl_context;
u8 span, physArm;
__le16 devHandle;
u32 arRef, pd;
struct MR_LD_RAID *raid;
struct RAID_CONTEXT *pRAID_Context;
u8 fp_possible = 1;
io_request = cmd->io_request;
device_id = MEGASAS_DEV_INDEX(scmd);
local_map_ptr = fusion->ld_drv_map[(instance->map_id & 1)];
io_request->DataLength = cpu_to_le32(scsi_bufflen(scmd));
/* get RAID_Context pointer */
pRAID_Context = &io_request->RaidContext.raid_context;
/* Check with FW team */
pRAID_Context->virtual_disk_tgt_id = cpu_to_le16(device_id);
pRAID_Context->reg_lock_row_lba = 0;
pRAID_Context->reg_lock_length = 0;
if (fusion->fast_path_io && (
device_id < instance->fw_supported_vd_count)) {
ld = MR_TargetIdToLdGet(device_id, local_map_ptr);
if (ld >= instance->fw_supported_vd_count - 1)
fp_possible = 0;
else {
raid = MR_LdRaidGet(ld, local_map_ptr);
if (!(raid->capability.fpNonRWCapable))
fp_possible = 0;
}
} else
fp_possible = 0;
if (!fp_possible) {
io_request->Function = MEGASAS_MPI2_FUNCTION_LD_IO_REQUEST;
io_request->DevHandle = cpu_to_le16(device_id);
io_request->LUN[1] = scmd->device->lun;
pRAID_Context->timeout_value =
cpu_to_le16(scsi_cmd_to_rq(scmd)->timeout / HZ);
cmd->request_desc->SCSIIO.RequestFlags =
(MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO <<
MEGASAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
} else {
/* set RAID context values */
pRAID_Context->config_seq_num = raid->seqNum;
if (instance->adapter_type < VENTURA_SERIES)
pRAID_Context->reg_lock_flags = REGION_TYPE_SHARED_READ;
pRAID_Context->timeout_value =
cpu_to_le16(raid->fpIoTimeoutForLd);
/* get the DevHandle for the PD (since this is
fpNonRWCapable, this is a single disk RAID0) */
span = physArm = 0;
arRef = MR_LdSpanArrayGet(ld, span, local_map_ptr);
pd = MR_ArPdGet(arRef, physArm, local_map_ptr);
devHandle = MR_PdDevHandleGet(pd, local_map_ptr);
/* build request descriptor */
cmd->request_desc->SCSIIO.RequestFlags =
(MPI2_REQ_DESCRIPT_FLAGS_FP_IO <<
MEGASAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
cmd->request_desc->SCSIIO.DevHandle = devHandle;
/* populate the LUN field */
memcpy(io_request->LUN, raid->LUN, 8);
/* build the raidScsiIO structure */
io_request->Function = MPI2_FUNCTION_SCSI_IO_REQUEST;
io_request->DevHandle = devHandle;
}
}
/**
* megasas_build_syspd_fusion - prepares rw/non-rw ios for syspd
* @instance: Adapter soft state
* @scmd: SCSI command
* @cmd: Command to be prepared
* @fp_possible: parameter to detect fast path or firmware path io.
*
* Prepares the io_request frame for rw/non-rw io cmds for syspds
*/
static void
megasas_build_syspd_fusion(struct megasas_instance *instance,
struct scsi_cmnd *scmd, struct megasas_cmd_fusion *cmd,
bool fp_possible)
{
u32 device_id;
struct MPI2_RAID_SCSI_IO_REQUEST *io_request;
u16 pd_index = 0;
u16 os_timeout_value;
u16 timeout_limit;
struct MR_DRV_RAID_MAP_ALL *local_map_ptr;
struct RAID_CONTEXT *pRAID_Context;
struct MR_PD_CFG_SEQ_NUM_SYNC *pd_sync;
struct MR_PRIV_DEVICE *mr_device_priv_data;
struct fusion_context *fusion = instance->ctrl_context;
pd_sync = (void *)fusion->pd_seq_sync[(instance->pd_seq_map_id - 1) & 1];
device_id = MEGASAS_DEV_INDEX(scmd);
pd_index = MEGASAS_PD_INDEX(scmd);
os_timeout_value = scsi_cmd_to_rq(scmd)->timeout / HZ;
mr_device_priv_data = scmd->device->hostdata;
cmd->pd_interface = mr_device_priv_data->interface_type;
io_request = cmd->io_request;
/* get RAID_Context pointer */
pRAID_Context = &io_request->RaidContext.raid_context;
pRAID_Context->reg_lock_flags = 0;
pRAID_Context->reg_lock_row_lba = 0;
pRAID_Context->reg_lock_length = 0;
io_request->DataLength = cpu_to_le32(scsi_bufflen(scmd));
io_request->LUN[1] = scmd->device->lun;
pRAID_Context->raid_flags = MR_RAID_FLAGS_IO_SUB_TYPE_SYSTEM_PD
<< MR_RAID_CTX_RAID_FLAGS_IO_SUB_TYPE_SHIFT;
/* If FW supports PD sequence number */
if (instance->support_seqnum_jbod_fp) {
if (instance->use_seqnum_jbod_fp &&
instance->pd_list[pd_index].driveType == TYPE_DISK) {
/* More than 256 PD/JBOD support for Ventura */
if (instance->support_morethan256jbod)
pRAID_Context->virtual_disk_tgt_id =
pd_sync->seq[pd_index].pd_target_id;
else
pRAID_Context->virtual_disk_tgt_id =
cpu_to_le16(device_id +
(MAX_PHYSICAL_DEVICES - 1));
pRAID_Context->config_seq_num =
pd_sync->seq[pd_index].seqNum;
io_request->DevHandle =
pd_sync->seq[pd_index].devHandle;
if (instance->adapter_type >= VENTURA_SERIES) {
io_request->RaidContext.raid_context_g35.routing_flags |=
(1 << MR_RAID_CTX_ROUTINGFLAGS_SQN_SHIFT);
io_request->RaidContext.raid_context_g35.nseg_type |=
(1 << RAID_CONTEXT_NSEG_SHIFT);
io_request->RaidContext.raid_context_g35.nseg_type |=
(MPI2_TYPE_CUDA << RAID_CONTEXT_TYPE_SHIFT);
} else {
pRAID_Context->type = MPI2_TYPE_CUDA;
pRAID_Context->nseg = 0x1;
pRAID_Context->reg_lock_flags |=
(MR_RL_FLAGS_SEQ_NUM_ENABLE |
MR_RL_FLAGS_GRANT_DESTINATION_CUDA);
}
} else {
pRAID_Context->virtual_disk_tgt_id =
cpu_to_le16(device_id +
(MAX_PHYSICAL_DEVICES - 1));
pRAID_Context->config_seq_num = 0;
io_request->DevHandle = cpu_to_le16(0xFFFF);
}
} else {
pRAID_Context->virtual_disk_tgt_id = cpu_to_le16(device_id);
pRAID_Context->config_seq_num = 0;
if (fusion->fast_path_io) {
local_map_ptr =
fusion->ld_drv_map[(instance->map_id & 1)];
io_request->DevHandle =
local_map_ptr->raidMap.devHndlInfo[device_id].curDevHdl;
} else {
io_request->DevHandle = cpu_to_le16(0xFFFF);
}
}
cmd->request_desc->SCSIIO.DevHandle = io_request->DevHandle;
megasas_get_msix_index(instance, scmd, cmd, 1);
if (!fp_possible) {
/* system pd firmware path */
io_request->Function = MEGASAS_MPI2_FUNCTION_LD_IO_REQUEST;
cmd->request_desc->SCSIIO.RequestFlags =
(MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO <<
MEGASAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
pRAID_Context->timeout_value = cpu_to_le16(os_timeout_value);
pRAID_Context->virtual_disk_tgt_id = cpu_to_le16(device_id);
} else {
if (os_timeout_value)
os_timeout_value++;
/* system pd Fast Path */
io_request->Function = MPI2_FUNCTION_SCSI_IO_REQUEST;
timeout_limit = (scmd->device->type == TYPE_DISK) ?
255 : 0xFFFF;
pRAID_Context->timeout_value =
cpu_to_le16((os_timeout_value > timeout_limit) ?
timeout_limit : os_timeout_value);
if (instance->adapter_type >= INVADER_SERIES)
io_request->IoFlags |=
cpu_to_le16(MPI25_SAS_DEVICE0_FLAGS_ENABLED_FAST_PATH);
cmd->request_desc->SCSIIO.RequestFlags =
(MPI2_REQ_DESCRIPT_FLAGS_FP_IO <<
MEGASAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
}
}
/**
* megasas_build_io_fusion - Prepares IOs to devices
* @instance: Adapter soft state
* @scp: SCSI command
* @cmd: Command to be prepared
*
* Invokes helper functions to prepare request frames
* and sets flags appropriate for IO/Non-IO cmd
*/
static int
megasas_build_io_fusion(struct megasas_instance *instance,
struct scsi_cmnd *scp,
struct megasas_cmd_fusion *cmd)
{
int sge_count;
u16 pd_index = 0;
u8 drive_type = 0;
struct MPI2_RAID_SCSI_IO_REQUEST *io_request = cmd->io_request;
struct MR_PRIV_DEVICE *mr_device_priv_data;
mr_device_priv_data = scp->device->hostdata;
/* Zero out some fields so they don't get reused */
memset(io_request->LUN, 0x0, 8);
io_request->CDB.EEDP32.PrimaryReferenceTag = 0;
io_request->CDB.EEDP32.PrimaryApplicationTagMask = 0;
io_request->EEDPFlags = 0;
io_request->Control = 0;
io_request->EEDPBlockSize = 0;
io_request->ChainOffset = 0;
io_request->RaidContext.raid_context.raid_flags = 0;
io_request->RaidContext.raid_context.type = 0;
io_request->RaidContext.raid_context.nseg = 0;
memcpy(io_request->CDB.CDB32, scp->cmnd, scp->cmd_len);
/*
* Just the CDB length,rest of the Flags are zero
* This will be modified for FP in build_ldio_fusion
*/
io_request->IoFlags = cpu_to_le16(scp->cmd_len);
switch (megasas_cmd_type(scp)) {
case READ_WRITE_LDIO:
megasas_build_ldio_fusion(instance, scp, cmd);
break;
case NON_READ_WRITE_LDIO:
megasas_build_ld_nonrw_fusion(instance, scp, cmd);
break;
case READ_WRITE_SYSPDIO:
megasas_build_syspd_fusion(instance, scp, cmd, true);
break;
case NON_READ_WRITE_SYSPDIO:
pd_index = MEGASAS_PD_INDEX(scp);
drive_type = instance->pd_list[pd_index].driveType;
if ((instance->secure_jbod_support ||
mr_device_priv_data->is_tm_capable) ||
(instance->adapter_type >= VENTURA_SERIES &&
drive_type == TYPE_ENCLOSURE))
megasas_build_syspd_fusion(instance, scp, cmd, false);
else
megasas_build_syspd_fusion(instance, scp, cmd, true);
break;
default:
break;
}
/*
* Construct SGL
*/
sge_count = megasas_make_sgl(instance, scp, cmd);
if (sge_count > instance->max_num_sge || (sge_count < 0)) {
dev_err(&instance->pdev->dev,
"%s %d sge_count (%d) is out of range. Range is: 0-%d\n",
__func__, __LINE__, sge_count, instance->max_num_sge);
return 1;
}
if (instance->adapter_type >= VENTURA_SERIES) {
set_num_sge(&io_request->RaidContext.raid_context_g35, sge_count);
cpu_to_le16s(&io_request->RaidContext.raid_context_g35.routing_flags);
cpu_to_le16s(&io_request->RaidContext.raid_context_g35.nseg_type);
} else {
/* numSGE store lower 8 bit of sge_count.
* numSGEExt store higher 8 bit of sge_count
*/
io_request->RaidContext.raid_context.num_sge = sge_count;
io_request->RaidContext.raid_context.num_sge_ext =
(u8)(sge_count >> 8);
}
io_request->SGLFlags = cpu_to_le16(MPI2_SGE_FLAGS_64_BIT_ADDRESSING);
if (scp->sc_data_direction == DMA_TO_DEVICE)
io_request->Control |= cpu_to_le32(MPI2_SCSIIO_CONTROL_WRITE);
else if (scp->sc_data_direction == DMA_FROM_DEVICE)
io_request->Control |= cpu_to_le32(MPI2_SCSIIO_CONTROL_READ);
io_request->SGLOffset0 =
offsetof(struct MPI2_RAID_SCSI_IO_REQUEST, SGL) / 4;
io_request->SenseBufferLowAddress =
cpu_to_le32(lower_32_bits(cmd->sense_phys_addr));
io_request->SenseBufferLength = SCSI_SENSE_BUFFERSIZE;
cmd->scmd = scp;
megasas_priv(scp)->cmd_priv = cmd;
return 0;
}
static union MEGASAS_REQUEST_DESCRIPTOR_UNION *
megasas_get_request_descriptor(struct megasas_instance *instance, u16 index)
{
u8 *p;
struct fusion_context *fusion;
fusion = instance->ctrl_context;
p = fusion->req_frames_desc +
sizeof(union MEGASAS_REQUEST_DESCRIPTOR_UNION) * index;
return (union MEGASAS_REQUEST_DESCRIPTOR_UNION *)p;
}
/* megasas_prepate_secondRaid1_IO
* It prepares the raid 1 second IO
*/
static void megasas_prepare_secondRaid1_IO(struct megasas_instance *instance,
struct megasas_cmd_fusion *cmd,
struct megasas_cmd_fusion *r1_cmd)
{
union MEGASAS_REQUEST_DESCRIPTOR_UNION *req_desc, *req_desc2 = NULL;
struct fusion_context *fusion;
fusion = instance->ctrl_context;
req_desc = cmd->request_desc;
/* copy the io request frame as well as 8 SGEs data for r1 command*/
memcpy(r1_cmd->io_request, cmd->io_request,
(sizeof(struct MPI2_RAID_SCSI_IO_REQUEST)));
memcpy(&r1_cmd->io_request->SGL, &cmd->io_request->SGL,
(fusion->max_sge_in_main_msg * sizeof(union MPI2_SGE_IO_UNION)));
/*sense buffer is different for r1 command*/
r1_cmd->io_request->SenseBufferLowAddress =
cpu_to_le32(lower_32_bits(r1_cmd->sense_phys_addr));
r1_cmd->scmd = cmd->scmd;
req_desc2 = megasas_get_request_descriptor(instance,
(r1_cmd->index - 1));
req_desc2->Words = 0;
r1_cmd->request_desc = req_desc2;
req_desc2->SCSIIO.SMID = cpu_to_le16(r1_cmd->index);
req_desc2->SCSIIO.RequestFlags = req_desc->SCSIIO.RequestFlags;
r1_cmd->request_desc->SCSIIO.DevHandle = cmd->r1_alt_dev_handle;
r1_cmd->io_request->DevHandle = cmd->r1_alt_dev_handle;
r1_cmd->r1_alt_dev_handle = cmd->io_request->DevHandle;
cmd->io_request->RaidContext.raid_context_g35.flow_specific.peer_smid =
cpu_to_le16(r1_cmd->index);
r1_cmd->io_request->RaidContext.raid_context_g35.flow_specific.peer_smid =
cpu_to_le16(cmd->index);
/*MSIxIndex of both commands request descriptors should be same*/
r1_cmd->request_desc->SCSIIO.MSIxIndex =
cmd->request_desc->SCSIIO.MSIxIndex;
/*span arm is different for r1 cmd*/
r1_cmd->io_request->RaidContext.raid_context_g35.span_arm =
cmd->io_request->RaidContext.raid_context_g35.span_arm + 1;
}
/**
* megasas_build_and_issue_cmd_fusion -Main routine for building and
* issuing non IOCTL cmd
* @instance: Adapter soft state
* @scmd: pointer to scsi cmd from OS
*/
static u32
megasas_build_and_issue_cmd_fusion(struct megasas_instance *instance,
struct scsi_cmnd *scmd)
{
struct megasas_cmd_fusion *cmd, *r1_cmd = NULL;
union MEGASAS_REQUEST_DESCRIPTOR_UNION *req_desc;
u32 index;
if ((megasas_cmd_type(scmd) == READ_WRITE_LDIO) &&
instance->ldio_threshold &&
(atomic_inc_return(&instance->ldio_outstanding) >
instance->ldio_threshold)) {
atomic_dec(&instance->ldio_outstanding);
return SCSI_MLQUEUE_DEVICE_BUSY;
}
if (atomic_inc_return(&instance->fw_outstanding) >
instance->host->can_queue) {
atomic_dec(&instance->fw_outstanding);
return SCSI_MLQUEUE_HOST_BUSY;
}
cmd = megasas_get_cmd_fusion(instance, scsi_cmd_to_rq(scmd)->tag);
if (!cmd) {
atomic_dec(&instance->fw_outstanding);
return SCSI_MLQUEUE_HOST_BUSY;
}
index = cmd->index;
req_desc = megasas_get_request_descriptor(instance, index-1);
req_desc->Words = 0;
cmd->request_desc = req_desc;
if (megasas_build_io_fusion(instance, scmd, cmd)) {
megasas_return_cmd_fusion(instance, cmd);
dev_err(&instance->pdev->dev, "Error building command\n");
cmd->request_desc = NULL;
atomic_dec(&instance->fw_outstanding);
return SCSI_MLQUEUE_HOST_BUSY;
}
req_desc = cmd->request_desc;
req_desc->SCSIIO.SMID = cpu_to_le16(index);
if (cmd->io_request->ChainOffset != 0 &&
cmd->io_request->ChainOffset != 0xF)
dev_err(&instance->pdev->dev, "The chain offset value is not "
"correct : %x\n", cmd->io_request->ChainOffset);
/*
* if it is raid 1/10 fp write capable.
* try to get second command from pool and construct it.
* From FW, it has confirmed that lba values of two PDs
* corresponds to single R1/10 LD are always same
*
*/
/* driver side count always should be less than max_fw_cmds
* to get new command
*/
if (cmd->r1_alt_dev_handle != MR_DEVHANDLE_INVALID) {
r1_cmd = megasas_get_cmd_fusion(instance,
scsi_cmd_to_rq(scmd)->tag + instance->max_fw_cmds);
megasas_prepare_secondRaid1_IO(instance, cmd, r1_cmd);
}
/*
* Issue the command to the FW
*/
megasas_sdev_busy_inc(instance, scmd);
megasas_fire_cmd_fusion(instance, req_desc);
if (r1_cmd)
megasas_fire_cmd_fusion(instance, r1_cmd->request_desc);
return 0;
}
/**
* megasas_complete_r1_command -
* completes R1 FP write commands which has valid peer smid
* @instance: Adapter soft state
* @cmd: MPT command frame
*
*/
static inline void
megasas_complete_r1_command(struct megasas_instance *instance,
struct megasas_cmd_fusion *cmd)
{
u8 *sense, status, ex_status;
u32 data_length;
u16 peer_smid;
struct fusion_context *fusion;
struct megasas_cmd_fusion *r1_cmd = NULL;
struct scsi_cmnd *scmd_local = NULL;
struct RAID_CONTEXT_G35 *rctx_g35;
rctx_g35 = &cmd->io_request->RaidContext.raid_context_g35;
fusion = instance->ctrl_context;
peer_smid = le16_to_cpu(rctx_g35->flow_specific.peer_smid);
r1_cmd = fusion->cmd_list[peer_smid - 1];
scmd_local = cmd->scmd;
status = rctx_g35->status;
ex_status = rctx_g35->ex_status;
data_length = cmd->io_request->DataLength;
sense = cmd->sense;
cmd->cmd_completed = true;
/* Check if peer command is completed or not*/
if (r1_cmd->cmd_completed) {
rctx_g35 = &r1_cmd->io_request->RaidContext.raid_context_g35;
if (rctx_g35->status != MFI_STAT_OK) {
status = rctx_g35->status;
ex_status = rctx_g35->ex_status;
data_length = r1_cmd->io_request->DataLength;
sense = r1_cmd->sense;
}
megasas_return_cmd_fusion(instance, r1_cmd);
map_cmd_status(fusion, scmd_local, status, ex_status,
le32_to_cpu(data_length), sense);
if (instance->ldio_threshold &&
megasas_cmd_type(scmd_local) == READ_WRITE_LDIO)
atomic_dec(&instance->ldio_outstanding);
megasas_priv(scmd_local)->cmd_priv = NULL;
megasas_return_cmd_fusion(instance, cmd);
scsi_dma_unmap(scmd_local);
megasas_sdev_busy_dec(instance, scmd_local);
scsi_done(scmd_local);
}
}
/**
* access_irq_context: Access to reply processing
* @irq_context: IRQ context
*
* Synchronize access to reply processing.
*
* Return: true on success, false on failure.
*/
static inline
bool access_irq_context(struct megasas_irq_context *irq_context)
{
if (!irq_context)
return true;
if (atomic_add_unless(&irq_context->in_used, 1, 1))
return true;
return false;
}
/**
* release_irq_context: Release reply processing
* @irq_context: IRQ context
*
* Release access of reply processing.
*
* Return: Nothing.
*/
static inline
void release_irq_context(struct megasas_irq_context *irq_context)
{
if (irq_context)
atomic_dec(&irq_context->in_used);
}
/**
* complete_cmd_fusion - Completes command
* @instance: Adapter soft state
* @MSIxIndex: MSI number
* @irq_context: IRQ context
*
* Completes all commands that is in reply descriptor queue
*/
static int
complete_cmd_fusion(struct megasas_instance *instance, u32 MSIxIndex,
struct megasas_irq_context *irq_context)
{
union MPI2_REPLY_DESCRIPTORS_UNION *desc;
struct MPI2_SCSI_IO_SUCCESS_REPLY_DESCRIPTOR *reply_desc;
struct MPI2_RAID_SCSI_IO_REQUEST *scsi_io_req;
struct fusion_context *fusion;
struct megasas_cmd *cmd_mfi;
struct megasas_cmd_fusion *cmd_fusion;
u16 smid, num_completed;
u8 reply_descript_type, *sense, status, extStatus;
u32 device_id, data_length;
union desc_value d_val;
struct LD_LOAD_BALANCE_INFO *lbinfo;
int threshold_reply_count = 0;
struct scsi_cmnd *scmd_local = NULL;
struct MR_TASK_MANAGE_REQUEST *mr_tm_req;
struct MPI2_SCSI_TASK_MANAGE_REQUEST *mpi_tm_req;
fusion = instance->ctrl_context;
if (atomic_read(&instance->adprecovery) == MEGASAS_HW_CRITICAL_ERROR)
return IRQ_HANDLED;
if (!access_irq_context(irq_context))
return 0;
desc = fusion->reply_frames_desc[MSIxIndex] +
fusion->last_reply_idx[MSIxIndex];
reply_desc = (struct MPI2_SCSI_IO_SUCCESS_REPLY_DESCRIPTOR *)desc;
d_val.word = desc->Words;
reply_descript_type = reply_desc->ReplyFlags &
MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
if (reply_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
release_irq_context(irq_context);
return IRQ_NONE;
}
num_completed = 0;
while (d_val.u.low != cpu_to_le32(UINT_MAX) &&
d_val.u.high != cpu_to_le32(UINT_MAX)) {
smid = le16_to_cpu(reply_desc->SMID);
cmd_fusion = fusion->cmd_list[smid - 1];
scsi_io_req = (struct MPI2_RAID_SCSI_IO_REQUEST *)
cmd_fusion->io_request;
scmd_local = cmd_fusion->scmd;
status = scsi_io_req->RaidContext.raid_context.status;
extStatus = scsi_io_req->RaidContext.raid_context.ex_status;
sense = cmd_fusion->sense;
data_length = scsi_io_req->DataLength;
switch (scsi_io_req->Function) {
case MPI2_FUNCTION_SCSI_TASK_MGMT:
mr_tm_req = (struct MR_TASK_MANAGE_REQUEST *)
cmd_fusion->io_request;
mpi_tm_req = (struct MPI2_SCSI_TASK_MANAGE_REQUEST *)
&mr_tm_req->TmRequest;
dev_dbg(&instance->pdev->dev, "TM completion:"
"type: 0x%x TaskMID: 0x%x\n",
mpi_tm_req->TaskType, mpi_tm_req->TaskMID);
complete(&cmd_fusion->done);
break;
case MPI2_FUNCTION_SCSI_IO_REQUEST: /*Fast Path IO.*/
/* Update load balancing info */
if (fusion->load_balance_info &&
(megasas_priv(cmd_fusion->scmd)->status &
MEGASAS_LOAD_BALANCE_FLAG)) {
device_id = MEGASAS_DEV_INDEX(scmd_local);
lbinfo = &fusion->load_balance_info[device_id];
atomic_dec(&lbinfo->scsi_pending_cmds[cmd_fusion->pd_r1_lb]);
megasas_priv(cmd_fusion->scmd)->status &=
~MEGASAS_LOAD_BALANCE_FLAG;
}
fallthrough; /* and complete IO */
case MEGASAS_MPI2_FUNCTION_LD_IO_REQUEST: /* LD-IO Path */
atomic_dec(&instance->fw_outstanding);
if (cmd_fusion->r1_alt_dev_handle == MR_DEVHANDLE_INVALID) {
map_cmd_status(fusion, scmd_local, status,
extStatus, le32_to_cpu(data_length),
sense);
if (instance->ldio_threshold &&
(megasas_cmd_type(scmd_local) == READ_WRITE_LDIO))
atomic_dec(&instance->ldio_outstanding);
megasas_priv(scmd_local)->cmd_priv = NULL;
megasas_return_cmd_fusion(instance, cmd_fusion);
scsi_dma_unmap(scmd_local);
megasas_sdev_busy_dec(instance, scmd_local);
scsi_done(scmd_local);
} else /* Optimal VD - R1 FP command completion. */
megasas_complete_r1_command(instance, cmd_fusion);
break;
case MEGASAS_MPI2_FUNCTION_PASSTHRU_IO_REQUEST: /*MFI command */
cmd_mfi = instance->cmd_list[cmd_fusion->sync_cmd_idx];
/* Poll mode. Dummy free.
* In case of Interrupt mode, caller has reverse check.
*/
if (cmd_mfi->flags & DRV_DCMD_POLLED_MODE) {
cmd_mfi->flags &= ~DRV_DCMD_POLLED_MODE;
megasas_return_cmd(instance, cmd_mfi);
} else
megasas_complete_cmd(instance, cmd_mfi, DID_OK);
break;
}
fusion->last_reply_idx[MSIxIndex]++;
if (fusion->last_reply_idx[MSIxIndex] >=
fusion->reply_q_depth)
fusion->last_reply_idx[MSIxIndex] = 0;
desc->Words = cpu_to_le64(ULLONG_MAX);
num_completed++;
threshold_reply_count++;
/* Get the next reply descriptor */
if (!fusion->last_reply_idx[MSIxIndex])
desc = fusion->reply_frames_desc[MSIxIndex];
else
desc++;
reply_desc =
(struct MPI2_SCSI_IO_SUCCESS_REPLY_DESCRIPTOR *)desc;
d_val.word = desc->Words;
reply_descript_type = reply_desc->ReplyFlags &
MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
if (reply_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
break;
/*
* Write to reply post host index register after completing threshold
* number of reply counts and still there are more replies in reply queue
* pending to be completed
*/
if (threshold_reply_count >= instance->threshold_reply_count) {
if (instance->msix_combined)
writel(((MSIxIndex & 0x7) << 24) |
fusion->last_reply_idx[MSIxIndex],
instance->reply_post_host_index_addr[MSIxIndex/8]);
else
writel((MSIxIndex << 24) |
fusion->last_reply_idx[MSIxIndex],
instance->reply_post_host_index_addr[0]);
threshold_reply_count = 0;
if (irq_context) {
if (!irq_context->irq_poll_scheduled) {
irq_context->irq_poll_scheduled = true;
irq_context->irq_line_enable = true;
irq_poll_sched(&irq_context->irqpoll);
}
release_irq_context(irq_context);
return num_completed;
}
}
}
if (num_completed) {
wmb();
if (instance->msix_combined)
writel(((MSIxIndex & 0x7) << 24) |
fusion->last_reply_idx[MSIxIndex],
instance->reply_post_host_index_addr[MSIxIndex/8]);
else
writel((MSIxIndex << 24) |
fusion->last_reply_idx[MSIxIndex],
instance->reply_post_host_index_addr[0]);
megasas_check_and_restore_queue_depth(instance);
}
release_irq_context(irq_context);
return num_completed;
}
int megasas_blk_mq_poll(struct Scsi_Host *shost, unsigned int queue_num)
{
struct megasas_instance *instance;
int num_entries = 0;
struct fusion_context *fusion;
instance = (struct megasas_instance *)shost->hostdata;
fusion = instance->ctrl_context;
queue_num = queue_num + instance->low_latency_index_start;
if (!atomic_add_unless(&fusion->busy_mq_poll[queue_num], 1, 1))
return 0;
num_entries = complete_cmd_fusion(instance, queue_num, NULL);
atomic_dec(&fusion->busy_mq_poll[queue_num]);
return num_entries;
}
/**
* megasas_enable_irq_poll() - enable irqpoll
* @instance: Adapter soft state
*/
static void megasas_enable_irq_poll(struct megasas_instance *instance)
{
u32 count, i;
struct megasas_irq_context *irq_ctx;
count = instance->msix_vectors > 0 ? instance->msix_vectors : 1;
for (i = 0; i < count; i++) {
irq_ctx = &instance->irq_context[i];
irq_poll_enable(&irq_ctx->irqpoll);
}
}
/**
* megasas_sync_irqs - Synchronizes all IRQs owned by adapter
* @instance_addr: Adapter soft state address
*/
static void megasas_sync_irqs(unsigned long instance_addr)
{
u32 count, i;
struct megasas_instance *instance =
(struct megasas_instance *)instance_addr;
struct megasas_irq_context *irq_ctx;
count = instance->msix_vectors > 0 ? instance->msix_vectors : 1;
for (i = 0; i < count; i++) {
synchronize_irq(pci_irq_vector(instance->pdev, i));
irq_ctx = &instance->irq_context[i];
irq_poll_disable(&irq_ctx->irqpoll);
if (irq_ctx->irq_poll_scheduled) {
irq_ctx->irq_poll_scheduled = false;
enable_irq(irq_ctx->os_irq);
complete_cmd_fusion(instance, irq_ctx->MSIxIndex, irq_ctx);
}
}
}
/**
* megasas_irqpoll() - process a queue for completed reply descriptors
* @irqpoll: IRQ poll structure associated with queue to poll.
* @budget: Threshold of reply descriptors to process per poll.
*
* Return: The number of entries processed.
*/
int megasas_irqpoll(struct irq_poll *irqpoll, int budget)
{
struct megasas_irq_context *irq_ctx;
struct megasas_instance *instance;
int num_entries;
irq_ctx = container_of(irqpoll, struct megasas_irq_context, irqpoll);
instance = irq_ctx->instance;
if (irq_ctx->irq_line_enable) {
disable_irq_nosync(irq_ctx->os_irq);
irq_ctx->irq_line_enable = false;
}
num_entries = complete_cmd_fusion(instance, irq_ctx->MSIxIndex, irq_ctx);
if (num_entries < budget) {
irq_poll_complete(irqpoll);
irq_ctx->irq_poll_scheduled = false;
enable_irq(irq_ctx->os_irq);
complete_cmd_fusion(instance, irq_ctx->MSIxIndex, irq_ctx);
}
return num_entries;
}
/**
* megasas_complete_cmd_dpc_fusion - Completes command
* @instance_addr: Adapter soft state address
*
* Tasklet to complete cmds
*/
static void
megasas_complete_cmd_dpc_fusion(unsigned long instance_addr)
{
struct megasas_instance *instance =
(struct megasas_instance *)instance_addr;
struct megasas_irq_context *irq_ctx = NULL;
u32 count, MSIxIndex;
count = instance->msix_vectors > 0 ? instance->msix_vectors : 1;
/* If we have already declared adapter dead, donot complete cmds */
if (atomic_read(&instance->adprecovery) == MEGASAS_HW_CRITICAL_ERROR)
return;
for (MSIxIndex = 0 ; MSIxIndex < count; MSIxIndex++) {
irq_ctx = &instance->irq_context[MSIxIndex];
complete_cmd_fusion(instance, MSIxIndex, irq_ctx);
}
}
/**
* megasas_isr_fusion - isr entry point
* @irq: IRQ number
* @devp: IRQ context
*/
static irqreturn_t megasas_isr_fusion(int irq, void *devp)
{
struct megasas_irq_context *irq_context = devp;
struct megasas_instance *instance = irq_context->instance;
u32 mfiStatus;
if (instance->mask_interrupts)
return IRQ_NONE;
if (irq_context->irq_poll_scheduled)
return IRQ_HANDLED;
if (!instance->msix_vectors) {
mfiStatus = instance->instancet->clear_intr(instance);
if (!mfiStatus)
return IRQ_NONE;
}
/* If we are resetting, bail */
if (test_bit(MEGASAS_FUSION_IN_RESET, &instance->reset_flags)) {
instance->instancet->clear_intr(instance);
return IRQ_HANDLED;
}
return complete_cmd_fusion(instance, irq_context->MSIxIndex, irq_context)
? IRQ_HANDLED : IRQ_NONE;
}
/**
* build_mpt_mfi_pass_thru - builds a cmd fo MFI Pass thru
* @instance: Adapter soft state
* @mfi_cmd: megasas_cmd pointer
*
*/
static void
build_mpt_mfi_pass_thru(struct megasas_instance *instance,
struct megasas_cmd *mfi_cmd)
{
struct MPI25_IEEE_SGE_CHAIN64 *mpi25_ieee_chain;
struct MPI2_RAID_SCSI_IO_REQUEST *io_req;
struct megasas_cmd_fusion *cmd;
struct fusion_context *fusion;
struct megasas_header *frame_hdr = &mfi_cmd->frame->hdr;
fusion = instance->ctrl_context;
cmd = megasas_get_cmd_fusion(instance,
instance->max_scsi_cmds + mfi_cmd->index);
/* Save the smid. To be used for returning the cmd */
mfi_cmd->context.smid = cmd->index;
/*
* For cmds where the flag is set, store the flag and check
* on completion. For cmds with this flag, don't call
* megasas_complete_cmd
*/
if (frame_hdr->flags & cpu_to_le16(MFI_FRAME_DONT_POST_IN_REPLY_QUEUE))
mfi_cmd->flags |= DRV_DCMD_POLLED_MODE;
io_req = cmd->io_request;
if (instance->adapter_type >= INVADER_SERIES) {
struct MPI25_IEEE_SGE_CHAIN64 *sgl_ptr_end =
(struct MPI25_IEEE_SGE_CHAIN64 *)&io_req->SGL;
sgl_ptr_end += fusion->max_sge_in_main_msg - 1;
sgl_ptr_end->Flags = 0;
}
mpi25_ieee_chain =
(struct MPI25_IEEE_SGE_CHAIN64 *)&io_req->SGL.IeeeChain;
io_req->Function = MEGASAS_MPI2_FUNCTION_PASSTHRU_IO_REQUEST;
io_req->SGLOffset0 = offsetof(struct MPI2_RAID_SCSI_IO_REQUEST,
SGL) / 4;
io_req->ChainOffset = fusion->chain_offset_mfi_pthru;
mpi25_ieee_chain->Address = cpu_to_le64(mfi_cmd->frame_phys_addr);
mpi25_ieee_chain->Flags = IEEE_SGE_FLAGS_CHAIN_ELEMENT |
MPI2_IEEE_SGE_FLAGS_IOCPLBNTA_ADDR;
mpi25_ieee_chain->Length = cpu_to_le32(instance->mfi_frame_size);
}
/**
* build_mpt_cmd - Calls helper function to build a cmd MFI Pass thru cmd
* @instance: Adapter soft state
* @cmd: mfi cmd to build
*
*/
static union MEGASAS_REQUEST_DESCRIPTOR_UNION *
build_mpt_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd)
{
union MEGASAS_REQUEST_DESCRIPTOR_UNION *req_desc = NULL;
u16 index;
build_mpt_mfi_pass_thru(instance, cmd);
index = cmd->context.smid;
req_desc = megasas_get_request_descriptor(instance, index - 1);
req_desc->Words = 0;
req_desc->SCSIIO.RequestFlags = (MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO <<
MEGASAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
req_desc->SCSIIO.SMID = cpu_to_le16(index);
return req_desc;
}
/**
* megasas_issue_dcmd_fusion - Issues a MFI Pass thru cmd
* @instance: Adapter soft state
* @cmd: mfi cmd pointer
*
*/
static void
megasas_issue_dcmd_fusion(struct megasas_instance *instance,
struct megasas_cmd *cmd)
{
union MEGASAS_REQUEST_DESCRIPTOR_UNION *req_desc;
req_desc = build_mpt_cmd(instance, cmd);
megasas_fire_cmd_fusion(instance, req_desc);
return;
}
/**
* megasas_release_fusion - Reverses the FW initialization
* @instance: Adapter soft state
*/
void
megasas_release_fusion(struct megasas_instance *instance)
{
megasas_free_ioc_init_cmd(instance);
megasas_free_cmds(instance);
megasas_free_cmds_fusion(instance);
iounmap(instance->reg_set);
pci_release_selected_regions(instance->pdev, 1<<instance->bar);
}
/**
* megasas_read_fw_status_reg_fusion - returns the current FW status value
* @instance: Adapter soft state
*/
static u32
megasas_read_fw_status_reg_fusion(struct megasas_instance *instance)
{
return megasas_readl(instance, &instance->reg_set->outbound_scratch_pad_0);
}
/**
* megasas_alloc_host_crash_buffer - Host buffers for Crash dump collection from Firmware
* @instance: Controller's soft instance
* @return: Number of allocated host crash buffers
*/
static void
megasas_alloc_host_crash_buffer(struct megasas_instance *instance)
{
unsigned int i;
for (i = 0; i < MAX_CRASH_DUMP_SIZE; i++) {
instance->crash_buf[i] = vzalloc(CRASH_DMA_BUF_SIZE);
if (!instance->crash_buf[i]) {
dev_info(&instance->pdev->dev, "Firmware crash dump "
"memory allocation failed at index %d\n", i);
break;
}
}
instance->drv_buf_alloc = i;
}
/**
* megasas_free_host_crash_buffer - Host buffers for Crash dump collection from Firmware
* @instance: Controller's soft instance
*/
void
megasas_free_host_crash_buffer(struct megasas_instance *instance)
{
unsigned int i;
for (i = 0; i < instance->drv_buf_alloc; i++) {
vfree(instance->crash_buf[i]);
}
instance->drv_buf_index = 0;
instance->drv_buf_alloc = 0;
instance->fw_crash_state = UNAVAILABLE;
instance->fw_crash_buffer_size = 0;
}
/**
* megasas_adp_reset_fusion - For controller reset
* @instance: Controller's soft instance
* @regs: MFI register set
*/
static int
megasas_adp_reset_fusion(struct megasas_instance *instance,
struct megasas_register_set __iomem *regs)
{
u32 host_diag, abs_state, retry;
/* Now try to reset the chip */
writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &instance->reg_set->fusion_seq_offset);
writel(MPI2_WRSEQ_1ST_KEY_VALUE, &instance->reg_set->fusion_seq_offset);
writel(MPI2_WRSEQ_2ND_KEY_VALUE, &instance->reg_set->fusion_seq_offset);
writel(MPI2_WRSEQ_3RD_KEY_VALUE, &instance->reg_set->fusion_seq_offset);
writel(MPI2_WRSEQ_4TH_KEY_VALUE, &instance->reg_set->fusion_seq_offset);
writel(MPI2_WRSEQ_5TH_KEY_VALUE, &instance->reg_set->fusion_seq_offset);
writel(MPI2_WRSEQ_6TH_KEY_VALUE, &instance->reg_set->fusion_seq_offset);
/* Check that the diag write enable (DRWE) bit is on */
host_diag = megasas_readl(instance, &instance->reg_set->fusion_host_diag);
retry = 0;
while (!(host_diag & HOST_DIAG_WRITE_ENABLE)) {
msleep(100);
host_diag = megasas_readl(instance,
&instance->reg_set->fusion_host_diag);
if (retry++ == 100) {
dev_warn(&instance->pdev->dev,
"Host diag unlock failed from %s %d\n",
__func__, __LINE__);
break;
}
}
if (!(host_diag & HOST_DIAG_WRITE_ENABLE))
return -1;
/* Send chip reset command */
writel(host_diag | HOST_DIAG_RESET_ADAPTER,
&instance->reg_set->fusion_host_diag);
msleep(3000);
/* Make sure reset adapter bit is cleared */
host_diag = megasas_readl(instance, &instance->reg_set->fusion_host_diag);
retry = 0;
while (host_diag & HOST_DIAG_RESET_ADAPTER) {
msleep(100);
host_diag = megasas_readl(instance,
&instance->reg_set->fusion_host_diag);
if (retry++ == 1000) {
dev_warn(&instance->pdev->dev,
"Diag reset adapter never cleared %s %d\n",
__func__, __LINE__);
break;
}
}
if (host_diag & HOST_DIAG_RESET_ADAPTER)
return -1;
abs_state = instance->instancet->read_fw_status_reg(instance)
& MFI_STATE_MASK;
retry = 0;
while ((abs_state <= MFI_STATE_FW_INIT) && (retry++ < 1000)) {
msleep(100);
abs_state = instance->instancet->
read_fw_status_reg(instance) & MFI_STATE_MASK;
}
if (abs_state <= MFI_STATE_FW_INIT) {
dev_warn(&instance->pdev->dev,
"fw state < MFI_STATE_FW_INIT, state = 0x%x %s %d\n",
abs_state, __func__, __LINE__);
return -1;
}
return 0;
}
/**
* megasas_check_reset_fusion - For controller reset check
* @instance: Controller's soft instance
* @regs: MFI register set
*/
static int
megasas_check_reset_fusion(struct megasas_instance *instance,
struct megasas_register_set __iomem *regs)
{
return 0;
}
/**
* megasas_trigger_snap_dump - Trigger snap dump in FW
* @instance: Soft instance of adapter
*/
static inline void megasas_trigger_snap_dump(struct megasas_instance *instance)
{
int j;
u32 fw_state, abs_state;
if (!instance->disableOnlineCtrlReset) {
dev_info(&instance->pdev->dev, "Trigger snap dump\n");
writel(MFI_ADP_TRIGGER_SNAP_DUMP,
&instance->reg_set->doorbell);
readl(&instance->reg_set->doorbell);
}
for (j = 0; j < instance->snapdump_wait_time; j++) {
abs_state = instance->instancet->read_fw_status_reg(instance);
fw_state = abs_state & MFI_STATE_MASK;
if (fw_state == MFI_STATE_FAULT) {
dev_printk(KERN_ERR, &instance->pdev->dev,
"FW in FAULT state Fault code:0x%x subcode:0x%x func:%s\n",
abs_state & MFI_STATE_FAULT_CODE,
abs_state & MFI_STATE_FAULT_SUBCODE, __func__);
return;
}
msleep(1000);
}
}
/* This function waits for outstanding commands on fusion to complete */
static int
megasas_wait_for_outstanding_fusion(struct megasas_instance *instance,
int reason, int *convert)
{
int i, outstanding, retval = 0, hb_seconds_missed = 0;
u32 fw_state, abs_state;
u32 waittime_for_io_completion;
waittime_for_io_completion =
min_t(u32, resetwaittime,
(resetwaittime - instance->snapdump_wait_time));
if (reason == MFI_IO_TIMEOUT_OCR) {
dev_info(&instance->pdev->dev,
"MFI command is timed out\n");
megasas_complete_cmd_dpc_fusion((unsigned long)instance);
if (instance->snapdump_wait_time)
megasas_trigger_snap_dump(instance);
retval = 1;
goto out;
}
for (i = 0; i < waittime_for_io_completion; i++) {
/* Check if firmware is in fault state */
abs_state = instance->instancet->read_fw_status_reg(instance);
fw_state = abs_state & MFI_STATE_MASK;
if (fw_state == MFI_STATE_FAULT) {
dev_printk(KERN_ERR, &instance->pdev->dev,
"FW in FAULT state Fault code:0x%x subcode:0x%x func:%s\n",
abs_state & MFI_STATE_FAULT_CODE,
abs_state & MFI_STATE_FAULT_SUBCODE, __func__);
megasas_complete_cmd_dpc_fusion((unsigned long)instance);
if (instance->requestorId && reason) {
dev_warn(&instance->pdev->dev, "SR-IOV Found FW in FAULT"
" state while polling during"
" I/O timeout handling for %d\n",
instance->host->host_no);
*convert = 1;
}
retval = 1;
goto out;
}
/* If SR-IOV VF mode & heartbeat timeout, don't wait */
if (instance->requestorId && !reason) {
retval = 1;
goto out;
}
/* If SR-IOV VF mode & I/O timeout, check for HB timeout */
if (instance->requestorId && (reason == SCSIIO_TIMEOUT_OCR)) {
if (instance->hb_host_mem->HB.fwCounter !=
instance->hb_host_mem->HB.driverCounter) {
instance->hb_host_mem->HB.driverCounter =
instance->hb_host_mem->HB.fwCounter;
hb_seconds_missed = 0;
} else {
hb_seconds_missed++;
if (hb_seconds_missed ==
(MEGASAS_SRIOV_HEARTBEAT_INTERVAL_VF/HZ)) {
dev_warn(&instance->pdev->dev, "SR-IOV:"
" Heartbeat never completed "
" while polling during I/O "
" timeout handling for "
"scsi%d.\n",
instance->host->host_no);
*convert = 1;
retval = 1;
goto out;
}
}
}
megasas_complete_cmd_dpc_fusion((unsigned long)instance);
outstanding = atomic_read(&instance->fw_outstanding);
if (!outstanding)
goto out;
if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) {
dev_notice(&instance->pdev->dev, "[%2d]waiting for %d "
"commands to complete for scsi%d\n", i,
outstanding, instance->host->host_no);
}
msleep(1000);
}
if (instance->snapdump_wait_time) {
megasas_trigger_snap_dump(instance);
retval = 1;
goto out;
}
if (atomic_read(&instance->fw_outstanding)) {
dev_err(&instance->pdev->dev, "pending commands remain after waiting, "
"will reset adapter scsi%d.\n",
instance->host->host_no);
*convert = 1;
retval = 1;
}
out:
return retval;
}
void megasas_reset_reply_desc(struct megasas_instance *instance)
{
int i, j, count;
struct fusion_context *fusion;
union MPI2_REPLY_DESCRIPTORS_UNION *reply_desc;
fusion = instance->ctrl_context;
count = instance->msix_vectors > 0 ? instance->msix_vectors : 1;
count += instance->iopoll_q_count;
for (i = 0 ; i < count ; i++) {
fusion->last_reply_idx[i] = 0;
reply_desc = fusion->reply_frames_desc[i];
for (j = 0 ; j < fusion->reply_q_depth; j++, reply_desc++)
reply_desc->Words = cpu_to_le64(ULLONG_MAX);
}
}
/*
* megasas_refire_mgmt_cmd : Re-fire management commands
* @instance: Controller's soft instance
*/
static void megasas_refire_mgmt_cmd(struct megasas_instance *instance,
bool return_ioctl)
{
int j;
struct megasas_cmd_fusion *cmd_fusion;
struct fusion_context *fusion;
struct megasas_cmd *cmd_mfi;
union MEGASAS_REQUEST_DESCRIPTOR_UNION *req_desc;
struct MPI2_RAID_SCSI_IO_REQUEST *scsi_io_req;
u16 smid;
bool refire_cmd = false;
u8 result;
u32 opcode = 0;
fusion = instance->ctrl_context;
/* Re-fire management commands.
* Do not traverse complet MPT frame pool. Start from max_scsi_cmds.
*/
for (j = instance->max_scsi_cmds ; j < instance->max_fw_cmds; j++) {
cmd_fusion = fusion->cmd_list[j];
cmd_mfi = instance->cmd_list[cmd_fusion->sync_cmd_idx];
smid = le16_to_cpu(cmd_mfi->context.smid);
result = REFIRE_CMD;
if (!smid)
continue;
req_desc = megasas_get_request_descriptor(instance, smid - 1);
switch (cmd_mfi->frame->hdr.cmd) {
case MFI_CMD_DCMD:
opcode = le32_to_cpu(cmd_mfi->frame->dcmd.opcode);
/* Do not refire shutdown command */
if (opcode == MR_DCMD_CTRL_SHUTDOWN) {
cmd_mfi->frame->dcmd.cmd_status = MFI_STAT_OK;
result = COMPLETE_CMD;
break;
}
refire_cmd = ((opcode != MR_DCMD_LD_MAP_GET_INFO)) &&
(opcode != MR_DCMD_SYSTEM_PD_MAP_GET_INFO) &&
!(cmd_mfi->flags & DRV_DCMD_SKIP_REFIRE);
if (!refire_cmd)
result = RETURN_CMD;
break;
case MFI_CMD_NVME:
if (!instance->support_nvme_passthru) {
cmd_mfi->frame->hdr.cmd_status = MFI_STAT_INVALID_CMD;
result = COMPLETE_CMD;
}
break;
case MFI_CMD_TOOLBOX:
if (!instance->support_pci_lane_margining) {
cmd_mfi->frame->hdr.cmd_status = MFI_STAT_INVALID_CMD;
result = COMPLETE_CMD;
}
break;
default:
break;
}
if (return_ioctl && cmd_mfi->sync_cmd &&
cmd_mfi->frame->hdr.cmd != MFI_CMD_ABORT) {
dev_err(&instance->pdev->dev,
"return -EBUSY from %s %d cmd 0x%x opcode 0x%x\n",
__func__, __LINE__, cmd_mfi->frame->hdr.cmd,
le32_to_cpu(cmd_mfi->frame->dcmd.opcode));
cmd_mfi->cmd_status_drv = DCMD_BUSY;
result = COMPLETE_CMD;
}
scsi_io_req = (struct MPI2_RAID_SCSI_IO_REQUEST *)
cmd_fusion->io_request;
if (scsi_io_req->Function == MPI2_FUNCTION_SCSI_TASK_MGMT)
result = RETURN_CMD;
switch (result) {
case REFIRE_CMD:
megasas_fire_cmd_fusion(instance, req_desc);
break;
case RETURN_CMD:
megasas_return_cmd(instance, cmd_mfi);
break;
case COMPLETE_CMD:
megasas_complete_cmd(instance, cmd_mfi, DID_OK);
break;
}
}
}
/*
* megasas_return_polled_cmds: Return polled mode commands back to the pool
* before initiating an OCR.
* @instance: Controller's soft instance
*/
static void
megasas_return_polled_cmds(struct megasas_instance *instance)
{
int i;
struct megasas_cmd_fusion *cmd_fusion;
struct fusion_context *fusion;
struct megasas_cmd *cmd_mfi;
fusion = instance->ctrl_context;
for (i = instance->max_scsi_cmds; i < instance->max_fw_cmds; i++) {
cmd_fusion = fusion->cmd_list[i];
cmd_mfi = instance->cmd_list[cmd_fusion->sync_cmd_idx];
if (cmd_mfi->flags & DRV_DCMD_POLLED_MODE) {
if (megasas_dbg_lvl & OCR_DEBUG)
dev_info(&instance->pdev->dev,
"%s %d return cmd 0x%x opcode 0x%x\n",
__func__, __LINE__, cmd_mfi->frame->hdr.cmd,
le32_to_cpu(cmd_mfi->frame->dcmd.opcode));
cmd_mfi->flags &= ~DRV_DCMD_POLLED_MODE;
megasas_return_cmd(instance, cmd_mfi);
}
}
}
/*
* megasas_track_scsiio : Track SCSI IOs outstanding to a SCSI device
* @instance: per adapter struct
* @channel: the channel assigned by the OS
* @id: the id assigned by the OS
*
* Returns SUCCESS if no IOs pending to SCSI device, else return FAILED
*/
static int megasas_track_scsiio(struct megasas_instance *instance,
int id, int channel)
{
int i, found = 0;
struct megasas_cmd_fusion *cmd_fusion;
struct fusion_context *fusion;
fusion = instance->ctrl_context;
for (i = 0 ; i < instance->max_scsi_cmds; i++) {
cmd_fusion = fusion->cmd_list[i];
if (cmd_fusion->scmd &&
(cmd_fusion->scmd->device->id == id &&
cmd_fusion->scmd->device->channel == channel)) {
dev_info(&instance->pdev->dev,
"SCSI commands pending to target"
"channel %d id %d \tSMID: 0x%x\n",
channel, id, cmd_fusion->index);
scsi_print_command(cmd_fusion->scmd);
found = 1;
break;
}
}
return found ? FAILED : SUCCESS;
}
/**
* megasas_tm_response_code - translation of device response code
* @instance: Controller's soft instance
* @mpi_reply: MPI reply returned by firmware
*
* Return nothing.
*/
static void
megasas_tm_response_code(struct megasas_instance *instance,
struct MPI2_SCSI_TASK_MANAGE_REPLY *mpi_reply)
{
char *desc;
switch (mpi_reply->ResponseCode) {
case MPI2_SCSITASKMGMT_RSP_TM_COMPLETE:
desc = "task management request completed";
break;
case MPI2_SCSITASKMGMT_RSP_INVALID_FRAME:
desc = "invalid frame";
break;
case MPI2_SCSITASKMGMT_RSP_TM_NOT_SUPPORTED:
desc = "task management request not supported";
break;
case MPI2_SCSITASKMGMT_RSP_TM_FAILED:
desc = "task management request failed";
break;
case MPI2_SCSITASKMGMT_RSP_TM_SUCCEEDED:
desc = "task management request succeeded";
break;
case MPI2_SCSITASKMGMT_RSP_TM_INVALID_LUN:
desc = "invalid lun";
break;
case 0xA:
desc = "overlapped tag attempted";
break;
case MPI2_SCSITASKMGMT_RSP_IO_QUEUED_ON_IOC:
desc = "task queued, however not sent to target";
break;
default:
desc = "unknown";
break;
}
dev_dbg(&instance->pdev->dev, "response_code(%01x): %s\n",
mpi_reply->ResponseCode, desc);
dev_dbg(&instance->pdev->dev,
"TerminationCount/DevHandle/Function/TaskType/IOCStat/IOCLoginfo"
" 0x%x/0x%x/0x%x/0x%x/0x%x/0x%x\n",
mpi_reply->TerminationCount, mpi_reply->DevHandle,
mpi_reply->Function, mpi_reply->TaskType,
mpi_reply->IOCStatus, mpi_reply->IOCLogInfo);
}
/**
* megasas_issue_tm - main routine for sending tm requests
* @instance: per adapter struct
* @device_handle: device handle
* @channel: the channel assigned by the OS
* @id: the id assigned by the OS
* @smid_task: smid assigned to the task
* @type: MPI2_SCSITASKMGMT_TASKTYPE__XXX (defined in megaraid_sas_fusion.c)
* @mr_device_priv_data: private data
* Context: user
*
* MegaRaid use MPT interface for Task Magement request.
* A generic API for sending task management requests to firmware.
*
* Return SUCCESS or FAILED.
*/
static int
megasas_issue_tm(struct megasas_instance *instance, u16 device_handle,
uint channel, uint id, u16 smid_task, u8 type,
struct MR_PRIV_DEVICE *mr_device_priv_data)
{
struct MR_TASK_MANAGE_REQUEST *mr_request;
struct MPI2_SCSI_TASK_MANAGE_REQUEST *mpi_request;
unsigned long timeleft;
struct megasas_cmd_fusion *cmd_fusion;
struct megasas_cmd *cmd_mfi;
union MEGASAS_REQUEST_DESCRIPTOR_UNION *req_desc;
struct fusion_context *fusion = NULL;
struct megasas_cmd_fusion *scsi_lookup;
int rc;
int timeout = MEGASAS_DEFAULT_TM_TIMEOUT;
struct MPI2_SCSI_TASK_MANAGE_REPLY *mpi_reply;
fusion = instance->ctrl_context;
cmd_mfi = megasas_get_cmd(instance);
if (!cmd_mfi) {
dev_err(&instance->pdev->dev, "Failed from %s %d\n",
__func__, __LINE__);
return -ENOMEM;
}
cmd_fusion = megasas_get_cmd_fusion(instance,
instance->max_scsi_cmds + cmd_mfi->index);
/* Save the smid. To be used for returning the cmd */
cmd_mfi->context.smid = cmd_fusion->index;
req_desc = megasas_get_request_descriptor(instance,
(cmd_fusion->index - 1));
cmd_fusion->request_desc = req_desc;
req_desc->Words = 0;
mr_request = (struct MR_TASK_MANAGE_REQUEST *) cmd_fusion->io_request;
memset(mr_request, 0, sizeof(struct MR_TASK_MANAGE_REQUEST));
mpi_request = (struct MPI2_SCSI_TASK_MANAGE_REQUEST *) &mr_request->TmRequest;
mpi_request->Function = MPI2_FUNCTION_SCSI_TASK_MGMT;
mpi_request->DevHandle = cpu_to_le16(device_handle);
mpi_request->TaskType = type;
mpi_request->TaskMID = cpu_to_le16(smid_task);
mpi_request->LUN[1] = 0;
req_desc = cmd_fusion->request_desc;
req_desc->HighPriority.SMID = cpu_to_le16(cmd_fusion->index);
req_desc->HighPriority.RequestFlags =
(MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY <<
MEGASAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
req_desc->HighPriority.MSIxIndex = 0;
req_desc->HighPriority.LMID = 0;
req_desc->HighPriority.Reserved1 = 0;
if (channel < MEGASAS_MAX_PD_CHANNELS)
mr_request->tmReqFlags.isTMForPD = 1;
else
mr_request->tmReqFlags.isTMForLD = 1;
init_completion(&cmd_fusion->done);
megasas_fire_cmd_fusion(instance, req_desc);
switch (type) {
case MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK:
timeout = mr_device_priv_data->task_abort_tmo;
break;
case MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET:
timeout = mr_device_priv_data->target_reset_tmo;
break;
}
timeleft = wait_for_completion_timeout(&cmd_fusion->done, timeout * HZ);
if (!timeleft) {
dev_err(&instance->pdev->dev,
"task mgmt type 0x%x timed out\n", type);
mutex_unlock(&instance->reset_mutex);
rc = megasas_reset_fusion(instance->host, MFI_IO_TIMEOUT_OCR);
mutex_lock(&instance->reset_mutex);
return rc;
}
mpi_reply = (struct MPI2_SCSI_TASK_MANAGE_REPLY *) &mr_request->TMReply;
megasas_tm_response_code(instance, mpi_reply);
megasas_return_cmd(instance, cmd_mfi);
rc = SUCCESS;
switch (type) {
case MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK:
scsi_lookup = fusion->cmd_list[smid_task - 1];
if (scsi_lookup->scmd == NULL)
break;
else {
instance->instancet->disable_intr(instance);
megasas_sync_irqs((unsigned long)instance);
instance->instancet->enable_intr(instance);
megasas_enable_irq_poll(instance);
if (scsi_lookup->scmd == NULL)
break;
}
rc = FAILED;
break;
case MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET:
if ((channel == 0xFFFFFFFF) && (id == 0xFFFFFFFF))
break;
instance->instancet->disable_intr(instance);
megasas_sync_irqs((unsigned long)instance);
rc = megasas_track_scsiio(instance, id, channel);
instance->instancet->enable_intr(instance);
megasas_enable_irq_poll(instance);
break;
case MPI2_SCSITASKMGMT_TASKTYPE_ABRT_TASK_SET:
case MPI2_SCSITASKMGMT_TASKTYPE_QUERY_TASK:
break;
default:
rc = FAILED;
break;
}
return rc;
}
/*
* megasas_fusion_smid_lookup : Look for fusion command correpspodning to SCSI
* @instance: per adapter struct
*
* Return Non Zero index, if SMID found in outstanding commands
*/
static u16 megasas_fusion_smid_lookup(struct scsi_cmnd *scmd)
{
int i, ret = 0;
struct megasas_instance *instance;
struct megasas_cmd_fusion *cmd_fusion;
struct fusion_context *fusion;
instance = (struct megasas_instance *)scmd->device->host->hostdata;
fusion = instance->ctrl_context;
for (i = 0; i < instance->max_scsi_cmds; i++) {
cmd_fusion = fusion->cmd_list[i];
if (cmd_fusion->scmd && (cmd_fusion->scmd == scmd)) {
scmd_printk(KERN_NOTICE, scmd, "Abort request is for"
" SMID: %d\n", cmd_fusion->index);
ret = cmd_fusion->index;
break;
}
}
return ret;
}
/*
* megasas_get_tm_devhandle - Get devhandle for TM request
* @sdev- OS provided scsi device
*
* Returns- devhandle/targetID of SCSI device
*/
static u16 megasas_get_tm_devhandle(struct scsi_device *sdev)
{
u16 pd_index = 0;
u32 device_id;
struct megasas_instance *instance;
struct fusion_context *fusion;
struct MR_PD_CFG_SEQ_NUM_SYNC *pd_sync;
u16 devhandle = (u16)ULONG_MAX;
instance = (struct megasas_instance *)sdev->host->hostdata;
fusion = instance->ctrl_context;
if (!MEGASAS_IS_LOGICAL(sdev)) {
if (instance->use_seqnum_jbod_fp) {
pd_index = (sdev->channel * MEGASAS_MAX_DEV_PER_CHANNEL)
+ sdev->id;
pd_sync = (void *)fusion->pd_seq_sync
[(instance->pd_seq_map_id - 1) & 1];
devhandle = pd_sync->seq[pd_index].devHandle;
} else
sdev_printk(KERN_ERR, sdev, "Firmware expose tmCapable"
" without JBOD MAP support from %s %d\n", __func__, __LINE__);
} else {
device_id = ((sdev->channel % 2) * MEGASAS_MAX_DEV_PER_CHANNEL)
+ sdev->id;
devhandle = device_id;
}
return devhandle;
}
/*
* megasas_task_abort_fusion : SCSI task abort function for fusion adapters
* @scmd : pointer to scsi command object
*
* Return SUCCESS, if command aborted else FAILED
*/
int megasas_task_abort_fusion(struct scsi_cmnd *scmd)
{
struct megasas_instance *instance;
u16 smid, devhandle;
int ret;
struct MR_PRIV_DEVICE *mr_device_priv_data;
mr_device_priv_data = scmd->device->hostdata;
instance = (struct megasas_instance *)scmd->device->host->hostdata;
if (atomic_read(&instance->adprecovery) != MEGASAS_HBA_OPERATIONAL) {
dev_err(&instance->pdev->dev, "Controller is not OPERATIONAL,"
"SCSI host:%d\n", instance->host->host_no);
ret = FAILED;
return ret;
}
if (!mr_device_priv_data) {
sdev_printk(KERN_INFO, scmd->device, "device been deleted! "
"scmd(%p)\n", scmd);
scmd->result = DID_NO_CONNECT << 16;
ret = SUCCESS;
goto out;
}
if (!mr_device_priv_data->is_tm_capable) {
ret = FAILED;
goto out;
}
mutex_lock(&instance->reset_mutex);
smid = megasas_fusion_smid_lookup(scmd);
if (!smid) {
ret = SUCCESS;
scmd_printk(KERN_NOTICE, scmd, "Command for which abort is"
" issued is not found in outstanding commands\n");
mutex_unlock(&instance->reset_mutex);
goto out;
}
devhandle = megasas_get_tm_devhandle(scmd->device);
if (devhandle == (u16)ULONG_MAX) {
ret = SUCCESS;
sdev_printk(KERN_INFO, scmd->device,
"task abort issued for invalid devhandle\n");
mutex_unlock(&instance->reset_mutex);
goto out;
}
sdev_printk(KERN_INFO, scmd->device,
"attempting task abort! scmd(0x%p) tm_dev_handle 0x%x\n",
scmd, devhandle);
mr_device_priv_data->tm_busy = true;
ret = megasas_issue_tm(instance, devhandle,
scmd->device->channel, scmd->device->id, smid,
MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK,
mr_device_priv_data);
mr_device_priv_data->tm_busy = false;
mutex_unlock(&instance->reset_mutex);
scmd_printk(KERN_INFO, scmd, "task abort %s!! scmd(0x%p)\n",
((ret == SUCCESS) ? "SUCCESS" : "FAILED"), scmd);
out:
scsi_print_command(scmd);
if (megasas_dbg_lvl & TM_DEBUG)
megasas_dump_fusion_io(scmd);
return ret;
}
/*
* megasas_reset_target_fusion : target reset function for fusion adapters
* scmd: SCSI command pointer
*
* Returns SUCCESS if all commands associated with target aborted else FAILED
*/
int megasas_reset_target_fusion(struct scsi_cmnd *scmd)
{
struct megasas_instance *instance;
int ret = FAILED;
u16 devhandle;
struct MR_PRIV_DEVICE *mr_device_priv_data;
mr_device_priv_data = scmd->device->hostdata;
instance = (struct megasas_instance *)scmd->device->host->hostdata;
if (atomic_read(&instance->adprecovery) != MEGASAS_HBA_OPERATIONAL) {
dev_err(&instance->pdev->dev, "Controller is not OPERATIONAL,"
"SCSI host:%d\n", instance->host->host_no);
ret = FAILED;
return ret;
}
if (!mr_device_priv_data) {
sdev_printk(KERN_INFO, scmd->device,
"device been deleted! scmd: (0x%p)\n", scmd);
scmd->result = DID_NO_CONNECT << 16;
ret = SUCCESS;
goto out;
}
if (!mr_device_priv_data->is_tm_capable) {
ret = FAILED;
goto out;
}
mutex_lock(&instance->reset_mutex);
devhandle = megasas_get_tm_devhandle(scmd->device);
if (devhandle == (u16)ULONG_MAX) {
ret = SUCCESS;
sdev_printk(KERN_INFO, scmd->device,
"target reset issued for invalid devhandle\n");
mutex_unlock(&instance->reset_mutex);
goto out;
}
sdev_printk(KERN_INFO, scmd->device,
"attempting target reset! scmd(0x%p) tm_dev_handle: 0x%x\n",
scmd, devhandle);
mr_device_priv_data->tm_busy = true;
ret = megasas_issue_tm(instance, devhandle,
scmd->device->channel, scmd->device->id, 0,
MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET,
mr_device_priv_data);
mr_device_priv_data->tm_busy = false;
mutex_unlock(&instance->reset_mutex);
scmd_printk(KERN_NOTICE, scmd, "target reset %s!!\n",
(ret == SUCCESS) ? "SUCCESS" : "FAILED");
out:
return ret;
}
/*SRIOV get other instance in cluster if any*/
static struct
megasas_instance *megasas_get_peer_instance(struct megasas_instance *instance)
{
int i;
for (i = 0; i < MAX_MGMT_ADAPTERS; i++) {
if (megasas_mgmt_info.instance[i] &&
(megasas_mgmt_info.instance[i] != instance) &&
megasas_mgmt_info.instance[i]->requestorId &&
megasas_mgmt_info.instance[i]->peerIsPresent &&
(memcmp((megasas_mgmt_info.instance[i]->clusterId),
instance->clusterId, MEGASAS_CLUSTER_ID_SIZE) == 0))
return megasas_mgmt_info.instance[i];
}
return NULL;
}
/* Check for a second path that is currently UP */
int megasas_check_mpio_paths(struct megasas_instance *instance,
struct scsi_cmnd *scmd)
{
struct megasas_instance *peer_instance = NULL;
int retval = (DID_REQUEUE << 16);
if (instance->peerIsPresent) {
peer_instance = megasas_get_peer_instance(instance);
if ((peer_instance) &&
(atomic_read(&peer_instance->adprecovery) ==
MEGASAS_HBA_OPERATIONAL))
retval = (DID_NO_CONNECT << 16);
}
return retval;
}
/* Core fusion reset function */
int megasas_reset_fusion(struct Scsi_Host *shost, int reason)
{
int retval = SUCCESS, i, j, convert = 0;
struct megasas_instance *instance;
struct megasas_cmd_fusion *cmd_fusion, *r1_cmd;
struct fusion_context *fusion;
u32 abs_state, status_reg, reset_adapter, fpio_count = 0;
u32 io_timeout_in_crash_mode = 0;
struct scsi_cmnd *scmd_local = NULL;
struct scsi_device *sdev;
int ret_target_prop = DCMD_FAILED;
bool is_target_prop = false;
bool do_adp_reset = true;
int max_reset_tries = MEGASAS_FUSION_MAX_RESET_TRIES;
instance = (struct megasas_instance *)shost->hostdata;
fusion = instance->ctrl_context;
mutex_lock(&instance->reset_mutex);
if (atomic_read(&instance->adprecovery) == MEGASAS_HW_CRITICAL_ERROR) {
dev_warn(&instance->pdev->dev, "Hardware critical error, "
"returning FAILED for scsi%d.\n",
instance->host->host_no);
mutex_unlock(&instance->reset_mutex);
return FAILED;
}
status_reg = instance->instancet->read_fw_status_reg(instance);
abs_state = status_reg & MFI_STATE_MASK;
/* IO timeout detected, forcibly put FW in FAULT state */
if (abs_state != MFI_STATE_FAULT && instance->crash_dump_buf &&
instance->crash_dump_app_support && reason) {
dev_info(&instance->pdev->dev, "IO/DCMD timeout is detected, "
"forcibly FAULT Firmware\n");
atomic_set(&instance->adprecovery, MEGASAS_ADPRESET_SM_INFAULT);
status_reg = megasas_readl(instance, &instance->reg_set->doorbell);
writel(status_reg | MFI_STATE_FORCE_OCR,
&instance->reg_set->doorbell);
readl(&instance->reg_set->doorbell);
mutex_unlock(&instance->reset_mutex);
do {
ssleep(3);
io_timeout_in_crash_mode++;
dev_dbg(&instance->pdev->dev, "waiting for [%d] "
"seconds for crash dump collection and OCR "
"to be done\n", (io_timeout_in_crash_mode * 3));
} while ((atomic_read(&instance->adprecovery) != MEGASAS_HBA_OPERATIONAL) &&
(io_timeout_in_crash_mode < 80));
if (atomic_read(&instance->adprecovery) == MEGASAS_HBA_OPERATIONAL) {
dev_info(&instance->pdev->dev, "OCR done for IO "
"timeout case\n");
retval = SUCCESS;
} else {
dev_info(&instance->pdev->dev, "Controller is not "
"operational after 240 seconds wait for IO "
"timeout case in FW crash dump mode\n do "
"OCR/kill adapter\n");
retval = megasas_reset_fusion(shost, 0);
}
return retval;
}
if (instance->requestorId && !instance->skip_heartbeat_timer_del)
del_timer_sync(&instance->sriov_heartbeat_timer);
set_bit(MEGASAS_FUSION_IN_RESET, &instance->reset_flags);
set_bit(MEGASAS_FUSION_OCR_NOT_POSSIBLE, &instance->reset_flags);
atomic_set(&instance->adprecovery, MEGASAS_ADPRESET_SM_POLLING);
instance->instancet->disable_intr(instance);
megasas_sync_irqs((unsigned long)instance);
/* First try waiting for commands to complete */
if (megasas_wait_for_outstanding_fusion(instance, reason,
&convert)) {
atomic_set(&instance->adprecovery, MEGASAS_ADPRESET_SM_INFAULT);
dev_warn(&instance->pdev->dev, "resetting fusion "
"adapter scsi%d.\n", instance->host->host_no);
if (convert)
reason = 0;
if (megasas_dbg_lvl & OCR_DEBUG)
dev_info(&instance->pdev->dev, "\nPending SCSI commands:\n");
/* Now return commands back to the OS */
for (i = 0 ; i < instance->max_scsi_cmds; i++) {
cmd_fusion = fusion->cmd_list[i];
/*check for extra commands issued by driver*/
if (instance->adapter_type >= VENTURA_SERIES) {
r1_cmd = fusion->cmd_list[i + instance->max_fw_cmds];
megasas_return_cmd_fusion(instance, r1_cmd);
}
scmd_local = cmd_fusion->scmd;
if (cmd_fusion->scmd) {
if (megasas_dbg_lvl & OCR_DEBUG) {
sdev_printk(KERN_INFO,
cmd_fusion->scmd->device, "SMID: 0x%x\n",
cmd_fusion->index);
megasas_dump_fusion_io(cmd_fusion->scmd);
}
if (cmd_fusion->io_request->Function ==
MPI2_FUNCTION_SCSI_IO_REQUEST)
fpio_count++;
scmd_local->result =
megasas_check_mpio_paths(instance,
scmd_local);
if (instance->ldio_threshold &&
megasas_cmd_type(scmd_local) == READ_WRITE_LDIO)
atomic_dec(&instance->ldio_outstanding);
megasas_return_cmd_fusion(instance, cmd_fusion);
scsi_dma_unmap(scmd_local);
scsi_done(scmd_local);
}
}
dev_info(&instance->pdev->dev, "Outstanding fastpath IOs: %d\n",
fpio_count);
atomic_set(&instance->fw_outstanding, 0);
status_reg = instance->instancet->read_fw_status_reg(instance);
abs_state = status_reg & MFI_STATE_MASK;
reset_adapter = status_reg & MFI_RESET_ADAPTER;
if (instance->disableOnlineCtrlReset ||
(abs_state == MFI_STATE_FAULT && !reset_adapter)) {
/* Reset not supported, kill adapter */
dev_warn(&instance->pdev->dev, "Reset not supported"
", killing adapter scsi%d.\n",
instance->host->host_no);
goto kill_hba;
}
/* Let SR-IOV VF & PF sync up if there was a HB failure */
if (instance->requestorId && !reason) {
msleep(MEGASAS_OCR_SETTLE_TIME_VF);
do_adp_reset = false;
max_reset_tries = MEGASAS_SRIOV_MAX_RESET_TRIES_VF;
}
/* Now try to reset the chip */
for (i = 0; i < max_reset_tries; i++) {
/*
* Do adp reset and wait for
* controller to transition to ready
*/
if (megasas_adp_reset_wait_for_ready(instance,
do_adp_reset, 1) == FAILED)
continue;
/* Wait for FW to become ready */
if (megasas_transition_to_ready(instance, 1)) {
dev_warn(&instance->pdev->dev,
"Failed to transition controller to ready for "
"scsi%d.\n", instance->host->host_no);
continue;
}
megasas_reset_reply_desc(instance);
megasas_fusion_update_can_queue(instance, OCR_CONTEXT);
if (megasas_ioc_init_fusion(instance)) {
continue;
}
if (megasas_get_ctrl_info(instance)) {
dev_info(&instance->pdev->dev,
"Failed from %s %d\n",
__func__, __LINE__);
goto kill_hba;
}
megasas_refire_mgmt_cmd(instance,
(i == (MEGASAS_FUSION_MAX_RESET_TRIES - 1)
? 1 : 0));
/* Reset load balance info */
if (fusion->load_balance_info)
memset(fusion->load_balance_info, 0,
(sizeof(struct LD_LOAD_BALANCE_INFO) *
MAX_LOGICAL_DRIVES_EXT));
if (!megasas_get_map_info(instance)) {
megasas_sync_map_info(instance);
} else {
/*
* Return pending polled mode cmds before
* retrying OCR
*/
megasas_return_polled_cmds(instance);
continue;
}
megasas_setup_jbod_map(instance);
/* reset stream detection array */
if (instance->adapter_type >= VENTURA_SERIES) {
for (j = 0; j < MAX_LOGICAL_DRIVES_EXT; ++j) {
memset(fusion->stream_detect_by_ld[j],
0, sizeof(struct LD_STREAM_DETECT));
fusion->stream_detect_by_ld[j]->mru_bit_map
= MR_STREAM_BITMAP;
}
}
clear_bit(MEGASAS_FUSION_IN_RESET,
&instance->reset_flags);
instance->instancet->enable_intr(instance);
megasas_enable_irq_poll(instance);
shost_for_each_device(sdev, shost) {
if ((instance->tgt_prop) &&
(instance->nvme_page_size))
ret_target_prop = megasas_get_target_prop(instance, sdev);
is_target_prop = (ret_target_prop == DCMD_SUCCESS) ? true : false;
megasas_set_dynamic_target_properties(sdev, is_target_prop);
}
status_reg = instance->instancet->read_fw_status_reg
(instance);
abs_state = status_reg & MFI_STATE_MASK;
if (abs_state != MFI_STATE_OPERATIONAL) {
dev_info(&instance->pdev->dev,
"Adapter is not OPERATIONAL, state 0x%x for scsi:%d\n",
abs_state, instance->host->host_no);
goto out;
}
atomic_set(&instance->adprecovery, MEGASAS_HBA_OPERATIONAL);
dev_info(&instance->pdev->dev,
"Adapter is OPERATIONAL for scsi:%d\n",
instance->host->host_no);
/* Restart SR-IOV heartbeat */
if (instance->requestorId) {
if (!megasas_sriov_start_heartbeat(instance, 0))
megasas_start_timer(instance);
else
instance->skip_heartbeat_timer_del = 1;
}
if (instance->crash_dump_drv_support &&
instance->crash_dump_app_support)
megasas_set_crash_dump_params(instance,
MR_CRASH_BUF_TURN_ON);
else
megasas_set_crash_dump_params(instance,
MR_CRASH_BUF_TURN_OFF);
if (instance->snapdump_wait_time) {
megasas_get_snapdump_properties(instance);
dev_info(&instance->pdev->dev,
"Snap dump wait time\t: %d\n",
instance->snapdump_wait_time);
}
retval = SUCCESS;
/* Adapter reset completed successfully */
dev_warn(&instance->pdev->dev,
"Reset successful for scsi%d.\n",
instance->host->host_no);
goto out;
}
/* Reset failed, kill the adapter */
dev_warn(&instance->pdev->dev, "Reset failed, killing "
"adapter scsi%d.\n", instance->host->host_no);
goto kill_hba;
} else {
/* For VF: Restart HB timer if we didn't OCR */
if (instance->requestorId) {
megasas_start_timer(instance);
}
clear_bit(MEGASAS_FUSION_IN_RESET, &instance->reset_flags);
instance->instancet->enable_intr(instance);
megasas_enable_irq_poll(instance);
atomic_set(&instance->adprecovery, MEGASAS_HBA_OPERATIONAL);
goto out;
}
kill_hba:
megaraid_sas_kill_hba(instance);
megasas_enable_irq_poll(instance);
instance->skip_heartbeat_timer_del = 1;
retval = FAILED;
out:
clear_bit(MEGASAS_FUSION_OCR_NOT_POSSIBLE, &instance->reset_flags);
mutex_unlock(&instance->reset_mutex);
return retval;
}
/* Fusion Crash dump collection */
static void megasas_fusion_crash_dump(struct megasas_instance *instance)
{
u32 status_reg;
u8 partial_copy = 0;
int wait = 0;
status_reg = instance->instancet->read_fw_status_reg(instance);
/*
* Allocate host crash buffers to copy data from 1 MB DMA crash buffer
* to host crash buffers
*/
if (instance->drv_buf_index == 0) {
/* Buffer is already allocated for old Crash dump.
* Do OCR and do not wait for crash dump collection
*/
if (instance->drv_buf_alloc) {
dev_info(&instance->pdev->dev, "earlier crash dump is "
"not yet copied by application, ignoring this "
"crash dump and initiating OCR\n");
status_reg |= MFI_STATE_CRASH_DUMP_DONE;
writel(status_reg,
&instance->reg_set->outbound_scratch_pad_0);
readl(&instance->reg_set->outbound_scratch_pad_0);
return;
}
megasas_alloc_host_crash_buffer(instance);
dev_info(&instance->pdev->dev, "Number of host crash buffers "
"allocated: %d\n", instance->drv_buf_alloc);
}
while (!(status_reg & MFI_STATE_CRASH_DUMP_DONE) &&
(wait < MEGASAS_WATCHDOG_WAIT_COUNT)) {
if (!(status_reg & MFI_STATE_DMADONE)) {
/*
* Next crash dump buffer is not yet DMA'd by FW
* Check after 10ms. Wait for 1 second for FW to
* post the next buffer. If not bail out.
*/
wait++;
msleep(MEGASAS_WAIT_FOR_NEXT_DMA_MSECS);
status_reg = instance->instancet->read_fw_status_reg(
instance);
continue;
}
wait = 0;
if (instance->drv_buf_index >= instance->drv_buf_alloc) {
dev_info(&instance->pdev->dev,
"Driver is done copying the buffer: %d\n",
instance->drv_buf_alloc);
status_reg |= MFI_STATE_CRASH_DUMP_DONE;
partial_copy = 1;
break;
} else {
memcpy(instance->crash_buf[instance->drv_buf_index],
instance->crash_dump_buf, CRASH_DMA_BUF_SIZE);
instance->drv_buf_index++;
status_reg &= ~MFI_STATE_DMADONE;
}
writel(status_reg, &instance->reg_set->outbound_scratch_pad_0);
readl(&instance->reg_set->outbound_scratch_pad_0);
msleep(MEGASAS_WAIT_FOR_NEXT_DMA_MSECS);
status_reg = instance->instancet->read_fw_status_reg(instance);
}
if (status_reg & MFI_STATE_CRASH_DUMP_DONE) {
dev_info(&instance->pdev->dev, "Crash Dump is available,number "
"of copied buffers: %d\n", instance->drv_buf_index);
instance->fw_crash_buffer_size = instance->drv_buf_index;
instance->fw_crash_state = AVAILABLE;
instance->drv_buf_index = 0;
writel(status_reg, &instance->reg_set->outbound_scratch_pad_0);
readl(&instance->reg_set->outbound_scratch_pad_0);
if (!partial_copy)
megasas_reset_fusion(instance->host, 0);
}
}
/* Fusion OCR work queue */
void megasas_fusion_ocr_wq(struct work_struct *work)
{
struct megasas_instance *instance =
container_of(work, struct megasas_instance, work_init);
megasas_reset_fusion(instance->host, 0);
}
/* Allocate fusion context */
int
megasas_alloc_fusion_context(struct megasas_instance *instance)
{
struct fusion_context *fusion;
instance->ctrl_context = kzalloc(sizeof(struct fusion_context),
GFP_KERNEL);
if (!instance->ctrl_context) {
dev_err(&instance->pdev->dev, "Failed from %s %d\n",
__func__, __LINE__);
return -ENOMEM;
}
fusion = instance->ctrl_context;
fusion->log_to_span_pages = get_order(MAX_LOGICAL_DRIVES_EXT *
sizeof(LD_SPAN_INFO));
fusion->log_to_span =
(PLD_SPAN_INFO)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
fusion->log_to_span_pages);
if (!fusion->log_to_span) {
fusion->log_to_span =
vzalloc(array_size(MAX_LOGICAL_DRIVES_EXT,
sizeof(LD_SPAN_INFO)));
if (!fusion->log_to_span) {
dev_err(&instance->pdev->dev, "Failed from %s %d\n",
__func__, __LINE__);
kfree(instance->ctrl_context);
return -ENOMEM;
}
}
fusion->load_balance_info_pages = get_order(MAX_LOGICAL_DRIVES_EXT *
sizeof(struct LD_LOAD_BALANCE_INFO));
fusion->load_balance_info =
(struct LD_LOAD_BALANCE_INFO *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
fusion->load_balance_info_pages);
if (!fusion->load_balance_info) {
fusion->load_balance_info =
vzalloc(array_size(MAX_LOGICAL_DRIVES_EXT,
sizeof(struct LD_LOAD_BALANCE_INFO)));
if (!fusion->load_balance_info)
dev_err(&instance->pdev->dev, "Failed to allocate load_balance_info, "
"continuing without Load Balance support\n");
}
return 0;
}
void
megasas_free_fusion_context(struct megasas_instance *instance)
{
struct fusion_context *fusion = instance->ctrl_context;
if (fusion) {
if (fusion->load_balance_info) {
if (is_vmalloc_addr(fusion->load_balance_info))
vfree(fusion->load_balance_info);
else
free_pages((ulong)fusion->load_balance_info,
fusion->load_balance_info_pages);
}
if (fusion->log_to_span) {
if (is_vmalloc_addr(fusion->log_to_span))
vfree(fusion->log_to_span);
else
free_pages((ulong)fusion->log_to_span,
fusion->log_to_span_pages);
}
kfree(fusion);
}
}
struct megasas_instance_template megasas_instance_template_fusion = {
.enable_intr = megasas_enable_intr_fusion,
.disable_intr = megasas_disable_intr_fusion,
.clear_intr = megasas_clear_intr_fusion,
.read_fw_status_reg = megasas_read_fw_status_reg_fusion,
.adp_reset = megasas_adp_reset_fusion,
.check_reset = megasas_check_reset_fusion,
.service_isr = megasas_isr_fusion,
.tasklet = megasas_complete_cmd_dpc_fusion,
.init_adapter = megasas_init_adapter_fusion,
.build_and_issue_cmd = megasas_build_and_issue_cmd_fusion,
.issue_dcmd = megasas_issue_dcmd_fusion,
};