| /* |
| * Copyright (C) 1994 Linus Torvalds |
| * |
| * Pentium III FXSR, SSE support |
| * General FPU state handling cleanups |
| * Gareth Hughes <gareth@valinux.com>, May 2000 |
| */ |
| #include <asm/fpu/internal.h> |
| #include <asm/fpu/regset.h> |
| #include <asm/fpu/signal.h> |
| #include <asm/fpu/types.h> |
| #include <asm/traps.h> |
| |
| #include <linux/hardirq.h> |
| #include <linux/pkeys.h> |
| |
| #define CREATE_TRACE_POINTS |
| #include <asm/trace/fpu.h> |
| |
| /* |
| * Represents the initial FPU state. It's mostly (but not completely) zeroes, |
| * depending on the FPU hardware format: |
| */ |
| union fpregs_state init_fpstate __read_mostly; |
| |
| /* |
| * Track whether the kernel is using the FPU state |
| * currently. |
| * |
| * This flag is used: |
| * |
| * - by IRQ context code to potentially use the FPU |
| * if it's unused. |
| * |
| * - to debug kernel_fpu_begin()/end() correctness |
| */ |
| static DEFINE_PER_CPU(bool, in_kernel_fpu); |
| |
| /* |
| * Track which context is using the FPU on the CPU: |
| */ |
| DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx); |
| |
| static void kernel_fpu_disable(void) |
| { |
| WARN_ON_FPU(this_cpu_read(in_kernel_fpu)); |
| this_cpu_write(in_kernel_fpu, true); |
| } |
| |
| static void kernel_fpu_enable(void) |
| { |
| WARN_ON_FPU(!this_cpu_read(in_kernel_fpu)); |
| this_cpu_write(in_kernel_fpu, false); |
| } |
| |
| static bool kernel_fpu_disabled(void) |
| { |
| return this_cpu_read(in_kernel_fpu); |
| } |
| |
| /* |
| * Were we in an interrupt that interrupted kernel mode? |
| * |
| * On others, we can do a kernel_fpu_begin/end() pair *ONLY* if that |
| * pair does nothing at all: the thread must not have fpu (so |
| * that we don't try to save the FPU state), and TS must |
| * be set (so that the clts/stts pair does nothing that is |
| * visible in the interrupted kernel thread). |
| * |
| * Except for the eagerfpu case when we return true; in the likely case |
| * the thread has FPU but we are not going to set/clear TS. |
| */ |
| static bool interrupted_kernel_fpu_idle(void) |
| { |
| if (kernel_fpu_disabled()) |
| return false; |
| |
| if (use_eager_fpu()) |
| return true; |
| |
| return !current->thread.fpu.fpregs_active && (read_cr0() & X86_CR0_TS); |
| } |
| |
| /* |
| * Were we in user mode (or vm86 mode) when we were |
| * interrupted? |
| * |
| * Doing kernel_fpu_begin/end() is ok if we are running |
| * in an interrupt context from user mode - we'll just |
| * save the FPU state as required. |
| */ |
| static bool interrupted_user_mode(void) |
| { |
| struct pt_regs *regs = get_irq_regs(); |
| return regs && user_mode(regs); |
| } |
| |
| /* |
| * Can we use the FPU in kernel mode with the |
| * whole "kernel_fpu_begin/end()" sequence? |
| * |
| * It's always ok in process context (ie "not interrupt") |
| * but it is sometimes ok even from an irq. |
| */ |
| bool irq_fpu_usable(void) |
| { |
| return !in_interrupt() || |
| interrupted_user_mode() || |
| interrupted_kernel_fpu_idle(); |
| } |
| EXPORT_SYMBOL(irq_fpu_usable); |
| |
| void __kernel_fpu_begin(void) |
| { |
| struct fpu *fpu = ¤t->thread.fpu; |
| |
| WARN_ON_FPU(!irq_fpu_usable()); |
| |
| kernel_fpu_disable(); |
| |
| if (fpu->fpregs_active) { |
| /* |
| * Ignore return value -- we don't care if reg state |
| * is clobbered. |
| */ |
| copy_fpregs_to_fpstate(fpu); |
| } else { |
| this_cpu_write(fpu_fpregs_owner_ctx, NULL); |
| __fpregs_activate_hw(); |
| } |
| } |
| EXPORT_SYMBOL(__kernel_fpu_begin); |
| |
| void __kernel_fpu_end(void) |
| { |
| struct fpu *fpu = ¤t->thread.fpu; |
| |
| if (fpu->fpregs_active) |
| copy_kernel_to_fpregs(&fpu->state); |
| else |
| __fpregs_deactivate_hw(); |
| |
| kernel_fpu_enable(); |
| } |
| EXPORT_SYMBOL(__kernel_fpu_end); |
| |
| void kernel_fpu_begin(void) |
| { |
| preempt_disable(); |
| __kernel_fpu_begin(); |
| } |
| EXPORT_SYMBOL_GPL(kernel_fpu_begin); |
| |
| void kernel_fpu_end(void) |
| { |
| __kernel_fpu_end(); |
| preempt_enable(); |
| } |
| EXPORT_SYMBOL_GPL(kernel_fpu_end); |
| |
| /* |
| * CR0::TS save/restore functions: |
| */ |
| int irq_ts_save(void) |
| { |
| /* |
| * If in process context and not atomic, we can take a spurious DNA fault. |
| * Otherwise, doing clts() in process context requires disabling preemption |
| * or some heavy lifting like kernel_fpu_begin() |
| */ |
| if (!in_atomic()) |
| return 0; |
| |
| if (read_cr0() & X86_CR0_TS) { |
| clts(); |
| return 1; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(irq_ts_save); |
| |
| void irq_ts_restore(int TS_state) |
| { |
| if (TS_state) |
| stts(); |
| } |
| EXPORT_SYMBOL_GPL(irq_ts_restore); |
| |
| /* |
| * Save the FPU state (mark it for reload if necessary): |
| * |
| * This only ever gets called for the current task. |
| */ |
| void fpu__save(struct fpu *fpu) |
| { |
| WARN_ON_FPU(fpu != ¤t->thread.fpu); |
| |
| preempt_disable(); |
| trace_x86_fpu_before_save(fpu); |
| if (fpu->fpregs_active) { |
| if (!copy_fpregs_to_fpstate(fpu)) { |
| if (use_eager_fpu()) |
| copy_kernel_to_fpregs(&fpu->state); |
| else |
| fpregs_deactivate(fpu); |
| } |
| } |
| trace_x86_fpu_after_save(fpu); |
| preempt_enable(); |
| } |
| EXPORT_SYMBOL_GPL(fpu__save); |
| |
| /* |
| * Legacy x87 fpstate state init: |
| */ |
| static inline void fpstate_init_fstate(struct fregs_state *fp) |
| { |
| fp->cwd = 0xffff037fu; |
| fp->swd = 0xffff0000u; |
| fp->twd = 0xffffffffu; |
| fp->fos = 0xffff0000u; |
| } |
| |
| void fpstate_init(union fpregs_state *state) |
| { |
| if (!static_cpu_has(X86_FEATURE_FPU)) { |
| fpstate_init_soft(&state->soft); |
| return; |
| } |
| |
| memset(state, 0, fpu_kernel_xstate_size); |
| |
| /* |
| * XRSTORS requires that this bit is set in xcomp_bv, or |
| * it will #GP. Make sure it is replaced after the memset(). |
| */ |
| if (static_cpu_has(X86_FEATURE_XSAVES)) |
| state->xsave.header.xcomp_bv = XCOMP_BV_COMPACTED_FORMAT; |
| |
| if (static_cpu_has(X86_FEATURE_FXSR)) |
| fpstate_init_fxstate(&state->fxsave); |
| else |
| fpstate_init_fstate(&state->fsave); |
| } |
| EXPORT_SYMBOL_GPL(fpstate_init); |
| |
| int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu) |
| { |
| dst_fpu->counter = 0; |
| dst_fpu->fpregs_active = 0; |
| dst_fpu->last_cpu = -1; |
| |
| if (!src_fpu->fpstate_active || !static_cpu_has(X86_FEATURE_FPU)) |
| return 0; |
| |
| WARN_ON_FPU(src_fpu != ¤t->thread.fpu); |
| |
| /* |
| * Don't let 'init optimized' areas of the XSAVE area |
| * leak into the child task: |
| */ |
| if (use_eager_fpu()) |
| memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size); |
| |
| /* |
| * Save current FPU registers directly into the child |
| * FPU context, without any memory-to-memory copying. |
| * In lazy mode, if the FPU context isn't loaded into |
| * fpregs, CR0.TS will be set and do_device_not_available |
| * will load the FPU context. |
| * |
| * We have to do all this with preemption disabled, |
| * mostly because of the FNSAVE case, because in that |
| * case we must not allow preemption in the window |
| * between the FNSAVE and us marking the context lazy. |
| * |
| * It shouldn't be an issue as even FNSAVE is plenty |
| * fast in terms of critical section length. |
| */ |
| preempt_disable(); |
| if (!copy_fpregs_to_fpstate(dst_fpu)) { |
| memcpy(&src_fpu->state, &dst_fpu->state, |
| fpu_kernel_xstate_size); |
| |
| if (use_eager_fpu()) |
| copy_kernel_to_fpregs(&src_fpu->state); |
| else |
| fpregs_deactivate(src_fpu); |
| } |
| preempt_enable(); |
| |
| trace_x86_fpu_copy_src(src_fpu); |
| trace_x86_fpu_copy_dst(dst_fpu); |
| |
| return 0; |
| } |
| |
| /* |
| * Activate the current task's in-memory FPU context, |
| * if it has not been used before: |
| */ |
| void fpu__activate_curr(struct fpu *fpu) |
| { |
| WARN_ON_FPU(fpu != ¤t->thread.fpu); |
| |
| if (!fpu->fpstate_active) { |
| fpstate_init(&fpu->state); |
| trace_x86_fpu_init_state(fpu); |
| |
| trace_x86_fpu_activate_state(fpu); |
| /* Safe to do for the current task: */ |
| fpu->fpstate_active = 1; |
| } |
| } |
| EXPORT_SYMBOL_GPL(fpu__activate_curr); |
| |
| /* |
| * This function must be called before we read a task's fpstate. |
| * |
| * If the task has not used the FPU before then initialize its |
| * fpstate. |
| * |
| * If the task has used the FPU before then save it. |
| */ |
| void fpu__activate_fpstate_read(struct fpu *fpu) |
| { |
| /* |
| * If fpregs are active (in the current CPU), then |
| * copy them to the fpstate: |
| */ |
| if (fpu->fpregs_active) { |
| fpu__save(fpu); |
| } else { |
| if (!fpu->fpstate_active) { |
| fpstate_init(&fpu->state); |
| trace_x86_fpu_init_state(fpu); |
| |
| trace_x86_fpu_activate_state(fpu); |
| /* Safe to do for current and for stopped child tasks: */ |
| fpu->fpstate_active = 1; |
| } |
| } |
| } |
| |
| /* |
| * This function must be called before we write a task's fpstate. |
| * |
| * If the task has used the FPU before then unlazy it. |
| * If the task has not used the FPU before then initialize its fpstate. |
| * |
| * After this function call, after registers in the fpstate are |
| * modified and the child task has woken up, the child task will |
| * restore the modified FPU state from the modified context. If we |
| * didn't clear its lazy status here then the lazy in-registers |
| * state pending on its former CPU could be restored, corrupting |
| * the modifications. |
| */ |
| void fpu__activate_fpstate_write(struct fpu *fpu) |
| { |
| /* |
| * Only stopped child tasks can be used to modify the FPU |
| * state in the fpstate buffer: |
| */ |
| WARN_ON_FPU(fpu == ¤t->thread.fpu); |
| |
| if (fpu->fpstate_active) { |
| /* Invalidate any lazy state: */ |
| fpu->last_cpu = -1; |
| } else { |
| fpstate_init(&fpu->state); |
| trace_x86_fpu_init_state(fpu); |
| |
| trace_x86_fpu_activate_state(fpu); |
| /* Safe to do for stopped child tasks: */ |
| fpu->fpstate_active = 1; |
| } |
| } |
| |
| /* |
| * This function must be called before we write the current |
| * task's fpstate. |
| * |
| * This call gets the current FPU register state and moves |
| * it in to the 'fpstate'. Preemption is disabled so that |
| * no writes to the 'fpstate' can occur from context |
| * swiches. |
| * |
| * Must be followed by a fpu__current_fpstate_write_end(). |
| */ |
| void fpu__current_fpstate_write_begin(void) |
| { |
| struct fpu *fpu = ¤t->thread.fpu; |
| |
| /* |
| * Ensure that the context-switching code does not write |
| * over the fpstate while we are doing our update. |
| */ |
| preempt_disable(); |
| |
| /* |
| * Move the fpregs in to the fpu's 'fpstate'. |
| */ |
| fpu__activate_fpstate_read(fpu); |
| |
| /* |
| * The caller is about to write to 'fpu'. Ensure that no |
| * CPU thinks that its fpregs match the fpstate. This |
| * ensures we will not be lazy and skip a XRSTOR in the |
| * future. |
| */ |
| fpu->last_cpu = -1; |
| } |
| |
| /* |
| * This function must be paired with fpu__current_fpstate_write_begin() |
| * |
| * This will ensure that the modified fpstate gets placed back in |
| * the fpregs if necessary. |
| * |
| * Note: This function may be called whether or not an _actual_ |
| * write to the fpstate occurred. |
| */ |
| void fpu__current_fpstate_write_end(void) |
| { |
| struct fpu *fpu = ¤t->thread.fpu; |
| |
| /* |
| * 'fpu' now has an updated copy of the state, but the |
| * registers may still be out of date. Update them with |
| * an XRSTOR if they are active. |
| */ |
| if (fpregs_active()) |
| copy_kernel_to_fpregs(&fpu->state); |
| |
| /* |
| * Our update is done and the fpregs/fpstate are in sync |
| * if necessary. Context switches can happen again. |
| */ |
| preempt_enable(); |
| } |
| |
| /* |
| * 'fpu__restore()' is called to copy FPU registers from |
| * the FPU fpstate to the live hw registers and to activate |
| * access to the hardware registers, so that FPU instructions |
| * can be used afterwards. |
| * |
| * Must be called with kernel preemption disabled (for example |
| * with local interrupts disabled, as it is in the case of |
| * do_device_not_available()). |
| */ |
| void fpu__restore(struct fpu *fpu) |
| { |
| fpu__activate_curr(fpu); |
| |
| /* Avoid __kernel_fpu_begin() right after fpregs_activate() */ |
| kernel_fpu_disable(); |
| trace_x86_fpu_before_restore(fpu); |
| fpregs_activate(fpu); |
| copy_kernel_to_fpregs(&fpu->state); |
| fpu->counter++; |
| trace_x86_fpu_after_restore(fpu); |
| kernel_fpu_enable(); |
| } |
| EXPORT_SYMBOL_GPL(fpu__restore); |
| |
| /* |
| * Drops current FPU state: deactivates the fpregs and |
| * the fpstate. NOTE: it still leaves previous contents |
| * in the fpregs in the eager-FPU case. |
| * |
| * This function can be used in cases where we know that |
| * a state-restore is coming: either an explicit one, |
| * or a reschedule. |
| */ |
| void fpu__drop(struct fpu *fpu) |
| { |
| preempt_disable(); |
| fpu->counter = 0; |
| |
| if (fpu->fpregs_active) { |
| /* Ignore delayed exceptions from user space */ |
| asm volatile("1: fwait\n" |
| "2:\n" |
| _ASM_EXTABLE(1b, 2b)); |
| fpregs_deactivate(fpu); |
| } |
| |
| fpu->fpstate_active = 0; |
| |
| trace_x86_fpu_dropped(fpu); |
| |
| preempt_enable(); |
| } |
| |
| /* |
| * Clear FPU registers by setting them up from |
| * the init fpstate: |
| */ |
| static inline void copy_init_fpstate_to_fpregs(void) |
| { |
| if (use_xsave()) |
| copy_kernel_to_xregs(&init_fpstate.xsave, -1); |
| else if (static_cpu_has(X86_FEATURE_FXSR)) |
| copy_kernel_to_fxregs(&init_fpstate.fxsave); |
| else |
| copy_kernel_to_fregs(&init_fpstate.fsave); |
| |
| if (boot_cpu_has(X86_FEATURE_OSPKE)) |
| copy_init_pkru_to_fpregs(); |
| } |
| |
| /* |
| * Clear the FPU state back to init state. |
| * |
| * Called by sys_execve(), by the signal handler code and by various |
| * error paths. |
| */ |
| void fpu__clear(struct fpu *fpu) |
| { |
| WARN_ON_FPU(fpu != ¤t->thread.fpu); /* Almost certainly an anomaly */ |
| |
| if (!use_eager_fpu() || !static_cpu_has(X86_FEATURE_FPU)) { |
| /* FPU state will be reallocated lazily at the first use. */ |
| fpu__drop(fpu); |
| } else { |
| if (!fpu->fpstate_active) { |
| fpu__activate_curr(fpu); |
| user_fpu_begin(); |
| } |
| copy_init_fpstate_to_fpregs(); |
| } |
| } |
| |
| /* |
| * x87 math exception handling: |
| */ |
| |
| int fpu__exception_code(struct fpu *fpu, int trap_nr) |
| { |
| int err; |
| |
| if (trap_nr == X86_TRAP_MF) { |
| unsigned short cwd, swd; |
| /* |
| * (~cwd & swd) will mask out exceptions that are not set to unmasked |
| * status. 0x3f is the exception bits in these regs, 0x200 is the |
| * C1 reg you need in case of a stack fault, 0x040 is the stack |
| * fault bit. We should only be taking one exception at a time, |
| * so if this combination doesn't produce any single exception, |
| * then we have a bad program that isn't synchronizing its FPU usage |
| * and it will suffer the consequences since we won't be able to |
| * fully reproduce the context of the exception. |
| */ |
| if (boot_cpu_has(X86_FEATURE_FXSR)) { |
| cwd = fpu->state.fxsave.cwd; |
| swd = fpu->state.fxsave.swd; |
| } else { |
| cwd = (unsigned short)fpu->state.fsave.cwd; |
| swd = (unsigned short)fpu->state.fsave.swd; |
| } |
| |
| err = swd & ~cwd; |
| } else { |
| /* |
| * The SIMD FPU exceptions are handled a little differently, as there |
| * is only a single status/control register. Thus, to determine which |
| * unmasked exception was caught we must mask the exception mask bits |
| * at 0x1f80, and then use these to mask the exception bits at 0x3f. |
| */ |
| unsigned short mxcsr = MXCSR_DEFAULT; |
| |
| if (boot_cpu_has(X86_FEATURE_XMM)) |
| mxcsr = fpu->state.fxsave.mxcsr; |
| |
| err = ~(mxcsr >> 7) & mxcsr; |
| } |
| |
| if (err & 0x001) { /* Invalid op */ |
| /* |
| * swd & 0x240 == 0x040: Stack Underflow |
| * swd & 0x240 == 0x240: Stack Overflow |
| * User must clear the SF bit (0x40) if set |
| */ |
| return FPE_FLTINV; |
| } else if (err & 0x004) { /* Divide by Zero */ |
| return FPE_FLTDIV; |
| } else if (err & 0x008) { /* Overflow */ |
| return FPE_FLTOVF; |
| } else if (err & 0x012) { /* Denormal, Underflow */ |
| return FPE_FLTUND; |
| } else if (err & 0x020) { /* Precision */ |
| return FPE_FLTRES; |
| } |
| |
| /* |
| * If we're using IRQ 13, or supposedly even some trap |
| * X86_TRAP_MF implementations, it's possible |
| * we get a spurious trap, which is not an error. |
| */ |
| return 0; |
| } |