| /* SPDX-License-Identifier: GPL-2.0-only */ |
| /* |
| * Kernel-based Virtual Machine driver for Linux |
| * |
| * This module enables machines with Intel VT-x extensions to run virtual |
| * machines without emulation or binary translation. |
| * |
| * MMU support |
| * |
| * Copyright (C) 2006 Qumranet, Inc. |
| * Copyright 2010 Red Hat, Inc. and/or its affiliates. |
| * |
| * Authors: |
| * Yaniv Kamay <yaniv@qumranet.com> |
| * Avi Kivity <avi@qumranet.com> |
| */ |
| |
| /* |
| * We need the mmu code to access both 32-bit and 64-bit guest ptes, |
| * so the code in this file is compiled twice, once per pte size. |
| */ |
| |
| #if PTTYPE == 64 |
| #define pt_element_t u64 |
| #define guest_walker guest_walker64 |
| #define FNAME(name) paging##64_##name |
| #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK |
| #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl) |
| #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl) |
| #define PT_INDEX(addr, level) PT64_INDEX(addr, level) |
| #define PT_LEVEL_BITS PT64_LEVEL_BITS |
| #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT |
| #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT |
| #define PT_HAVE_ACCESSED_DIRTY(mmu) true |
| #ifdef CONFIG_X86_64 |
| #define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL |
| #define CMPXCHG cmpxchg |
| #else |
| #define CMPXCHG cmpxchg64 |
| #define PT_MAX_FULL_LEVELS 2 |
| #endif |
| #elif PTTYPE == 32 |
| #define pt_element_t u32 |
| #define guest_walker guest_walker32 |
| #define FNAME(name) paging##32_##name |
| #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK |
| #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl) |
| #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl) |
| #define PT_INDEX(addr, level) PT32_INDEX(addr, level) |
| #define PT_LEVEL_BITS PT32_LEVEL_BITS |
| #define PT_MAX_FULL_LEVELS 2 |
| #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT |
| #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT |
| #define PT_HAVE_ACCESSED_DIRTY(mmu) true |
| #define CMPXCHG cmpxchg |
| #elif PTTYPE == PTTYPE_EPT |
| #define pt_element_t u64 |
| #define guest_walker guest_walkerEPT |
| #define FNAME(name) ept_##name |
| #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK |
| #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl) |
| #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl) |
| #define PT_INDEX(addr, level) PT64_INDEX(addr, level) |
| #define PT_LEVEL_BITS PT64_LEVEL_BITS |
| #define PT_GUEST_DIRTY_SHIFT 9 |
| #define PT_GUEST_ACCESSED_SHIFT 8 |
| #define PT_HAVE_ACCESSED_DIRTY(mmu) ((mmu)->ept_ad) |
| #define CMPXCHG cmpxchg64 |
| #define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL |
| #else |
| #error Invalid PTTYPE value |
| #endif |
| |
| #define PT_GUEST_DIRTY_MASK (1 << PT_GUEST_DIRTY_SHIFT) |
| #define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT) |
| |
| #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl) |
| #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PG_LEVEL_4K) |
| |
| /* |
| * The guest_walker structure emulates the behavior of the hardware page |
| * table walker. |
| */ |
| struct guest_walker { |
| int level; |
| unsigned max_level; |
| gfn_t table_gfn[PT_MAX_FULL_LEVELS]; |
| pt_element_t ptes[PT_MAX_FULL_LEVELS]; |
| pt_element_t prefetch_ptes[PTE_PREFETCH_NUM]; |
| gpa_t pte_gpa[PT_MAX_FULL_LEVELS]; |
| pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS]; |
| bool pte_writable[PT_MAX_FULL_LEVELS]; |
| unsigned pt_access; |
| unsigned pte_access; |
| gfn_t gfn; |
| struct x86_exception fault; |
| }; |
| |
| static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl) |
| { |
| return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT; |
| } |
| |
| static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access, |
| unsigned gpte) |
| { |
| unsigned mask; |
| |
| /* dirty bit is not supported, so no need to track it */ |
| if (!PT_HAVE_ACCESSED_DIRTY(mmu)) |
| return; |
| |
| BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK); |
| |
| mask = (unsigned)~ACC_WRITE_MASK; |
| /* Allow write access to dirty gptes */ |
| mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & |
| PT_WRITABLE_MASK; |
| *access &= mask; |
| } |
| |
| static inline int FNAME(is_present_gpte)(unsigned long pte) |
| { |
| #if PTTYPE != PTTYPE_EPT |
| return pte & PT_PRESENT_MASK; |
| #else |
| return pte & 7; |
| #endif |
| } |
| |
| static bool FNAME(is_bad_mt_xwr)(struct rsvd_bits_validate *rsvd_check, u64 gpte) |
| { |
| #if PTTYPE != PTTYPE_EPT |
| return false; |
| #else |
| return __is_bad_mt_xwr(rsvd_check, gpte); |
| #endif |
| } |
| |
| static bool FNAME(is_rsvd_bits_set)(struct kvm_mmu *mmu, u64 gpte, int level) |
| { |
| return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level) || |
| FNAME(is_bad_mt_xwr)(&mmu->guest_rsvd_check, gpte); |
| } |
| |
| static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, |
| pt_element_t __user *ptep_user, unsigned index, |
| pt_element_t orig_pte, pt_element_t new_pte) |
| { |
| int npages; |
| pt_element_t ret; |
| pt_element_t *table; |
| struct page *page; |
| |
| npages = get_user_pages_fast((unsigned long)ptep_user, 1, FOLL_WRITE, &page); |
| if (likely(npages == 1)) { |
| table = kmap_atomic(page); |
| ret = CMPXCHG(&table[index], orig_pte, new_pte); |
| kunmap_atomic(table); |
| |
| kvm_release_page_dirty(page); |
| } else { |
| struct vm_area_struct *vma; |
| unsigned long vaddr = (unsigned long)ptep_user & PAGE_MASK; |
| unsigned long pfn; |
| unsigned long paddr; |
| |
| mmap_read_lock(current->mm); |
| vma = find_vma_intersection(current->mm, vaddr, vaddr + PAGE_SIZE); |
| if (!vma || !(vma->vm_flags & VM_PFNMAP)) { |
| mmap_read_unlock(current->mm); |
| return -EFAULT; |
| } |
| pfn = ((vaddr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; |
| paddr = pfn << PAGE_SHIFT; |
| table = memremap(paddr, PAGE_SIZE, MEMREMAP_WB); |
| if (!table) { |
| mmap_read_unlock(current->mm); |
| return -EFAULT; |
| } |
| ret = CMPXCHG(&table[index], orig_pte, new_pte); |
| memunmap(table); |
| mmap_read_unlock(current->mm); |
| } |
| |
| return (ret != orig_pte); |
| } |
| |
| static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu, |
| struct kvm_mmu_page *sp, u64 *spte, |
| u64 gpte) |
| { |
| if (!FNAME(is_present_gpte)(gpte)) |
| goto no_present; |
| |
| /* if accessed bit is not supported prefetch non accessed gpte */ |
| if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) && |
| !(gpte & PT_GUEST_ACCESSED_MASK)) |
| goto no_present; |
| |
| if (FNAME(is_rsvd_bits_set)(vcpu->arch.mmu, gpte, PG_LEVEL_4K)) |
| goto no_present; |
| |
| return false; |
| |
| no_present: |
| drop_spte(vcpu->kvm, spte); |
| return true; |
| } |
| |
| /* |
| * For PTTYPE_EPT, a page table can be executable but not readable |
| * on supported processors. Therefore, set_spte does not automatically |
| * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK |
| * to signify readability since it isn't used in the EPT case |
| */ |
| static inline unsigned FNAME(gpte_access)(u64 gpte) |
| { |
| unsigned access; |
| #if PTTYPE == PTTYPE_EPT |
| access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) | |
| ((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) | |
| ((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0); |
| #else |
| BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK); |
| BUILD_BUG_ON(ACC_EXEC_MASK != 1); |
| access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK); |
| /* Combine NX with P (which is set here) to get ACC_EXEC_MASK. */ |
| access ^= (gpte >> PT64_NX_SHIFT); |
| #endif |
| |
| return access; |
| } |
| |
| static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu, |
| struct kvm_mmu *mmu, |
| struct guest_walker *walker, |
| gpa_t addr, int write_fault) |
| { |
| unsigned level, index; |
| pt_element_t pte, orig_pte; |
| pt_element_t __user *ptep_user; |
| gfn_t table_gfn; |
| int ret; |
| |
| /* dirty/accessed bits are not supported, so no need to update them */ |
| if (!PT_HAVE_ACCESSED_DIRTY(mmu)) |
| return 0; |
| |
| for (level = walker->max_level; level >= walker->level; --level) { |
| pte = orig_pte = walker->ptes[level - 1]; |
| table_gfn = walker->table_gfn[level - 1]; |
| ptep_user = walker->ptep_user[level - 1]; |
| index = offset_in_page(ptep_user) / sizeof(pt_element_t); |
| if (!(pte & PT_GUEST_ACCESSED_MASK)) { |
| trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte)); |
| pte |= PT_GUEST_ACCESSED_MASK; |
| } |
| if (level == walker->level && write_fault && |
| !(pte & PT_GUEST_DIRTY_MASK)) { |
| trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte)); |
| #if PTTYPE == PTTYPE_EPT |
| if (kvm_x86_ops.nested_ops->write_log_dirty(vcpu, addr)) |
| return -EINVAL; |
| #endif |
| pte |= PT_GUEST_DIRTY_MASK; |
| } |
| if (pte == orig_pte) |
| continue; |
| |
| /* |
| * If the slot is read-only, simply do not process the accessed |
| * and dirty bits. This is the correct thing to do if the slot |
| * is ROM, and page tables in read-as-ROM/write-as-MMIO slots |
| * are only supported if the accessed and dirty bits are already |
| * set in the ROM (so that MMIO writes are never needed). |
| * |
| * Note that NPT does not allow this at all and faults, since |
| * it always wants nested page table entries for the guest |
| * page tables to be writable. And EPT works but will simply |
| * overwrite the read-only memory to set the accessed and dirty |
| * bits. |
| */ |
| if (unlikely(!walker->pte_writable[level - 1])) |
| continue; |
| |
| ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte); |
| if (ret) |
| return ret; |
| |
| kvm_vcpu_mark_page_dirty(vcpu, table_gfn); |
| walker->ptes[level - 1] = pte; |
| } |
| return 0; |
| } |
| |
| static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte) |
| { |
| unsigned pkeys = 0; |
| #if PTTYPE == 64 |
| pte_t pte = {.pte = gpte}; |
| |
| pkeys = pte_flags_pkey(pte_flags(pte)); |
| #endif |
| return pkeys; |
| } |
| |
| /* |
| * Fetch a guest pte for a guest virtual address, or for an L2's GPA. |
| */ |
| static int FNAME(walk_addr_generic)(struct guest_walker *walker, |
| struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, |
| gpa_t addr, u32 access) |
| { |
| int ret; |
| pt_element_t pte; |
| pt_element_t __user *ptep_user; |
| gfn_t table_gfn; |
| u64 pt_access, pte_access; |
| unsigned index, accessed_dirty, pte_pkey; |
| unsigned nested_access; |
| gpa_t pte_gpa; |
| bool have_ad; |
| int offset; |
| u64 walk_nx_mask = 0; |
| const int write_fault = access & PFERR_WRITE_MASK; |
| const int user_fault = access & PFERR_USER_MASK; |
| const int fetch_fault = access & PFERR_FETCH_MASK; |
| u16 errcode = 0; |
| gpa_t real_gpa; |
| gfn_t gfn; |
| |
| trace_kvm_mmu_pagetable_walk(addr, access); |
| retry_walk: |
| walker->level = mmu->root_level; |
| pte = mmu->get_guest_pgd(vcpu); |
| have_ad = PT_HAVE_ACCESSED_DIRTY(mmu); |
| |
| #if PTTYPE == 64 |
| walk_nx_mask = 1ULL << PT64_NX_SHIFT; |
| if (walker->level == PT32E_ROOT_LEVEL) { |
| pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3); |
| trace_kvm_mmu_paging_element(pte, walker->level); |
| if (!FNAME(is_present_gpte)(pte)) |
| goto error; |
| --walker->level; |
| } |
| #endif |
| walker->max_level = walker->level; |
| ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu))); |
| |
| /* |
| * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging |
| * by the MOV to CR instruction are treated as reads and do not cause the |
| * processor to set the dirty flag in any EPT paging-structure entry. |
| */ |
| nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK; |
| |
| pte_access = ~0; |
| ++walker->level; |
| |
| do { |
| unsigned long host_addr; |
| |
| pt_access = pte_access; |
| --walker->level; |
| |
| index = PT_INDEX(addr, walker->level); |
| table_gfn = gpte_to_gfn(pte); |
| offset = index * sizeof(pt_element_t); |
| pte_gpa = gfn_to_gpa(table_gfn) + offset; |
| |
| BUG_ON(walker->level < 1); |
| walker->table_gfn[walker->level - 1] = table_gfn; |
| walker->pte_gpa[walker->level - 1] = pte_gpa; |
| |
| real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn), |
| nested_access, |
| &walker->fault); |
| |
| /* |
| * FIXME: This can happen if emulation (for of an INS/OUTS |
| * instruction) triggers a nested page fault. The exit |
| * qualification / exit info field will incorrectly have |
| * "guest page access" as the nested page fault's cause, |
| * instead of "guest page structure access". To fix this, |
| * the x86_exception struct should be augmented with enough |
| * information to fix the exit_qualification or exit_info_1 |
| * fields. |
| */ |
| if (unlikely(real_gpa == UNMAPPED_GVA)) |
| return 0; |
| |
| host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gpa_to_gfn(real_gpa), |
| &walker->pte_writable[walker->level - 1]); |
| if (unlikely(kvm_is_error_hva(host_addr))) |
| goto error; |
| |
| ptep_user = (pt_element_t __user *)((void *)host_addr + offset); |
| if (unlikely(__get_user(pte, ptep_user))) |
| goto error; |
| walker->ptep_user[walker->level - 1] = ptep_user; |
| |
| trace_kvm_mmu_paging_element(pte, walker->level); |
| |
| /* |
| * Inverting the NX it lets us AND it like other |
| * permission bits. |
| */ |
| pte_access = pt_access & (pte ^ walk_nx_mask); |
| |
| if (unlikely(!FNAME(is_present_gpte)(pte))) |
| goto error; |
| |
| if (unlikely(FNAME(is_rsvd_bits_set)(mmu, pte, walker->level))) { |
| errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK; |
| goto error; |
| } |
| |
| walker->ptes[walker->level - 1] = pte; |
| } while (!is_last_gpte(mmu, walker->level, pte)); |
| |
| pte_pkey = FNAME(gpte_pkeys)(vcpu, pte); |
| accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0; |
| |
| /* Convert to ACC_*_MASK flags for struct guest_walker. */ |
| walker->pt_access = FNAME(gpte_access)(pt_access ^ walk_nx_mask); |
| walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask); |
| errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access); |
| if (unlikely(errcode)) |
| goto error; |
| |
| gfn = gpte_to_gfn_lvl(pte, walker->level); |
| gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT; |
| |
| if (PTTYPE == 32 && walker->level > PG_LEVEL_4K && is_cpuid_PSE36()) |
| gfn += pse36_gfn_delta(pte); |
| |
| real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault); |
| if (real_gpa == UNMAPPED_GVA) |
| return 0; |
| |
| walker->gfn = real_gpa >> PAGE_SHIFT; |
| |
| if (!write_fault) |
| FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte); |
| else |
| /* |
| * On a write fault, fold the dirty bit into accessed_dirty. |
| * For modes without A/D bits support accessed_dirty will be |
| * always clear. |
| */ |
| accessed_dirty &= pte >> |
| (PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT); |
| |
| if (unlikely(!accessed_dirty)) { |
| ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, |
| addr, write_fault); |
| if (unlikely(ret < 0)) |
| goto error; |
| else if (ret) |
| goto retry_walk; |
| } |
| |
| pgprintk("%s: pte %llx pte_access %x pt_access %x\n", |
| __func__, (u64)pte, walker->pte_access, walker->pt_access); |
| return 1; |
| |
| error: |
| errcode |= write_fault | user_fault; |
| if (fetch_fault && (mmu->nx || |
| kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))) |
| errcode |= PFERR_FETCH_MASK; |
| |
| walker->fault.vector = PF_VECTOR; |
| walker->fault.error_code_valid = true; |
| walker->fault.error_code = errcode; |
| |
| #if PTTYPE == PTTYPE_EPT |
| /* |
| * Use PFERR_RSVD_MASK in error_code to to tell if EPT |
| * misconfiguration requires to be injected. The detection is |
| * done by is_rsvd_bits_set() above. |
| * |
| * We set up the value of exit_qualification to inject: |
| * [2:0] - Derive from the access bits. The exit_qualification might be |
| * out of date if it is serving an EPT misconfiguration. |
| * [5:3] - Calculated by the page walk of the guest EPT page tables |
| * [7:8] - Derived from [7:8] of real exit_qualification |
| * |
| * The other bits are set to 0. |
| */ |
| if (!(errcode & PFERR_RSVD_MASK)) { |
| vcpu->arch.exit_qualification &= 0x180; |
| if (write_fault) |
| vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE; |
| if (user_fault) |
| vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ; |
| if (fetch_fault) |
| vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR; |
| vcpu->arch.exit_qualification |= (pte_access & 0x7) << 3; |
| } |
| #endif |
| walker->fault.address = addr; |
| walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu; |
| walker->fault.async_page_fault = false; |
| |
| trace_kvm_mmu_walker_error(walker->fault.error_code); |
| return 0; |
| } |
| |
| static int FNAME(walk_addr)(struct guest_walker *walker, |
| struct kvm_vcpu *vcpu, gpa_t addr, u32 access) |
| { |
| return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr, |
| access); |
| } |
| |
| #if PTTYPE != PTTYPE_EPT |
| static int FNAME(walk_addr_nested)(struct guest_walker *walker, |
| struct kvm_vcpu *vcpu, gva_t addr, |
| u32 access) |
| { |
| return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu, |
| addr, access); |
| } |
| #endif |
| |
| static bool |
| FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, |
| u64 *spte, pt_element_t gpte, bool no_dirty_log) |
| { |
| unsigned pte_access; |
| gfn_t gfn; |
| kvm_pfn_t pfn; |
| |
| if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte)) |
| return false; |
| |
| pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte); |
| |
| gfn = gpte_to_gfn(gpte); |
| pte_access = sp->role.access & FNAME(gpte_access)(gpte); |
| FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte); |
| pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn, |
| no_dirty_log && (pte_access & ACC_WRITE_MASK)); |
| if (is_error_pfn(pfn)) |
| return false; |
| |
| /* |
| * we call mmu_set_spte() with host_writable = true because |
| * pte_prefetch_gfn_to_pfn always gets a writable pfn. |
| */ |
| mmu_set_spte(vcpu, spte, pte_access, false, PG_LEVEL_4K, gfn, pfn, |
| true, true); |
| |
| kvm_release_pfn_clean(pfn); |
| return true; |
| } |
| |
| static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, |
| u64 *spte, const void *pte) |
| { |
| pt_element_t gpte = *(const pt_element_t *)pte; |
| |
| FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false); |
| } |
| |
| static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu, |
| struct guest_walker *gw, int level) |
| { |
| pt_element_t curr_pte; |
| gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1]; |
| u64 mask; |
| int r, index; |
| |
| if (level == PG_LEVEL_4K) { |
| mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1; |
| base_gpa = pte_gpa & ~mask; |
| index = (pte_gpa - base_gpa) / sizeof(pt_element_t); |
| |
| r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa, |
| gw->prefetch_ptes, sizeof(gw->prefetch_ptes)); |
| curr_pte = gw->prefetch_ptes[index]; |
| } else |
| r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, |
| &curr_pte, sizeof(curr_pte)); |
| |
| return r || curr_pte != gw->ptes[level - 1]; |
| } |
| |
| static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw, |
| u64 *sptep) |
| { |
| struct kvm_mmu_page *sp; |
| pt_element_t *gptep = gw->prefetch_ptes; |
| u64 *spte; |
| int i; |
| |
| sp = sptep_to_sp(sptep); |
| |
| if (sp->role.level > PG_LEVEL_4K) |
| return; |
| |
| /* |
| * If addresses are being invalidated, skip prefetching to avoid |
| * accidentally prefetching those addresses. |
| */ |
| if (unlikely(vcpu->kvm->mmu_notifier_count)) |
| return; |
| |
| if (sp->role.direct) |
| return __direct_pte_prefetch(vcpu, sp, sptep); |
| |
| i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); |
| spte = sp->spt + i; |
| |
| for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { |
| if (spte == sptep) |
| continue; |
| |
| if (is_shadow_present_pte(*spte)) |
| continue; |
| |
| if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true)) |
| break; |
| } |
| } |
| |
| /* |
| * Fetch a shadow pte for a specific level in the paging hierarchy. |
| * If the guest tries to write a write-protected page, we need to |
| * emulate this operation, return 1 to indicate this case. |
| */ |
| static int FNAME(fetch)(struct kvm_vcpu *vcpu, gpa_t addr, |
| struct guest_walker *gw, u32 error_code, |
| int max_level, kvm_pfn_t pfn, bool map_writable, |
| bool prefault) |
| { |
| bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled(); |
| bool write_fault = error_code & PFERR_WRITE_MASK; |
| bool exec = error_code & PFERR_FETCH_MASK; |
| bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled; |
| struct kvm_mmu_page *sp = NULL; |
| struct kvm_shadow_walk_iterator it; |
| unsigned direct_access, access = gw->pt_access; |
| int top_level, level, req_level, ret; |
| gfn_t base_gfn = gw->gfn; |
| |
| direct_access = gw->pte_access; |
| |
| top_level = vcpu->arch.mmu->root_level; |
| if (top_level == PT32E_ROOT_LEVEL) |
| top_level = PT32_ROOT_LEVEL; |
| /* |
| * Verify that the top-level gpte is still there. Since the page |
| * is a root page, it is either write protected (and cannot be |
| * changed from now on) or it is invalid (in which case, we don't |
| * really care if it changes underneath us after this point). |
| */ |
| if (FNAME(gpte_changed)(vcpu, gw, top_level)) |
| goto out_gpte_changed; |
| |
| if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa))) |
| goto out_gpte_changed; |
| |
| for (shadow_walk_init(&it, vcpu, addr); |
| shadow_walk_okay(&it) && it.level > gw->level; |
| shadow_walk_next(&it)) { |
| gfn_t table_gfn; |
| |
| clear_sp_write_flooding_count(it.sptep); |
| drop_large_spte(vcpu, it.sptep); |
| |
| sp = NULL; |
| if (!is_shadow_present_pte(*it.sptep)) { |
| table_gfn = gw->table_gfn[it.level - 2]; |
| sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1, |
| false, access); |
| } |
| |
| /* |
| * Verify that the gpte in the page we've just write |
| * protected is still there. |
| */ |
| if (FNAME(gpte_changed)(vcpu, gw, it.level - 1)) |
| goto out_gpte_changed; |
| |
| if (sp) |
| link_shadow_page(vcpu, it.sptep, sp); |
| } |
| |
| level = kvm_mmu_hugepage_adjust(vcpu, gw->gfn, max_level, &pfn, |
| huge_page_disallowed, &req_level); |
| |
| trace_kvm_mmu_spte_requested(addr, gw->level, pfn); |
| |
| for (; shadow_walk_okay(&it); shadow_walk_next(&it)) { |
| clear_sp_write_flooding_count(it.sptep); |
| |
| /* |
| * We cannot overwrite existing page tables with an NX |
| * large page, as the leaf could be executable. |
| */ |
| if (nx_huge_page_workaround_enabled) |
| disallowed_hugepage_adjust(*it.sptep, gw->gfn, it.level, |
| &pfn, &level); |
| |
| base_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1); |
| if (it.level == level) |
| break; |
| |
| validate_direct_spte(vcpu, it.sptep, direct_access); |
| |
| drop_large_spte(vcpu, it.sptep); |
| |
| if (!is_shadow_present_pte(*it.sptep)) { |
| sp = kvm_mmu_get_page(vcpu, base_gfn, addr, |
| it.level - 1, true, direct_access); |
| link_shadow_page(vcpu, it.sptep, sp); |
| if (huge_page_disallowed && req_level >= it.level) |
| account_huge_nx_page(vcpu->kvm, sp); |
| } |
| } |
| |
| ret = mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault, |
| it.level, base_gfn, pfn, prefault, map_writable); |
| if (ret == RET_PF_SPURIOUS) |
| return ret; |
| |
| FNAME(pte_prefetch)(vcpu, gw, it.sptep); |
| ++vcpu->stat.pf_fixed; |
| return ret; |
| |
| out_gpte_changed: |
| return RET_PF_RETRY; |
| } |
| |
| /* |
| * To see whether the mapped gfn can write its page table in the current |
| * mapping. |
| * |
| * It is the helper function of FNAME(page_fault). When guest uses large page |
| * size to map the writable gfn which is used as current page table, we should |
| * force kvm to use small page size to map it because new shadow page will be |
| * created when kvm establishes shadow page table that stop kvm using large |
| * page size. Do it early can avoid unnecessary #PF and emulation. |
| * |
| * @write_fault_to_shadow_pgtable will return true if the fault gfn is |
| * currently used as its page table. |
| * |
| * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok |
| * since the PDPT is always shadowed, that means, we can not use large page |
| * size to map the gfn which is used as PDPT. |
| */ |
| static bool |
| FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu, |
| struct guest_walker *walker, bool user_fault, |
| bool *write_fault_to_shadow_pgtable) |
| { |
| int level; |
| gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1); |
| bool self_changed = false; |
| |
| if (!(walker->pte_access & ACC_WRITE_MASK || |
| (!is_write_protection(vcpu) && !user_fault))) |
| return false; |
| |
| for (level = walker->level; level <= walker->max_level; level++) { |
| gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1]; |
| |
| self_changed |= !(gfn & mask); |
| *write_fault_to_shadow_pgtable |= !gfn; |
| } |
| |
| return self_changed; |
| } |
| |
| /* |
| * Page fault handler. There are several causes for a page fault: |
| * - there is no shadow pte for the guest pte |
| * - write access through a shadow pte marked read only so that we can set |
| * the dirty bit |
| * - write access to a shadow pte marked read only so we can update the page |
| * dirty bitmap, when userspace requests it |
| * - mmio access; in this case we will never install a present shadow pte |
| * - normal guest page fault due to the guest pte marked not present, not |
| * writable, or not executable |
| * |
| * Returns: 1 if we need to emulate the instruction, 0 otherwise, or |
| * a negative value on error. |
| */ |
| static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gpa_t addr, u32 error_code, |
| bool prefault) |
| { |
| bool write_fault = error_code & PFERR_WRITE_MASK; |
| bool user_fault = error_code & PFERR_USER_MASK; |
| struct guest_walker walker; |
| int r; |
| kvm_pfn_t pfn; |
| hva_t hva; |
| unsigned long mmu_seq; |
| bool map_writable, is_self_change_mapping; |
| int max_level; |
| |
| pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code); |
| |
| /* |
| * If PFEC.RSVD is set, this is a shadow page fault. |
| * The bit needs to be cleared before walking guest page tables. |
| */ |
| error_code &= ~PFERR_RSVD_MASK; |
| |
| /* |
| * Look up the guest pte for the faulting address. |
| */ |
| r = FNAME(walk_addr)(&walker, vcpu, addr, error_code); |
| |
| /* |
| * The page is not mapped by the guest. Let the guest handle it. |
| */ |
| if (!r) { |
| pgprintk("%s: guest page fault\n", __func__); |
| if (!prefault) |
| kvm_inject_emulated_page_fault(vcpu, &walker.fault); |
| |
| return RET_PF_RETRY; |
| } |
| |
| if (page_fault_handle_page_track(vcpu, error_code, walker.gfn)) { |
| shadow_page_table_clear_flood(vcpu, addr); |
| return RET_PF_EMULATE; |
| } |
| |
| r = mmu_topup_memory_caches(vcpu, true); |
| if (r) |
| return r; |
| |
| vcpu->arch.write_fault_to_shadow_pgtable = false; |
| |
| is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu, |
| &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable); |
| |
| if (is_self_change_mapping) |
| max_level = PG_LEVEL_4K; |
| else |
| max_level = walker.level; |
| |
| mmu_seq = vcpu->kvm->mmu_notifier_seq; |
| smp_rmb(); |
| |
| if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, &hva, |
| write_fault, &map_writable)) |
| return RET_PF_RETRY; |
| |
| if (handle_abnormal_pfn(vcpu, addr, walker.gfn, pfn, walker.pte_access, &r)) |
| return r; |
| |
| /* |
| * Do not change pte_access if the pfn is a mmio page, otherwise |
| * we will cache the incorrect access into mmio spte. |
| */ |
| if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) && |
| !is_write_protection(vcpu) && !user_fault && |
| !is_noslot_pfn(pfn)) { |
| walker.pte_access |= ACC_WRITE_MASK; |
| walker.pte_access &= ~ACC_USER_MASK; |
| |
| /* |
| * If we converted a user page to a kernel page, |
| * so that the kernel can write to it when cr0.wp=0, |
| * then we should prevent the kernel from executing it |
| * if SMEP is enabled. |
| */ |
| if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)) |
| walker.pte_access &= ~ACC_EXEC_MASK; |
| } |
| |
| r = RET_PF_RETRY; |
| write_lock(&vcpu->kvm->mmu_lock); |
| if (!is_noslot_pfn(pfn) && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, hva)) |
| goto out_unlock; |
| |
| kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT); |
| r = make_mmu_pages_available(vcpu); |
| if (r) |
| goto out_unlock; |
| r = FNAME(fetch)(vcpu, addr, &walker, error_code, max_level, pfn, |
| map_writable, prefault); |
| kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT); |
| |
| out_unlock: |
| write_unlock(&vcpu->kvm->mmu_lock); |
| kvm_release_pfn_clean(pfn); |
| return r; |
| } |
| |
| static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp) |
| { |
| int offset = 0; |
| |
| WARN_ON(sp->role.level != PG_LEVEL_4K); |
| |
| if (PTTYPE == 32) |
| offset = sp->role.quadrant << PT64_LEVEL_BITS; |
| |
| return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t); |
| } |
| |
| static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa) |
| { |
| struct kvm_shadow_walk_iterator iterator; |
| struct kvm_mmu_page *sp; |
| u64 old_spte; |
| int level; |
| u64 *sptep; |
| |
| vcpu_clear_mmio_info(vcpu, gva); |
| |
| /* |
| * No need to check return value here, rmap_can_add() can |
| * help us to skip pte prefetch later. |
| */ |
| mmu_topup_memory_caches(vcpu, true); |
| |
| if (!VALID_PAGE(root_hpa)) { |
| WARN_ON(1); |
| return; |
| } |
| |
| write_lock(&vcpu->kvm->mmu_lock); |
| for_each_shadow_entry_using_root(vcpu, root_hpa, gva, iterator) { |
| level = iterator.level; |
| sptep = iterator.sptep; |
| |
| sp = sptep_to_sp(sptep); |
| old_spte = *sptep; |
| if (is_last_spte(old_spte, level)) { |
| pt_element_t gpte; |
| gpa_t pte_gpa; |
| |
| if (!sp->unsync) |
| break; |
| |
| pte_gpa = FNAME(get_level1_sp_gpa)(sp); |
| pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t); |
| |
| mmu_page_zap_pte(vcpu->kvm, sp, sptep, NULL); |
| if (is_shadow_present_pte(old_spte)) |
| kvm_flush_remote_tlbs_with_address(vcpu->kvm, |
| sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level)); |
| |
| if (!rmap_can_add(vcpu)) |
| break; |
| |
| if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte, |
| sizeof(pt_element_t))) |
| break; |
| |
| FNAME(update_pte)(vcpu, sp, sptep, &gpte); |
| } |
| |
| if (!is_shadow_present_pte(*sptep) || !sp->unsync_children) |
| break; |
| } |
| write_unlock(&vcpu->kvm->mmu_lock); |
| } |
| |
| /* Note, @addr is a GPA when gva_to_gpa() translates an L2 GPA to an L1 GPA. */ |
| static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gpa_t addr, u32 access, |
| struct x86_exception *exception) |
| { |
| struct guest_walker walker; |
| gpa_t gpa = UNMAPPED_GVA; |
| int r; |
| |
| r = FNAME(walk_addr)(&walker, vcpu, addr, access); |
| |
| if (r) { |
| gpa = gfn_to_gpa(walker.gfn); |
| gpa |= addr & ~PAGE_MASK; |
| } else if (exception) |
| *exception = walker.fault; |
| |
| return gpa; |
| } |
| |
| #if PTTYPE != PTTYPE_EPT |
| /* Note, gva_to_gpa_nested() is only used to translate L2 GVAs. */ |
| static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gpa_t vaddr, |
| u32 access, |
| struct x86_exception *exception) |
| { |
| struct guest_walker walker; |
| gpa_t gpa = UNMAPPED_GVA; |
| int r; |
| |
| #ifndef CONFIG_X86_64 |
| /* A 64-bit GVA should be impossible on 32-bit KVM. */ |
| WARN_ON_ONCE(vaddr >> 32); |
| #endif |
| |
| r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access); |
| |
| if (r) { |
| gpa = gfn_to_gpa(walker.gfn); |
| gpa |= vaddr & ~PAGE_MASK; |
| } else if (exception) |
| *exception = walker.fault; |
| |
| return gpa; |
| } |
| #endif |
| |
| /* |
| * Using the cached information from sp->gfns is safe because: |
| * - The spte has a reference to the struct page, so the pfn for a given gfn |
| * can't change unless all sptes pointing to it are nuked first. |
| * |
| * Note: |
| * We should flush all tlbs if spte is dropped even though guest is |
| * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page |
| * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't |
| * used by guest then tlbs are not flushed, so guest is allowed to access the |
| * freed pages. |
| * And we increase kvm->tlbs_dirty to delay tlbs flush in this case. |
| */ |
| static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) |
| { |
| int i, nr_present = 0; |
| bool host_writable; |
| gpa_t first_pte_gpa; |
| int set_spte_ret = 0; |
| |
| /* direct kvm_mmu_page can not be unsync. */ |
| BUG_ON(sp->role.direct); |
| |
| first_pte_gpa = FNAME(get_level1_sp_gpa)(sp); |
| |
| for (i = 0; i < PT64_ENT_PER_PAGE; i++) { |
| unsigned pte_access; |
| pt_element_t gpte; |
| gpa_t pte_gpa; |
| gfn_t gfn; |
| |
| if (!sp->spt[i]) |
| continue; |
| |
| pte_gpa = first_pte_gpa + i * sizeof(pt_element_t); |
| |
| if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte, |
| sizeof(pt_element_t))) |
| return 0; |
| |
| if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) { |
| /* |
| * Update spte before increasing tlbs_dirty to make |
| * sure no tlb flush is lost after spte is zapped; see |
| * the comments in kvm_flush_remote_tlbs(). |
| */ |
| smp_wmb(); |
| vcpu->kvm->tlbs_dirty++; |
| continue; |
| } |
| |
| gfn = gpte_to_gfn(gpte); |
| pte_access = sp->role.access; |
| pte_access &= FNAME(gpte_access)(gpte); |
| FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte); |
| |
| if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access, |
| &nr_present)) |
| continue; |
| |
| if (gfn != sp->gfns[i]) { |
| drop_spte(vcpu->kvm, &sp->spt[i]); |
| /* |
| * The same as above where we are doing |
| * prefetch_invalid_gpte(). |
| */ |
| smp_wmb(); |
| vcpu->kvm->tlbs_dirty++; |
| continue; |
| } |
| |
| nr_present++; |
| |
| host_writable = sp->spt[i] & shadow_host_writable_mask; |
| |
| set_spte_ret |= set_spte(vcpu, &sp->spt[i], |
| pte_access, PG_LEVEL_4K, |
| gfn, spte_to_pfn(sp->spt[i]), |
| true, false, host_writable); |
| } |
| |
| if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH) |
| kvm_flush_remote_tlbs(vcpu->kvm); |
| |
| return nr_present; |
| } |
| |
| #undef pt_element_t |
| #undef guest_walker |
| #undef FNAME |
| #undef PT_BASE_ADDR_MASK |
| #undef PT_INDEX |
| #undef PT_LVL_ADDR_MASK |
| #undef PT_LVL_OFFSET_MASK |
| #undef PT_LEVEL_BITS |
| #undef PT_MAX_FULL_LEVELS |
| #undef gpte_to_gfn |
| #undef gpte_to_gfn_lvl |
| #undef CMPXCHG |
| #undef PT_GUEST_ACCESSED_MASK |
| #undef PT_GUEST_DIRTY_MASK |
| #undef PT_GUEST_DIRTY_SHIFT |
| #undef PT_GUEST_ACCESSED_SHIFT |
| #undef PT_HAVE_ACCESSED_DIRTY |