blob: 38bd5890bd53e8f4cb3b1f335004197423583f9a [file] [log] [blame]
/*
* Copyright (c) 2010 Broadcom Corporation
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/types.h>
#include <net/cfg80211.h>
#include <net/mac80211.h>
#include <net/regulatory.h>
#include <defs.h>
#include "pub.h"
#include "phy/phy_hal.h"
#include "main.h"
#include "stf.h"
#include "channel.h"
#include "mac80211_if.h"
#include "debug.h"
/* QDB() macro takes a dB value and converts to a quarter dB value */
#define QDB(n) ((n) * BRCMS_TXPWR_DB_FACTOR)
#define LOCALE_MIMO_IDX_bn 0
#define LOCALE_MIMO_IDX_11n 0
/* max of BAND_5G_PWR_LVLS and 14 for 2.4 GHz */
#define BRCMS_MAXPWR_MIMO_TBL_SIZE 14
/* maxpwr mapping to 5GHz band channels:
* maxpwr[0] - channels [34-48]
* maxpwr[1] - channels [52-60]
* maxpwr[2] - channels [62-64]
* maxpwr[3] - channels [100-140]
* maxpwr[4] - channels [149-165]
*/
#define BAND_5G_PWR_LVLS 5 /* 5 power levels for 5G */
#define LC(id) LOCALE_MIMO_IDX_ ## id
#define LOCALES(mimo2, mimo5) \
{LC(mimo2), LC(mimo5)}
/* macro to get 5 GHz channel group index for tx power */
#define CHANNEL_POWER_IDX_5G(c) (((c) < 52) ? 0 : \
(((c) < 62) ? 1 : \
(((c) < 100) ? 2 : \
(((c) < 149) ? 3 : 4))))
#define BRCM_2GHZ_2412_2462 REG_RULE(2412-10, 2462+10, 40, 0, 19, 0)
#define BRCM_2GHZ_2467_2472 REG_RULE(2467-10, 2472+10, 20, 0, 19, \
NL80211_RRF_NO_IR)
#define BRCM_5GHZ_5180_5240 REG_RULE(5180-10, 5240+10, 40, 0, 21, \
NL80211_RRF_NO_IR)
#define BRCM_5GHZ_5260_5320 REG_RULE(5260-10, 5320+10, 40, 0, 21, \
NL80211_RRF_DFS | \
NL80211_RRF_NO_IR)
#define BRCM_5GHZ_5500_5700 REG_RULE(5500-10, 5700+10, 40, 0, 21, \
NL80211_RRF_DFS | \
NL80211_RRF_NO_IR)
#define BRCM_5GHZ_5745_5825 REG_RULE(5745-10, 5825+10, 40, 0, 21, \
NL80211_RRF_NO_IR)
static const struct ieee80211_regdomain brcms_regdom_x2 = {
.n_reg_rules = 6,
.alpha2 = "X2",
.reg_rules = {
BRCM_2GHZ_2412_2462,
BRCM_2GHZ_2467_2472,
BRCM_5GHZ_5180_5240,
BRCM_5GHZ_5260_5320,
BRCM_5GHZ_5500_5700,
BRCM_5GHZ_5745_5825,
}
};
/* locale per-channel tx power limits for MIMO frames
* maxpwr arrays are index by channel for 2.4 GHz limits, and
* by sub-band for 5 GHz limits using CHANNEL_POWER_IDX_5G(channel)
*/
struct locale_mimo_info {
/* tx 20 MHz power limits, qdBm units */
s8 maxpwr20[BRCMS_MAXPWR_MIMO_TBL_SIZE];
/* tx 40 MHz power limits, qdBm units */
s8 maxpwr40[BRCMS_MAXPWR_MIMO_TBL_SIZE];
};
/* Country names and abbreviations with locale defined from ISO 3166 */
struct country_info {
const u8 locale_mimo_2G; /* 2.4G mimo info */
const u8 locale_mimo_5G; /* 5G mimo info */
};
struct brcms_regd {
struct country_info country;
const struct ieee80211_regdomain *regdomain;
};
struct brcms_cm_info {
struct brcms_pub *pub;
struct brcms_c_info *wlc;
const struct brcms_regd *world_regd;
};
/*
* MIMO Locale Definitions - 2.4 GHz
*/
static const struct locale_mimo_info locale_bn = {
{QDB(13), QDB(13), QDB(13), QDB(13), QDB(13),
QDB(13), QDB(13), QDB(13), QDB(13), QDB(13),
QDB(13), QDB(13), QDB(13)},
{0, 0, QDB(13), QDB(13), QDB(13),
QDB(13), QDB(13), QDB(13), QDB(13), QDB(13),
QDB(13), 0, 0},
};
static const struct locale_mimo_info *g_mimo_2g_table[] = {
&locale_bn
};
/*
* MIMO Locale Definitions - 5 GHz
*/
static const struct locale_mimo_info locale_11n = {
{ /* 12.5 dBm */ 50, 50, 50, QDB(15), QDB(15)},
{QDB(14), QDB(15), QDB(15), QDB(15), QDB(15)},
};
static const struct locale_mimo_info *g_mimo_5g_table[] = {
&locale_11n
};
static const struct brcms_regd cntry_locales[] = {
/* Worldwide RoW 2, must always be at index 0 */
{
.country = LOCALES(bn, 11n),
.regdomain = &brcms_regdom_x2,
},
};
static const struct locale_mimo_info *brcms_c_get_mimo_2g(u8 locale_idx)
{
if (locale_idx >= ARRAY_SIZE(g_mimo_2g_table))
return NULL;
return g_mimo_2g_table[locale_idx];
}
static const struct locale_mimo_info *brcms_c_get_mimo_5g(u8 locale_idx)
{
if (locale_idx >= ARRAY_SIZE(g_mimo_5g_table))
return NULL;
return g_mimo_5g_table[locale_idx];
}
/*
* Indicates whether the country provided is valid to pass
* to cfg80211 or not.
*
* returns true if valid; false if not.
*/
static bool brcms_c_country_valid(const char *ccode)
{
/*
* only allow ascii alpha uppercase for the first 2
* chars.
*/
if (!((ccode[0] & 0x80) == 0 && ccode[0] >= 0x41 && ccode[0] <= 0x5A &&
(ccode[1] & 0x80) == 0 && ccode[1] >= 0x41 && ccode[1] <= 0x5A))
return false;
/*
* do not match ISO 3166-1 user assigned country codes
* that may be in the driver table
*/
if (!strcmp("AA", ccode) || /* AA */
!strcmp("ZZ", ccode) || /* ZZ */
ccode[0] == 'X' || /* XA - XZ */
(ccode[0] == 'Q' && /* QM - QZ */
(ccode[1] >= 'M' && ccode[1] <= 'Z')))
return false;
if (!strcmp("NA", ccode))
return false;
return true;
}
static const struct brcms_regd *brcms_world_regd(const char *regdom, int len)
{
const struct brcms_regd *regd = NULL;
int i;
for (i = 0; i < ARRAY_SIZE(cntry_locales); i++) {
if (!strncmp(regdom, cntry_locales[i].regdomain->alpha2, len)) {
regd = &cntry_locales[i];
break;
}
}
return regd;
}
static const struct brcms_regd *brcms_default_world_regd(void)
{
return &cntry_locales[0];
}
/* JP, J1 - J10 are Japan ccodes */
static bool brcms_c_japan_ccode(const char *ccode)
{
return (ccode[0] == 'J' &&
(ccode[1] == 'P' || (ccode[1] >= '1' && ccode[1] <= '9')));
}
static void
brcms_c_channel_min_txpower_limits_with_local_constraint(
struct brcms_cm_info *wlc_cm, struct txpwr_limits *txpwr,
u8 local_constraint_qdbm)
{
int j;
/* CCK Rates */
for (j = 0; j < WL_TX_POWER_CCK_NUM; j++)
txpwr->cck[j] = min(txpwr->cck[j], local_constraint_qdbm);
/* 20 MHz Legacy OFDM SISO */
for (j = 0; j < WL_TX_POWER_OFDM_NUM; j++)
txpwr->ofdm[j] = min(txpwr->ofdm[j], local_constraint_qdbm);
/* 20 MHz Legacy OFDM CDD */
for (j = 0; j < BRCMS_NUM_RATES_OFDM; j++)
txpwr->ofdm_cdd[j] =
min(txpwr->ofdm_cdd[j], local_constraint_qdbm);
/* 40 MHz Legacy OFDM SISO */
for (j = 0; j < BRCMS_NUM_RATES_OFDM; j++)
txpwr->ofdm_40_siso[j] =
min(txpwr->ofdm_40_siso[j], local_constraint_qdbm);
/* 40 MHz Legacy OFDM CDD */
for (j = 0; j < BRCMS_NUM_RATES_OFDM; j++)
txpwr->ofdm_40_cdd[j] =
min(txpwr->ofdm_40_cdd[j], local_constraint_qdbm);
/* 20MHz MCS 0-7 SISO */
for (j = 0; j < BRCMS_NUM_RATES_MCS_1_STREAM; j++)
txpwr->mcs_20_siso[j] =
min(txpwr->mcs_20_siso[j], local_constraint_qdbm);
/* 20MHz MCS 0-7 CDD */
for (j = 0; j < BRCMS_NUM_RATES_MCS_1_STREAM; j++)
txpwr->mcs_20_cdd[j] =
min(txpwr->mcs_20_cdd[j], local_constraint_qdbm);
/* 20MHz MCS 0-7 STBC */
for (j = 0; j < BRCMS_NUM_RATES_MCS_1_STREAM; j++)
txpwr->mcs_20_stbc[j] =
min(txpwr->mcs_20_stbc[j], local_constraint_qdbm);
/* 20MHz MCS 8-15 MIMO */
for (j = 0; j < BRCMS_NUM_RATES_MCS_2_STREAM; j++)
txpwr->mcs_20_mimo[j] =
min(txpwr->mcs_20_mimo[j], local_constraint_qdbm);
/* 40MHz MCS 0-7 SISO */
for (j = 0; j < BRCMS_NUM_RATES_MCS_1_STREAM; j++)
txpwr->mcs_40_siso[j] =
min(txpwr->mcs_40_siso[j], local_constraint_qdbm);
/* 40MHz MCS 0-7 CDD */
for (j = 0; j < BRCMS_NUM_RATES_MCS_1_STREAM; j++)
txpwr->mcs_40_cdd[j] =
min(txpwr->mcs_40_cdd[j], local_constraint_qdbm);
/* 40MHz MCS 0-7 STBC */
for (j = 0; j < BRCMS_NUM_RATES_MCS_1_STREAM; j++)
txpwr->mcs_40_stbc[j] =
min(txpwr->mcs_40_stbc[j], local_constraint_qdbm);
/* 40MHz MCS 8-15 MIMO */
for (j = 0; j < BRCMS_NUM_RATES_MCS_2_STREAM; j++)
txpwr->mcs_40_mimo[j] =
min(txpwr->mcs_40_mimo[j], local_constraint_qdbm);
/* 40MHz MCS 32 */
txpwr->mcs32 = min(txpwr->mcs32, local_constraint_qdbm);
}
/*
* set the driver's current country and regulatory information
* using a country code as the source. Look up built in country
* information found with the country code.
*/
static void
brcms_c_set_country(struct brcms_cm_info *wlc_cm,
const struct brcms_regd *regd)
{
struct brcms_c_info *wlc = wlc_cm->wlc;
if ((wlc->pub->_n_enab & SUPPORT_11N) !=
wlc->protection->nmode_user)
brcms_c_set_nmode(wlc);
brcms_c_stf_ss_update(wlc, wlc->bandstate[BAND_2G_INDEX]);
brcms_c_stf_ss_update(wlc, wlc->bandstate[BAND_5G_INDEX]);
brcms_c_set_gmode(wlc, wlc->protection->gmode_user, false);
return;
}
struct brcms_cm_info *brcms_c_channel_mgr_attach(struct brcms_c_info *wlc)
{
struct brcms_cm_info *wlc_cm;
struct brcms_pub *pub = wlc->pub;
struct ssb_sprom *sprom = &wlc->hw->d11core->bus->sprom;
const char *ccode = sprom->alpha2;
int ccode_len = sizeof(sprom->alpha2);
wlc_cm = kzalloc(sizeof(struct brcms_cm_info), GFP_ATOMIC);
if (wlc_cm == NULL)
return NULL;
wlc_cm->pub = pub;
wlc_cm->wlc = wlc;
wlc->cmi = wlc_cm;
/* store the country code for passing up as a regulatory hint */
wlc_cm->world_regd = brcms_world_regd(ccode, ccode_len);
if (brcms_c_country_valid(ccode))
strncpy(wlc->pub->srom_ccode, ccode, ccode_len);
/*
* If no custom world domain is found in the SROM, use the
* default "X2" domain.
*/
if (!wlc_cm->world_regd) {
wlc_cm->world_regd = brcms_default_world_regd();
ccode = wlc_cm->world_regd->regdomain->alpha2;
ccode_len = BRCM_CNTRY_BUF_SZ - 1;
}
/* save default country for exiting 11d regulatory mode */
strncpy(wlc->country_default, ccode, ccode_len);
/* initialize autocountry_default to driver default */
strncpy(wlc->autocountry_default, ccode, ccode_len);
brcms_c_set_country(wlc_cm, wlc_cm->world_regd);
return wlc_cm;
}
void brcms_c_channel_mgr_detach(struct brcms_cm_info *wlc_cm)
{
kfree(wlc_cm);
}
void
brcms_c_channel_set_chanspec(struct brcms_cm_info *wlc_cm, u16 chanspec,
u8 local_constraint_qdbm)
{
struct brcms_c_info *wlc = wlc_cm->wlc;
struct ieee80211_channel *ch = wlc->pub->ieee_hw->conf.chandef.chan;
struct txpwr_limits txpwr;
brcms_c_channel_reg_limits(wlc_cm, chanspec, &txpwr);
brcms_c_channel_min_txpower_limits_with_local_constraint(
wlc_cm, &txpwr, local_constraint_qdbm
);
/* set or restore gmode as required by regulatory */
if (ch->flags & IEEE80211_CHAN_NO_OFDM)
brcms_c_set_gmode(wlc, GMODE_LEGACY_B, false);
else
brcms_c_set_gmode(wlc, wlc->protection->gmode_user, false);
brcms_b_set_chanspec(wlc->hw, chanspec,
!!(ch->flags & IEEE80211_CHAN_NO_IR),
&txpwr);
}
void
brcms_c_channel_reg_limits(struct brcms_cm_info *wlc_cm, u16 chanspec,
struct txpwr_limits *txpwr)
{
struct brcms_c_info *wlc = wlc_cm->wlc;
struct ieee80211_channel *ch = wlc->pub->ieee_hw->conf.chandef.chan;
uint i;
uint chan;
int maxpwr;
int delta;
const struct country_info *country;
struct brcms_band *band;
int conducted_max = BRCMS_TXPWR_MAX;
const struct locale_mimo_info *li_mimo;
int maxpwr20, maxpwr40;
int maxpwr_idx;
uint j;
memset(txpwr, 0, sizeof(struct txpwr_limits));
if (WARN_ON(!ch))
return;
country = &wlc_cm->world_regd->country;
chan = CHSPEC_CHANNEL(chanspec);
band = wlc->bandstate[chspec_bandunit(chanspec)];
li_mimo = (band->bandtype == BRCM_BAND_5G) ?
brcms_c_get_mimo_5g(country->locale_mimo_5G) :
brcms_c_get_mimo_2g(country->locale_mimo_2G);
delta = band->antgain;
if (band->bandtype == BRCM_BAND_2G)
conducted_max = QDB(22);
maxpwr = QDB(ch->max_power) - delta;
maxpwr = max(maxpwr, 0);
maxpwr = min(maxpwr, conducted_max);
/* CCK txpwr limits for 2.4G band */
if (band->bandtype == BRCM_BAND_2G) {
for (i = 0; i < BRCMS_NUM_RATES_CCK; i++)
txpwr->cck[i] = (u8) maxpwr;
}
for (i = 0; i < BRCMS_NUM_RATES_OFDM; i++) {
txpwr->ofdm[i] = (u8) maxpwr;
/*
* OFDM 40 MHz SISO has the same power as the corresponding
* MCS0-7 rate unless overriden by the locale specific code.
* We set this value to 0 as a flag (presumably 0 dBm isn't
* a possibility) and then copy the MCS0-7 value to the 40 MHz
* value if it wasn't explicitly set.
*/
txpwr->ofdm_40_siso[i] = 0;
txpwr->ofdm_cdd[i] = (u8) maxpwr;
txpwr->ofdm_40_cdd[i] = 0;
}
delta = 0;
if (band->antgain > QDB(6))
delta = band->antgain - QDB(6); /* Excess over 6 dB */
if (band->bandtype == BRCM_BAND_2G)
maxpwr_idx = (chan - 1);
else
maxpwr_idx = CHANNEL_POWER_IDX_5G(chan);
maxpwr20 = li_mimo->maxpwr20[maxpwr_idx];
maxpwr40 = li_mimo->maxpwr40[maxpwr_idx];
maxpwr20 = maxpwr20 - delta;
maxpwr20 = max(maxpwr20, 0);
maxpwr40 = maxpwr40 - delta;
maxpwr40 = max(maxpwr40, 0);
/* Fill in the MCS 0-7 (SISO) rates */
for (i = 0; i < BRCMS_NUM_RATES_MCS_1_STREAM; i++) {
/*
* 20 MHz has the same power as the corresponding OFDM rate
* unless overriden by the locale specific code.
*/
txpwr->mcs_20_siso[i] = txpwr->ofdm[i];
txpwr->mcs_40_siso[i] = 0;
}
/* Fill in the MCS 0-7 CDD rates */
for (i = 0; i < BRCMS_NUM_RATES_MCS_1_STREAM; i++) {
txpwr->mcs_20_cdd[i] = (u8) maxpwr20;
txpwr->mcs_40_cdd[i] = (u8) maxpwr40;
}
/*
* These locales have SISO expressed in the
* table and override CDD later
*/
if (li_mimo == &locale_bn) {
if (li_mimo == &locale_bn) {
maxpwr20 = QDB(16);
maxpwr40 = 0;
if (chan >= 3 && chan <= 11)
maxpwr40 = QDB(16);
}
for (i = 0; i < BRCMS_NUM_RATES_MCS_1_STREAM; i++) {
txpwr->mcs_20_siso[i] = (u8) maxpwr20;
txpwr->mcs_40_siso[i] = (u8) maxpwr40;
}
}
/* Fill in the MCS 0-7 STBC rates */
for (i = 0; i < BRCMS_NUM_RATES_MCS_1_STREAM; i++) {
txpwr->mcs_20_stbc[i] = 0;
txpwr->mcs_40_stbc[i] = 0;
}
/* Fill in the MCS 8-15 SDM rates */
for (i = 0; i < BRCMS_NUM_RATES_MCS_2_STREAM; i++) {
txpwr->mcs_20_mimo[i] = (u8) maxpwr20;
txpwr->mcs_40_mimo[i] = (u8) maxpwr40;
}
/* Fill in MCS32 */
txpwr->mcs32 = (u8) maxpwr40;
for (i = 0, j = 0; i < BRCMS_NUM_RATES_OFDM; i++, j++) {
if (txpwr->ofdm_40_cdd[i] == 0)
txpwr->ofdm_40_cdd[i] = txpwr->mcs_40_cdd[j];
if (i == 0) {
i = i + 1;
if (txpwr->ofdm_40_cdd[i] == 0)
txpwr->ofdm_40_cdd[i] = txpwr->mcs_40_cdd[j];
}
}
/*
* Copy the 40 MHZ MCS 0-7 CDD value to the 40 MHZ MCS 0-7 SISO
* value if it wasn't provided explicitly.
*/
for (i = 0; i < BRCMS_NUM_RATES_MCS_1_STREAM; i++) {
if (txpwr->mcs_40_siso[i] == 0)
txpwr->mcs_40_siso[i] = txpwr->mcs_40_cdd[i];
}
for (i = 0, j = 0; i < BRCMS_NUM_RATES_OFDM; i++, j++) {
if (txpwr->ofdm_40_siso[i] == 0)
txpwr->ofdm_40_siso[i] = txpwr->mcs_40_siso[j];
if (i == 0) {
i = i + 1;
if (txpwr->ofdm_40_siso[i] == 0)
txpwr->ofdm_40_siso[i] = txpwr->mcs_40_siso[j];
}
}
/*
* Copy the 20 and 40 MHz MCS0-7 CDD values to the corresponding
* STBC values if they weren't provided explicitly.
*/
for (i = 0; i < BRCMS_NUM_RATES_MCS_1_STREAM; i++) {
if (txpwr->mcs_20_stbc[i] == 0)
txpwr->mcs_20_stbc[i] = txpwr->mcs_20_cdd[i];
if (txpwr->mcs_40_stbc[i] == 0)
txpwr->mcs_40_stbc[i] = txpwr->mcs_40_cdd[i];
}
return;
}
/*
* Verify the chanspec is using a legal set of parameters, i.e. that the
* chanspec specified a band, bw, ctl_sb and channel and that the
* combination could be legal given any set of circumstances.
* RETURNS: true is the chanspec is malformed, false if it looks good.
*/
static bool brcms_c_chspec_malformed(u16 chanspec)
{
/* must be 2G or 5G band */
if (!CHSPEC_IS5G(chanspec) && !CHSPEC_IS2G(chanspec))
return true;
/* must be 20 or 40 bandwidth */
if (!CHSPEC_IS40(chanspec) && !CHSPEC_IS20(chanspec))
return true;
/* 20MHZ b/w must have no ctl sb, 40 must have a ctl sb */
if (CHSPEC_IS20(chanspec)) {
if (!CHSPEC_SB_NONE(chanspec))
return true;
} else if (!CHSPEC_SB_UPPER(chanspec) && !CHSPEC_SB_LOWER(chanspec)) {
return true;
}
return false;
}
/*
* Validate the chanspec for this locale, for 40MHZ we need to also
* check that the sidebands are valid 20MZH channels in this locale
* and they are also a legal HT combination
*/
static bool
brcms_c_valid_chanspec_ext(struct brcms_cm_info *wlc_cm, u16 chspec)
{
struct brcms_c_info *wlc = wlc_cm->wlc;
u8 channel = CHSPEC_CHANNEL(chspec);
/* check the chanspec */
if (brcms_c_chspec_malformed(chspec)) {
brcms_err(wlc->hw->d11core, "wl%d: malformed chanspec 0x%x\n",
wlc->pub->unit, chspec);
return false;
}
if (CHANNEL_BANDUNIT(wlc_cm->wlc, channel) !=
chspec_bandunit(chspec))
return false;
return true;
}
bool brcms_c_valid_chanspec_db(struct brcms_cm_info *wlc_cm, u16 chspec)
{
return brcms_c_valid_chanspec_ext(wlc_cm, chspec);
}
static bool brcms_is_radar_freq(u16 center_freq)
{
return center_freq >= 5260 && center_freq <= 5700;
}
static void brcms_reg_apply_radar_flags(struct wiphy *wiphy)
{
struct ieee80211_supported_band *sband;
struct ieee80211_channel *ch;
int i;
sband = wiphy->bands[IEEE80211_BAND_5GHZ];
if (!sband)
return;
for (i = 0; i < sband->n_channels; i++) {
ch = &sband->channels[i];
if (!brcms_is_radar_freq(ch->center_freq))
continue;
/*
* All channels in this range should be passive and have
* DFS enabled.
*/
if (!(ch->flags & IEEE80211_CHAN_DISABLED))
ch->flags |= IEEE80211_CHAN_RADAR |
IEEE80211_CHAN_NO_IR |
IEEE80211_CHAN_NO_IR;
}
}
static void
brcms_reg_apply_beaconing_flags(struct wiphy *wiphy,
enum nl80211_reg_initiator initiator)
{
struct ieee80211_supported_band *sband;
struct ieee80211_channel *ch;
const struct ieee80211_reg_rule *rule;
int band, i;
for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
sband = wiphy->bands[band];
if (!sband)
continue;
for (i = 0; i < sband->n_channels; i++) {
ch = &sband->channels[i];
if (ch->flags &
(IEEE80211_CHAN_DISABLED | IEEE80211_CHAN_RADAR))
continue;
if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
rule = freq_reg_info(wiphy,
MHZ_TO_KHZ(ch->center_freq));
if (IS_ERR(rule))
continue;
if (!(rule->flags & NL80211_RRF_NO_IR))
ch->flags &= ~IEEE80211_CHAN_NO_IR;
} else if (ch->beacon_found) {
ch->flags &= ~IEEE80211_CHAN_NO_IR;
}
}
}
}
static void brcms_reg_notifier(struct wiphy *wiphy,
struct regulatory_request *request)
{
struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
struct brcms_info *wl = hw->priv;
struct brcms_c_info *wlc = wl->wlc;
struct ieee80211_supported_band *sband;
struct ieee80211_channel *ch;
int band, i;
bool ch_found = false;
brcms_reg_apply_radar_flags(wiphy);
if (request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
brcms_reg_apply_beaconing_flags(wiphy, request->initiator);
/* Disable radio if all channels disallowed by regulatory */
for (band = 0; !ch_found && band < IEEE80211_NUM_BANDS; band++) {
sband = wiphy->bands[band];
if (!sband)
continue;
for (i = 0; !ch_found && i < sband->n_channels; i++) {
ch = &sband->channels[i];
if (!(ch->flags & IEEE80211_CHAN_DISABLED))
ch_found = true;
}
}
if (ch_found) {
mboolclr(wlc->pub->radio_disabled, WL_RADIO_COUNTRY_DISABLE);
} else {
mboolset(wlc->pub->radio_disabled, WL_RADIO_COUNTRY_DISABLE);
brcms_err(wlc->hw->d11core,
"wl%d: %s: no valid channel for \"%s\"\n",
wlc->pub->unit, __func__, request->alpha2);
}
if (wlc->pub->_nbands > 1 || wlc->band->bandtype == BRCM_BAND_2G)
wlc_phy_chanspec_ch14_widefilter_set(wlc->band->pi,
brcms_c_japan_ccode(request->alpha2));
}
void brcms_c_regd_init(struct brcms_c_info *wlc)
{
struct wiphy *wiphy = wlc->wiphy;
const struct brcms_regd *regd = wlc->cmi->world_regd;
struct ieee80211_supported_band *sband;
struct ieee80211_channel *ch;
struct brcms_chanvec sup_chan;
struct brcms_band *band;
int band_idx, i;
/* Disable any channels not supported by the phy */
for (band_idx = 0; band_idx < wlc->pub->_nbands; band_idx++) {
band = wlc->bandstate[band_idx];
wlc_phy_chanspec_band_validch(band->pi, band->bandtype,
&sup_chan);
if (band_idx == BAND_2G_INDEX)
sband = wiphy->bands[IEEE80211_BAND_2GHZ];
else
sband = wiphy->bands[IEEE80211_BAND_5GHZ];
for (i = 0; i < sband->n_channels; i++) {
ch = &sband->channels[i];
if (!isset(sup_chan.vec, ch->hw_value))
ch->flags |= IEEE80211_CHAN_DISABLED;
}
}
wlc->wiphy->reg_notifier = brcms_reg_notifier;
wlc->wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG |
REGULATORY_STRICT_REG;
wiphy_apply_custom_regulatory(wlc->wiphy, regd->regdomain);
brcms_reg_apply_beaconing_flags(wiphy, NL80211_REGDOM_SET_BY_DRIVER);
}