blob: 40ddfbb97acbdbaf226d715750fefdb53f8e4a19 [file] [log] [blame]
/*
* Copyright © 2012-2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eugeni Dodonov <eugeni.dodonov@intel.com>
* Daniel Vetter <daniel.vetter@ffwll.ch>
*
*/
#include <linux/pm_runtime.h>
#include <linux/vgaarb.h>
#include <drm/drm_print.h>
#include "i915_drv.h"
#include "intel_drv.h"
/**
* DOC: runtime pm
*
* The i915 driver supports dynamic enabling and disabling of entire hardware
* blocks at runtime. This is especially important on the display side where
* software is supposed to control many power gates manually on recent hardware,
* since on the GT side a lot of the power management is done by the hardware.
* But even there some manual control at the device level is required.
*
* Since i915 supports a diverse set of platforms with a unified codebase and
* hardware engineers just love to shuffle functionality around between power
* domains there's a sizeable amount of indirection required. This file provides
* generic functions to the driver for grabbing and releasing references for
* abstract power domains. It then maps those to the actual power wells
* present for a given platform.
*/
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
#include <linux/sort.h>
#define STACKDEPTH 8
static noinline depot_stack_handle_t __save_depot_stack(void)
{
unsigned long entries[STACKDEPTH];
struct stack_trace trace = {
.entries = entries,
.max_entries = ARRAY_SIZE(entries),
.skip = 1,
};
save_stack_trace(&trace);
if (trace.nr_entries &&
trace.entries[trace.nr_entries - 1] == ULONG_MAX)
trace.nr_entries--;
return depot_save_stack(&trace, GFP_NOWAIT | __GFP_NOWARN);
}
static void __print_depot_stack(depot_stack_handle_t stack,
char *buf, int sz, int indent)
{
unsigned long entries[STACKDEPTH];
struct stack_trace trace = {
.entries = entries,
.max_entries = ARRAY_SIZE(entries),
};
depot_fetch_stack(stack, &trace);
snprint_stack_trace(buf, sz, &trace, indent);
}
static void init_intel_runtime_pm_wakeref(struct drm_i915_private *i915)
{
struct i915_runtime_pm *rpm = &i915->runtime_pm;
spin_lock_init(&rpm->debug.lock);
}
static noinline depot_stack_handle_t
track_intel_runtime_pm_wakeref(struct drm_i915_private *i915)
{
struct i915_runtime_pm *rpm = &i915->runtime_pm;
depot_stack_handle_t stack, *stacks;
unsigned long flags;
atomic_inc(&rpm->wakeref_count);
assert_rpm_wakelock_held(i915);
if (!HAS_RUNTIME_PM(i915))
return -1;
stack = __save_depot_stack();
if (!stack)
return -1;
spin_lock_irqsave(&rpm->debug.lock, flags);
if (!rpm->debug.count)
rpm->debug.last_acquire = stack;
stacks = krealloc(rpm->debug.owners,
(rpm->debug.count + 1) * sizeof(*stacks),
GFP_NOWAIT | __GFP_NOWARN);
if (stacks) {
stacks[rpm->debug.count++] = stack;
rpm->debug.owners = stacks;
} else {
stack = -1;
}
spin_unlock_irqrestore(&rpm->debug.lock, flags);
return stack;
}
static void cancel_intel_runtime_pm_wakeref(struct drm_i915_private *i915,
depot_stack_handle_t stack)
{
struct i915_runtime_pm *rpm = &i915->runtime_pm;
unsigned long flags, n;
bool found = false;
if (unlikely(stack == -1))
return;
spin_lock_irqsave(&rpm->debug.lock, flags);
for (n = rpm->debug.count; n--; ) {
if (rpm->debug.owners[n] == stack) {
memmove(rpm->debug.owners + n,
rpm->debug.owners + n + 1,
(--rpm->debug.count - n) * sizeof(stack));
found = true;
break;
}
}
spin_unlock_irqrestore(&rpm->debug.lock, flags);
if (WARN(!found,
"Unmatched wakeref (tracking %lu), count %u\n",
rpm->debug.count, atomic_read(&rpm->wakeref_count))) {
char *buf;
buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
if (!buf)
return;
__print_depot_stack(stack, buf, PAGE_SIZE, 2);
DRM_DEBUG_DRIVER("wakeref %x from\n%s", stack, buf);
stack = READ_ONCE(rpm->debug.last_release);
if (stack) {
__print_depot_stack(stack, buf, PAGE_SIZE, 2);
DRM_DEBUG_DRIVER("wakeref last released at\n%s", buf);
}
kfree(buf);
}
}
static int cmphandle(const void *_a, const void *_b)
{
const depot_stack_handle_t * const a = _a, * const b = _b;
if (*a < *b)
return -1;
else if (*a > *b)
return 1;
else
return 0;
}
static void
__print_intel_runtime_pm_wakeref(struct drm_printer *p,
const struct intel_runtime_pm_debug *dbg)
{
unsigned long i;
char *buf;
buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
if (!buf)
return;
if (dbg->last_acquire) {
__print_depot_stack(dbg->last_acquire, buf, PAGE_SIZE, 2);
drm_printf(p, "Wakeref last acquired:\n%s", buf);
}
if (dbg->last_release) {
__print_depot_stack(dbg->last_release, buf, PAGE_SIZE, 2);
drm_printf(p, "Wakeref last released:\n%s", buf);
}
drm_printf(p, "Wakeref count: %lu\n", dbg->count);
sort(dbg->owners, dbg->count, sizeof(*dbg->owners), cmphandle, NULL);
for (i = 0; i < dbg->count; i++) {
depot_stack_handle_t stack = dbg->owners[i];
unsigned long rep;
rep = 1;
while (i + 1 < dbg->count && dbg->owners[i + 1] == stack)
rep++, i++;
__print_depot_stack(stack, buf, PAGE_SIZE, 2);
drm_printf(p, "Wakeref x%lu taken at:\n%s", rep, buf);
}
kfree(buf);
}
static noinline void
untrack_intel_runtime_pm_wakeref(struct drm_i915_private *i915)
{
struct i915_runtime_pm *rpm = &i915->runtime_pm;
struct intel_runtime_pm_debug dbg = {};
struct drm_printer p;
unsigned long flags;
assert_rpm_wakelock_held(i915);
if (atomic_dec_and_lock_irqsave(&rpm->wakeref_count,
&rpm->debug.lock,
flags)) {
dbg = rpm->debug;
rpm->debug.owners = NULL;
rpm->debug.count = 0;
rpm->debug.last_release = __save_depot_stack();
spin_unlock_irqrestore(&rpm->debug.lock, flags);
}
if (!dbg.count)
return;
p = drm_debug_printer("i915");
__print_intel_runtime_pm_wakeref(&p, &dbg);
kfree(dbg.owners);
}
void print_intel_runtime_pm_wakeref(struct drm_i915_private *i915,
struct drm_printer *p)
{
struct intel_runtime_pm_debug dbg = {};
do {
struct i915_runtime_pm *rpm = &i915->runtime_pm;
unsigned long alloc = dbg.count;
depot_stack_handle_t *s;
spin_lock_irq(&rpm->debug.lock);
dbg.count = rpm->debug.count;
if (dbg.count <= alloc) {
memcpy(dbg.owners,
rpm->debug.owners,
dbg.count * sizeof(*s));
}
dbg.last_acquire = rpm->debug.last_acquire;
dbg.last_release = rpm->debug.last_release;
spin_unlock_irq(&rpm->debug.lock);
if (dbg.count <= alloc)
break;
s = krealloc(dbg.owners, dbg.count * sizeof(*s), GFP_KERNEL);
if (!s)
goto out;
dbg.owners = s;
} while (1);
__print_intel_runtime_pm_wakeref(p, &dbg);
out:
kfree(dbg.owners);
}
#else
static void init_intel_runtime_pm_wakeref(struct drm_i915_private *i915)
{
}
static depot_stack_handle_t
track_intel_runtime_pm_wakeref(struct drm_i915_private *i915)
{
atomic_inc(&i915->runtime_pm.wakeref_count);
assert_rpm_wakelock_held(i915);
return -1;
}
static void untrack_intel_runtime_pm_wakeref(struct drm_i915_private *i915)
{
assert_rpm_wakelock_held(i915);
atomic_dec(&i915->runtime_pm.wakeref_count);
}
#endif
bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
enum i915_power_well_id power_well_id);
const char *
intel_display_power_domain_str(enum intel_display_power_domain domain)
{
switch (domain) {
case POWER_DOMAIN_PIPE_A:
return "PIPE_A";
case POWER_DOMAIN_PIPE_B:
return "PIPE_B";
case POWER_DOMAIN_PIPE_C:
return "PIPE_C";
case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
return "PIPE_A_PANEL_FITTER";
case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
return "PIPE_B_PANEL_FITTER";
case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
return "PIPE_C_PANEL_FITTER";
case POWER_DOMAIN_TRANSCODER_A:
return "TRANSCODER_A";
case POWER_DOMAIN_TRANSCODER_B:
return "TRANSCODER_B";
case POWER_DOMAIN_TRANSCODER_C:
return "TRANSCODER_C";
case POWER_DOMAIN_TRANSCODER_EDP:
return "TRANSCODER_EDP";
case POWER_DOMAIN_TRANSCODER_EDP_VDSC:
return "TRANSCODER_EDP_VDSC";
case POWER_DOMAIN_TRANSCODER_DSI_A:
return "TRANSCODER_DSI_A";
case POWER_DOMAIN_TRANSCODER_DSI_C:
return "TRANSCODER_DSI_C";
case POWER_DOMAIN_PORT_DDI_A_LANES:
return "PORT_DDI_A_LANES";
case POWER_DOMAIN_PORT_DDI_B_LANES:
return "PORT_DDI_B_LANES";
case POWER_DOMAIN_PORT_DDI_C_LANES:
return "PORT_DDI_C_LANES";
case POWER_DOMAIN_PORT_DDI_D_LANES:
return "PORT_DDI_D_LANES";
case POWER_DOMAIN_PORT_DDI_E_LANES:
return "PORT_DDI_E_LANES";
case POWER_DOMAIN_PORT_DDI_F_LANES:
return "PORT_DDI_F_LANES";
case POWER_DOMAIN_PORT_DDI_A_IO:
return "PORT_DDI_A_IO";
case POWER_DOMAIN_PORT_DDI_B_IO:
return "PORT_DDI_B_IO";
case POWER_DOMAIN_PORT_DDI_C_IO:
return "PORT_DDI_C_IO";
case POWER_DOMAIN_PORT_DDI_D_IO:
return "PORT_DDI_D_IO";
case POWER_DOMAIN_PORT_DDI_E_IO:
return "PORT_DDI_E_IO";
case POWER_DOMAIN_PORT_DDI_F_IO:
return "PORT_DDI_F_IO";
case POWER_DOMAIN_PORT_DSI:
return "PORT_DSI";
case POWER_DOMAIN_PORT_CRT:
return "PORT_CRT";
case POWER_DOMAIN_PORT_OTHER:
return "PORT_OTHER";
case POWER_DOMAIN_VGA:
return "VGA";
case POWER_DOMAIN_AUDIO:
return "AUDIO";
case POWER_DOMAIN_PLLS:
return "PLLS";
case POWER_DOMAIN_AUX_A:
return "AUX_A";
case POWER_DOMAIN_AUX_B:
return "AUX_B";
case POWER_DOMAIN_AUX_C:
return "AUX_C";
case POWER_DOMAIN_AUX_D:
return "AUX_D";
case POWER_DOMAIN_AUX_E:
return "AUX_E";
case POWER_DOMAIN_AUX_F:
return "AUX_F";
case POWER_DOMAIN_AUX_IO_A:
return "AUX_IO_A";
case POWER_DOMAIN_AUX_TBT1:
return "AUX_TBT1";
case POWER_DOMAIN_AUX_TBT2:
return "AUX_TBT2";
case POWER_DOMAIN_AUX_TBT3:
return "AUX_TBT3";
case POWER_DOMAIN_AUX_TBT4:
return "AUX_TBT4";
case POWER_DOMAIN_GMBUS:
return "GMBUS";
case POWER_DOMAIN_INIT:
return "INIT";
case POWER_DOMAIN_MODESET:
return "MODESET";
case POWER_DOMAIN_GT_IRQ:
return "GT_IRQ";
default:
MISSING_CASE(domain);
return "?";
}
}
static void intel_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
DRM_DEBUG_KMS("enabling %s\n", power_well->desc->name);
power_well->desc->ops->enable(dev_priv, power_well);
power_well->hw_enabled = true;
}
static void intel_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
DRM_DEBUG_KMS("disabling %s\n", power_well->desc->name);
power_well->hw_enabled = false;
power_well->desc->ops->disable(dev_priv, power_well);
}
static void intel_power_well_get(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
if (!power_well->count++)
intel_power_well_enable(dev_priv, power_well);
}
static void intel_power_well_put(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
WARN(!power_well->count, "Use count on power well %s is already zero",
power_well->desc->name);
if (!--power_well->count)
intel_power_well_disable(dev_priv, power_well);
}
/**
* __intel_display_power_is_enabled - unlocked check for a power domain
* @dev_priv: i915 device instance
* @domain: power domain to check
*
* This is the unlocked version of intel_display_power_is_enabled() and should
* only be used from error capture and recovery code where deadlocks are
* possible.
*
* Returns:
* True when the power domain is enabled, false otherwise.
*/
bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain)
{
struct i915_power_well *power_well;
bool is_enabled;
if (dev_priv->runtime_pm.suspended)
return false;
is_enabled = true;
for_each_power_domain_well_reverse(dev_priv, power_well, BIT_ULL(domain)) {
if (power_well->desc->always_on)
continue;
if (!power_well->hw_enabled) {
is_enabled = false;
break;
}
}
return is_enabled;
}
/**
* intel_display_power_is_enabled - check for a power domain
* @dev_priv: i915 device instance
* @domain: power domain to check
*
* This function can be used to check the hw power domain state. It is mostly
* used in hardware state readout functions. Everywhere else code should rely
* upon explicit power domain reference counting to ensure that the hardware
* block is powered up before accessing it.
*
* Callers must hold the relevant modesetting locks to ensure that concurrent
* threads can't disable the power well while the caller tries to read a few
* registers.
*
* Returns:
* True when the power domain is enabled, false otherwise.
*/
bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain)
{
struct i915_power_domains *power_domains;
bool ret;
power_domains = &dev_priv->power_domains;
mutex_lock(&power_domains->lock);
ret = __intel_display_power_is_enabled(dev_priv, domain);
mutex_unlock(&power_domains->lock);
return ret;
}
/*
* Starting with Haswell, we have a "Power Down Well" that can be turned off
* when not needed anymore. We have 4 registers that can request the power well
* to be enabled, and it will only be disabled if none of the registers is
* requesting it to be enabled.
*/
static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv,
u8 irq_pipe_mask, bool has_vga)
{
struct pci_dev *pdev = dev_priv->drm.pdev;
/*
* After we re-enable the power well, if we touch VGA register 0x3d5
* we'll get unclaimed register interrupts. This stops after we write
* anything to the VGA MSR register. The vgacon module uses this
* register all the time, so if we unbind our driver and, as a
* consequence, bind vgacon, we'll get stuck in an infinite loop at
* console_unlock(). So make here we touch the VGA MSR register, making
* sure vgacon can keep working normally without triggering interrupts
* and error messages.
*/
if (has_vga) {
vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
vga_put(pdev, VGA_RSRC_LEGACY_IO);
}
if (irq_pipe_mask)
gen8_irq_power_well_post_enable(dev_priv, irq_pipe_mask);
}
static void hsw_power_well_pre_disable(struct drm_i915_private *dev_priv,
u8 irq_pipe_mask)
{
if (irq_pipe_mask)
gen8_irq_power_well_pre_disable(dev_priv, irq_pipe_mask);
}
static void hsw_wait_for_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
const struct i915_power_well_regs *regs = power_well->desc->hsw.regs;
int pw_idx = power_well->desc->hsw.idx;
/* Timeout for PW1:10 us, AUX:not specified, other PWs:20 us. */
WARN_ON(intel_wait_for_register(&dev_priv->uncore,
regs->driver,
HSW_PWR_WELL_CTL_STATE(pw_idx),
HSW_PWR_WELL_CTL_STATE(pw_idx),
1));
}
static u32 hsw_power_well_requesters(struct drm_i915_private *dev_priv,
const struct i915_power_well_regs *regs,
int pw_idx)
{
u32 req_mask = HSW_PWR_WELL_CTL_REQ(pw_idx);
u32 ret;
ret = I915_READ(regs->bios) & req_mask ? 1 : 0;
ret |= I915_READ(regs->driver) & req_mask ? 2 : 0;
if (regs->kvmr.reg)
ret |= I915_READ(regs->kvmr) & req_mask ? 4 : 0;
ret |= I915_READ(regs->debug) & req_mask ? 8 : 0;
return ret;
}
static void hsw_wait_for_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
const struct i915_power_well_regs *regs = power_well->desc->hsw.regs;
int pw_idx = power_well->desc->hsw.idx;
bool disabled;
u32 reqs;
/*
* Bspec doesn't require waiting for PWs to get disabled, but still do
* this for paranoia. The known cases where a PW will be forced on:
* - a KVMR request on any power well via the KVMR request register
* - a DMC request on PW1 and MISC_IO power wells via the BIOS and
* DEBUG request registers
* Skip the wait in case any of the request bits are set and print a
* diagnostic message.
*/
wait_for((disabled = !(I915_READ(regs->driver) &
HSW_PWR_WELL_CTL_STATE(pw_idx))) ||
(reqs = hsw_power_well_requesters(dev_priv, regs, pw_idx)), 1);
if (disabled)
return;
DRM_DEBUG_KMS("%s forced on (bios:%d driver:%d kvmr:%d debug:%d)\n",
power_well->desc->name,
!!(reqs & 1), !!(reqs & 2), !!(reqs & 4), !!(reqs & 8));
}
static void gen9_wait_for_power_well_fuses(struct drm_i915_private *dev_priv,
enum skl_power_gate pg)
{
/* Timeout 5us for PG#0, for other PGs 1us */
WARN_ON(intel_wait_for_register(&dev_priv->uncore, SKL_FUSE_STATUS,
SKL_FUSE_PG_DIST_STATUS(pg),
SKL_FUSE_PG_DIST_STATUS(pg), 1));
}
static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
const struct i915_power_well_regs *regs = power_well->desc->hsw.regs;
int pw_idx = power_well->desc->hsw.idx;
bool wait_fuses = power_well->desc->hsw.has_fuses;
enum skl_power_gate uninitialized_var(pg);
u32 val;
if (wait_fuses) {
pg = INTEL_GEN(dev_priv) >= 11 ? ICL_PW_CTL_IDX_TO_PG(pw_idx) :
SKL_PW_CTL_IDX_TO_PG(pw_idx);
/*
* For PW1 we have to wait both for the PW0/PG0 fuse state
* before enabling the power well and PW1/PG1's own fuse
* state after the enabling. For all other power wells with
* fuses we only have to wait for that PW/PG's fuse state
* after the enabling.
*/
if (pg == SKL_PG1)
gen9_wait_for_power_well_fuses(dev_priv, SKL_PG0);
}
val = I915_READ(regs->driver);
I915_WRITE(regs->driver, val | HSW_PWR_WELL_CTL_REQ(pw_idx));
hsw_wait_for_power_well_enable(dev_priv, power_well);
/* Display WA #1178: cnl */
if (IS_CANNONLAKE(dev_priv) &&
pw_idx >= GLK_PW_CTL_IDX_AUX_B &&
pw_idx <= CNL_PW_CTL_IDX_AUX_F) {
val = I915_READ(CNL_AUX_ANAOVRD1(pw_idx));
val |= CNL_AUX_ANAOVRD1_ENABLE | CNL_AUX_ANAOVRD1_LDO_BYPASS;
I915_WRITE(CNL_AUX_ANAOVRD1(pw_idx), val);
}
if (wait_fuses)
gen9_wait_for_power_well_fuses(dev_priv, pg);
hsw_power_well_post_enable(dev_priv,
power_well->desc->hsw.irq_pipe_mask,
power_well->desc->hsw.has_vga);
}
static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
const struct i915_power_well_regs *regs = power_well->desc->hsw.regs;
int pw_idx = power_well->desc->hsw.idx;
u32 val;
hsw_power_well_pre_disable(dev_priv,
power_well->desc->hsw.irq_pipe_mask);
val = I915_READ(regs->driver);
I915_WRITE(regs->driver, val & ~HSW_PWR_WELL_CTL_REQ(pw_idx));
hsw_wait_for_power_well_disable(dev_priv, power_well);
}
#define ICL_AUX_PW_TO_PORT(pw_idx) ((pw_idx) - ICL_PW_CTL_IDX_AUX_A)
static void
icl_combo_phy_aux_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
const struct i915_power_well_regs *regs = power_well->desc->hsw.regs;
int pw_idx = power_well->desc->hsw.idx;
enum port port = ICL_AUX_PW_TO_PORT(pw_idx);
u32 val;
val = I915_READ(regs->driver);
I915_WRITE(regs->driver, val | HSW_PWR_WELL_CTL_REQ(pw_idx));
val = I915_READ(ICL_PORT_CL_DW12(port));
I915_WRITE(ICL_PORT_CL_DW12(port), val | ICL_LANE_ENABLE_AUX);
hsw_wait_for_power_well_enable(dev_priv, power_well);
/* Display WA #1178: icl */
if (IS_ICELAKE(dev_priv) &&
pw_idx >= ICL_PW_CTL_IDX_AUX_A && pw_idx <= ICL_PW_CTL_IDX_AUX_B &&
!intel_bios_is_port_edp(dev_priv, port)) {
val = I915_READ(ICL_AUX_ANAOVRD1(pw_idx));
val |= ICL_AUX_ANAOVRD1_ENABLE | ICL_AUX_ANAOVRD1_LDO_BYPASS;
I915_WRITE(ICL_AUX_ANAOVRD1(pw_idx), val);
}
}
static void
icl_combo_phy_aux_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
const struct i915_power_well_regs *regs = power_well->desc->hsw.regs;
int pw_idx = power_well->desc->hsw.idx;
enum port port = ICL_AUX_PW_TO_PORT(pw_idx);
u32 val;
val = I915_READ(ICL_PORT_CL_DW12(port));
I915_WRITE(ICL_PORT_CL_DW12(port), val & ~ICL_LANE_ENABLE_AUX);
val = I915_READ(regs->driver);
I915_WRITE(regs->driver, val & ~HSW_PWR_WELL_CTL_REQ(pw_idx));
hsw_wait_for_power_well_disable(dev_priv, power_well);
}
#define ICL_AUX_PW_TO_CH(pw_idx) \
((pw_idx) - ICL_PW_CTL_IDX_AUX_A + AUX_CH_A)
static void
icl_tc_phy_aux_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
enum aux_ch aux_ch = ICL_AUX_PW_TO_CH(power_well->desc->hsw.idx);
u32 val;
val = I915_READ(DP_AUX_CH_CTL(aux_ch));
val &= ~DP_AUX_CH_CTL_TBT_IO;
if (power_well->desc->hsw.is_tc_tbt)
val |= DP_AUX_CH_CTL_TBT_IO;
I915_WRITE(DP_AUX_CH_CTL(aux_ch), val);
hsw_power_well_enable(dev_priv, power_well);
}
/*
* We should only use the power well if we explicitly asked the hardware to
* enable it, so check if it's enabled and also check if we've requested it to
* be enabled.
*/
static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
const struct i915_power_well_regs *regs = power_well->desc->hsw.regs;
enum i915_power_well_id id = power_well->desc->id;
int pw_idx = power_well->desc->hsw.idx;
u32 mask = HSW_PWR_WELL_CTL_REQ(pw_idx) |
HSW_PWR_WELL_CTL_STATE(pw_idx);
u32 val;
val = I915_READ(regs->driver);
/*
* On GEN9 big core due to a DMC bug the driver's request bits for PW1
* and the MISC_IO PW will be not restored, so check instead for the
* BIOS's own request bits, which are forced-on for these power wells
* when exiting DC5/6.
*/
if (IS_GEN(dev_priv, 9) && !IS_GEN9_LP(dev_priv) &&
(id == SKL_DISP_PW_1 || id == SKL_DISP_PW_MISC_IO))
val |= I915_READ(regs->bios);
return (val & mask) == mask;
}
static void assert_can_enable_dc9(struct drm_i915_private *dev_priv)
{
WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9),
"DC9 already programmed to be enabled.\n");
WARN_ONCE(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
"DC5 still not disabled to enable DC9.\n");
WARN_ONCE(I915_READ(HSW_PWR_WELL_CTL2) &
HSW_PWR_WELL_CTL_REQ(SKL_PW_CTL_IDX_PW_2),
"Power well 2 on.\n");
WARN_ONCE(intel_irqs_enabled(dev_priv),
"Interrupts not disabled yet.\n");
/*
* TODO: check for the following to verify the conditions to enter DC9
* state are satisfied:
* 1] Check relevant display engine registers to verify if mode set
* disable sequence was followed.
* 2] Check if display uninitialize sequence is initialized.
*/
}
static void assert_can_disable_dc9(struct drm_i915_private *dev_priv)
{
WARN_ONCE(intel_irqs_enabled(dev_priv),
"Interrupts not disabled yet.\n");
WARN_ONCE(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
"DC5 still not disabled.\n");
/*
* TODO: check for the following to verify DC9 state was indeed
* entered before programming to disable it:
* 1] Check relevant display engine registers to verify if mode
* set disable sequence was followed.
* 2] Check if display uninitialize sequence is initialized.
*/
}
static void gen9_write_dc_state(struct drm_i915_private *dev_priv,
u32 state)
{
int rewrites = 0;
int rereads = 0;
u32 v;
I915_WRITE(DC_STATE_EN, state);
/* It has been observed that disabling the dc6 state sometimes
* doesn't stick and dmc keeps returning old value. Make sure
* the write really sticks enough times and also force rewrite until
* we are confident that state is exactly what we want.
*/
do {
v = I915_READ(DC_STATE_EN);
if (v != state) {
I915_WRITE(DC_STATE_EN, state);
rewrites++;
rereads = 0;
} else if (rereads++ > 5) {
break;
}
} while (rewrites < 100);
if (v != state)
DRM_ERROR("Writing dc state to 0x%x failed, now 0x%x\n",
state, v);
/* Most of the times we need one retry, avoid spam */
if (rewrites > 1)
DRM_DEBUG_KMS("Rewrote dc state to 0x%x %d times\n",
state, rewrites);
}
static u32 gen9_dc_mask(struct drm_i915_private *dev_priv)
{
u32 mask;
mask = DC_STATE_EN_UPTO_DC5;
if (INTEL_GEN(dev_priv) >= 11)
mask |= DC_STATE_EN_UPTO_DC6 | DC_STATE_EN_DC9;
else if (IS_GEN9_LP(dev_priv))
mask |= DC_STATE_EN_DC9;
else
mask |= DC_STATE_EN_UPTO_DC6;
return mask;
}
void gen9_sanitize_dc_state(struct drm_i915_private *dev_priv)
{
u32 val;
val = I915_READ(DC_STATE_EN) & gen9_dc_mask(dev_priv);
DRM_DEBUG_KMS("Resetting DC state tracking from %02x to %02x\n",
dev_priv->csr.dc_state, val);
dev_priv->csr.dc_state = val;
}
/**
* gen9_set_dc_state - set target display C power state
* @dev_priv: i915 device instance
* @state: target DC power state
* - DC_STATE_DISABLE
* - DC_STATE_EN_UPTO_DC5
* - DC_STATE_EN_UPTO_DC6
* - DC_STATE_EN_DC9
*
* Signal to DMC firmware/HW the target DC power state passed in @state.
* DMC/HW can turn off individual display clocks and power rails when entering
* a deeper DC power state (higher in number) and turns these back when exiting
* that state to a shallower power state (lower in number). The HW will decide
* when to actually enter a given state on an on-demand basis, for instance
* depending on the active state of display pipes. The state of display
* registers backed by affected power rails are saved/restored as needed.
*
* Based on the above enabling a deeper DC power state is asynchronous wrt.
* enabling it. Disabling a deeper power state is synchronous: for instance
* setting %DC_STATE_DISABLE won't complete until all HW resources are turned
* back on and register state is restored. This is guaranteed by the MMIO write
* to DC_STATE_EN blocking until the state is restored.
*/
static void gen9_set_dc_state(struct drm_i915_private *dev_priv, u32 state)
{
u32 val;
u32 mask;
if (WARN_ON_ONCE(state & ~dev_priv->csr.allowed_dc_mask))
state &= dev_priv->csr.allowed_dc_mask;
val = I915_READ(DC_STATE_EN);
mask = gen9_dc_mask(dev_priv);
DRM_DEBUG_KMS("Setting DC state from %02x to %02x\n",
val & mask, state);
/* Check if DMC is ignoring our DC state requests */
if ((val & mask) != dev_priv->csr.dc_state)
DRM_ERROR("DC state mismatch (0x%x -> 0x%x)\n",
dev_priv->csr.dc_state, val & mask);
val &= ~mask;
val |= state;
gen9_write_dc_state(dev_priv, val);
dev_priv->csr.dc_state = val & mask;
}
void bxt_enable_dc9(struct drm_i915_private *dev_priv)
{
assert_can_enable_dc9(dev_priv);
DRM_DEBUG_KMS("Enabling DC9\n");
/*
* Power sequencer reset is not needed on
* platforms with South Display Engine on PCH,
* because PPS registers are always on.
*/
if (!HAS_PCH_SPLIT(dev_priv))
intel_power_sequencer_reset(dev_priv);
gen9_set_dc_state(dev_priv, DC_STATE_EN_DC9);
}
void bxt_disable_dc9(struct drm_i915_private *dev_priv)
{
assert_can_disable_dc9(dev_priv);
DRM_DEBUG_KMS("Disabling DC9\n");
gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
intel_pps_unlock_regs_wa(dev_priv);
}
static void assert_csr_loaded(struct drm_i915_private *dev_priv)
{
WARN_ONCE(!I915_READ(CSR_PROGRAM(0)),
"CSR program storage start is NULL\n");
WARN_ONCE(!I915_READ(CSR_SSP_BASE), "CSR SSP Base Not fine\n");
WARN_ONCE(!I915_READ(CSR_HTP_SKL), "CSR HTP Not fine\n");
}
static struct i915_power_well *
lookup_power_well(struct drm_i915_private *dev_priv,
enum i915_power_well_id power_well_id)
{
struct i915_power_well *power_well;
for_each_power_well(dev_priv, power_well)
if (power_well->desc->id == power_well_id)
return power_well;
/*
* It's not feasible to add error checking code to the callers since
* this condition really shouldn't happen and it doesn't even make sense
* to abort things like display initialization sequences. Just return
* the first power well and hope the WARN gets reported so we can fix
* our driver.
*/
WARN(1, "Power well %d not defined for this platform\n", power_well_id);
return &dev_priv->power_domains.power_wells[0];
}
static void assert_can_enable_dc5(struct drm_i915_private *dev_priv)
{
bool pg2_enabled = intel_display_power_well_is_enabled(dev_priv,
SKL_DISP_PW_2);
WARN_ONCE(pg2_enabled, "PG2 not disabled to enable DC5.\n");
WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5),
"DC5 already programmed to be enabled.\n");
assert_rpm_wakelock_held(dev_priv);
assert_csr_loaded(dev_priv);
}
void gen9_enable_dc5(struct drm_i915_private *dev_priv)
{
assert_can_enable_dc5(dev_priv);
DRM_DEBUG_KMS("Enabling DC5\n");
/* Wa Display #1183: skl,kbl,cfl */
if (IS_GEN9_BC(dev_priv))
I915_WRITE(GEN8_CHICKEN_DCPR_1, I915_READ(GEN8_CHICKEN_DCPR_1) |
SKL_SELECT_ALTERNATE_DC_EXIT);
gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC5);
}
static void assert_can_enable_dc6(struct drm_i915_private *dev_priv)
{
WARN_ONCE(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
"Backlight is not disabled.\n");
WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6),
"DC6 already programmed to be enabled.\n");
assert_csr_loaded(dev_priv);
}
void skl_enable_dc6(struct drm_i915_private *dev_priv)
{
assert_can_enable_dc6(dev_priv);
DRM_DEBUG_KMS("Enabling DC6\n");
/* Wa Display #1183: skl,kbl,cfl */
if (IS_GEN9_BC(dev_priv))
I915_WRITE(GEN8_CHICKEN_DCPR_1, I915_READ(GEN8_CHICKEN_DCPR_1) |
SKL_SELECT_ALTERNATE_DC_EXIT);
gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
}
static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
const struct i915_power_well_regs *regs = power_well->desc->hsw.regs;
int pw_idx = power_well->desc->hsw.idx;
u32 mask = HSW_PWR_WELL_CTL_REQ(pw_idx);
u32 bios_req = I915_READ(regs->bios);
/* Take over the request bit if set by BIOS. */
if (bios_req & mask) {
u32 drv_req = I915_READ(regs->driver);
if (!(drv_req & mask))
I915_WRITE(regs->driver, drv_req | mask);
I915_WRITE(regs->bios, bios_req & ~mask);
}
}
static void bxt_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
bxt_ddi_phy_init(dev_priv, power_well->desc->bxt.phy);
}
static void bxt_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
bxt_ddi_phy_uninit(dev_priv, power_well->desc->bxt.phy);
}
static bool bxt_dpio_cmn_power_well_enabled(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
return bxt_ddi_phy_is_enabled(dev_priv, power_well->desc->bxt.phy);
}
static void bxt_verify_ddi_phy_power_wells(struct drm_i915_private *dev_priv)
{
struct i915_power_well *power_well;
power_well = lookup_power_well(dev_priv, BXT_DISP_PW_DPIO_CMN_A);
if (power_well->count > 0)
bxt_ddi_phy_verify_state(dev_priv, power_well->desc->bxt.phy);
power_well = lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC);
if (power_well->count > 0)
bxt_ddi_phy_verify_state(dev_priv, power_well->desc->bxt.phy);
if (IS_GEMINILAKE(dev_priv)) {
power_well = lookup_power_well(dev_priv,
GLK_DISP_PW_DPIO_CMN_C);
if (power_well->count > 0)
bxt_ddi_phy_verify_state(dev_priv,
power_well->desc->bxt.phy);
}
}
static bool gen9_dc_off_power_well_enabled(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
return (I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5_DC6_MASK) == 0;
}
static void gen9_assert_dbuf_enabled(struct drm_i915_private *dev_priv)
{
u32 tmp = I915_READ(DBUF_CTL);
WARN((tmp & (DBUF_POWER_STATE | DBUF_POWER_REQUEST)) !=
(DBUF_POWER_STATE | DBUF_POWER_REQUEST),
"Unexpected DBuf power power state (0x%08x)\n", tmp);
}
static void gen9_dc_off_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
struct intel_cdclk_state cdclk_state = {};
gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
dev_priv->display.get_cdclk(dev_priv, &cdclk_state);
/* Can't read out voltage_level so can't use intel_cdclk_changed() */
WARN_ON(intel_cdclk_needs_modeset(&dev_priv->cdclk.hw, &cdclk_state));
gen9_assert_dbuf_enabled(dev_priv);
if (IS_GEN9_LP(dev_priv))
bxt_verify_ddi_phy_power_wells(dev_priv);
if (INTEL_GEN(dev_priv) >= 11)
/*
* DMC retains HW context only for port A, the other combo
* PHY's HW context for port B is lost after DC transitions,
* so we need to restore it manually.
*/
icl_combo_phys_init(dev_priv);
}
static void gen9_dc_off_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
if (!dev_priv->csr.dmc_payload)
return;
if (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC6)
skl_enable_dc6(dev_priv);
else if (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5)
gen9_enable_dc5(dev_priv);
}
static void i9xx_power_well_sync_hw_noop(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
}
static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
}
static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
return true;
}
static void i830_pipes_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
if ((I915_READ(PIPECONF(PIPE_A)) & PIPECONF_ENABLE) == 0)
i830_enable_pipe(dev_priv, PIPE_A);
if ((I915_READ(PIPECONF(PIPE_B)) & PIPECONF_ENABLE) == 0)
i830_enable_pipe(dev_priv, PIPE_B);
}
static void i830_pipes_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
i830_disable_pipe(dev_priv, PIPE_B);
i830_disable_pipe(dev_priv, PIPE_A);
}
static bool i830_pipes_power_well_enabled(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
return I915_READ(PIPECONF(PIPE_A)) & PIPECONF_ENABLE &&
I915_READ(PIPECONF(PIPE_B)) & PIPECONF_ENABLE;
}
static void i830_pipes_power_well_sync_hw(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
if (power_well->count > 0)
i830_pipes_power_well_enable(dev_priv, power_well);
else
i830_pipes_power_well_disable(dev_priv, power_well);
}
static void vlv_set_power_well(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well, bool enable)
{
int pw_idx = power_well->desc->vlv.idx;
u32 mask;
u32 state;
u32 ctrl;
mask = PUNIT_PWRGT_MASK(pw_idx);
state = enable ? PUNIT_PWRGT_PWR_ON(pw_idx) :
PUNIT_PWRGT_PWR_GATE(pw_idx);
mutex_lock(&dev_priv->pcu_lock);
#define COND \
((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
if (COND)
goto out;
ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
ctrl &= ~mask;
ctrl |= state;
vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
if (wait_for(COND, 100))
DRM_ERROR("timeout setting power well state %08x (%08x)\n",
state,
vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
#undef COND
out:
mutex_unlock(&dev_priv->pcu_lock);
}
static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
vlv_set_power_well(dev_priv, power_well, true);
}
static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
vlv_set_power_well(dev_priv, power_well, false);
}
static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
int pw_idx = power_well->desc->vlv.idx;
bool enabled = false;
u32 mask;
u32 state;
u32 ctrl;
mask = PUNIT_PWRGT_MASK(pw_idx);
ctrl = PUNIT_PWRGT_PWR_ON(pw_idx);
mutex_lock(&dev_priv->pcu_lock);
state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
/*
* We only ever set the power-on and power-gate states, anything
* else is unexpected.
*/
WARN_ON(state != PUNIT_PWRGT_PWR_ON(pw_idx) &&
state != PUNIT_PWRGT_PWR_GATE(pw_idx));
if (state == ctrl)
enabled = true;
/*
* A transient state at this point would mean some unexpected party
* is poking at the power controls too.
*/
ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
WARN_ON(ctrl != state);
mutex_unlock(&dev_priv->pcu_lock);
return enabled;
}
static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
{
u32 val;
/*
* On driver load, a pipe may be active and driving a DSI display.
* Preserve DPOUNIT_CLOCK_GATE_DISABLE to avoid the pipe getting stuck
* (and never recovering) in this case. intel_dsi_post_disable() will
* clear it when we turn off the display.
*/
val = I915_READ(DSPCLK_GATE_D);
val &= DPOUNIT_CLOCK_GATE_DISABLE;
val |= VRHUNIT_CLOCK_GATE_DISABLE;
I915_WRITE(DSPCLK_GATE_D, val);
/*
* Disable trickle feed and enable pnd deadline calculation
*/
I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
I915_WRITE(CBR1_VLV, 0);
WARN_ON(dev_priv->rawclk_freq == 0);
I915_WRITE(RAWCLK_FREQ_VLV,
DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 1000));
}
static void vlv_display_power_well_init(struct drm_i915_private *dev_priv)
{
struct intel_encoder *encoder;
enum pipe pipe;
/*
* Enable the CRI clock source so we can get at the
* display and the reference clock for VGA
* hotplug / manual detection. Supposedly DSI also
* needs the ref clock up and running.
*
* CHV DPLL B/C have some issues if VGA mode is enabled.
*/
for_each_pipe(dev_priv, pipe) {
u32 val = I915_READ(DPLL(pipe));
val |= DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
if (pipe != PIPE_A)
val |= DPLL_INTEGRATED_CRI_CLK_VLV;
I915_WRITE(DPLL(pipe), val);
}
vlv_init_display_clock_gating(dev_priv);
spin_lock_irq(&dev_priv->irq_lock);
valleyview_enable_display_irqs(dev_priv);
spin_unlock_irq(&dev_priv->irq_lock);
/*
* During driver initialization/resume we can avoid restoring the
* part of the HW/SW state that will be inited anyway explicitly.
*/
if (dev_priv->power_domains.initializing)
return;
intel_hpd_init(dev_priv);
/* Re-enable the ADPA, if we have one */
for_each_intel_encoder(&dev_priv->drm, encoder) {
if (encoder->type == INTEL_OUTPUT_ANALOG)
intel_crt_reset(&encoder->base);
}
i915_redisable_vga_power_on(dev_priv);
intel_pps_unlock_regs_wa(dev_priv);
}
static void vlv_display_power_well_deinit(struct drm_i915_private *dev_priv)
{
spin_lock_irq(&dev_priv->irq_lock);
valleyview_disable_display_irqs(dev_priv);
spin_unlock_irq(&dev_priv->irq_lock);
/* make sure we're done processing display irqs */
synchronize_irq(dev_priv->drm.irq);
intel_power_sequencer_reset(dev_priv);
/* Prevent us from re-enabling polling on accident in late suspend */
if (!dev_priv->drm.dev->power.is_suspended)
intel_hpd_poll_init(dev_priv);
}
static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
vlv_set_power_well(dev_priv, power_well, true);
vlv_display_power_well_init(dev_priv);
}
static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
vlv_display_power_well_deinit(dev_priv);
vlv_set_power_well(dev_priv, power_well, false);
}
static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
/* since ref/cri clock was enabled */
udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
vlv_set_power_well(dev_priv, power_well, true);
/*
* From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
* 6. De-assert cmn_reset/side_reset. Same as VLV X0.
* a. GUnit 0x2110 bit[0] set to 1 (def 0)
* b. The other bits such as sfr settings / modesel may all
* be set to 0.
*
* This should only be done on init and resume from S3 with
* both PLLs disabled, or we risk losing DPIO and PLL
* synchronization.
*/
I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
}
static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
enum pipe pipe;
for_each_pipe(dev_priv, pipe)
assert_pll_disabled(dev_priv, pipe);
/* Assert common reset */
I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);
vlv_set_power_well(dev_priv, power_well, false);
}
#define POWER_DOMAIN_MASK (GENMASK_ULL(POWER_DOMAIN_NUM - 1, 0))
#define BITS_SET(val, bits) (((val) & (bits)) == (bits))
static void assert_chv_phy_status(struct drm_i915_private *dev_priv)
{
struct i915_power_well *cmn_bc =
lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC);
struct i915_power_well *cmn_d =
lookup_power_well(dev_priv, CHV_DISP_PW_DPIO_CMN_D);
u32 phy_control = dev_priv->chv_phy_control;
u32 phy_status = 0;
u32 phy_status_mask = 0xffffffff;
/*
* The BIOS can leave the PHY is some weird state
* where it doesn't fully power down some parts.
* Disable the asserts until the PHY has been fully
* reset (ie. the power well has been disabled at
* least once).
*/
if (!dev_priv->chv_phy_assert[DPIO_PHY0])
phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0) |
PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0) |
PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1) |
PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1) |
PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0) |
PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1));
if (!dev_priv->chv_phy_assert[DPIO_PHY1])
phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0) |
PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0) |
PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1));
if (cmn_bc->desc->ops->is_enabled(dev_priv, cmn_bc)) {
phy_status |= PHY_POWERGOOD(DPIO_PHY0);
/* this assumes override is only used to enable lanes */
if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0)) == 0)
phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0);
if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1)) == 0)
phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1);
/* CL1 is on whenever anything is on in either channel */
if (BITS_SET(phy_control,
PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0) |
PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)))
phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0);
/*
* The DPLLB check accounts for the pipe B + port A usage
* with CL2 powered up but all the lanes in the second channel
* powered down.
*/
if (BITS_SET(phy_control,
PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)) &&
(I915_READ(DPLL(PIPE_B)) & DPLL_VCO_ENABLE) == 0)
phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1);
if (BITS_SET(phy_control,
PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH0)))
phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0);
if (BITS_SET(phy_control,
PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH0)))
phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1);
if (BITS_SET(phy_control,
PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH1)))
phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0);
if (BITS_SET(phy_control,
PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH1)))
phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1);
}
if (cmn_d->desc->ops->is_enabled(dev_priv, cmn_d)) {
phy_status |= PHY_POWERGOOD(DPIO_PHY1);
/* this assumes override is only used to enable lanes */
if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0)) == 0)
phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0);
if (BITS_SET(phy_control,
PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0)))
phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0);
if (BITS_SET(phy_control,
PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY1, DPIO_CH0)))
phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0);
if (BITS_SET(phy_control,
PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY1, DPIO_CH0)))
phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1);
}
phy_status &= phy_status_mask;
/*
* The PHY may be busy with some initial calibration and whatnot,
* so the power state can take a while to actually change.
*/
if (intel_wait_for_register(&dev_priv->uncore,
DISPLAY_PHY_STATUS,
phy_status_mask,
phy_status,
10))
DRM_ERROR("Unexpected PHY_STATUS 0x%08x, expected 0x%08x (PHY_CONTROL=0x%08x)\n",
I915_READ(DISPLAY_PHY_STATUS) & phy_status_mask,
phy_status, dev_priv->chv_phy_control);
}
#undef BITS_SET
static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
enum dpio_phy phy;
enum pipe pipe;
u32 tmp;
WARN_ON_ONCE(power_well->desc->id != VLV_DISP_PW_DPIO_CMN_BC &&
power_well->desc->id != CHV_DISP_PW_DPIO_CMN_D);
if (power_well->desc->id == VLV_DISP_PW_DPIO_CMN_BC) {
pipe = PIPE_A;
phy = DPIO_PHY0;
} else {
pipe = PIPE_C;
phy = DPIO_PHY1;
}
/* since ref/cri clock was enabled */
udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
vlv_set_power_well(dev_priv, power_well, true);
/* Poll for phypwrgood signal */
if (intel_wait_for_register(&dev_priv->uncore,
DISPLAY_PHY_STATUS,
PHY_POWERGOOD(phy),
PHY_POWERGOOD(phy),
1))
DRM_ERROR("Display PHY %d is not power up\n", phy);
mutex_lock(&dev_priv->sb_lock);
/* Enable dynamic power down */
tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW28);
tmp |= DPIO_DYNPWRDOWNEN_CH0 | DPIO_CL1POWERDOWNEN |
DPIO_SUS_CLK_CONFIG_GATE_CLKREQ;
vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW28, tmp);
if (power_well->desc->id == VLV_DISP_PW_DPIO_CMN_BC) {
tmp = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW6_CH1);
tmp |= DPIO_DYNPWRDOWNEN_CH1;
vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW6_CH1, tmp);
} else {
/*
* Force the non-existing CL2 off. BXT does this
* too, so maybe it saves some power even though
* CL2 doesn't exist?
*/
tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
tmp |= DPIO_CL2_LDOFUSE_PWRENB;
vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, tmp);
}
mutex_unlock(&dev_priv->sb_lock);
dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(phy);
I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
DRM_DEBUG_KMS("Enabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
phy, dev_priv->chv_phy_control);
assert_chv_phy_status(dev_priv);
}
static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
enum dpio_phy phy;
WARN_ON_ONCE(power_well->desc->id != VLV_DISP_PW_DPIO_CMN_BC &&
power_well->desc->id != CHV_DISP_PW_DPIO_CMN_D);
if (power_well->desc->id == VLV_DISP_PW_DPIO_CMN_BC) {
phy = DPIO_PHY0;
assert_pll_disabled(dev_priv, PIPE_A);
assert_pll_disabled(dev_priv, PIPE_B);
} else {
phy = DPIO_PHY1;
assert_pll_disabled(dev_priv, PIPE_C);
}
dev_priv->chv_phy_control &= ~PHY_COM_LANE_RESET_DEASSERT(phy);
I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
vlv_set_power_well(dev_priv, power_well, false);
DRM_DEBUG_KMS("Disabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
phy, dev_priv->chv_phy_control);
/* PHY is fully reset now, so we can enable the PHY state asserts */
dev_priv->chv_phy_assert[phy] = true;
assert_chv_phy_status(dev_priv);
}
static void assert_chv_phy_powergate(struct drm_i915_private *dev_priv, enum dpio_phy phy,
enum dpio_channel ch, bool override, unsigned int mask)
{
enum pipe pipe = phy == DPIO_PHY0 ? PIPE_A : PIPE_C;
u32 reg, val, expected, actual;
/*
* The BIOS can leave the PHY is some weird state
* where it doesn't fully power down some parts.
* Disable the asserts until the PHY has been fully
* reset (ie. the power well has been disabled at
* least once).
*/
if (!dev_priv->chv_phy_assert[phy])
return;
if (ch == DPIO_CH0)
reg = _CHV_CMN_DW0_CH0;
else
reg = _CHV_CMN_DW6_CH1;
mutex_lock(&dev_priv->sb_lock);
val = vlv_dpio_read(dev_priv, pipe, reg);
mutex_unlock(&dev_priv->sb_lock);
/*
* This assumes !override is only used when the port is disabled.
* All lanes should power down even without the override when
* the port is disabled.
*/
if (!override || mask == 0xf) {
expected = DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
/*
* If CH1 common lane is not active anymore
* (eg. for pipe B DPLL) the entire channel will
* shut down, which causes the common lane registers
* to read as 0. That means we can't actually check
* the lane power down status bits, but as the entire
* register reads as 0 it's a good indication that the
* channel is indeed entirely powered down.
*/
if (ch == DPIO_CH1 && val == 0)
expected = 0;
} else if (mask != 0x0) {
expected = DPIO_ANYDL_POWERDOWN;
} else {
expected = 0;
}
if (ch == DPIO_CH0)
actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH0;
else
actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH1;
actual &= DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
WARN(actual != expected,
"Unexpected DPIO lane power down: all %d, any %d. Expected: all %d, any %d. (0x%x = 0x%08x)\n",
!!(actual & DPIO_ALLDL_POWERDOWN), !!(actual & DPIO_ANYDL_POWERDOWN),
!!(expected & DPIO_ALLDL_POWERDOWN), !!(expected & DPIO_ANYDL_POWERDOWN),
reg, val);
}
bool chv_phy_powergate_ch(struct drm_i915_private *dev_priv, enum dpio_phy phy,
enum dpio_channel ch, bool override)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
bool was_override;
mutex_lock(&power_domains->lock);
was_override = dev_priv->chv_phy_control & PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
if (override == was_override)
goto out;
if (override)
dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
else
dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d (DPIO_PHY_CONTROL=0x%08x)\n",
phy, ch, dev_priv->chv_phy_control);
assert_chv_phy_status(dev_priv);
out:
mutex_unlock(&power_domains->lock);
return was_override;
}
void chv_phy_powergate_lanes(struct intel_encoder *encoder,
bool override, unsigned int mask)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct i915_power_domains *power_domains = &dev_priv->power_domains;
enum dpio_phy phy = vlv_dport_to_phy(enc_to_dig_port(&encoder->base));
enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
mutex_lock(&power_domains->lock);
dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD(0xf, phy, ch);
dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD(mask, phy, ch);
if (override)
dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
else
dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d lanes 0x%x (PHY_CONTROL=0x%08x)\n",
phy, ch, mask, dev_priv->chv_phy_control);
assert_chv_phy_status(dev_priv);
assert_chv_phy_powergate(dev_priv, phy, ch, override, mask);
mutex_unlock(&power_domains->lock);
}
static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
enum pipe pipe = PIPE_A;
bool enabled;
u32 state, ctrl;
mutex_lock(&dev_priv->pcu_lock);
state = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM) & DP_SSS_MASK(pipe);
/*
* We only ever set the power-on and power-gate states, anything
* else is unexpected.
*/
WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe));
enabled = state == DP_SSS_PWR_ON(pipe);
/*
* A transient state at this point would mean some unexpected party
* is poking at the power controls too.
*/
ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM) & DP_SSC_MASK(pipe);
WARN_ON(ctrl << 16 != state);
mutex_unlock(&dev_priv->pcu_lock);
return enabled;
}
static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well,
bool enable)
{
enum pipe pipe = PIPE_A;
u32 state;
u32 ctrl;
state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);
mutex_lock(&dev_priv->pcu_lock);
#define COND \
((vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM) & DP_SSS_MASK(pipe)) == state)
if (COND)
goto out;
ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
ctrl &= ~DP_SSC_MASK(pipe);
ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, ctrl);
if (wait_for(COND, 100))
DRM_ERROR("timeout setting power well state %08x (%08x)\n",
state,
vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM));
#undef COND
out:
mutex_unlock(&dev_priv->pcu_lock);
}
static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
chv_set_pipe_power_well(dev_priv, power_well, true);
vlv_display_power_well_init(dev_priv);
}
static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
vlv_display_power_well_deinit(dev_priv);
chv_set_pipe_power_well(dev_priv, power_well, false);
}
static void
__intel_display_power_get_domain(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
struct i915_power_well *power_well;
for_each_power_domain_well(dev_priv, power_well, BIT_ULL(domain))
intel_power_well_get(dev_priv, power_well);
power_domains->domain_use_count[domain]++;
}
/**
* intel_display_power_get - grab a power domain reference
* @dev_priv: i915 device instance
* @domain: power domain to reference
*
* This function grabs a power domain reference for @domain and ensures that the
* power domain and all its parents are powered up. Therefore users should only
* grab a reference to the innermost power domain they need.
*
* Any power domain reference obtained by this function must have a symmetric
* call to intel_display_power_put() to release the reference again.
*/
intel_wakeref_t intel_display_power_get(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
intel_wakeref_t wakeref = intel_runtime_pm_get(dev_priv);
mutex_lock(&power_domains->lock);
__intel_display_power_get_domain(dev_priv, domain);
mutex_unlock(&power_domains->lock);
return wakeref;
}
/**
* intel_display_power_get_if_enabled - grab a reference for an enabled display power domain
* @dev_priv: i915 device instance
* @domain: power domain to reference
*
* This function grabs a power domain reference for @domain and ensures that the
* power domain and all its parents are powered up. Therefore users should only
* grab a reference to the innermost power domain they need.
*
* Any power domain reference obtained by this function must have a symmetric
* call to intel_display_power_put() to release the reference again.
*/
intel_wakeref_t
intel_display_power_get_if_enabled(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
intel_wakeref_t wakeref;
bool is_enabled;
wakeref = intel_runtime_pm_get_if_in_use(dev_priv);
if (!wakeref)
return false;
mutex_lock(&power_domains->lock);
if (__intel_display_power_is_enabled(dev_priv, domain)) {
__intel_display_power_get_domain(dev_priv, domain);
is_enabled = true;
} else {
is_enabled = false;
}
mutex_unlock(&power_domains->lock);
if (!is_enabled) {
intel_runtime_pm_put(dev_priv, wakeref);
wakeref = 0;
}
return wakeref;
}
static void __intel_display_power_put(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain)
{
struct i915_power_domains *power_domains;
struct i915_power_well *power_well;
power_domains = &dev_priv->power_domains;
mutex_lock(&power_domains->lock);
WARN(!power_domains->domain_use_count[domain],
"Use count on domain %s is already zero\n",
intel_display_power_domain_str(domain));
power_domains->domain_use_count[domain]--;
for_each_power_domain_well_reverse(dev_priv, power_well, BIT_ULL(domain))
intel_power_well_put(dev_priv, power_well);
mutex_unlock(&power_domains->lock);
}
/**
* intel_display_power_put - release a power domain reference
* @dev_priv: i915 device instance
* @domain: power domain to reference
*
* This function drops the power domain reference obtained by
* intel_display_power_get() and might power down the corresponding hardware
* block right away if this is the last reference.
*/
void intel_display_power_put_unchecked(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain)
{
__intel_display_power_put(dev_priv, domain);
intel_runtime_pm_put_unchecked(dev_priv);
}
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
void intel_display_power_put(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain,
intel_wakeref_t wakeref)
{
__intel_display_power_put(dev_priv, domain);
intel_runtime_pm_put(dev_priv, wakeref);
}
#endif
#define I830_PIPES_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PIPE_A) | \
BIT_ULL(POWER_DOMAIN_PIPE_B) | \
BIT_ULL(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_A) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_B) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define VLV_DISPLAY_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PIPE_A) | \
BIT_ULL(POWER_DOMAIN_PIPE_B) | \
BIT_ULL(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_A) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_B) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_DSI) | \
BIT_ULL(POWER_DOMAIN_PORT_CRT) | \
BIT_ULL(POWER_DOMAIN_VGA) | \
BIT_ULL(POWER_DOMAIN_AUDIO) | \
BIT_ULL(POWER_DOMAIN_AUX_B) | \
BIT_ULL(POWER_DOMAIN_AUX_C) | \
BIT_ULL(POWER_DOMAIN_GMBUS) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define VLV_DPIO_CMN_BC_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_CRT) | \
BIT_ULL(POWER_DOMAIN_AUX_B) | \
BIT_ULL(POWER_DOMAIN_AUX_C) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \
BIT_ULL(POWER_DOMAIN_AUX_B) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \
BIT_ULL(POWER_DOMAIN_AUX_B) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \
BIT_ULL(POWER_DOMAIN_AUX_C) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \
BIT_ULL(POWER_DOMAIN_AUX_C) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define CHV_DISPLAY_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PIPE_A) | \
BIT_ULL(POWER_DOMAIN_PIPE_B) | \
BIT_ULL(POWER_DOMAIN_PIPE_C) | \
BIT_ULL(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_A) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_B) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_C) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_D_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_DSI) | \
BIT_ULL(POWER_DOMAIN_VGA) | \
BIT_ULL(POWER_DOMAIN_AUDIO) | \
BIT_ULL(POWER_DOMAIN_AUX_B) | \
BIT_ULL(POWER_DOMAIN_AUX_C) | \
BIT_ULL(POWER_DOMAIN_AUX_D) | \
BIT_ULL(POWER_DOMAIN_GMBUS) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define CHV_DPIO_CMN_BC_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \
BIT_ULL(POWER_DOMAIN_AUX_B) | \
BIT_ULL(POWER_DOMAIN_AUX_C) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define CHV_DPIO_CMN_D_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_D_LANES) | \
BIT_ULL(POWER_DOMAIN_AUX_D) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define HSW_DISPLAY_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PIPE_B) | \
BIT_ULL(POWER_DOMAIN_PIPE_C) | \
BIT_ULL(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_A) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_B) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_C) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_D_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_CRT) | /* DDI E */ \
BIT_ULL(POWER_DOMAIN_VGA) | \
BIT_ULL(POWER_DOMAIN_AUDIO) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define BDW_DISPLAY_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PIPE_B) | \
BIT_ULL(POWER_DOMAIN_PIPE_C) | \
BIT_ULL(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_A) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_B) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_C) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_D_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_CRT) | /* DDI E */ \
BIT_ULL(POWER_DOMAIN_VGA) | \
BIT_ULL(POWER_DOMAIN_AUDIO) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_TRANSCODER_A) | \
BIT_ULL(POWER_DOMAIN_PIPE_B) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_B) | \
BIT_ULL(POWER_DOMAIN_PIPE_C) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_C) | \
BIT_ULL(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_D_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_E_LANES) | \
BIT_ULL(POWER_DOMAIN_AUX_B) | \
BIT_ULL(POWER_DOMAIN_AUX_C) | \
BIT_ULL(POWER_DOMAIN_AUX_D) | \
BIT_ULL(POWER_DOMAIN_AUDIO) | \
BIT_ULL(POWER_DOMAIN_VGA) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define SKL_DISPLAY_DDI_IO_A_E_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_A_IO) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_E_IO) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define SKL_DISPLAY_DDI_IO_B_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_B_IO) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define SKL_DISPLAY_DDI_IO_C_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_C_IO) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define SKL_DISPLAY_DDI_IO_D_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_D_IO) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define SKL_DISPLAY_DC_OFF_POWER_DOMAINS ( \
SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
BIT_ULL(POWER_DOMAIN_GT_IRQ) | \
BIT_ULL(POWER_DOMAIN_MODESET) | \
BIT_ULL(POWER_DOMAIN_AUX_A) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_TRANSCODER_A) | \
BIT_ULL(POWER_DOMAIN_PIPE_B) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_B) | \
BIT_ULL(POWER_DOMAIN_PIPE_C) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_C) | \
BIT_ULL(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \
BIT_ULL(POWER_DOMAIN_AUX_B) | \
BIT_ULL(POWER_DOMAIN_AUX_C) | \
BIT_ULL(POWER_DOMAIN_AUDIO) | \
BIT_ULL(POWER_DOMAIN_VGA) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define BXT_DISPLAY_DC_OFF_POWER_DOMAINS ( \
BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
BIT_ULL(POWER_DOMAIN_GT_IRQ) | \
BIT_ULL(POWER_DOMAIN_MODESET) | \
BIT_ULL(POWER_DOMAIN_AUX_A) | \
BIT_ULL(POWER_DOMAIN_GMBUS) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define BXT_DPIO_CMN_A_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_A_LANES) | \
BIT_ULL(POWER_DOMAIN_AUX_A) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define BXT_DPIO_CMN_BC_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \
BIT_ULL(POWER_DOMAIN_AUX_B) | \
BIT_ULL(POWER_DOMAIN_AUX_C) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define GLK_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_TRANSCODER_A) | \
BIT_ULL(POWER_DOMAIN_PIPE_B) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_B) | \
BIT_ULL(POWER_DOMAIN_PIPE_C) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_C) | \
BIT_ULL(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \
BIT_ULL(POWER_DOMAIN_AUX_B) | \
BIT_ULL(POWER_DOMAIN_AUX_C) | \
BIT_ULL(POWER_DOMAIN_AUDIO) | \
BIT_ULL(POWER_DOMAIN_VGA) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define GLK_DISPLAY_DDI_IO_A_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_A_IO))
#define GLK_DISPLAY_DDI_IO_B_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_B_IO))
#define GLK_DISPLAY_DDI_IO_C_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_C_IO))
#define GLK_DPIO_CMN_A_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_A_LANES) | \
BIT_ULL(POWER_DOMAIN_AUX_A) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define GLK_DPIO_CMN_B_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \
BIT_ULL(POWER_DOMAIN_AUX_B) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define GLK_DPIO_CMN_C_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \
BIT_ULL(POWER_DOMAIN_AUX_C) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define GLK_DISPLAY_AUX_A_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_AUX_A) | \
BIT_ULL(POWER_DOMAIN_AUX_IO_A) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define GLK_DISPLAY_AUX_B_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_AUX_B) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define GLK_DISPLAY_AUX_C_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_AUX_C) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define GLK_DISPLAY_DC_OFF_POWER_DOMAINS ( \
GLK_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
BIT_ULL(POWER_DOMAIN_GT_IRQ) | \
BIT_ULL(POWER_DOMAIN_MODESET) | \
BIT_ULL(POWER_DOMAIN_AUX_A) | \
BIT_ULL(POWER_DOMAIN_GMBUS) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define CNL_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_TRANSCODER_A) | \
BIT_ULL(POWER_DOMAIN_PIPE_B) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_B) | \
BIT_ULL(POWER_DOMAIN_PIPE_C) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_C) | \
BIT_ULL(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_D_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_F_LANES) | \
BIT_ULL(POWER_DOMAIN_AUX_B) | \
BIT_ULL(POWER_DOMAIN_AUX_C) | \
BIT_ULL(POWER_DOMAIN_AUX_D) | \
BIT_ULL(POWER_DOMAIN_AUX_F) | \
BIT_ULL(POWER_DOMAIN_AUDIO) | \
BIT_ULL(POWER_DOMAIN_VGA) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define CNL_DISPLAY_DDI_A_IO_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_A_IO) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define CNL_DISPLAY_DDI_B_IO_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_B_IO) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define CNL_DISPLAY_DDI_C_IO_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_C_IO) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define CNL_DISPLAY_DDI_D_IO_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_D_IO) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define CNL_DISPLAY_AUX_A_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_AUX_A) | \
BIT_ULL(POWER_DOMAIN_AUX_IO_A) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define CNL_DISPLAY_AUX_B_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_AUX_B) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define CNL_DISPLAY_AUX_C_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_AUX_C) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define CNL_DISPLAY_AUX_D_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_AUX_D) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define CNL_DISPLAY_AUX_F_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_AUX_F) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define CNL_DISPLAY_DDI_F_IO_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_F_IO) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define CNL_DISPLAY_DC_OFF_POWER_DOMAINS ( \
CNL_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
BIT_ULL(POWER_DOMAIN_GT_IRQ) | \
BIT_ULL(POWER_DOMAIN_MODESET) | \
BIT_ULL(POWER_DOMAIN_AUX_A) | \
BIT_ULL(POWER_DOMAIN_INIT))
/*
* ICL PW_0/PG_0 domains (HW/DMC control):
* - PCI
* - clocks except port PLL
* - central power except FBC
* - shared functions except pipe interrupts, pipe MBUS, DBUF registers
* ICL PW_1/PG_1 domains (HW/DMC control):
* - DBUF function
* - PIPE_A and its planes, except VGA
* - transcoder EDP + PSR
* - transcoder DSI
* - DDI_A
* - FBC
*/
#define ICL_PW_4_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PIPE_C) | \
BIT_ULL(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_INIT))
/* VDSC/joining */
#define ICL_PW_3_POWER_DOMAINS ( \
ICL_PW_4_POWER_DOMAINS | \
BIT_ULL(POWER_DOMAIN_PIPE_B) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_A) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_B) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_C) | \
BIT_ULL(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_B_IO) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_C_IO) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_D_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_D_IO) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_E_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_E_IO) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_F_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_F_IO) | \
BIT_ULL(POWER_DOMAIN_AUX_B) | \
BIT_ULL(POWER_DOMAIN_AUX_C) | \
BIT_ULL(POWER_DOMAIN_AUX_D) | \
BIT_ULL(POWER_DOMAIN_AUX_E) | \
BIT_ULL(POWER_DOMAIN_AUX_F) | \
BIT_ULL(POWER_DOMAIN_AUX_TBT1) | \
BIT_ULL(POWER_DOMAIN_AUX_TBT2) | \
BIT_ULL(POWER_DOMAIN_AUX_TBT3) | \
BIT_ULL(POWER_DOMAIN_AUX_TBT4) | \
BIT_ULL(POWER_DOMAIN_VGA) | \
BIT_ULL(POWER_DOMAIN_AUDIO) | \
BIT_ULL(POWER_DOMAIN_INIT))
/*
* - transcoder WD
* - KVMR (HW control)
*/
#define ICL_PW_2_POWER_DOMAINS ( \
ICL_PW_3_POWER_DOMAINS | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_EDP_VDSC) | \
BIT_ULL(POWER_DOMAIN_INIT))
/*
* - KVMR (HW control)
*/
#define ICL_DISPLAY_DC_OFF_POWER_DOMAINS ( \
ICL_PW_2_POWER_DOMAINS | \
BIT_ULL(POWER_DOMAIN_MODESET) | \
BIT_ULL(POWER_DOMAIN_AUX_A) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define ICL_DDI_IO_A_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_A_IO))
#define ICL_DDI_IO_B_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_B_IO))
#define ICL_DDI_IO_C_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_C_IO))
#define ICL_DDI_IO_D_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_D_IO))
#define ICL_DDI_IO_E_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_E_IO))
#define ICL_DDI_IO_F_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_F_IO))
#define ICL_AUX_A_IO_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_AUX_IO_A) | \
BIT_ULL(POWER_DOMAIN_AUX_A))
#define ICL_AUX_B_IO_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_AUX_B))
#define ICL_AUX_C_IO_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_AUX_C))
#define ICL_AUX_D_IO_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_AUX_D))
#define ICL_AUX_E_IO_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_AUX_E))
#define ICL_AUX_F_IO_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_AUX_F))
#define ICL_AUX_TBT1_IO_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_AUX_TBT1))
#define ICL_AUX_TBT2_IO_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_AUX_TBT2))
#define ICL_AUX_TBT3_IO_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_AUX_TBT3))
#define ICL_AUX_TBT4_IO_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_AUX_TBT4))
static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
.sync_hw = i9xx_power_well_sync_hw_noop,
.enable = i9xx_always_on_power_well_noop,
.disable = i9xx_always_on_power_well_noop,
.is_enabled = i9xx_always_on_power_well_enabled,
};
static const struct i915_power_well_ops chv_pipe_power_well_ops = {
.sync_hw = i9xx_power_well_sync_hw_noop,
.enable = chv_pipe_power_well_enable,
.disable = chv_pipe_power_well_disable,
.is_enabled = chv_pipe_power_well_enabled,
};
static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
.sync_hw = i9xx_power_well_sync_hw_noop,
.enable = chv_dpio_cmn_power_well_enable,
.disable = chv_dpio_cmn_power_well_disable,
.is_enabled = vlv_power_well_enabled,
};
static const struct i915_power_well_desc i9xx_always_on_power_well[] = {
{
.name = "always-on",
.always_on = true,
.domains = POWER_DOMAIN_MASK,
.ops = &i9xx_always_on_power_well_ops,
.id = DISP_PW_ID_NONE,
},
};
static const struct i915_power_well_ops i830_pipes_power_well_ops = {
.sync_hw = i830_pipes_power_well_sync_hw,
.enable = i830_pipes_power_well_enable,
.disable = i830_pipes_power_well_disable,
.is_enabled = i830_pipes_power_well_enabled,
};
static const struct i915_power_well_desc i830_power_wells[] = {
{
.name = "always-on",
.always_on = true,
.domains = POWER_DOMAIN_MASK,
.ops = &i9xx_always_on_power_well_ops,
.id = DISP_PW_ID_NONE,
},
{
.name = "pipes",
.domains = I830_PIPES_POWER_DOMAINS,
.ops = &i830_pipes_power_well_ops,
.id = DISP_PW_ID_NONE,
},
};
static const struct i915_power_well_ops hsw_power_well_ops = {
.sync_hw = hsw_power_well_sync_hw,
.enable = hsw_power_well_enable,
.disable = hsw_power_well_disable,
.is_enabled = hsw_power_well_enabled,
};
static const struct i915_power_well_ops gen9_dc_off_power_well_ops = {
.sync_hw = i9xx_power_well_sync_hw_noop,
.enable = gen9_dc_off_power_well_enable,
.disable = gen9_dc_off_power_well_disable,
.is_enabled = gen9_dc_off_power_well_enabled,
};
static const struct i915_power_well_ops bxt_dpio_cmn_power_well_ops = {
.sync_hw = i9xx_power_well_sync_hw_noop,
.enable = bxt_dpio_cmn_power_well_enable,
.disable = bxt_dpio_cmn_power_well_disable,
.is_enabled = bxt_dpio_cmn_power_well_enabled,
};
static const struct i915_power_well_regs hsw_power_well_regs = {
.bios = HSW_PWR_WELL_CTL1,
.driver = HSW_PWR_WELL_CTL2,
.kvmr = HSW_PWR_WELL_CTL3,
.debug = HSW_PWR_WELL_CTL4,
};
static const struct i915_power_well_desc hsw_power_wells[] = {
{
.name = "always-on",
.always_on = true,
.domains = POWER_DOMAIN_MASK,
.ops = &i9xx_always_on_power_well_ops,
.id = DISP_PW_ID_NONE,
},
{
.name = "display",
.domains = HSW_DISPLAY_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = HSW_DISP_PW_GLOBAL,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = HSW_PW_CTL_IDX_GLOBAL,
.hsw.has_vga = true,
},
},
};
static const struct i915_power_well_desc bdw_power_wells[] = {
{
.name = "always-on",
.always_on = true,
.domains = POWER_DOMAIN_MASK,
.ops = &i9xx_always_on_power_well_ops,
.id = DISP_PW_ID_NONE,
},
{
.name = "display",
.domains = BDW_DISPLAY_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = HSW_DISP_PW_GLOBAL,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = HSW_PW_CTL_IDX_GLOBAL,
.hsw.irq_pipe_mask = BIT(PIPE_B) | BIT(PIPE_C),
.hsw.has_vga = true,
},
},
};
static const struct i915_power_well_ops vlv_display_power_well_ops = {
.sync_hw = i9xx_power_well_sync_hw_noop,
.enable = vlv_display_power_well_enable,
.disable = vlv_display_power_well_disable,
.is_enabled = vlv_power_well_enabled,
};
static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
.sync_hw = i9xx_power_well_sync_hw_noop,
.enable = vlv_dpio_cmn_power_well_enable,
.disable = vlv_dpio_cmn_power_well_disable,
.is_enabled = vlv_power_well_enabled,
};
static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
.sync_hw = i9xx_power_well_sync_hw_noop,
.enable = vlv_power_well_enable,
.disable = vlv_power_well_disable,
.is_enabled = vlv_power_well_enabled,
};
static const struct i915_power_well_desc vlv_power_wells[] = {
{
.name = "always-on",
.always_on = true,
.domains = POWER_DOMAIN_MASK,
.ops = &i9xx_always_on_power_well_ops,
.id = DISP_PW_ID_NONE,
},
{
.name = "display",
.domains = VLV_DISPLAY_POWER_DOMAINS,
.ops = &vlv_display_power_well_ops,
.id = VLV_DISP_PW_DISP2D,
{
.vlv.idx = PUNIT_PWGT_IDX_DISP2D,
},
},
{
.name = "dpio-tx-b-01",
.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
.ops = &vlv_dpio_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.vlv.idx = PUNIT_PWGT_IDX_DPIO_TX_B_LANES_01,
},
},
{
.name = "dpio-tx-b-23",
.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
.ops = &vlv_dpio_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.vlv.idx = PUNIT_PWGT_IDX_DPIO_TX_B_LANES_23,
},
},
{
.name = "dpio-tx-c-01",
.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
.ops = &vlv_dpio_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.vlv.idx = PUNIT_PWGT_IDX_DPIO_TX_C_LANES_01,
},
},
{
.name = "dpio-tx-c-23",
.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
.ops = &vlv_dpio_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.vlv.idx = PUNIT_PWGT_IDX_DPIO_TX_C_LANES_23,
},
},
{
.name = "dpio-common",
.domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
.ops = &vlv_dpio_cmn_power_well_ops,
.id = VLV_DISP_PW_DPIO_CMN_BC,
{
.vlv.idx = PUNIT_PWGT_IDX_DPIO_CMN_BC,
},
},
};
static const struct i915_power_well_desc chv_power_wells[] = {
{
.name = "always-on",
.always_on = true,
.domains = POWER_DOMAIN_MASK,
.ops = &i9xx_always_on_power_well_ops,
.id = DISP_PW_ID_NONE,
},
{
.name = "display",
/*
* Pipe A power well is the new disp2d well. Pipe B and C
* power wells don't actually exist. Pipe A power well is
* required for any pipe to work.
*/
.domains = CHV_DISPLAY_POWER_DOMAINS,
.ops = &chv_pipe_power_well_ops,
.id = DISP_PW_ID_NONE,
},
{
.name = "dpio-common-bc",
.domains = CHV_DPIO_CMN_BC_POWER_DOMAINS,
.ops = &chv_dpio_cmn_power_well_ops,
.id = VLV_DISP_PW_DPIO_CMN_BC,
{
.vlv.idx = PUNIT_PWGT_IDX_DPIO_CMN_BC,
},
},
{
.name = "dpio-common-d",
.domains = CHV_DPIO_CMN_D_POWER_DOMAINS,
.ops = &chv_dpio_cmn_power_well_ops,
.id = CHV_DISP_PW_DPIO_CMN_D,
{
.vlv.idx = PUNIT_PWGT_IDX_DPIO_CMN_D,
},
},
};
bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
enum i915_power_well_id power_well_id)
{
struct i915_power_well *power_well;
bool ret;
power_well = lookup_power_well(dev_priv, power_well_id);
ret = power_well->desc->ops->is_enabled(dev_priv, power_well);
return ret;
}
static const struct i915_power_well_desc skl_power_wells[] = {
{
.name = "always-on",
.always_on = true,
.domains = POWER_DOMAIN_MASK,
.ops = &i9xx_always_on_power_well_ops,
.id = DISP_PW_ID_NONE,
},
{
.name = "power well 1",
/* Handled by the DMC firmware */
.always_on = true,
.domains = 0,
.ops = &hsw_power_well_ops,
.id = SKL_DISP_PW_1,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = SKL_PW_CTL_IDX_PW_1,
.hsw.has_fuses = true,
},
},
{
.name = "MISC IO power well",
/* Handled by the DMC firmware */
.always_on = true,
.domains = 0,
.ops = &hsw_power_well_ops,
.id = SKL_DISP_PW_MISC_IO,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = SKL_PW_CTL_IDX_MISC_IO,
},
},
{
.name = "DC off",
.domains = SKL_DISPLAY_DC_OFF_POWER_DOMAINS,
.ops = &gen9_dc_off_power_well_ops,
.id = DISP_PW_ID_NONE,
},
{
.name = "power well 2",
.domains = SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = SKL_DISP_PW_2,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = SKL_PW_CTL_IDX_PW_2,
.hsw.irq_pipe_mask = BIT(PIPE_B) | BIT(PIPE_C),
.hsw.has_vga = true,
.hsw.has_fuses = true,
},
},
{
.name = "DDI A/E IO power well",
.domains = SKL_DISPLAY_DDI_IO_A_E_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = SKL_PW_CTL_IDX_DDI_A_E,
},
},
{
.name = "DDI B IO power well",
.domains = SKL_DISPLAY_DDI_IO_B_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = SKL_PW_CTL_IDX_DDI_B,
},
},
{
.name = "DDI C IO power well",
.domains = SKL_DISPLAY_DDI_IO_C_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = SKL_PW_CTL_IDX_DDI_C,
},
},
{
.name = "DDI D IO power well",
.domains = SKL_DISPLAY_DDI_IO_D_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = SKL_PW_CTL_IDX_DDI_D,
},
},
};
static const struct i915_power_well_desc bxt_power_wells[] = {
{
.name = "always-on",
.always_on = true,
.domains = POWER_DOMAIN_MASK,
.ops = &i9xx_always_on_power_well_ops,
.id = DISP_PW_ID_NONE,
},
{
.name = "power well 1",
/* Handled by the DMC firmware */
.always_on = true,
.domains = 0,
.ops = &hsw_power_well_ops,
.id = SKL_DISP_PW_1,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = SKL_PW_CTL_IDX_PW_1,
.hsw.has_fuses = true,
},
},
{
.name = "DC off",
.domains = BXT_DISPLAY_DC_OFF_POWER_DOMAINS,
.ops = &gen9_dc_off_power_well_ops,
.id = DISP_PW_ID_NONE,
},
{
.name = "power well 2",
.domains = BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = SKL_DISP_PW_2,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = SKL_PW_CTL_IDX_PW_2,
.hsw.irq_pipe_mask = BIT(PIPE_B) | BIT(PIPE_C),
.hsw.has_vga = true,
.hsw.has_fuses = true,
},
},
{
.name = "dpio-common-a",
.domains = BXT_DPIO_CMN_A_POWER_DOMAINS,
.ops = &bxt_dpio_cmn_power_well_ops,
.id = BXT_DISP_PW_DPIO_CMN_A,
{
.bxt.phy = DPIO_PHY1,
},
},
{
.name = "dpio-common-bc",
.domains = BXT_DPIO_CMN_BC_POWER_DOMAINS,
.ops = &bxt_dpio_cmn_power_well_ops,
.id = VLV_DISP_PW_DPIO_CMN_BC,
{
.bxt.phy = DPIO_PHY0,
},
},
};
static const struct i915_power_well_desc glk_power_wells[] = {
{
.name = "always-on",
.always_on = true,
.domains = POWER_DOMAIN_MASK,
.ops = &i9xx_always_on_power_well_ops,
.id = DISP_PW_ID_NONE,
},
{
.name = "power well 1",
/* Handled by the DMC firmware */
.always_on = true,
.domains = 0,
.ops = &hsw_power_well_ops,
.id = SKL_DISP_PW_1,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = SKL_PW_CTL_IDX_PW_1,
.hsw.has_fuses = true,
},
},
{
.name = "DC off",
.domains = GLK_DISPLAY_DC_OFF_POWER_DOMAINS,
.ops = &gen9_dc_off_power_well_ops,
.id = DISP_PW_ID_NONE,
},
{
.name = "power well 2",
.domains = GLK_DISPLAY_POWERWELL_2_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = SKL_DISP_PW_2,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = SKL_PW_CTL_IDX_PW_2,
.hsw.irq_pipe_mask = BIT(PIPE_B) | BIT(PIPE_C),
.hsw.has_vga = true,
.hsw.has_fuses = true,
},
},
{
.name = "dpio-common-a",
.domains = GLK_DPIO_CMN_A_POWER_DOMAINS,
.ops = &bxt_dpio_cmn_power_well_ops,
.id = BXT_DISP_PW_DPIO_CMN_A,
{
.bxt.phy = DPIO_PHY1,
},
},
{
.name = "dpio-common-b",
.domains = GLK_DPIO_CMN_B_POWER_DOMAINS,
.ops = &bxt_dpio_cmn_power_well_ops,
.id = VLV_DISP_PW_DPIO_CMN_BC,
{
.bxt.phy = DPIO_PHY0,
},
},
{
.name = "dpio-common-c",
.domains = GLK_DPIO_CMN_C_POWER_DOMAINS,
.ops = &bxt_dpio_cmn_power_well_ops,
.id = GLK_DISP_PW_DPIO_CMN_C,
{
.bxt.phy = DPIO_PHY2,
},
},
{
.name = "AUX A",
.domains = GLK_DISPLAY_AUX_A_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = GLK_PW_CTL_IDX_AUX_A,
},
},
{
.name = "AUX B",
.domains = GLK_DISPLAY_AUX_B_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = GLK_PW_CTL_IDX_AUX_B,
},
},
{
.name = "AUX C",
.domains = GLK_DISPLAY_AUX_C_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = GLK_PW_CTL_IDX_AUX_C,
},
},
{
.name = "DDI A IO power well",
.domains = GLK_DISPLAY_DDI_IO_A_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = GLK_PW_CTL_IDX_DDI_A,
},
},
{
.name = "DDI B IO power well",
.domains = GLK_DISPLAY_DDI_IO_B_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = SKL_PW_CTL_IDX_DDI_B,
},
},
{
.name = "DDI C IO power well",
.domains = GLK_DISPLAY_DDI_IO_C_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = SKL_PW_CTL_IDX_DDI_C,
},
},
};
static const struct i915_power_well_desc cnl_power_wells[] = {
{
.name = "always-on",
.always_on = true,
.domains = POWER_DOMAIN_MASK,
.ops = &i9xx_always_on_power_well_ops,
.id = DISP_PW_ID_NONE,
},
{
.name = "power well 1",
/* Handled by the DMC firmware */
.always_on = true,
.domains = 0,
.ops = &hsw_power_well_ops,
.id = SKL_DISP_PW_1,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = SKL_PW_CTL_IDX_PW_1,
.hsw.has_fuses = true,
},
},
{
.name = "AUX A",
.domains = CNL_DISPLAY_AUX_A_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = GLK_PW_CTL_IDX_AUX_A,
},
},
{
.name = "AUX B",
.domains = CNL_DISPLAY_AUX_B_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = GLK_PW_CTL_IDX_AUX_B,
},
},
{
.name = "AUX C",
.domains = CNL_DISPLAY_AUX_C_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = GLK_PW_CTL_IDX_AUX_C,
},
},
{
.name = "AUX D",
.domains = CNL_DISPLAY_AUX_D_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = CNL_PW_CTL_IDX_AUX_D,
},
},
{
.name = "DC off",
.domains = CNL_DISPLAY_DC_OFF_POWER_DOMAINS,
.ops = &gen9_dc_off_power_well_ops,
.id = DISP_PW_ID_NONE,
},
{
.name = "power well 2",
.domains = CNL_DISPLAY_POWERWELL_2_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = SKL_DISP_PW_2,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = SKL_PW_CTL_IDX_PW_2,
.hsw.irq_pipe_mask = BIT(PIPE_B) | BIT(PIPE_C),
.hsw.has_vga = true,
.hsw.has_fuses = true,
},
},
{
.name = "DDI A IO power well",
.domains = CNL_DISPLAY_DDI_A_IO_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = GLK_PW_CTL_IDX_DDI_A,
},
},
{
.name = "DDI B IO power well",
.domains = CNL_DISPLAY_DDI_B_IO_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = SKL_PW_CTL_IDX_DDI_B,
},
},
{
.name = "DDI C IO power well",
.domains = CNL_DISPLAY_DDI_C_IO_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = SKL_PW_CTL_IDX_DDI_C,
},
},
{
.name = "DDI D IO power well",
.domains = CNL_DISPLAY_DDI_D_IO_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = SKL_PW_CTL_IDX_DDI_D,
},
},
{
.name = "DDI F IO power well",
.domains = CNL_DISPLAY_DDI_F_IO_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = CNL_PW_CTL_IDX_DDI_F,
},
},
{
.name = "AUX F",
.domains = CNL_DISPLAY_AUX_F_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = CNL_PW_CTL_IDX_AUX_F,
},
},
};
static const struct i915_power_well_ops icl_combo_phy_aux_power_well_ops = {
.sync_hw = hsw_power_well_sync_hw,
.enable = icl_combo_phy_aux_power_well_enable,
.disable = icl_combo_phy_aux_power_well_disable,
.is_enabled = hsw_power_well_enabled,
};
static const struct i915_power_well_ops icl_tc_phy_aux_power_well_ops = {
.sync_hw = hsw_power_well_sync_hw,
.enable = icl_tc_phy_aux_power_well_enable,
.disable = hsw_power_well_disable,
.is_enabled = hsw_power_well_enabled,
};
static const struct i915_power_well_regs icl_aux_power_well_regs = {
.bios = ICL_PWR_WELL_CTL_AUX1,
.driver = ICL_PWR_WELL_CTL_AUX2,
.debug = ICL_PWR_WELL_CTL_AUX4,
};
static const struct i915_power_well_regs icl_ddi_power_well_regs = {
.bios = ICL_PWR_WELL_CTL_DDI1,
.driver = ICL_PWR_WELL_CTL_DDI2,
.debug = ICL_PWR_WELL_CTL_DDI4,
};
static const struct i915_power_well_desc icl_power_wells[] = {
{
.name = "always-on",
.always_on = true,
.domains = POWER_DOMAIN_MASK,
.ops = &i9xx_always_on_power_well_ops,
.id = DISP_PW_ID_NONE,
},
{
.name = "power well 1",
/* Handled by the DMC firmware */
.always_on = true,
.domains = 0,
.ops = &hsw_power_well_ops,
.id = SKL_DISP_PW_1,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_PW_1,
.hsw.has_fuses = true,
},
},
{
.name = "DC off",
.domains = ICL_DISPLAY_DC_OFF_POWER_DOMAINS,
.ops = &gen9_dc_off_power_well_ops,
.id = DISP_PW_ID_NONE,
},
{
.name = "power well 2",
.domains = ICL_PW_2_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = SKL_DISP_PW_2,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_PW_2,
.hsw.has_fuses = true,
},
},
{
.name = "power well 3",
.domains = ICL_PW_3_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_PW_3,
.hsw.irq_pipe_mask = BIT(PIPE_B),
.hsw.has_vga = true,
.hsw.has_fuses = true,
},
},
{
.name = "DDI A IO",
.domains = ICL_DDI_IO_A_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_ddi_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_DDI_A,
},
},
{
.name = "DDI B IO",
.domains = ICL_DDI_IO_B_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_ddi_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_DDI_B,
},
},
{
.name = "DDI C IO",
.domains = ICL_DDI_IO_C_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_ddi_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_DDI_C,
},
},
{
.name = "DDI D IO",
.domains = ICL_DDI_IO_D_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_ddi_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_DDI_D,
},
},
{
.name = "DDI E IO",
.domains = ICL_DDI_IO_E_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_ddi_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_DDI_E,
},
},
{
.name = "DDI F IO",
.domains = ICL_DDI_IO_F_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_ddi_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_DDI_F,
},
},
{
.name = "AUX A",
.domains = ICL_AUX_A_IO_POWER_DOMAINS,
.ops = &icl_combo_phy_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_AUX_A,
},
},
{
.name = "AUX B",
.domains = ICL_AUX_B_IO_POWER_DOMAINS,
.ops = &icl_combo_phy_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_AUX_B,
},
},
{
.name = "AUX C",
.domains = ICL_AUX_C_IO_POWER_DOMAINS,
.ops = &icl_tc_phy_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_AUX_C,
.hsw.is_tc_tbt = false,
},
},
{
.name = "AUX D",
.domains = ICL_AUX_D_IO_POWER_DOMAINS,
.ops = &icl_tc_phy_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_AUX_D,
.hsw.is_tc_tbt = false,
},
},
{
.name = "AUX E",
.domains = ICL_AUX_E_IO_POWER_DOMAINS,
.ops = &icl_tc_phy_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_AUX_E,
.hsw.is_tc_tbt = false,
},
},
{
.name = "AUX F",
.domains = ICL_AUX_F_IO_POWER_DOMAINS,
.ops = &icl_tc_phy_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_AUX_F,
.hsw.is_tc_tbt = false,
},
},
{
.name = "AUX TBT1",
.domains = ICL_AUX_TBT1_IO_POWER_DOMAINS,
.ops = &icl_tc_phy_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_AUX_TBT1,
.hsw.is_tc_tbt = true,
},
},
{
.name = "AUX TBT2",
.domains = ICL_AUX_TBT2_IO_POWER_DOMAINS,
.ops = &icl_tc_phy_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_AUX_TBT2,
.hsw.is_tc_tbt = true,
},
},
{
.name = "AUX TBT3",
.domains = ICL_AUX_TBT3_IO_POWER_DOMAINS,
.ops = &icl_tc_phy_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_AUX_TBT3,
.hsw.is_tc_tbt = true,
},
},
{
.name = "AUX TBT4",
.domains = ICL_AUX_TBT4_IO_POWER_DOMAINS,
.ops = &icl_tc_phy_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_AUX_TBT4,
.hsw.is_tc_tbt = true,
},
},
{
.name = "power well 4",
.domains = ICL_PW_4_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_PW_4,
.hsw.has_fuses = true,
.hsw.irq_pipe_mask = BIT(PIPE_C),
},
},
};
static int
sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv,
int disable_power_well)
{
if (disable_power_well >= 0)
return !!disable_power_well;
return 1;
}
static u32 get_allowed_dc_mask(const struct drm_i915_private *dev_priv,
int enable_dc)
{
u32 mask;
int requested_dc;
int max_dc;
if (INTEL_GEN(dev_priv) >= 11) {
max_dc = 2;
/*
* DC9 has a separate HW flow from the rest of the DC states,
* not depending on the DMC firmware. It's needed by system
* suspend/resume, so allow it unconditionally.
*/
mask = DC_STATE_EN_DC9;
} else if (IS_GEN(dev_priv, 10) || IS_GEN9_BC(dev_priv)) {
max_dc = 2;
mask = 0;
} else if (IS_GEN9_LP(dev_priv)) {
max_dc = 1;
mask = DC_STATE_EN_DC9;
} else {
max_dc = 0;
mask = 0;
}
if (!i915_modparams.disable_power_well)
max_dc = 0;
if (enable_dc >= 0 && enable_dc <= max_dc) {
requested_dc = enable_dc;
} else if (enable_dc == -1) {
requested_dc = max_dc;
} else if (enable_dc > max_dc && enable_dc <= 2) {
DRM_DEBUG_KMS("Adjusting requested max DC state (%d->%d)\n",
enable_dc, max_dc);
requested_dc = max_dc;
} else {
DRM_ERROR("Unexpected value for enable_dc (%d)\n", enable_dc);
requested_dc = max_dc;
}
if (requested_dc > 1)
mask |= DC_STATE_EN_UPTO_DC6;
if (requested_dc > 0)
mask |= DC_STATE_EN_UPTO_DC5;
DRM_DEBUG_KMS("Allowed DC state mask %02x\n", mask);
return mask;
}
static int
__set_power_wells(struct i915_power_domains *power_domains,
const struct i915_power_well_desc *power_well_descs,
int power_well_count)
{
u64 power_well_ids = 0;
int i;
power_domains->power_well_count = power_well_count;
power_domains->power_wells =
kcalloc(power_well_count,
sizeof(*power_domains->power_wells),
GFP_KERNEL);
if (!power_domains->power_wells)
return -ENOMEM;
for (i = 0; i < power_well_count; i++) {
enum i915_power_well_id id = power_well_descs[i].id;
power_domains->power_wells[i].desc = &power_well_descs[i];
if (id == DISP_PW_ID_NONE)
continue;
WARN_ON(id >= sizeof(power_well_ids) * 8);
WARN_ON(power_well_ids & BIT_ULL(id));
power_well_ids |= BIT_ULL(id);
}
return 0;
}
#define set_power_wells(power_domains, __power_well_descs) \
__set_power_wells(power_domains, __power_well_descs, \
ARRAY_SIZE(__power_well_descs))
/**
* intel_power_domains_init - initializes the power domain structures
* @dev_priv: i915 device instance
*
* Initializes the power domain structures for @dev_priv depending upon the
* supported platform.
*/
int intel_power_domains_init(struct drm_i915_private *dev_priv)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
int err;
i915_modparams.disable_power_well =
sanitize_disable_power_well_option(dev_priv,
i915_modparams.disable_power_well);
dev_priv->csr.allowed_dc_mask =
get_allowed_dc_mask(dev_priv, i915_modparams.enable_dc);
BUILD_BUG_ON(POWER_DOMAIN_NUM > 64);
mutex_init(&power_domains->lock);
/*
* The enabling order will be from lower to higher indexed wells,
* the disabling order is reversed.
*/
if (IS_ICELAKE(dev_priv)) {
err = set_power_wells(power_domains, icl_power_wells);
} else if (IS_CANNONLAKE(dev_priv)) {
err = set_power_wells(power_domains, cnl_power_wells);
/*
* DDI and Aux IO are getting enabled for all ports
* regardless the presence or use. So, in order to avoid
* timeouts, lets remove them from the list
* for the SKUs without port F.
*/
if (!IS_CNL_WITH_PORT_F(dev_priv))
power_domains->power_well_count -= 2;
} else if (IS_GEMINILAKE(dev_priv)) {
err = set_power_wells(power_domains, glk_power_wells);
} else if (IS_BROXTON(dev_priv)) {
err = set_power_wells(power_domains, bxt_power_wells);
} else if (IS_GEN9_BC(dev_priv)) {
err = set_power_wells(power_domains, skl_power_wells);
} else if (IS_CHERRYVIEW(dev_priv)) {
err = set_power_wells(power_domains, chv_power_wells);
} else if (IS_BROADWELL(dev_priv)) {
err = set_power_wells(power_domains, bdw_power_wells);
} else if (IS_HASWELL(dev_priv)) {
err = set_power_wells(power_domains, hsw_power_wells);
} else if (IS_VALLEYVIEW(dev_priv)) {
err = set_power_wells(power_domains, vlv_power_wells);
} else if (IS_I830(dev_priv)) {
err = set_power_wells(power_domains, i830_power_wells);
} else {
err = set_power_wells(power_domains, i9xx_always_on_power_well);
}
return err;
}
/**
* intel_power_domains_cleanup - clean up power domains resources
* @dev_priv: i915 device instance
*
* Release any resources acquired by intel_power_domains_init()
*/
void intel_power_domains_cleanup(struct drm_i915_private *dev_priv)
{
kfree(dev_priv->power_domains.power_wells);
}
static void intel_power_domains_sync_hw(struct drm_i915_private *dev_priv)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
struct i915_power_well *power_well;
mutex_lock(&power_domains->lock);
for_each_power_well(dev_priv, power_well) {
power_well->desc->ops->sync_hw(dev_priv, power_well);
power_well->hw_enabled =
power_well->desc->ops->is_enabled(dev_priv, power_well);
}
mutex_unlock(&power_domains->lock);
}
static inline
bool intel_dbuf_slice_set(struct drm_i915_private *dev_priv,
i915_reg_t reg, bool enable)
{
u32 val, status;
val = I915_READ(reg);
val = enable ? (val | DBUF_POWER_REQUEST) : (val & ~DBUF_POWER_REQUEST);
I915_WRITE(reg, val);
POSTING_READ(reg);
udelay(10);
status = I915_READ(reg) & DBUF_POWER_STATE;
if ((enable && !status) || (!enable && status)) {
DRM_ERROR("DBus power %s timeout!\n",
enable ? "enable" : "disable");
return false;
}
return true;
}
static void gen9_dbuf_enable(struct drm_i915_private *dev_priv)
{
intel_dbuf_slice_set(dev_priv, DBUF_CTL, true);
}
static void gen9_dbuf_disable(struct drm_i915_private *dev_priv)
{
intel_dbuf_slice_set(dev_priv, DBUF_CTL, false);
}
static u8 intel_dbuf_max_slices(struct drm_i915_private *dev_priv)
{
if (INTEL_GEN(dev_priv) < 11)
return 1;
return 2;
}
void icl_dbuf_slices_update(struct drm_i915_private *dev_priv,
u8 req_slices)
{
const u8 hw_enabled_slices = dev_priv->wm.skl_hw.ddb.enabled_slices;
bool ret;
if (req_slices > intel_dbuf_max_slices(dev_priv)) {
DRM_ERROR("Invalid number of dbuf slices requested\n");
return;
}
if (req_slices == hw_enabled_slices || req_slices == 0)
return;
if (req_slices > hw_enabled_slices)
ret = intel_dbuf_slice_set(dev_priv, DBUF_CTL_S2, true);
else
ret = intel_dbuf_slice_set(dev_priv, DBUF_CTL_S2, false);
if (ret)
dev_priv->wm.skl_hw.ddb.enabled_slices = req_slices;
}
static void icl_dbuf_enable(struct drm_i915_private *dev_priv)
{
I915_WRITE(DBUF_CTL_S1, I915_READ(DBUF_CTL_S1) | DBUF_POWER_REQUEST);
I915_WRITE(DBUF_CTL_S2, I915_READ(DBUF_CTL_S2) | DBUF_POWER_REQUEST);
POSTING_READ(DBUF_CTL_S2);
udelay(10);
if (!(I915_READ(DBUF_CTL_S1) & DBUF_POWER_STATE) ||
!(I915_READ(DBUF_CTL_S2) & DBUF_POWER_STATE))
DRM_ERROR("DBuf power enable timeout\n");
else
/*
* FIXME: for now pretend that we only have 1 slice, see
* intel_enabled_dbuf_slices_num().
*/
dev_priv->wm.skl_hw.ddb.enabled_slices = 1;
}
static void icl_dbuf_disable(struct drm_i915_private *dev_priv)
{
I915_WRITE(DBUF_CTL_S1, I915_READ(DBUF_CTL_S1) & ~DBUF_POWER_REQUEST);
I915_WRITE(DBUF_CTL_S2, I915_READ(DBUF_CTL_S2) & ~DBUF_POWER_REQUEST);
POSTING_READ(DBUF_CTL_S2);
udelay(10);
if ((I915_READ(DBUF_CTL_S1) & DBUF_POWER_STATE) ||
(I915_READ(DBUF_CTL_S2) & DBUF_POWER_STATE))
DRM_ERROR("DBuf power disable timeout!\n");
else
/*
* FIXME: for now pretend that the first slice is always
* enabled, see intel_enabled_dbuf_slices_num().
*/
dev_priv->wm.skl_hw.ddb.enabled_slices = 1;
}
static void icl_mbus_init(struct drm_i915_private *dev_priv)
{
u32 val;
val = MBUS_ABOX_BT_CREDIT_POOL1(16) |
MBUS_ABOX_BT_CREDIT_POOL2(16) |
MBUS_ABOX_B_CREDIT(1) |
MBUS_ABOX_BW_CREDIT(1);
I915_WRITE(MBUS_ABOX_CTL, val);
}
static void intel_pch_reset_handshake(struct drm_i915_private *dev_priv,
bool enable)
{
i915_reg_t reg;
u32 reset_bits, val;
if (IS_IVYBRIDGE(dev_priv)) {
reg = GEN7_MSG_CTL;
reset_bits = WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK;
} else {
reg = HSW_NDE_RSTWRN_OPT;
reset_bits = RESET_PCH_HANDSHAKE_ENABLE;
}
val = I915_READ(reg);
if (enable)
val |= reset_bits;
else
val &= ~reset_bits;
I915_WRITE(reg, val);
}
static void skl_display_core_init(struct drm_i915_private *dev_priv,
bool resume)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
struct i915_power_well *well;
gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
/* enable PCH reset handshake */
intel_pch_reset_handshake(dev_priv, !HAS_PCH_NOP(dev_priv));
/* enable PG1 and Misc I/O */
mutex_lock(&power_domains->lock);
well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
intel_power_well_enable(dev_priv, well);
well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
intel_power_well_enable(dev_priv, well);
mutex_unlock(&power_domains->lock);
skl_init_cdclk(dev_priv);
gen9_dbuf_enable(dev_priv);
if (resume && dev_priv->csr.dmc_payload)
intel_csr_load_program(dev_priv);
}
static void skl_display_core_uninit(struct drm_i915_private *dev_priv)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
struct i915_power_well *well;
gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
gen9_dbuf_disable(dev_priv);
skl_uninit_cdclk(dev_priv);
/* The spec doesn't call for removing the reset handshake flag */
/* disable PG1 and Misc I/O */
mutex_lock(&power_domains->lock);
/*
* BSpec says to keep the MISC IO power well enabled here, only
* remove our request for power well 1.
* Note that even though the driver's request is removed power well 1
* may stay enabled after this due to DMC's own request on it.
*/
well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
intel_power_well_disable(dev_priv, well);
mutex_unlock(&power_domains->lock);
usleep_range(10, 30); /* 10 us delay per Bspec */
}
void bxt_display_core_init(struct drm_i915_private *dev_priv,
bool resume)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
struct i915_power_well *well;
gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
/*
* NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
* or else the reset will hang because there is no PCH to respond.
* Move the handshake programming to initialization sequence.
* Previously was left up to BIOS.
*/
intel_pch_reset_handshake(dev_priv, false);
/* Enable PG1 */
mutex_lock(&power_domains->lock);
well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
intel_power_well_enable(dev_priv, well);
mutex_unlock(&power_domains->lock);
bxt_init_cdclk(dev_priv);
gen9_dbuf_enable(dev_priv);
if (resume && dev_priv->csr.dmc_payload)
intel_csr_load_program(dev_priv);
}
void bxt_display_core_uninit(struct drm_i915_private *dev_priv)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
struct i915_power_well *well;
gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
gen9_dbuf_disable(dev_priv);
bxt_uninit_cdclk(dev_priv);
/* The spec doesn't call for removing the reset handshake flag */
/*
* Disable PW1 (PG1).
* Note that even though the driver's request is removed power well 1
* may stay enabled after this due to DMC's own request on it.
*/
mutex_lock(&power_domains->lock);
well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
intel_power_well_disable(dev_priv, well);
mutex_unlock(&power_domains->lock);
usleep_range(10, 30); /* 10 us delay per Bspec */
}
static void cnl_display_core_init(struct drm_i915_private *dev_priv, bool resume)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
struct i915_power_well *well;
gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
/* 1. Enable PCH Reset Handshake */
intel_pch_reset_handshake(dev_priv, !HAS_PCH_NOP(dev_priv));
/* 2-3. */
cnl_combo_phys_init(dev_priv);
/*
* 4. Enable Power Well 1 (PG1).
* The AUX IO power wells will be enabled on demand.
*/
mutex_lock(&power_domains->lock);
well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
intel_power_well_enable(dev_priv, well);
mutex_unlock(&power_domains->lock);
/* 5. Enable CD clock */
cnl_init_cdclk(dev_priv);
/* 6. Enable DBUF */
gen9_dbuf_enable(dev_priv);
if (resume && dev_priv->csr.dmc_payload)
intel_csr_load_program(dev_priv);
}
static void cnl_display_core_uninit(struct drm_i915_private *dev_priv)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
struct i915_power_well *well;
gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
/* 1. Disable all display engine functions -> aready done */
/* 2. Disable DBUF */
gen9_dbuf_disable(dev_priv);
/* 3. Disable CD clock */
cnl_uninit_cdclk(dev_priv);
/*
* 4. Disable Power Well 1 (PG1).
* The AUX IO power wells are toggled on demand, so they are already
* disabled at this point.
*/
mutex_lock(&power_domains->lock);
well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
intel_power_well_disable(dev_priv, well);
mutex_unlock(&power_domains->lock);
usleep_range(10, 30); /* 10 us delay per Bspec */
/* 5. */
cnl_combo_phys_uninit(dev_priv);
}
void icl_display_core_init(struct drm_i915_private *dev_priv,
bool resume)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
struct i915_power_well *well;
gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
/* 1. Enable PCH reset handshake. */
intel_pch_reset_handshake(dev_priv, !HAS_PCH_NOP(dev_priv));
/* 2-3. */
icl_combo_phys_init(dev_priv);
/*
* 4. Enable Power Well 1 (PG1).
* The AUX IO power wells will be enabled on demand.
*/
mutex_lock(&power_domains->lock);
well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
intel_power_well_enable(dev_priv, well);
mutex_unlock(&power_domains->lock);
/* 5. Enable CDCLK. */
icl_init_cdclk(dev_priv);
/* 6. Enable DBUF. */
icl_dbuf_enable(dev_priv);
/* 7. Setup MBUS. */
icl_mbus_init(dev_priv);
if (resume && dev_priv->csr.dmc_payload)
intel_csr_load_program(dev_priv);
}
void icl_display_core_uninit(struct drm_i915_private *dev_priv)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
struct i915_power_well *well;
gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
/* 1. Disable all display engine functions -> aready done */
/* 2. Disable DBUF */
icl_dbuf_disable(dev_priv);
/* 3. Disable CD clock */
icl_uninit_cdclk(dev_priv);
/*
* 4. Disable Power Well 1 (PG1).
* The AUX IO power wells are toggled on demand, so they are already
* disabled at this point.
*/
mutex_lock(&power_domains->lock);
well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
intel_power_well_disable(dev_priv, well);
mutex_unlock(&power_domains->lock);
/* 5. */
icl_combo_phys_uninit(dev_priv);
}
static void chv_phy_control_init(struct drm_i915_private *dev_priv)
{
struct i915_power_well *cmn_bc =
lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC);
struct i915_power_well *cmn_d =
lookup_power_well(dev_priv, CHV_DISP_PW_DPIO_CMN_D);
/*
* DISPLAY_PHY_CONTROL can get corrupted if read. As a
* workaround never ever read DISPLAY_PHY_CONTROL, and
* instead maintain a shadow copy ourselves. Use the actual
* power well state and lane status to reconstruct the
* expected initial value.
*/
dev_priv->chv_phy_control =
PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) |
PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) |
PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) |
PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) |
PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0);
/*
* If all lanes are disabled we leave the override disabled
* with all power down bits cleared to match the state we
* would use after disabling the port. Otherwise enable the
* override and set the lane powerdown bits accding to the
* current lane status.
*/
if (cmn_bc->desc->ops->is_enabled(dev_priv, cmn_bc)) {
u32 status = I915_READ(DPLL(PIPE_A));
unsigned int mask;
mask = status & DPLL_PORTB_READY_MASK;
if (mask == 0xf)
mask = 0x0;
else
dev_priv->chv_phy_control |=
PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0);
dev_priv->chv_phy_control |=
PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0);
mask = (status & DPLL_PORTC_READY_MASK) >> 4;
if (mask == 0xf)
mask = 0x0;
else
dev_priv->chv_phy_control |=
PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1);
dev_priv->chv_phy_control |=
PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1);
dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0);
dev_priv->chv_phy_assert[DPIO_PHY0] = false;
} else {
dev_priv->chv_phy_assert[DPIO_PHY0] = true;
}
if (cmn_d->desc->ops->is_enabled(dev_priv, cmn_d)) {
u32 status = I915_READ(DPIO_PHY_STATUS);
unsigned int mask;
mask = status & DPLL_PORTD_READY_MASK;
if (mask == 0xf)
mask = 0x0;
else
dev_priv->chv_phy_control |=
PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0);
dev_priv->chv_phy_control |=
PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0);
dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1);
dev_priv->chv_phy_assert[DPIO_PHY1] = false;
} else {
dev_priv->chv_phy_assert[DPIO_PHY1] = true;
}
I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
DRM_DEBUG_KMS("Initial PHY_CONTROL=0x%08x\n",
dev_priv->chv_phy_control);
}
static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
{
struct i915_power_well *cmn =
lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC);
struct i915_power_well *disp2d =
lookup_power_well(dev_priv, VLV_DISP_PW_DISP2D);
/* If the display might be already active skip this */
if (cmn->desc->ops->is_enabled(dev_priv, cmn) &&
disp2d->desc->ops->is_enabled(dev_priv, disp2d) &&
I915_READ(DPIO_CTL) & DPIO_CMNRST)
return;
DRM_DEBUG_KMS("toggling display PHY side reset\n");
/* cmnlane needs DPLL registers */
disp2d->desc->ops->enable(dev_priv, disp2d);
/*
* From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
* Need to assert and de-assert PHY SB reset by gating the
* common lane power, then un-gating it.
* Simply ungating isn't enough to reset the PHY enough to get
* ports and lanes running.
*/
cmn->desc->ops->disable(dev_priv, cmn);
}
static bool vlv_punit_is_power_gated(struct drm_i915_private *dev_priv, u32 reg0)
{
bool ret;
mutex_lock(&dev_priv->pcu_lock);
ret = (vlv_punit_read(dev_priv, reg0) & SSPM0_SSC_MASK) == SSPM0_SSC_PWR_GATE;
mutex_unlock(&dev_priv->pcu_lock);
return ret;
}
static void assert_ved_power_gated(struct drm_i915_private *dev_priv)
{
WARN(!vlv_punit_is_power_gated(dev_priv, PUNIT_REG_VEDSSPM0),
"VED not power gated\n");
}
static void assert_isp_power_gated(struct drm_i915_private *dev_priv)
{
static const struct pci_device_id isp_ids[] = {
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x0f38)},
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x22b8)},
{}
};
WARN(!pci_dev_present(isp_ids) &&
!vlv_punit_is_power_gated(dev_priv, PUNIT_REG_ISPSSPM0),
"ISP not power gated\n");
}
static void intel_power_domains_verify_state(struct drm_i915_private *dev_priv);
/**
* intel_power_domains_init_hw - initialize hardware power domain state
* @i915: i915 device instance
* @resume: Called from resume code paths or not
*
* This function initializes the hardware power domain state and enables all
* power wells belonging to the INIT power domain. Power wells in other
* domains (and not in the INIT domain) are referenced or disabled by
* intel_modeset_readout_hw_state(). After that the reference count of each
* power well must match its HW enabled state, see
* intel_power_domains_verify_state().
*
* It will return with power domains disabled (to be enabled later by
* intel_power_domains_enable()) and must be paired with
* intel_power_domains_fini_hw().
*/
void intel_power_domains_init_hw(struct drm_i915_private *i915, bool resume)
{
struct i915_power_domains *power_domains = &i915->power_domains;
power_domains->initializing = true;
if (IS_ICELAKE(i915)) {
icl_display_core_init(i915, resume);
} else if (IS_CANNONLAKE(i915)) {
cnl_display_core_init(i915, resume);
} else if (IS_GEN9_BC(i915)) {
skl_display_core_init(i915, resume);
} else if (IS_GEN9_LP(i915)) {
bxt_display_core_init(i915, resume);
} else if (IS_CHERRYVIEW(i915)) {
mutex_lock(&power_domains->lock);
chv_phy_control_init(i915);
mutex_unlock(&power_domains->lock);
assert_isp_power_gated(i915);
} else if (IS_VALLEYVIEW(i915)) {
mutex_lock(&power_domains->lock);
vlv_cmnlane_wa(i915);
mutex_unlock(&power_domains->lock);
assert_ved_power_gated(i915);
assert_isp_power_gated(i915);
} else if (IS_IVYBRIDGE(i915) || INTEL_GEN(i915) >= 7) {
intel_pch_reset_handshake(i915, !HAS_PCH_NOP(i915));
}
/*
* Keep all power wells enabled for any dependent HW access during
* initialization and to make sure we keep BIOS enabled display HW
* resources powered until display HW readout is complete. We drop
* this reference in intel_power_domains_enable().
*/
power_domains->wakeref =
intel_display_power_get(i915, POWER_DOMAIN_INIT);
/* Disable power support if the user asked so. */
if (!i915_modparams.disable_power_well)
intel_display_power_get(i915, POWER_DOMAIN_INIT);
intel_power_domains_sync_hw(i915);
power_domains->initializing = false;
}
/**
* intel_power_domains_fini_hw - deinitialize hw power domain state
* @i915: i915 device instance
*
* De-initializes the display power domain HW state. It also ensures that the
* device stays powered up so that the driver can be reloaded.
*
* It must be called with power domains already disabled (after a call to
* intel_power_domains_disable()) and must be paired with
* intel_power_domains_init_hw().
*/
void intel_power_domains_fini_hw(struct drm_i915_private *i915)
{
intel_wakeref_t wakeref __maybe_unused =
fetch_and_zero(&i915->power_domains.wakeref);
/* Remove the refcount we took to keep power well support disabled. */
if (!i915_modparams.disable_power_well)
intel_display_power_put_unchecked(i915, POWER_DOMAIN_INIT);
intel_power_domains_verify_state(i915);
/* Keep the power well enabled, but cancel its rpm wakeref. */
intel_runtime_pm_put(i915, wakeref);
}
/**
* intel_power_domains_enable - enable toggling of display power wells
* @i915: i915 device instance
*
* Enable the ondemand enabling/disabling of the display power wells. Note that
* power wells not belonging to POWER_DOMAIN_INIT are allowed to be toggled
* only at specific points of the display modeset sequence, thus they are not
* affected by the intel_power_domains_enable()/disable() calls. The purpose
* of these function is to keep the rest of power wells enabled until the end
* of display HW readout (which will acquire the power references reflecting
* the current HW state).
*/
void intel_power_domains_enable(struct drm_i915_private *i915)
{
intel_wakeref_t wakeref __maybe_unused =
fetch_and_zero(&i915->power_domains.wakeref);
intel_display_power_put(i915, POWER_DOMAIN_INIT, wakeref);
intel_power_domains_verify_state(i915);
}
/**
* intel_power_domains_disable - disable toggling of display power wells
* @i915: i915 device instance
*
* Disable the ondemand enabling/disabling of the display power wells. See
* intel_power_domains_enable() for which power wells this call controls.
*/
void intel_power_domains_disable(struct drm_i915_private *i915)
{
struct i915_power_domains *power_domains = &i915->power_domains;
WARN_ON(power_domains->wakeref);
power_domains->wakeref =
intel_display_power_get(i915, POWER_DOMAIN_INIT);
intel_power_domains_verify_state(i915);
}
/**
* intel_power_domains_suspend - suspend power domain state
* @i915: i915 device instance
* @suspend_mode: specifies the target suspend state (idle, mem, hibernation)
*
* This function prepares the hardware power domain state before entering
* system suspend.
*
* It must be called with power domains already disabled (after a call to
* intel_power_domains_disable()) and paired with intel_power_domains_resume().
*/
void intel_power_domains_suspend(struct drm_i915_private *i915,
enum i915_drm_suspend_mode suspend_mode)
{
struct i915_power_domains *power_domains = &i915->power_domains;
intel_wakeref_t wakeref __maybe_unused =
fetch_and_zero(&power_domains->wakeref);
intel_display_power_put(i915, POWER_DOMAIN_INIT, wakeref);
/*
* In case of suspend-to-idle (aka S0ix) on a DMC platform without DC9
* support don't manually deinit the power domains. This also means the
* CSR/DMC firmware will stay active, it will power down any HW
* resources as required and also enable deeper system power states
* that would be blocked if the firmware was inactive.
*/
if (!(i915->csr.allowed_dc_mask & DC_STATE_EN_DC9) &&
suspend_mode == I915_DRM_SUSPEND_IDLE &&
i915->csr.dmc_payload) {
intel_power_domains_verify_state(i915);
return;
}
/*
* Even if power well support was disabled we still want to disable
* power wells if power domains must be deinitialized for suspend.
*/
if (!i915_modparams.disable_power_well) {
intel_display_power_put_unchecked(i915, POWER_DOMAIN_INIT);
intel_power_domains_verify_state(i915);
}
if (IS_ICELAKE(i915))
icl_display_core_uninit(i915);
else if (IS_CANNONLAKE(i915))
cnl_display_core_uninit(i915);
else if (IS_GEN9_BC(i915))
skl_display_core_uninit(i915);
else if (IS_GEN9_LP(i915))
bxt_display_core_uninit(i915);
power_domains->display_core_suspended = true;
}
/**
* intel_power_domains_resume - resume power domain state
* @i915: i915 device instance
*
* This function resume the hardware power domain state during system resume.
*
* It will return with power domain support disabled (to be enabled later by
* intel_power_domains_enable()) and must be paired with
* intel_power_domains_suspend().
*/
void intel_power_domains_resume(struct drm_i915_private *i915)
{
struct i915_power_domains *power_domains = &i915->power_domains;
if (power_domains->display_core_suspended) {
intel_power_domains_init_hw(i915, true);
power_domains->display_core_suspended = false;
} else {
WARN_ON(power_domains->wakeref);
power_domains->wakeref =
intel_display_power_get(i915, POWER_DOMAIN_INIT);
}
intel_power_domains_verify_state(i915);
}
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
static void intel_power_domains_dump_info(struct drm_i915_private *i915)
{
struct i915_power_domains *power_domains = &i915->power_domains;
struct i915_power_well *power_well;
for_each_power_well(i915, power_well) {
enum intel_display_power_domain domain;
DRM_DEBUG_DRIVER("%-25s %d\n",
power_well->desc->name, power_well->count);
for_each_power_domain(domain, power_well->desc->domains)
DRM_DEBUG_DRIVER(" %-23s %d\n",
intel_display_power_domain_str(domain),
power_domains->domain_use_count[domain]);
}
}
/**
* intel_power_domains_verify_state - verify the HW/SW state for all power wells
* @i915: i915 device instance
*
* Verify if the reference count of each power well matches its HW enabled
* state and the total refcount of the domains it belongs to. This must be
* called after modeset HW state sanitization, which is responsible for
* acquiring reference counts for any power wells in use and disabling the
* ones left on by BIOS but not required by any active output.
*/
static void intel_power_domains_verify_state(struct drm_i915_private *i915)
{
struct i915_power_domains *power_domains = &i915->power_domains;
struct i915_power_well *power_well;
bool dump_domain_info;
mutex_lock(&power_domains->lock);
dump_domain_info = false;
for_each_power_well(i915, power_well) {
enum intel_display_power_domain domain;
int domains_count;
bool enabled;
enabled = power_well->desc->ops->is_enabled(i915, power_well);
if ((power_well->count || power_well->desc->always_on) !=
enabled)
DRM_ERROR("power well %s state mismatch (refcount %d/enabled %d)",
power_well->desc->name,
power_well->count, enabled);
domains_count = 0;
for_each_power_domain(domain, power_well->desc->domains)
domains_count += power_domains->domain_use_count[domain];
if (power_well->count != domains_count) {
DRM_ERROR("power well %s refcount/domain refcount mismatch "
"(refcount %d/domains refcount %d)\n",
power_well->desc->name, power_well->count,
domains_count);
dump_domain_info = true;
}
}
if (dump_domain_info) {
static bool dumped;
if (!dumped) {
intel_power_domains_dump_info(i915);
dumped = true;
}
}
mutex_unlock(&power_domains->lock);
}
#else
static void intel_power_domains_verify_state(struct drm_i915_private *i915)
{
}
#endif
/**
* intel_runtime_pm_get - grab a runtime pm reference
* @i915: i915 device instance
*
* This function grabs a device-level runtime pm reference (mostly used for GEM
* code to ensure the GTT or GT is on) and ensures that it is powered up.
*
* Any runtime pm reference obtained by this function must have a symmetric
* call to intel_runtime_pm_put() to release the reference again.
*
* Returns: the wakeref cookie to pass to intel_runtime_pm_put()
*/
intel_wakeref_t intel_runtime_pm_get(struct drm_i915_private *i915)
{
struct pci_dev *pdev = i915->drm.pdev;
struct device *kdev = &pdev->dev;
int ret;
ret = pm_runtime_get_sync(kdev);
WARN_ONCE(ret < 0, "pm_runtime_get_sync() failed: %d\n", ret);
return track_intel_runtime_pm_wakeref(i915);
}
/**
* intel_runtime_pm_get_if_in_use - grab a runtime pm reference if device in use
* @i915: i915 device instance
*
* This function grabs a device-level runtime pm reference if the device is
* already in use and ensures that it is powered up. It is illegal to try
* and access the HW should intel_runtime_pm_get_if_in_use() report failure.
*
* Any runtime pm reference obtained by this function must have a symmetric
* call to intel_runtime_pm_put() to release the reference again.
*
* Returns: the wakeref cookie to pass to intel_runtime_pm_put(), evaluates
* as True if the wakeref was acquired, or False otherwise.
*/
intel_wakeref_t intel_runtime_pm_get_if_in_use(struct drm_i915_private *i915)
{
if (IS_ENABLED(CONFIG_PM)) {
struct pci_dev *pdev = i915->drm.pdev;
struct device *kdev = &pdev->dev;
/*
* In cases runtime PM is disabled by the RPM core and we get
* an -EINVAL return value we are not supposed to call this
* function, since the power state is undefined. This applies
* atm to the late/early system suspend/resume handlers.
*/
if (pm_runtime_get_if_in_use(kdev) <= 0)
return 0;
}
return track_intel_runtime_pm_wakeref(i915);
}
/**
* intel_runtime_pm_get_noresume - grab a runtime pm reference
* @i915: i915 device instance
*
* This function grabs a device-level runtime pm reference (mostly used for GEM
* code to ensure the GTT or GT is on).
*
* It will _not_ power up the device but instead only check that it's powered
* on. Therefore it is only valid to call this functions from contexts where
* the device is known to be powered up and where trying to power it up would
* result in hilarity and deadlocks. That pretty much means only the system
* suspend/resume code where this is used to grab runtime pm references for
* delayed setup down in work items.
*
* Any runtime pm reference obtained by this function must have a symmetric
* call to intel_runtime_pm_put() to release the reference again.
*
* Returns: the wakeref cookie to pass to intel_runtime_pm_put()
*/
intel_wakeref_t intel_runtime_pm_get_noresume(struct drm_i915_private *i915)
{
struct pci_dev *pdev = i915->drm.pdev;
struct device *kdev = &pdev->dev;
assert_rpm_wakelock_held(i915);
pm_runtime_get_noresume(kdev);
return track_intel_runtime_pm_wakeref(i915);
}
/**
* intel_runtime_pm_put - release a runtime pm reference
* @i915: i915 device instance
*
* This function drops the device-level runtime pm reference obtained by
* intel_runtime_pm_get() and might power down the corresponding
* hardware block right away if this is the last reference.
*/
void intel_runtime_pm_put_unchecked(struct drm_i915_private *i915)
{
struct pci_dev *pdev = i915->drm.pdev;
struct device *kdev = &pdev->dev;
untrack_intel_runtime_pm_wakeref(i915);
pm_runtime_mark_last_busy(kdev);
pm_runtime_put_autosuspend(kdev);
}
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
void intel_runtime_pm_put(struct drm_i915_private *i915, intel_wakeref_t wref)
{
cancel_intel_runtime_pm_wakeref(i915, wref);
intel_runtime_pm_put_unchecked(i915);
}
#endif
/**
* intel_runtime_pm_enable - enable runtime pm
* @i915: i915 device instance
*
* This function enables runtime pm at the end of the driver load sequence.
*
* Note that this function does currently not enable runtime pm for the
* subordinate display power domains. That is done by
* intel_power_domains_enable().
*/
void intel_runtime_pm_enable(struct drm_i915_private *i915)
{
struct pci_dev *pdev = i915->drm.pdev;
struct device *kdev = &pdev->dev;
/*
* Disable the system suspend direct complete optimization, which can
* leave the device suspended skipping the driver's suspend handlers
* if the device was already runtime suspended. This is needed due to
* the difference in our runtime and system suspend sequence and
* becaue the HDA driver may require us to enable the audio power
* domain during system suspend.
*/
dev_pm_set_driver_flags(kdev, DPM_FLAG_NEVER_SKIP);
pm_runtime_set_autosuspend_delay(kdev, 10000); /* 10s */
pm_runtime_mark_last_busy(kdev);
/*
* Take a permanent reference to disable the RPM functionality and drop
* it only when unloading the driver. Use the low level get/put helpers,
* so the driver's own RPM reference tracking asserts also work on
* platforms without RPM support.
*/
if (!HAS_RUNTIME_PM(i915)) {
int ret;
pm_runtime_dont_use_autosuspend(kdev);
ret = pm_runtime_get_sync(kdev);
WARN(ret < 0, "pm_runtime_get_sync() failed: %d\n", ret);
} else {
pm_runtime_use_autosuspend(kdev);
}
/*
* The core calls the driver load handler with an RPM reference held.
* We drop that here and will reacquire it during unloading in
* intel_power_domains_fini().
*/
pm_runtime_put_autosuspend(kdev);
}
void intel_runtime_pm_disable(struct drm_i915_private *i915)
{
struct pci_dev *pdev = i915->drm.pdev;
struct device *kdev = &pdev->dev;
/* Transfer rpm ownership back to core */
WARN(pm_runtime_get_sync(kdev) < 0,
"Failed to pass rpm ownership back to core\n");
pm_runtime_dont_use_autosuspend(kdev);
if (!HAS_RUNTIME_PM(i915))
pm_runtime_put(kdev);
}
void intel_runtime_pm_cleanup(struct drm_i915_private *i915)
{
struct i915_runtime_pm *rpm = &i915->runtime_pm;
int count;
count = atomic_fetch_inc(&rpm->wakeref_count); /* balance untrack */
WARN(count,
"i915->runtime_pm.wakeref_count=%d on cleanup\n",
count);
untrack_intel_runtime_pm_wakeref(i915);
}
void intel_runtime_pm_init_early(struct drm_i915_private *i915)
{
init_intel_runtime_pm_wakeref(i915);
}