| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * This file contains the procedures for the handling of select and poll |
| * |
| * Created for Linux based loosely upon Mathius Lattner's minix |
| * patches by Peter MacDonald. Heavily edited by Linus. |
| * |
| * 4 February 1994 |
| * COFF/ELF binary emulation. If the process has the STICKY_TIMEOUTS |
| * flag set in its personality we do *not* modify the given timeout |
| * parameter to reflect time remaining. |
| * |
| * 24 January 2000 |
| * Changed sys_poll()/do_poll() to use PAGE_SIZE chunk-based allocation |
| * of fds to overcome nfds < 16390 descriptors limit (Tigran Aivazian). |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/sched/signal.h> |
| #include <linux/sched/rt.h> |
| #include <linux/syscalls.h> |
| #include <linux/export.h> |
| #include <linux/slab.h> |
| #include <linux/poll.h> |
| #include <linux/personality.h> /* for STICKY_TIMEOUTS */ |
| #include <linux/file.h> |
| #include <linux/fdtable.h> |
| #include <linux/fs.h> |
| #include <linux/rcupdate.h> |
| #include <linux/hrtimer.h> |
| #include <linux/freezer.h> |
| #include <net/busy_poll.h> |
| #include <linux/vmalloc.h> |
| |
| #include <linux/uaccess.h> |
| |
| |
| /* |
| * Estimate expected accuracy in ns from a timeval. |
| * |
| * After quite a bit of churning around, we've settled on |
| * a simple thing of taking 0.1% of the timeout as the |
| * slack, with a cap of 100 msec. |
| * "nice" tasks get a 0.5% slack instead. |
| * |
| * Consider this comment an open invitation to come up with even |
| * better solutions.. |
| */ |
| |
| #define MAX_SLACK (100 * NSEC_PER_MSEC) |
| |
| static long __estimate_accuracy(struct timespec64 *tv) |
| { |
| long slack; |
| int divfactor = 1000; |
| |
| if (tv->tv_sec < 0) |
| return 0; |
| |
| if (task_nice(current) > 0) |
| divfactor = divfactor / 5; |
| |
| if (tv->tv_sec > MAX_SLACK / (NSEC_PER_SEC/divfactor)) |
| return MAX_SLACK; |
| |
| slack = tv->tv_nsec / divfactor; |
| slack += tv->tv_sec * (NSEC_PER_SEC/divfactor); |
| |
| if (slack > MAX_SLACK) |
| return MAX_SLACK; |
| |
| return slack; |
| } |
| |
| u64 select_estimate_accuracy(struct timespec64 *tv) |
| { |
| u64 ret; |
| struct timespec64 now; |
| |
| /* |
| * Realtime tasks get a slack of 0 for obvious reasons. |
| */ |
| |
| if (rt_task(current)) |
| return 0; |
| |
| ktime_get_ts64(&now); |
| now = timespec64_sub(*tv, now); |
| ret = __estimate_accuracy(&now); |
| if (ret < current->timer_slack_ns) |
| return current->timer_slack_ns; |
| return ret; |
| } |
| |
| |
| |
| struct poll_table_page { |
| struct poll_table_page * next; |
| struct poll_table_entry * entry; |
| struct poll_table_entry entries[0]; |
| }; |
| |
| #define POLL_TABLE_FULL(table) \ |
| ((unsigned long)((table)->entry+1) > PAGE_SIZE + (unsigned long)(table)) |
| |
| /* |
| * Ok, Peter made a complicated, but straightforward multiple_wait() function. |
| * I have rewritten this, taking some shortcuts: This code may not be easy to |
| * follow, but it should be free of race-conditions, and it's practical. If you |
| * understand what I'm doing here, then you understand how the linux |
| * sleep/wakeup mechanism works. |
| * |
| * Two very simple procedures, poll_wait() and poll_freewait() make all the |
| * work. poll_wait() is an inline-function defined in <linux/poll.h>, |
| * as all select/poll functions have to call it to add an entry to the |
| * poll table. |
| */ |
| static void __pollwait(struct file *filp, wait_queue_head_t *wait_address, |
| poll_table *p); |
| |
| void poll_initwait(struct poll_wqueues *pwq) |
| { |
| init_poll_funcptr(&pwq->pt, __pollwait); |
| pwq->polling_task = current; |
| pwq->triggered = 0; |
| pwq->error = 0; |
| pwq->table = NULL; |
| pwq->inline_index = 0; |
| } |
| EXPORT_SYMBOL(poll_initwait); |
| |
| static void free_poll_entry(struct poll_table_entry *entry) |
| { |
| remove_wait_queue(entry->wait_address, &entry->wait); |
| fput(entry->filp); |
| } |
| |
| void poll_freewait(struct poll_wqueues *pwq) |
| { |
| struct poll_table_page * p = pwq->table; |
| int i; |
| for (i = 0; i < pwq->inline_index; i++) |
| free_poll_entry(pwq->inline_entries + i); |
| while (p) { |
| struct poll_table_entry * entry; |
| struct poll_table_page *old; |
| |
| entry = p->entry; |
| do { |
| entry--; |
| free_poll_entry(entry); |
| } while (entry > p->entries); |
| old = p; |
| p = p->next; |
| free_page((unsigned long) old); |
| } |
| } |
| EXPORT_SYMBOL(poll_freewait); |
| |
| static struct poll_table_entry *poll_get_entry(struct poll_wqueues *p) |
| { |
| struct poll_table_page *table = p->table; |
| |
| if (p->inline_index < N_INLINE_POLL_ENTRIES) |
| return p->inline_entries + p->inline_index++; |
| |
| if (!table || POLL_TABLE_FULL(table)) { |
| struct poll_table_page *new_table; |
| |
| new_table = (struct poll_table_page *) __get_free_page(GFP_KERNEL); |
| if (!new_table) { |
| p->error = -ENOMEM; |
| return NULL; |
| } |
| new_table->entry = new_table->entries; |
| new_table->next = table; |
| p->table = new_table; |
| table = new_table; |
| } |
| |
| return table->entry++; |
| } |
| |
| static int __pollwake(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) |
| { |
| struct poll_wqueues *pwq = wait->private; |
| DECLARE_WAITQUEUE(dummy_wait, pwq->polling_task); |
| |
| /* |
| * Although this function is called under waitqueue lock, LOCK |
| * doesn't imply write barrier and the users expect write |
| * barrier semantics on wakeup functions. The following |
| * smp_wmb() is equivalent to smp_wmb() in try_to_wake_up() |
| * and is paired with smp_store_mb() in poll_schedule_timeout. |
| */ |
| smp_wmb(); |
| pwq->triggered = 1; |
| |
| /* |
| * Perform the default wake up operation using a dummy |
| * waitqueue. |
| * |
| * TODO: This is hacky but there currently is no interface to |
| * pass in @sync. @sync is scheduled to be removed and once |
| * that happens, wake_up_process() can be used directly. |
| */ |
| return default_wake_function(&dummy_wait, mode, sync, key); |
| } |
| |
| static int pollwake(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) |
| { |
| struct poll_table_entry *entry; |
| |
| entry = container_of(wait, struct poll_table_entry, wait); |
| if (key && !(key_to_poll(key) & entry->key)) |
| return 0; |
| return __pollwake(wait, mode, sync, key); |
| } |
| |
| /* Add a new entry */ |
| static void __pollwait(struct file *filp, wait_queue_head_t *wait_address, |
| poll_table *p) |
| { |
| struct poll_wqueues *pwq = container_of(p, struct poll_wqueues, pt); |
| struct poll_table_entry *entry = poll_get_entry(pwq); |
| if (!entry) |
| return; |
| entry->filp = get_file(filp); |
| entry->wait_address = wait_address; |
| entry->key = p->_key; |
| init_waitqueue_func_entry(&entry->wait, pollwake); |
| entry->wait.private = pwq; |
| add_wait_queue(wait_address, &entry->wait); |
| } |
| |
| static int poll_schedule_timeout(struct poll_wqueues *pwq, int state, |
| ktime_t *expires, unsigned long slack) |
| { |
| int rc = -EINTR; |
| |
| set_current_state(state); |
| if (!pwq->triggered) |
| rc = schedule_hrtimeout_range(expires, slack, HRTIMER_MODE_ABS); |
| __set_current_state(TASK_RUNNING); |
| |
| /* |
| * Prepare for the next iteration. |
| * |
| * The following smp_store_mb() serves two purposes. First, it's |
| * the counterpart rmb of the wmb in pollwake() such that data |
| * written before wake up is always visible after wake up. |
| * Second, the full barrier guarantees that triggered clearing |
| * doesn't pass event check of the next iteration. Note that |
| * this problem doesn't exist for the first iteration as |
| * add_wait_queue() has full barrier semantics. |
| */ |
| smp_store_mb(pwq->triggered, 0); |
| |
| return rc; |
| } |
| |
| /** |
| * poll_select_set_timeout - helper function to setup the timeout value |
| * @to: pointer to timespec64 variable for the final timeout |
| * @sec: seconds (from user space) |
| * @nsec: nanoseconds (from user space) |
| * |
| * Note, we do not use a timespec for the user space value here, That |
| * way we can use the function for timeval and compat interfaces as well. |
| * |
| * Returns -EINVAL if sec/nsec are not normalized. Otherwise 0. |
| */ |
| int poll_select_set_timeout(struct timespec64 *to, time64_t sec, long nsec) |
| { |
| struct timespec64 ts = {.tv_sec = sec, .tv_nsec = nsec}; |
| |
| if (!timespec64_valid(&ts)) |
| return -EINVAL; |
| |
| /* Optimize for the zero timeout value here */ |
| if (!sec && !nsec) { |
| to->tv_sec = to->tv_nsec = 0; |
| } else { |
| ktime_get_ts64(to); |
| *to = timespec64_add_safe(*to, ts); |
| } |
| return 0; |
| } |
| |
| static int poll_select_copy_remaining(struct timespec64 *end_time, |
| void __user *p, |
| int timeval, int ret) |
| { |
| struct timespec64 rts; |
| struct timeval rtv; |
| |
| if (!p) |
| return ret; |
| |
| if (current->personality & STICKY_TIMEOUTS) |
| goto sticky; |
| |
| /* No update for zero timeout */ |
| if (!end_time->tv_sec && !end_time->tv_nsec) |
| return ret; |
| |
| ktime_get_ts64(&rts); |
| rts = timespec64_sub(*end_time, rts); |
| if (rts.tv_sec < 0) |
| rts.tv_sec = rts.tv_nsec = 0; |
| |
| |
| if (timeval) { |
| if (sizeof(rtv) > sizeof(rtv.tv_sec) + sizeof(rtv.tv_usec)) |
| memset(&rtv, 0, sizeof(rtv)); |
| rtv.tv_sec = rts.tv_sec; |
| rtv.tv_usec = rts.tv_nsec / NSEC_PER_USEC; |
| |
| if (!copy_to_user(p, &rtv, sizeof(rtv))) |
| return ret; |
| |
| } else if (!put_timespec64(&rts, p)) |
| return ret; |
| |
| /* |
| * If an application puts its timeval in read-only memory, we |
| * don't want the Linux-specific update to the timeval to |
| * cause a fault after the select has completed |
| * successfully. However, because we're not updating the |
| * timeval, we can't restart the system call. |
| */ |
| |
| sticky: |
| if (ret == -ERESTARTNOHAND) |
| ret = -EINTR; |
| return ret; |
| } |
| |
| /* |
| * Scalable version of the fd_set. |
| */ |
| |
| typedef struct { |
| unsigned long *in, *out, *ex; |
| unsigned long *res_in, *res_out, *res_ex; |
| } fd_set_bits; |
| |
| /* |
| * How many longwords for "nr" bits? |
| */ |
| #define FDS_BITPERLONG (8*sizeof(long)) |
| #define FDS_LONGS(nr) (((nr)+FDS_BITPERLONG-1)/FDS_BITPERLONG) |
| #define FDS_BYTES(nr) (FDS_LONGS(nr)*sizeof(long)) |
| |
| /* |
| * We do a VERIFY_WRITE here even though we are only reading this time: |
| * we'll write to it eventually.. |
| * |
| * Use "unsigned long" accesses to let user-mode fd_set's be long-aligned. |
| */ |
| static inline |
| int get_fd_set(unsigned long nr, void __user *ufdset, unsigned long *fdset) |
| { |
| nr = FDS_BYTES(nr); |
| if (ufdset) |
| return copy_from_user(fdset, ufdset, nr) ? -EFAULT : 0; |
| |
| memset(fdset, 0, nr); |
| return 0; |
| } |
| |
| static inline unsigned long __must_check |
| set_fd_set(unsigned long nr, void __user *ufdset, unsigned long *fdset) |
| { |
| if (ufdset) |
| return __copy_to_user(ufdset, fdset, FDS_BYTES(nr)); |
| return 0; |
| } |
| |
| static inline |
| void zero_fd_set(unsigned long nr, unsigned long *fdset) |
| { |
| memset(fdset, 0, FDS_BYTES(nr)); |
| } |
| |
| #define FDS_IN(fds, n) (fds->in + n) |
| #define FDS_OUT(fds, n) (fds->out + n) |
| #define FDS_EX(fds, n) (fds->ex + n) |
| |
| #define BITS(fds, n) (*FDS_IN(fds, n)|*FDS_OUT(fds, n)|*FDS_EX(fds, n)) |
| |
| static int max_select_fd(unsigned long n, fd_set_bits *fds) |
| { |
| unsigned long *open_fds; |
| unsigned long set; |
| int max; |
| struct fdtable *fdt; |
| |
| /* handle last in-complete long-word first */ |
| set = ~(~0UL << (n & (BITS_PER_LONG-1))); |
| n /= BITS_PER_LONG; |
| fdt = files_fdtable(current->files); |
| open_fds = fdt->open_fds + n; |
| max = 0; |
| if (set) { |
| set &= BITS(fds, n); |
| if (set) { |
| if (!(set & ~*open_fds)) |
| goto get_max; |
| return -EBADF; |
| } |
| } |
| while (n) { |
| open_fds--; |
| n--; |
| set = BITS(fds, n); |
| if (!set) |
| continue; |
| if (set & ~*open_fds) |
| return -EBADF; |
| if (max) |
| continue; |
| get_max: |
| do { |
| max++; |
| set >>= 1; |
| } while (set); |
| max += n * BITS_PER_LONG; |
| } |
| |
| return max; |
| } |
| |
| #define POLLIN_SET (EPOLLRDNORM | EPOLLRDBAND | EPOLLIN | EPOLLHUP | EPOLLERR) |
| #define POLLOUT_SET (EPOLLWRBAND | EPOLLWRNORM | EPOLLOUT | EPOLLERR) |
| #define POLLEX_SET (EPOLLPRI) |
| |
| static inline void wait_key_set(poll_table *wait, unsigned long in, |
| unsigned long out, unsigned long bit, |
| __poll_t ll_flag) |
| { |
| wait->_key = POLLEX_SET | ll_flag; |
| if (in & bit) |
| wait->_key |= POLLIN_SET; |
| if (out & bit) |
| wait->_key |= POLLOUT_SET; |
| } |
| |
| static int do_select(int n, fd_set_bits *fds, struct timespec64 *end_time) |
| { |
| ktime_t expire, *to = NULL; |
| struct poll_wqueues table; |
| poll_table *wait; |
| int retval, i, timed_out = 0; |
| u64 slack = 0; |
| __poll_t busy_flag = net_busy_loop_on() ? POLL_BUSY_LOOP : 0; |
| unsigned long busy_start = 0; |
| |
| rcu_read_lock(); |
| retval = max_select_fd(n, fds); |
| rcu_read_unlock(); |
| |
| if (retval < 0) |
| return retval; |
| n = retval; |
| |
| poll_initwait(&table); |
| wait = &table.pt; |
| if (end_time && !end_time->tv_sec && !end_time->tv_nsec) { |
| wait->_qproc = NULL; |
| timed_out = 1; |
| } |
| |
| if (end_time && !timed_out) |
| slack = select_estimate_accuracy(end_time); |
| |
| retval = 0; |
| for (;;) { |
| unsigned long *rinp, *routp, *rexp, *inp, *outp, *exp; |
| bool can_busy_loop = false; |
| |
| inp = fds->in; outp = fds->out; exp = fds->ex; |
| rinp = fds->res_in; routp = fds->res_out; rexp = fds->res_ex; |
| |
| for (i = 0; i < n; ++rinp, ++routp, ++rexp) { |
| unsigned long in, out, ex, all_bits, bit = 1, j; |
| unsigned long res_in = 0, res_out = 0, res_ex = 0; |
| __poll_t mask; |
| |
| in = *inp++; out = *outp++; ex = *exp++; |
| all_bits = in | out | ex; |
| if (all_bits == 0) { |
| i += BITS_PER_LONG; |
| continue; |
| } |
| |
| for (j = 0; j < BITS_PER_LONG; ++j, ++i, bit <<= 1) { |
| struct fd f; |
| if (i >= n) |
| break; |
| if (!(bit & all_bits)) |
| continue; |
| f = fdget(i); |
| if (f.file) { |
| wait_key_set(wait, in, out, bit, |
| busy_flag); |
| mask = vfs_poll(f.file, wait); |
| |
| fdput(f); |
| if ((mask & POLLIN_SET) && (in & bit)) { |
| res_in |= bit; |
| retval++; |
| wait->_qproc = NULL; |
| } |
| if ((mask & POLLOUT_SET) && (out & bit)) { |
| res_out |= bit; |
| retval++; |
| wait->_qproc = NULL; |
| } |
| if ((mask & POLLEX_SET) && (ex & bit)) { |
| res_ex |= bit; |
| retval++; |
| wait->_qproc = NULL; |
| } |
| /* got something, stop busy polling */ |
| if (retval) { |
| can_busy_loop = false; |
| busy_flag = 0; |
| |
| /* |
| * only remember a returned |
| * POLL_BUSY_LOOP if we asked for it |
| */ |
| } else if (busy_flag & mask) |
| can_busy_loop = true; |
| |
| } |
| } |
| if (res_in) |
| *rinp = res_in; |
| if (res_out) |
| *routp = res_out; |
| if (res_ex) |
| *rexp = res_ex; |
| cond_resched(); |
| } |
| wait->_qproc = NULL; |
| if (retval || timed_out || signal_pending(current)) |
| break; |
| if (table.error) { |
| retval = table.error; |
| break; |
| } |
| |
| /* only if found POLL_BUSY_LOOP sockets && not out of time */ |
| if (can_busy_loop && !need_resched()) { |
| if (!busy_start) { |
| busy_start = busy_loop_current_time(); |
| continue; |
| } |
| if (!busy_loop_timeout(busy_start)) |
| continue; |
| } |
| busy_flag = 0; |
| |
| /* |
| * If this is the first loop and we have a timeout |
| * given, then we convert to ktime_t and set the to |
| * pointer to the expiry value. |
| */ |
| if (end_time && !to) { |
| expire = timespec64_to_ktime(*end_time); |
| to = &expire; |
| } |
| |
| if (!poll_schedule_timeout(&table, TASK_INTERRUPTIBLE, |
| to, slack)) |
| timed_out = 1; |
| } |
| |
| poll_freewait(&table); |
| |
| return retval; |
| } |
| |
| /* |
| * We can actually return ERESTARTSYS instead of EINTR, but I'd |
| * like to be certain this leads to no problems. So I return |
| * EINTR just for safety. |
| * |
| * Update: ERESTARTSYS breaks at least the xview clock binary, so |
| * I'm trying ERESTARTNOHAND which restart only when you want to. |
| */ |
| int core_sys_select(int n, fd_set __user *inp, fd_set __user *outp, |
| fd_set __user *exp, struct timespec64 *end_time) |
| { |
| fd_set_bits fds; |
| void *bits; |
| int ret, max_fds; |
| size_t size, alloc_size; |
| struct fdtable *fdt; |
| /* Allocate small arguments on the stack to save memory and be faster */ |
| long stack_fds[SELECT_STACK_ALLOC/sizeof(long)]; |
| |
| ret = -EINVAL; |
| if (n < 0) |
| goto out_nofds; |
| |
| /* max_fds can increase, so grab it once to avoid race */ |
| rcu_read_lock(); |
| fdt = files_fdtable(current->files); |
| max_fds = fdt->max_fds; |
| rcu_read_unlock(); |
| if (n > max_fds) |
| n = max_fds; |
| |
| /* |
| * We need 6 bitmaps (in/out/ex for both incoming and outgoing), |
| * since we used fdset we need to allocate memory in units of |
| * long-words. |
| */ |
| size = FDS_BYTES(n); |
| bits = stack_fds; |
| if (size > sizeof(stack_fds) / 6) { |
| /* Not enough space in on-stack array; must use kmalloc */ |
| ret = -ENOMEM; |
| if (size > (SIZE_MAX / 6)) |
| goto out_nofds; |
| |
| alloc_size = 6 * size; |
| bits = kvmalloc(alloc_size, GFP_KERNEL); |
| if (!bits) |
| goto out_nofds; |
| } |
| fds.in = bits; |
| fds.out = bits + size; |
| fds.ex = bits + 2*size; |
| fds.res_in = bits + 3*size; |
| fds.res_out = bits + 4*size; |
| fds.res_ex = bits + 5*size; |
| |
| if ((ret = get_fd_set(n, inp, fds.in)) || |
| (ret = get_fd_set(n, outp, fds.out)) || |
| (ret = get_fd_set(n, exp, fds.ex))) |
| goto out; |
| zero_fd_set(n, fds.res_in); |
| zero_fd_set(n, fds.res_out); |
| zero_fd_set(n, fds.res_ex); |
| |
| ret = do_select(n, &fds, end_time); |
| |
| if (ret < 0) |
| goto out; |
| if (!ret) { |
| ret = -ERESTARTNOHAND; |
| if (signal_pending(current)) |
| goto out; |
| ret = 0; |
| } |
| |
| if (set_fd_set(n, inp, fds.res_in) || |
| set_fd_set(n, outp, fds.res_out) || |
| set_fd_set(n, exp, fds.res_ex)) |
| ret = -EFAULT; |
| |
| out: |
| if (bits != stack_fds) |
| kvfree(bits); |
| out_nofds: |
| return ret; |
| } |
| |
| static int kern_select(int n, fd_set __user *inp, fd_set __user *outp, |
| fd_set __user *exp, struct timeval __user *tvp) |
| { |
| struct timespec64 end_time, *to = NULL; |
| struct timeval tv; |
| int ret; |
| |
| if (tvp) { |
| if (copy_from_user(&tv, tvp, sizeof(tv))) |
| return -EFAULT; |
| |
| to = &end_time; |
| if (poll_select_set_timeout(to, |
| tv.tv_sec + (tv.tv_usec / USEC_PER_SEC), |
| (tv.tv_usec % USEC_PER_SEC) * NSEC_PER_USEC)) |
| return -EINVAL; |
| } |
| |
| ret = core_sys_select(n, inp, outp, exp, to); |
| ret = poll_select_copy_remaining(&end_time, tvp, 1, ret); |
| |
| return ret; |
| } |
| |
| SYSCALL_DEFINE5(select, int, n, fd_set __user *, inp, fd_set __user *, outp, |
| fd_set __user *, exp, struct timeval __user *, tvp) |
| { |
| return kern_select(n, inp, outp, exp, tvp); |
| } |
| |
| static long do_pselect(int n, fd_set __user *inp, fd_set __user *outp, |
| fd_set __user *exp, struct timespec __user *tsp, |
| const sigset_t __user *sigmask, size_t sigsetsize) |
| { |
| sigset_t ksigmask, sigsaved; |
| struct timespec64 ts, end_time, *to = NULL; |
| int ret; |
| |
| if (tsp) { |
| if (get_timespec64(&ts, tsp)) |
| return -EFAULT; |
| |
| to = &end_time; |
| if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) |
| return -EINVAL; |
| } |
| |
| ret = set_user_sigmask(sigmask, &ksigmask, &sigsaved, sigsetsize); |
| if (ret) |
| return ret; |
| |
| ret = core_sys_select(n, inp, outp, exp, to); |
| ret = poll_select_copy_remaining(&end_time, tsp, 0, ret); |
| |
| if (ret == -ERESTARTNOHAND) { |
| /* |
| * Don't restore the signal mask yet. Let do_signal() deliver |
| * the signal on the way back to userspace, before the signal |
| * mask is restored. |
| */ |
| if (sigmask) { |
| memcpy(¤t->saved_sigmask, &sigsaved, |
| sizeof(sigsaved)); |
| set_restore_sigmask(); |
| } |
| } else if (sigmask) |
| sigprocmask(SIG_SETMASK, &sigsaved, NULL); |
| |
| return ret; |
| } |
| |
| /* |
| * Most architectures can't handle 7-argument syscalls. So we provide a |
| * 6-argument version where the sixth argument is a pointer to a structure |
| * which has a pointer to the sigset_t itself followed by a size_t containing |
| * the sigset size. |
| */ |
| SYSCALL_DEFINE6(pselect6, int, n, fd_set __user *, inp, fd_set __user *, outp, |
| fd_set __user *, exp, struct timespec __user *, tsp, |
| void __user *, sig) |
| { |
| size_t sigsetsize = 0; |
| sigset_t __user *up = NULL; |
| |
| if (sig) { |
| if (!access_ok(VERIFY_READ, sig, sizeof(void *)+sizeof(size_t)) |
| || __get_user(up, (sigset_t __user * __user *)sig) |
| || __get_user(sigsetsize, |
| (size_t __user *)(sig+sizeof(void *)))) |
| return -EFAULT; |
| } |
| |
| return do_pselect(n, inp, outp, exp, tsp, up, sigsetsize); |
| } |
| |
| #ifdef __ARCH_WANT_SYS_OLD_SELECT |
| struct sel_arg_struct { |
| unsigned long n; |
| fd_set __user *inp, *outp, *exp; |
| struct timeval __user *tvp; |
| }; |
| |
| SYSCALL_DEFINE1(old_select, struct sel_arg_struct __user *, arg) |
| { |
| struct sel_arg_struct a; |
| |
| if (copy_from_user(&a, arg, sizeof(a))) |
| return -EFAULT; |
| return kern_select(a.n, a.inp, a.outp, a.exp, a.tvp); |
| } |
| #endif |
| |
| struct poll_list { |
| struct poll_list *next; |
| int len; |
| struct pollfd entries[0]; |
| }; |
| |
| #define POLLFD_PER_PAGE ((PAGE_SIZE-sizeof(struct poll_list)) / sizeof(struct pollfd)) |
| |
| /* |
| * Fish for pollable events on the pollfd->fd file descriptor. We're only |
| * interested in events matching the pollfd->events mask, and the result |
| * matching that mask is both recorded in pollfd->revents and returned. The |
| * pwait poll_table will be used by the fd-provided poll handler for waiting, |
| * if pwait->_qproc is non-NULL. |
| */ |
| static inline __poll_t do_pollfd(struct pollfd *pollfd, poll_table *pwait, |
| bool *can_busy_poll, |
| __poll_t busy_flag) |
| { |
| int fd = pollfd->fd; |
| __poll_t mask = 0, filter; |
| struct fd f; |
| |
| if (fd < 0) |
| goto out; |
| mask = EPOLLNVAL; |
| f = fdget(fd); |
| if (!f.file) |
| goto out; |
| |
| /* userland u16 ->events contains POLL... bitmap */ |
| filter = demangle_poll(pollfd->events) | EPOLLERR | EPOLLHUP; |
| pwait->_key = filter | busy_flag; |
| mask = vfs_poll(f.file, pwait); |
| if (mask & busy_flag) |
| *can_busy_poll = true; |
| mask &= filter; /* Mask out unneeded events. */ |
| fdput(f); |
| |
| out: |
| /* ... and so does ->revents */ |
| pollfd->revents = mangle_poll(mask); |
| return mask; |
| } |
| |
| static int do_poll(struct poll_list *list, struct poll_wqueues *wait, |
| struct timespec64 *end_time) |
| { |
| poll_table* pt = &wait->pt; |
| ktime_t expire, *to = NULL; |
| int timed_out = 0, count = 0; |
| u64 slack = 0; |
| __poll_t busy_flag = net_busy_loop_on() ? POLL_BUSY_LOOP : 0; |
| unsigned long busy_start = 0; |
| |
| /* Optimise the no-wait case */ |
| if (end_time && !end_time->tv_sec && !end_time->tv_nsec) { |
| pt->_qproc = NULL; |
| timed_out = 1; |
| } |
| |
| if (end_time && !timed_out) |
| slack = select_estimate_accuracy(end_time); |
| |
| for (;;) { |
| struct poll_list *walk; |
| bool can_busy_loop = false; |
| |
| for (walk = list; walk != NULL; walk = walk->next) { |
| struct pollfd * pfd, * pfd_end; |
| |
| pfd = walk->entries; |
| pfd_end = pfd + walk->len; |
| for (; pfd != pfd_end; pfd++) { |
| /* |
| * Fish for events. If we found one, record it |
| * and kill poll_table->_qproc, so we don't |
| * needlessly register any other waiters after |
| * this. They'll get immediately deregistered |
| * when we break out and return. |
| */ |
| if (do_pollfd(pfd, pt, &can_busy_loop, |
| busy_flag)) { |
| count++; |
| pt->_qproc = NULL; |
| /* found something, stop busy polling */ |
| busy_flag = 0; |
| can_busy_loop = false; |
| } |
| } |
| } |
| /* |
| * All waiters have already been registered, so don't provide |
| * a poll_table->_qproc to them on the next loop iteration. |
| */ |
| pt->_qproc = NULL; |
| if (!count) { |
| count = wait->error; |
| if (signal_pending(current)) |
| count = -EINTR; |
| } |
| if (count || timed_out) |
| break; |
| |
| /* only if found POLL_BUSY_LOOP sockets && not out of time */ |
| if (can_busy_loop && !need_resched()) { |
| if (!busy_start) { |
| busy_start = busy_loop_current_time(); |
| continue; |
| } |
| if (!busy_loop_timeout(busy_start)) |
| continue; |
| } |
| busy_flag = 0; |
| |
| /* |
| * If this is the first loop and we have a timeout |
| * given, then we convert to ktime_t and set the to |
| * pointer to the expiry value. |
| */ |
| if (end_time && !to) { |
| expire = timespec64_to_ktime(*end_time); |
| to = &expire; |
| } |
| |
| if (!poll_schedule_timeout(wait, TASK_INTERRUPTIBLE, to, slack)) |
| timed_out = 1; |
| } |
| return count; |
| } |
| |
| #define N_STACK_PPS ((sizeof(stack_pps) - sizeof(struct poll_list)) / \ |
| sizeof(struct pollfd)) |
| |
| static int do_sys_poll(struct pollfd __user *ufds, unsigned int nfds, |
| struct timespec64 *end_time) |
| { |
| struct poll_wqueues table; |
| int err = -EFAULT, fdcount, len, size; |
| /* Allocate small arguments on the stack to save memory and be |
| faster - use long to make sure the buffer is aligned properly |
| on 64 bit archs to avoid unaligned access */ |
| long stack_pps[POLL_STACK_ALLOC/sizeof(long)]; |
| struct poll_list *const head = (struct poll_list *)stack_pps; |
| struct poll_list *walk = head; |
| unsigned long todo = nfds; |
| |
| if (nfds > rlimit(RLIMIT_NOFILE)) |
| return -EINVAL; |
| |
| len = min_t(unsigned int, nfds, N_STACK_PPS); |
| for (;;) { |
| walk->next = NULL; |
| walk->len = len; |
| if (!len) |
| break; |
| |
| if (copy_from_user(walk->entries, ufds + nfds-todo, |
| sizeof(struct pollfd) * walk->len)) |
| goto out_fds; |
| |
| todo -= walk->len; |
| if (!todo) |
| break; |
| |
| len = min(todo, POLLFD_PER_PAGE); |
| size = sizeof(struct poll_list) + sizeof(struct pollfd) * len; |
| walk = walk->next = kmalloc(size, GFP_KERNEL); |
| if (!walk) { |
| err = -ENOMEM; |
| goto out_fds; |
| } |
| } |
| |
| poll_initwait(&table); |
| fdcount = do_poll(head, &table, end_time); |
| poll_freewait(&table); |
| |
| for (walk = head; walk; walk = walk->next) { |
| struct pollfd *fds = walk->entries; |
| int j; |
| |
| for (j = 0; j < walk->len; j++, ufds++) |
| if (__put_user(fds[j].revents, &ufds->revents)) |
| goto out_fds; |
| } |
| |
| err = fdcount; |
| out_fds: |
| walk = head->next; |
| while (walk) { |
| struct poll_list *pos = walk; |
| walk = walk->next; |
| kfree(pos); |
| } |
| |
| return err; |
| } |
| |
| static long do_restart_poll(struct restart_block *restart_block) |
| { |
| struct pollfd __user *ufds = restart_block->poll.ufds; |
| int nfds = restart_block->poll.nfds; |
| struct timespec64 *to = NULL, end_time; |
| int ret; |
| |
| if (restart_block->poll.has_timeout) { |
| end_time.tv_sec = restart_block->poll.tv_sec; |
| end_time.tv_nsec = restart_block->poll.tv_nsec; |
| to = &end_time; |
| } |
| |
| ret = do_sys_poll(ufds, nfds, to); |
| |
| if (ret == -EINTR) { |
| restart_block->fn = do_restart_poll; |
| ret = -ERESTART_RESTARTBLOCK; |
| } |
| return ret; |
| } |
| |
| SYSCALL_DEFINE3(poll, struct pollfd __user *, ufds, unsigned int, nfds, |
| int, timeout_msecs) |
| { |
| struct timespec64 end_time, *to = NULL; |
| int ret; |
| |
| if (timeout_msecs >= 0) { |
| to = &end_time; |
| poll_select_set_timeout(to, timeout_msecs / MSEC_PER_SEC, |
| NSEC_PER_MSEC * (timeout_msecs % MSEC_PER_SEC)); |
| } |
| |
| ret = do_sys_poll(ufds, nfds, to); |
| |
| if (ret == -EINTR) { |
| struct restart_block *restart_block; |
| |
| restart_block = ¤t->restart_block; |
| restart_block->fn = do_restart_poll; |
| restart_block->poll.ufds = ufds; |
| restart_block->poll.nfds = nfds; |
| |
| if (timeout_msecs >= 0) { |
| restart_block->poll.tv_sec = end_time.tv_sec; |
| restart_block->poll.tv_nsec = end_time.tv_nsec; |
| restart_block->poll.has_timeout = 1; |
| } else |
| restart_block->poll.has_timeout = 0; |
| |
| ret = -ERESTART_RESTARTBLOCK; |
| } |
| return ret; |
| } |
| |
| SYSCALL_DEFINE5(ppoll, struct pollfd __user *, ufds, unsigned int, nfds, |
| struct timespec __user *, tsp, const sigset_t __user *, sigmask, |
| size_t, sigsetsize) |
| { |
| sigset_t ksigmask, sigsaved; |
| struct timespec64 ts, end_time, *to = NULL; |
| int ret; |
| |
| if (tsp) { |
| if (get_timespec64(&ts, tsp)) |
| return -EFAULT; |
| |
| to = &end_time; |
| if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) |
| return -EINVAL; |
| } |
| |
| ret = set_user_sigmask(sigmask, &ksigmask, &sigsaved, sigsetsize); |
| if (ret) |
| return ret; |
| |
| ret = do_sys_poll(ufds, nfds, to); |
| |
| /* We can restart this syscall, usually */ |
| if (ret == -EINTR) { |
| /* |
| * Don't restore the signal mask yet. Let do_signal() deliver |
| * the signal on the way back to userspace, before the signal |
| * mask is restored. |
| */ |
| if (sigmask) { |
| memcpy(¤t->saved_sigmask, &sigsaved, |
| sizeof(sigsaved)); |
| set_restore_sigmask(); |
| } |
| ret = -ERESTARTNOHAND; |
| } else if (sigmask) |
| sigprocmask(SIG_SETMASK, &sigsaved, NULL); |
| |
| ret = poll_select_copy_remaining(&end_time, tsp, 0, ret); |
| |
| return ret; |
| } |
| |
| #ifdef CONFIG_COMPAT |
| #define __COMPAT_NFDBITS (8 * sizeof(compat_ulong_t)) |
| |
| static |
| int compat_poll_select_copy_remaining(struct timespec64 *end_time, void __user *p, |
| int timeval, int ret) |
| { |
| struct timespec64 ts; |
| |
| if (!p) |
| return ret; |
| |
| if (current->personality & STICKY_TIMEOUTS) |
| goto sticky; |
| |
| /* No update for zero timeout */ |
| if (!end_time->tv_sec && !end_time->tv_nsec) |
| return ret; |
| |
| ktime_get_ts64(&ts); |
| ts = timespec64_sub(*end_time, ts); |
| if (ts.tv_sec < 0) |
| ts.tv_sec = ts.tv_nsec = 0; |
| |
| if (timeval) { |
| struct old_timeval32 rtv; |
| |
| rtv.tv_sec = ts.tv_sec; |
| rtv.tv_usec = ts.tv_nsec / NSEC_PER_USEC; |
| |
| if (!copy_to_user(p, &rtv, sizeof(rtv))) |
| return ret; |
| } else { |
| if (!put_old_timespec32(&ts, p)) |
| return ret; |
| } |
| /* |
| * If an application puts its timeval in read-only memory, we |
| * don't want the Linux-specific update to the timeval to |
| * cause a fault after the select has completed |
| * successfully. However, because we're not updating the |
| * timeval, we can't restart the system call. |
| */ |
| |
| sticky: |
| if (ret == -ERESTARTNOHAND) |
| ret = -EINTR; |
| return ret; |
| } |
| |
| /* |
| * Ooo, nasty. We need here to frob 32-bit unsigned longs to |
| * 64-bit unsigned longs. |
| */ |
| static |
| int compat_get_fd_set(unsigned long nr, compat_ulong_t __user *ufdset, |
| unsigned long *fdset) |
| { |
| if (ufdset) { |
| return compat_get_bitmap(fdset, ufdset, nr); |
| } else { |
| zero_fd_set(nr, fdset); |
| return 0; |
| } |
| } |
| |
| static |
| int compat_set_fd_set(unsigned long nr, compat_ulong_t __user *ufdset, |
| unsigned long *fdset) |
| { |
| if (!ufdset) |
| return 0; |
| return compat_put_bitmap(ufdset, fdset, nr); |
| } |
| |
| |
| /* |
| * This is a virtual copy of sys_select from fs/select.c and probably |
| * should be compared to it from time to time |
| */ |
| |
| /* |
| * We can actually return ERESTARTSYS instead of EINTR, but I'd |
| * like to be certain this leads to no problems. So I return |
| * EINTR just for safety. |
| * |
| * Update: ERESTARTSYS breaks at least the xview clock binary, so |
| * I'm trying ERESTARTNOHAND which restart only when you want to. |
| */ |
| static int compat_core_sys_select(int n, compat_ulong_t __user *inp, |
| compat_ulong_t __user *outp, compat_ulong_t __user *exp, |
| struct timespec64 *end_time) |
| { |
| fd_set_bits fds; |
| void *bits; |
| int size, max_fds, ret = -EINVAL; |
| struct fdtable *fdt; |
| long stack_fds[SELECT_STACK_ALLOC/sizeof(long)]; |
| |
| if (n < 0) |
| goto out_nofds; |
| |
| /* max_fds can increase, so grab it once to avoid race */ |
| rcu_read_lock(); |
| fdt = files_fdtable(current->files); |
| max_fds = fdt->max_fds; |
| rcu_read_unlock(); |
| if (n > max_fds) |
| n = max_fds; |
| |
| /* |
| * We need 6 bitmaps (in/out/ex for both incoming and outgoing), |
| * since we used fdset we need to allocate memory in units of |
| * long-words. |
| */ |
| size = FDS_BYTES(n); |
| bits = stack_fds; |
| if (size > sizeof(stack_fds) / 6) { |
| bits = kmalloc_array(6, size, GFP_KERNEL); |
| ret = -ENOMEM; |
| if (!bits) |
| goto out_nofds; |
| } |
| fds.in = (unsigned long *) bits; |
| fds.out = (unsigned long *) (bits + size); |
| fds.ex = (unsigned long *) (bits + 2*size); |
| fds.res_in = (unsigned long *) (bits + 3*size); |
| fds.res_out = (unsigned long *) (bits + 4*size); |
| fds.res_ex = (unsigned long *) (bits + 5*size); |
| |
| if ((ret = compat_get_fd_set(n, inp, fds.in)) || |
| (ret = compat_get_fd_set(n, outp, fds.out)) || |
| (ret = compat_get_fd_set(n, exp, fds.ex))) |
| goto out; |
| zero_fd_set(n, fds.res_in); |
| zero_fd_set(n, fds.res_out); |
| zero_fd_set(n, fds.res_ex); |
| |
| ret = do_select(n, &fds, end_time); |
| |
| if (ret < 0) |
| goto out; |
| if (!ret) { |
| ret = -ERESTARTNOHAND; |
| if (signal_pending(current)) |
| goto out; |
| ret = 0; |
| } |
| |
| if (compat_set_fd_set(n, inp, fds.res_in) || |
| compat_set_fd_set(n, outp, fds.res_out) || |
| compat_set_fd_set(n, exp, fds.res_ex)) |
| ret = -EFAULT; |
| out: |
| if (bits != stack_fds) |
| kfree(bits); |
| out_nofds: |
| return ret; |
| } |
| |
| static int do_compat_select(int n, compat_ulong_t __user *inp, |
| compat_ulong_t __user *outp, compat_ulong_t __user *exp, |
| struct old_timeval32 __user *tvp) |
| { |
| struct timespec64 end_time, *to = NULL; |
| struct old_timeval32 tv; |
| int ret; |
| |
| if (tvp) { |
| if (copy_from_user(&tv, tvp, sizeof(tv))) |
| return -EFAULT; |
| |
| to = &end_time; |
| if (poll_select_set_timeout(to, |
| tv.tv_sec + (tv.tv_usec / USEC_PER_SEC), |
| (tv.tv_usec % USEC_PER_SEC) * NSEC_PER_USEC)) |
| return -EINVAL; |
| } |
| |
| ret = compat_core_sys_select(n, inp, outp, exp, to); |
| ret = compat_poll_select_copy_remaining(&end_time, tvp, 1, ret); |
| |
| return ret; |
| } |
| |
| COMPAT_SYSCALL_DEFINE5(select, int, n, compat_ulong_t __user *, inp, |
| compat_ulong_t __user *, outp, compat_ulong_t __user *, exp, |
| struct old_timeval32 __user *, tvp) |
| { |
| return do_compat_select(n, inp, outp, exp, tvp); |
| } |
| |
| struct compat_sel_arg_struct { |
| compat_ulong_t n; |
| compat_uptr_t inp; |
| compat_uptr_t outp; |
| compat_uptr_t exp; |
| compat_uptr_t tvp; |
| }; |
| |
| COMPAT_SYSCALL_DEFINE1(old_select, struct compat_sel_arg_struct __user *, arg) |
| { |
| struct compat_sel_arg_struct a; |
| |
| if (copy_from_user(&a, arg, sizeof(a))) |
| return -EFAULT; |
| return do_compat_select(a.n, compat_ptr(a.inp), compat_ptr(a.outp), |
| compat_ptr(a.exp), compat_ptr(a.tvp)); |
| } |
| |
| static long do_compat_pselect(int n, compat_ulong_t __user *inp, |
| compat_ulong_t __user *outp, compat_ulong_t __user *exp, |
| struct old_timespec32 __user *tsp, compat_sigset_t __user *sigmask, |
| compat_size_t sigsetsize) |
| { |
| sigset_t ksigmask, sigsaved; |
| struct timespec64 ts, end_time, *to = NULL; |
| int ret; |
| |
| if (tsp) { |
| if (get_old_timespec32(&ts, tsp)) |
| return -EFAULT; |
| |
| to = &end_time; |
| if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) |
| return -EINVAL; |
| } |
| |
| ret = set_compat_user_sigmask(sigmask, &ksigmask, &sigsaved, sigsetsize); |
| if (ret) |
| return ret; |
| |
| ret = compat_core_sys_select(n, inp, outp, exp, to); |
| ret = compat_poll_select_copy_remaining(&end_time, tsp, 0, ret); |
| |
| if (ret == -ERESTARTNOHAND) { |
| /* |
| * Don't restore the signal mask yet. Let do_signal() deliver |
| * the signal on the way back to userspace, before the signal |
| * mask is restored. |
| */ |
| if (sigmask) { |
| memcpy(¤t->saved_sigmask, &sigsaved, |
| sizeof(sigsaved)); |
| set_restore_sigmask(); |
| } |
| } else if (sigmask) |
| sigprocmask(SIG_SETMASK, &sigsaved, NULL); |
| |
| return ret; |
| } |
| |
| COMPAT_SYSCALL_DEFINE6(pselect6, int, n, compat_ulong_t __user *, inp, |
| compat_ulong_t __user *, outp, compat_ulong_t __user *, exp, |
| struct old_timespec32 __user *, tsp, void __user *, sig) |
| { |
| compat_size_t sigsetsize = 0; |
| compat_uptr_t up = 0; |
| |
| if (sig) { |
| if (!access_ok(VERIFY_READ, sig, |
| sizeof(compat_uptr_t)+sizeof(compat_size_t)) || |
| __get_user(up, (compat_uptr_t __user *)sig) || |
| __get_user(sigsetsize, |
| (compat_size_t __user *)(sig+sizeof(up)))) |
| return -EFAULT; |
| } |
| return do_compat_pselect(n, inp, outp, exp, tsp, compat_ptr(up), |
| sigsetsize); |
| } |
| |
| COMPAT_SYSCALL_DEFINE5(ppoll, struct pollfd __user *, ufds, |
| unsigned int, nfds, struct old_timespec32 __user *, tsp, |
| const compat_sigset_t __user *, sigmask, compat_size_t, sigsetsize) |
| { |
| sigset_t ksigmask, sigsaved; |
| struct timespec64 ts, end_time, *to = NULL; |
| int ret; |
| |
| if (tsp) { |
| if (get_old_timespec32(&ts, tsp)) |
| return -EFAULT; |
| |
| to = &end_time; |
| if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) |
| return -EINVAL; |
| } |
| |
| ret = set_compat_user_sigmask(sigmask, &ksigmask, &sigsaved, sigsetsize); |
| if (ret) |
| return ret; |
| |
| ret = do_sys_poll(ufds, nfds, to); |
| |
| /* We can restart this syscall, usually */ |
| if (ret == -EINTR) { |
| /* |
| * Don't restore the signal mask yet. Let do_signal() deliver |
| * the signal on the way back to userspace, before the signal |
| * mask is restored. |
| */ |
| if (sigmask) { |
| memcpy(¤t->saved_sigmask, &sigsaved, |
| sizeof(sigsaved)); |
| set_restore_sigmask(); |
| } |
| ret = -ERESTARTNOHAND; |
| } else if (sigmask) |
| sigprocmask(SIG_SETMASK, &sigsaved, NULL); |
| |
| ret = compat_poll_select_copy_remaining(&end_time, tsp, 0, ret); |
| |
| return ret; |
| } |
| #endif |