blob: 6f530925a23144dca5159f579e709da1119fcac0 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
#include <linux/irqchip/arm-gic-v3.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <kvm/arm_vgic.h>
#include <asm/kvm_hyp.h>
#include <asm/kvm_mmu.h>
#include <asm/kvm_asm.h>
#include "vgic.h"
static bool group0_trap;
static bool group1_trap;
static bool common_trap;
static bool gicv4_enable;
void vgic_v3_set_underflow(struct kvm_vcpu *vcpu)
{
struct vgic_v3_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v3;
cpuif->vgic_hcr |= ICH_HCR_UIE;
}
static bool lr_signals_eoi_mi(u64 lr_val)
{
return !(lr_val & ICH_LR_STATE) && (lr_val & ICH_LR_EOI) &&
!(lr_val & ICH_LR_HW);
}
void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
struct vgic_v3_cpu_if *cpuif = &vgic_cpu->vgic_v3;
u32 model = vcpu->kvm->arch.vgic.vgic_model;
int lr;
DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
cpuif->vgic_hcr &= ~ICH_HCR_UIE;
for (lr = 0; lr < cpuif->used_lrs; lr++) {
u64 val = cpuif->vgic_lr[lr];
u32 intid, cpuid;
struct vgic_irq *irq;
bool is_v2_sgi = false;
cpuid = val & GICH_LR_PHYSID_CPUID;
cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT;
if (model == KVM_DEV_TYPE_ARM_VGIC_V3) {
intid = val & ICH_LR_VIRTUAL_ID_MASK;
} else {
intid = val & GICH_LR_VIRTUALID;
is_v2_sgi = vgic_irq_is_sgi(intid);
}
/* Notify fds when the guest EOI'ed a level-triggered IRQ */
if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid))
kvm_notify_acked_irq(vcpu->kvm, 0,
intid - VGIC_NR_PRIVATE_IRQS);
irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
if (!irq) /* An LPI could have been unmapped. */
continue;
raw_spin_lock(&irq->irq_lock);
/* Always preserve the active bit */
irq->active = !!(val & ICH_LR_ACTIVE_BIT);
if (irq->active && is_v2_sgi)
irq->active_source = cpuid;
/* Edge is the only case where we preserve the pending bit */
if (irq->config == VGIC_CONFIG_EDGE &&
(val & ICH_LR_PENDING_BIT)) {
irq->pending_latch = true;
if (is_v2_sgi)
irq->source |= (1 << cpuid);
}
/*
* Clear soft pending state when level irqs have been acked.
*/
if (irq->config == VGIC_CONFIG_LEVEL && !(val & ICH_LR_STATE))
irq->pending_latch = false;
/*
* Level-triggered mapped IRQs are special because we only
* observe rising edges as input to the VGIC.
*
* If the guest never acked the interrupt we have to sample
* the physical line and set the line level, because the
* device state could have changed or we simply need to
* process the still pending interrupt later.
*
* If this causes us to lower the level, we have to also clear
* the physical active state, since we will otherwise never be
* told when the interrupt becomes asserted again.
*/
if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT)) {
irq->line_level = vgic_get_phys_line_level(irq);
if (!irq->line_level)
vgic_irq_set_phys_active(irq, false);
}
raw_spin_unlock(&irq->irq_lock);
vgic_put_irq(vcpu->kvm, irq);
}
cpuif->used_lrs = 0;
}
/* Requires the irq to be locked already */
void vgic_v3_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr)
{
u32 model = vcpu->kvm->arch.vgic.vgic_model;
u64 val = irq->intid;
bool allow_pending = true, is_v2_sgi;
is_v2_sgi = (vgic_irq_is_sgi(irq->intid) &&
model == KVM_DEV_TYPE_ARM_VGIC_V2);
if (irq->active) {
val |= ICH_LR_ACTIVE_BIT;
if (is_v2_sgi)
val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT;
if (vgic_irq_is_multi_sgi(irq)) {
allow_pending = false;
val |= ICH_LR_EOI;
}
}
if (irq->hw) {
val |= ICH_LR_HW;
val |= ((u64)irq->hwintid) << ICH_LR_PHYS_ID_SHIFT;
/*
* Never set pending+active on a HW interrupt, as the
* pending state is kept at the physical distributor
* level.
*/
if (irq->active)
allow_pending = false;
} else {
if (irq->config == VGIC_CONFIG_LEVEL) {
val |= ICH_LR_EOI;
/*
* Software resampling doesn't work very well
* if we allow P+A, so let's not do that.
*/
if (irq->active)
allow_pending = false;
}
}
if (allow_pending && irq_is_pending(irq)) {
val |= ICH_LR_PENDING_BIT;
if (irq->config == VGIC_CONFIG_EDGE)
irq->pending_latch = false;
if (vgic_irq_is_sgi(irq->intid) &&
model == KVM_DEV_TYPE_ARM_VGIC_V2) {
u32 src = ffs(irq->source);
if (WARN_RATELIMIT(!src, "No SGI source for INTID %d\n",
irq->intid))
return;
val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT;
irq->source &= ~(1 << (src - 1));
if (irq->source) {
irq->pending_latch = true;
val |= ICH_LR_EOI;
}
}
}
/*
* Level-triggered mapped IRQs are special because we only observe
* rising edges as input to the VGIC. We therefore lower the line
* level here, so that we can take new virtual IRQs. See
* vgic_v3_fold_lr_state for more info.
*/
if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT))
irq->line_level = false;
if (irq->group)
val |= ICH_LR_GROUP;
val |= (u64)irq->priority << ICH_LR_PRIORITY_SHIFT;
vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = val;
}
void vgic_v3_clear_lr(struct kvm_vcpu *vcpu, int lr)
{
vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = 0;
}
void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
{
struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
u32 model = vcpu->kvm->arch.vgic.vgic_model;
u32 vmcr;
if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
vmcr = (vmcrp->ackctl << ICH_VMCR_ACK_CTL_SHIFT) &
ICH_VMCR_ACK_CTL_MASK;
vmcr |= (vmcrp->fiqen << ICH_VMCR_FIQ_EN_SHIFT) &
ICH_VMCR_FIQ_EN_MASK;
} else {
/*
* When emulating GICv3 on GICv3 with SRE=1 on the
* VFIQEn bit is RES1 and the VAckCtl bit is RES0.
*/
vmcr = ICH_VMCR_FIQ_EN_MASK;
}
vmcr |= (vmcrp->cbpr << ICH_VMCR_CBPR_SHIFT) & ICH_VMCR_CBPR_MASK;
vmcr |= (vmcrp->eoim << ICH_VMCR_EOIM_SHIFT) & ICH_VMCR_EOIM_MASK;
vmcr |= (vmcrp->abpr << ICH_VMCR_BPR1_SHIFT) & ICH_VMCR_BPR1_MASK;
vmcr |= (vmcrp->bpr << ICH_VMCR_BPR0_SHIFT) & ICH_VMCR_BPR0_MASK;
vmcr |= (vmcrp->pmr << ICH_VMCR_PMR_SHIFT) & ICH_VMCR_PMR_MASK;
vmcr |= (vmcrp->grpen0 << ICH_VMCR_ENG0_SHIFT) & ICH_VMCR_ENG0_MASK;
vmcr |= (vmcrp->grpen1 << ICH_VMCR_ENG1_SHIFT) & ICH_VMCR_ENG1_MASK;
cpu_if->vgic_vmcr = vmcr;
}
void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
{
struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
u32 model = vcpu->kvm->arch.vgic.vgic_model;
u32 vmcr;
vmcr = cpu_if->vgic_vmcr;
if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
vmcrp->ackctl = (vmcr & ICH_VMCR_ACK_CTL_MASK) >>
ICH_VMCR_ACK_CTL_SHIFT;
vmcrp->fiqen = (vmcr & ICH_VMCR_FIQ_EN_MASK) >>
ICH_VMCR_FIQ_EN_SHIFT;
} else {
/*
* When emulating GICv3 on GICv3 with SRE=1 on the
* VFIQEn bit is RES1 and the VAckCtl bit is RES0.
*/
vmcrp->fiqen = 1;
vmcrp->ackctl = 0;
}
vmcrp->cbpr = (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT;
vmcrp->eoim = (vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT;
vmcrp->abpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT;
vmcrp->bpr = (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT;
vmcrp->pmr = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT;
vmcrp->grpen0 = (vmcr & ICH_VMCR_ENG0_MASK) >> ICH_VMCR_ENG0_SHIFT;
vmcrp->grpen1 = (vmcr & ICH_VMCR_ENG1_MASK) >> ICH_VMCR_ENG1_SHIFT;
}
#define INITIAL_PENDBASER_VALUE \
(GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, RaWb) | \
GIC_BASER_CACHEABILITY(GICR_PENDBASER, OUTER, SameAsInner) | \
GIC_BASER_SHAREABILITY(GICR_PENDBASER, InnerShareable))
void vgic_v3_enable(struct kvm_vcpu *vcpu)
{
struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3;
/*
* By forcing VMCR to zero, the GIC will restore the binary
* points to their reset values. Anything else resets to zero
* anyway.
*/
vgic_v3->vgic_vmcr = 0;
/*
* If we are emulating a GICv3, we do it in an non-GICv2-compatible
* way, so we force SRE to 1 to demonstrate this to the guest.
* Also, we don't support any form of IRQ/FIQ bypass.
* This goes with the spec allowing the value to be RAO/WI.
*/
if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
vgic_v3->vgic_sre = (ICC_SRE_EL1_DIB |
ICC_SRE_EL1_DFB |
ICC_SRE_EL1_SRE);
vcpu->arch.vgic_cpu.pendbaser = INITIAL_PENDBASER_VALUE;
} else {
vgic_v3->vgic_sre = 0;
}
vcpu->arch.vgic_cpu.num_id_bits = (kvm_vgic_global_state.ich_vtr_el2 &
ICH_VTR_ID_BITS_MASK) >>
ICH_VTR_ID_BITS_SHIFT;
vcpu->arch.vgic_cpu.num_pri_bits = ((kvm_vgic_global_state.ich_vtr_el2 &
ICH_VTR_PRI_BITS_MASK) >>
ICH_VTR_PRI_BITS_SHIFT) + 1;
/* Get the show on the road... */
vgic_v3->vgic_hcr = ICH_HCR_EN;
if (group0_trap)
vgic_v3->vgic_hcr |= ICH_HCR_TALL0;
if (group1_trap)
vgic_v3->vgic_hcr |= ICH_HCR_TALL1;
if (common_trap)
vgic_v3->vgic_hcr |= ICH_HCR_TC;
}
int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq)
{
struct kvm_vcpu *vcpu;
int byte_offset, bit_nr;
gpa_t pendbase, ptr;
bool status;
u8 val;
int ret;
unsigned long flags;
retry:
vcpu = irq->target_vcpu;
if (!vcpu)
return 0;
pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
byte_offset = irq->intid / BITS_PER_BYTE;
bit_nr = irq->intid % BITS_PER_BYTE;
ptr = pendbase + byte_offset;
ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
if (ret)
return ret;
status = val & (1 << bit_nr);
raw_spin_lock_irqsave(&irq->irq_lock, flags);
if (irq->target_vcpu != vcpu) {
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
goto retry;
}
irq->pending_latch = status;
vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
if (status) {
/* clear consumed data */
val &= ~(1 << bit_nr);
ret = kvm_write_guest_lock(kvm, ptr, &val, 1);
if (ret)
return ret;
}
return 0;
}
/**
* vgic_v3_save_pending_tables - Save the pending tables into guest RAM
* kvm lock and all vcpu lock must be held
*/
int vgic_v3_save_pending_tables(struct kvm *kvm)
{
struct vgic_dist *dist = &kvm->arch.vgic;
struct vgic_irq *irq;
gpa_t last_ptr = ~(gpa_t)0;
int ret;
u8 val;
list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
int byte_offset, bit_nr;
struct kvm_vcpu *vcpu;
gpa_t pendbase, ptr;
bool stored;
vcpu = irq->target_vcpu;
if (!vcpu)
continue;
pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
byte_offset = irq->intid / BITS_PER_BYTE;
bit_nr = irq->intid % BITS_PER_BYTE;
ptr = pendbase + byte_offset;
if (ptr != last_ptr) {
ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
if (ret)
return ret;
last_ptr = ptr;
}
stored = val & (1U << bit_nr);
if (stored == irq->pending_latch)
continue;
if (irq->pending_latch)
val |= 1 << bit_nr;
else
val &= ~(1 << bit_nr);
ret = kvm_write_guest_lock(kvm, ptr, &val, 1);
if (ret)
return ret;
}
return 0;
}
/**
* vgic_v3_rdist_overlap - check if a region overlaps with any
* existing redistributor region
*
* @kvm: kvm handle
* @base: base of the region
* @size: size of region
*
* Return: true if there is an overlap
*/
bool vgic_v3_rdist_overlap(struct kvm *kvm, gpa_t base, size_t size)
{
struct vgic_dist *d = &kvm->arch.vgic;
struct vgic_redist_region *rdreg;
list_for_each_entry(rdreg, &d->rd_regions, list) {
if ((base + size > rdreg->base) &&
(base < rdreg->base + vgic_v3_rd_region_size(kvm, rdreg)))
return true;
}
return false;
}
/*
* Check for overlapping regions and for regions crossing the end of memory
* for base addresses which have already been set.
*/
bool vgic_v3_check_base(struct kvm *kvm)
{
struct vgic_dist *d = &kvm->arch.vgic;
struct vgic_redist_region *rdreg;
if (!IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE < d->vgic_dist_base)
return false;
list_for_each_entry(rdreg, &d->rd_regions, list) {
if (rdreg->base + vgic_v3_rd_region_size(kvm, rdreg) <
rdreg->base)
return false;
}
if (IS_VGIC_ADDR_UNDEF(d->vgic_dist_base))
return true;
return !vgic_v3_rdist_overlap(kvm, d->vgic_dist_base,
KVM_VGIC_V3_DIST_SIZE);
}
/**
* vgic_v3_rdist_free_slot - Look up registered rdist regions and identify one
* which has free space to put a new rdist region.
*
* @rd_regions: redistributor region list head
*
* A redistributor regions maps n redistributors, n = region size / (2 x 64kB).
* Stride between redistributors is 0 and regions are filled in the index order.
*
* Return: the redist region handle, if any, that has space to map a new rdist
* region.
*/
struct vgic_redist_region *vgic_v3_rdist_free_slot(struct list_head *rd_regions)
{
struct vgic_redist_region *rdreg;
list_for_each_entry(rdreg, rd_regions, list) {
if (!vgic_v3_redist_region_full(rdreg))
return rdreg;
}
return NULL;
}
struct vgic_redist_region *vgic_v3_rdist_region_from_index(struct kvm *kvm,
u32 index)
{
struct list_head *rd_regions = &kvm->arch.vgic.rd_regions;
struct vgic_redist_region *rdreg;
list_for_each_entry(rdreg, rd_regions, list) {
if (rdreg->index == index)
return rdreg;
}
return NULL;
}
int vgic_v3_map_resources(struct kvm *kvm)
{
struct vgic_dist *dist = &kvm->arch.vgic;
struct kvm_vcpu *vcpu;
int ret = 0;
int c;
kvm_for_each_vcpu(c, vcpu, kvm) {
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
if (IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr)) {
kvm_debug("vcpu %d redistributor base not set\n", c);
return -ENXIO;
}
}
if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base)) {
kvm_err("Need to set vgic distributor addresses first\n");
return -ENXIO;
}
if (!vgic_v3_check_base(kvm)) {
kvm_err("VGIC redist and dist frames overlap\n");
return -EINVAL;
}
/*
* For a VGICv3 we require the userland to explicitly initialize
* the VGIC before we need to use it.
*/
if (!vgic_initialized(kvm)) {
return -EBUSY;
}
ret = vgic_register_dist_iodev(kvm, dist->vgic_dist_base, VGIC_V3);
if (ret) {
kvm_err("Unable to register VGICv3 dist MMIO regions\n");
return ret;
}
if (kvm_vgic_global_state.has_gicv4_1)
vgic_v4_configure_vsgis(kvm);
return 0;
}
DEFINE_STATIC_KEY_FALSE(vgic_v3_cpuif_trap);
static int __init early_group0_trap_cfg(char *buf)
{
return strtobool(buf, &group0_trap);
}
early_param("kvm-arm.vgic_v3_group0_trap", early_group0_trap_cfg);
static int __init early_group1_trap_cfg(char *buf)
{
return strtobool(buf, &group1_trap);
}
early_param("kvm-arm.vgic_v3_group1_trap", early_group1_trap_cfg);
static int __init early_common_trap_cfg(char *buf)
{
return strtobool(buf, &common_trap);
}
early_param("kvm-arm.vgic_v3_common_trap", early_common_trap_cfg);
static int __init early_gicv4_enable(char *buf)
{
return strtobool(buf, &gicv4_enable);
}
early_param("kvm-arm.vgic_v4_enable", early_gicv4_enable);
/**
* vgic_v3_probe - probe for a VGICv3 compatible interrupt controller
* @info: pointer to the GIC description
*
* Returns 0 if the VGICv3 has been probed successfully, returns an error code
* otherwise
*/
int vgic_v3_probe(const struct gic_kvm_info *info)
{
u64 ich_vtr_el2 = kvm_call_hyp_ret(__vgic_v3_get_gic_config);
bool has_v2;
int ret;
has_v2 = ich_vtr_el2 >> 63;
ich_vtr_el2 = (u32)ich_vtr_el2;
/*
* The ListRegs field is 5 bits, but there is an architectural
* maximum of 16 list registers. Just ignore bit 4...
*/
kvm_vgic_global_state.nr_lr = (ich_vtr_el2 & 0xf) + 1;
kvm_vgic_global_state.can_emulate_gicv2 = false;
kvm_vgic_global_state.ich_vtr_el2 = ich_vtr_el2;
/* GICv4 support? */
if (info->has_v4) {
kvm_vgic_global_state.has_gicv4 = gicv4_enable;
kvm_vgic_global_state.has_gicv4_1 = info->has_v4_1 && gicv4_enable;
kvm_info("GICv4%s support %sabled\n",
kvm_vgic_global_state.has_gicv4_1 ? ".1" : "",
gicv4_enable ? "en" : "dis");
}
kvm_vgic_global_state.vcpu_base = 0;
if (!info->vcpu.start) {
kvm_info("GICv3: no GICV resource entry\n");
} else if (!has_v2) {
pr_warn(FW_BUG "CPU interface incapable of MMIO access\n");
} else if (!PAGE_ALIGNED(info->vcpu.start)) {
pr_warn("GICV physical address 0x%llx not page aligned\n",
(unsigned long long)info->vcpu.start);
} else {
kvm_vgic_global_state.vcpu_base = info->vcpu.start;
kvm_vgic_global_state.can_emulate_gicv2 = true;
ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2);
if (ret) {
kvm_err("Cannot register GICv2 KVM device.\n");
return ret;
}
kvm_info("vgic-v2@%llx\n", info->vcpu.start);
}
ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V3);
if (ret) {
kvm_err("Cannot register GICv3 KVM device.\n");
kvm_unregister_device_ops(KVM_DEV_TYPE_ARM_VGIC_V2);
return ret;
}
if (kvm_vgic_global_state.vcpu_base == 0)
kvm_info("disabling GICv2 emulation\n");
if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_30115)) {
group0_trap = true;
group1_trap = true;
}
if (group0_trap || group1_trap || common_trap) {
kvm_info("GICv3 sysreg trapping enabled ([%s%s%s], reduced performance)\n",
group0_trap ? "G0" : "",
group1_trap ? "G1" : "",
common_trap ? "C" : "");
static_branch_enable(&vgic_v3_cpuif_trap);
}
kvm_vgic_global_state.vctrl_base = NULL;
kvm_vgic_global_state.type = VGIC_V3;
kvm_vgic_global_state.max_gic_vcpus = VGIC_V3_MAX_CPUS;
return 0;
}
void vgic_v3_load(struct kvm_vcpu *vcpu)
{
struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
/*
* If dealing with a GICv2 emulation on GICv3, VMCR_EL2.VFIQen
* is dependent on ICC_SRE_EL1.SRE, and we have to perform the
* VMCR_EL2 save/restore in the world switch.
*/
if (likely(cpu_if->vgic_sre))
kvm_call_hyp(__vgic_v3_write_vmcr, cpu_if->vgic_vmcr);
kvm_call_hyp(__vgic_v3_restore_aprs, cpu_if);
if (has_vhe())
__vgic_v3_activate_traps(cpu_if);
WARN_ON(vgic_v4_load(vcpu));
}
void vgic_v3_vmcr_sync(struct kvm_vcpu *vcpu)
{
struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
if (likely(cpu_if->vgic_sre))
cpu_if->vgic_vmcr = kvm_call_hyp_ret(__vgic_v3_read_vmcr);
}
void vgic_v3_put(struct kvm_vcpu *vcpu)
{
struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
WARN_ON(vgic_v4_put(vcpu, false));
vgic_v3_vmcr_sync(vcpu);
kvm_call_hyp(__vgic_v3_save_aprs, cpu_if);
if (has_vhe())
__vgic_v3_deactivate_traps(cpu_if);
}