blob: 93f34b4eca2547413c8d49e8a4e735fcac403ba3 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Contains CPU specific errata definitions
*
* Copyright (C) 2014 ARM Ltd.
*/
#include <linux/arm-smccc.h>
#include <linux/psci.h>
#include <linux/types.h>
#include <linux/cpu.h>
#include <asm/cpu.h>
#include <asm/cputype.h>
#include <asm/cpufeature.h>
#include <asm/smp_plat.h>
static bool __maybe_unused
is_affected_midr_range(const struct arm64_cpu_capabilities *entry, int scope)
{
const struct arm64_midr_revidr *fix;
u32 midr = read_cpuid_id(), revidr;
WARN_ON(scope != SCOPE_LOCAL_CPU || preemptible());
if (!is_midr_in_range(midr, &entry->midr_range))
return false;
midr &= MIDR_REVISION_MASK | MIDR_VARIANT_MASK;
revidr = read_cpuid(REVIDR_EL1);
for (fix = entry->fixed_revs; fix && fix->revidr_mask; fix++)
if (midr == fix->midr_rv && (revidr & fix->revidr_mask))
return false;
return true;
}
static bool __maybe_unused
is_affected_midr_range_list(const struct arm64_cpu_capabilities *entry,
int scope)
{
WARN_ON(scope != SCOPE_LOCAL_CPU || preemptible());
return is_midr_in_range_list(read_cpuid_id(), entry->midr_range_list);
}
static bool __maybe_unused
is_kryo_midr(const struct arm64_cpu_capabilities *entry, int scope)
{
u32 model;
WARN_ON(scope != SCOPE_LOCAL_CPU || preemptible());
model = read_cpuid_id();
model &= MIDR_IMPLEMENTOR_MASK | (0xf00 << MIDR_PARTNUM_SHIFT) |
MIDR_ARCHITECTURE_MASK;
return model == entry->midr_range.model;
}
static bool
has_mismatched_cache_type(const struct arm64_cpu_capabilities *entry,
int scope)
{
u64 mask = arm64_ftr_reg_ctrel0.strict_mask;
u64 sys = arm64_ftr_reg_ctrel0.sys_val & mask;
u64 ctr_raw, ctr_real;
WARN_ON(scope != SCOPE_LOCAL_CPU || preemptible());
/*
* We want to make sure that all the CPUs in the system expose
* a consistent CTR_EL0 to make sure that applications behaves
* correctly with migration.
*
* If a CPU has CTR_EL0.IDC but does not advertise it via CTR_EL0 :
*
* 1) It is safe if the system doesn't support IDC, as CPU anyway
* reports IDC = 0, consistent with the rest.
*
* 2) If the system has IDC, it is still safe as we trap CTR_EL0
* access on this CPU via the ARM64_HAS_CACHE_IDC capability.
*
* So, we need to make sure either the raw CTR_EL0 or the effective
* CTR_EL0 matches the system's copy to allow a secondary CPU to boot.
*/
ctr_raw = read_cpuid_cachetype() & mask;
ctr_real = read_cpuid_effective_cachetype() & mask;
return (ctr_real != sys) && (ctr_raw != sys);
}
static void
cpu_enable_trap_ctr_access(const struct arm64_cpu_capabilities *__unused)
{
u64 mask = arm64_ftr_reg_ctrel0.strict_mask;
/* Trap CTR_EL0 access on this CPU, only if it has a mismatch */
if ((read_cpuid_cachetype() & mask) !=
(arm64_ftr_reg_ctrel0.sys_val & mask))
sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
}
atomic_t arm64_el2_vector_last_slot = ATOMIC_INIT(-1);
#include <asm/mmu_context.h>
#include <asm/cacheflush.h>
DEFINE_PER_CPU_READ_MOSTLY(struct bp_hardening_data, bp_hardening_data);
#ifdef CONFIG_KVM_INDIRECT_VECTORS
extern char __smccc_workaround_1_smc_start[];
extern char __smccc_workaround_1_smc_end[];
static void __copy_hyp_vect_bpi(int slot, const char *hyp_vecs_start,
const char *hyp_vecs_end)
{
void *dst = lm_alias(__bp_harden_hyp_vecs_start + slot * SZ_2K);
int i;
for (i = 0; i < SZ_2K; i += 0x80)
memcpy(dst + i, hyp_vecs_start, hyp_vecs_end - hyp_vecs_start);
__flush_icache_range((uintptr_t)dst, (uintptr_t)dst + SZ_2K);
}
static void install_bp_hardening_cb(bp_hardening_cb_t fn,
const char *hyp_vecs_start,
const char *hyp_vecs_end)
{
static DEFINE_RAW_SPINLOCK(bp_lock);
int cpu, slot = -1;
/*
* detect_harden_bp_fw() passes NULL for the hyp_vecs start/end if
* we're a guest. Skip the hyp-vectors work.
*/
if (!hyp_vecs_start) {
__this_cpu_write(bp_hardening_data.fn, fn);
return;
}
raw_spin_lock(&bp_lock);
for_each_possible_cpu(cpu) {
if (per_cpu(bp_hardening_data.fn, cpu) == fn) {
slot = per_cpu(bp_hardening_data.hyp_vectors_slot, cpu);
break;
}
}
if (slot == -1) {
slot = atomic_inc_return(&arm64_el2_vector_last_slot);
BUG_ON(slot >= BP_HARDEN_EL2_SLOTS);
__copy_hyp_vect_bpi(slot, hyp_vecs_start, hyp_vecs_end);
}
__this_cpu_write(bp_hardening_data.hyp_vectors_slot, slot);
__this_cpu_write(bp_hardening_data.fn, fn);
raw_spin_unlock(&bp_lock);
}
#else
#define __smccc_workaround_1_smc_start NULL
#define __smccc_workaround_1_smc_end NULL
static void install_bp_hardening_cb(bp_hardening_cb_t fn,
const char *hyp_vecs_start,
const char *hyp_vecs_end)
{
__this_cpu_write(bp_hardening_data.fn, fn);
}
#endif /* CONFIG_KVM_INDIRECT_VECTORS */
#include <uapi/linux/psci.h>
#include <linux/arm-smccc.h>
#include <linux/psci.h>
static void call_smc_arch_workaround_1(void)
{
arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_1, NULL);
}
static void call_hvc_arch_workaround_1(void)
{
arm_smccc_1_1_hvc(ARM_SMCCC_ARCH_WORKAROUND_1, NULL);
}
static void qcom_link_stack_sanitization(void)
{
u64 tmp;
asm volatile("mov %0, x30 \n"
".rept 16 \n"
"bl . + 4 \n"
".endr \n"
"mov x30, %0 \n"
: "=&r" (tmp));
}
static bool __nospectre_v2;
static int __init parse_nospectre_v2(char *str)
{
__nospectre_v2 = true;
return 0;
}
early_param("nospectre_v2", parse_nospectre_v2);
/*
* -1: No workaround
* 0: No workaround required
* 1: Workaround installed
*/
static int detect_harden_bp_fw(void)
{
bp_hardening_cb_t cb;
void *smccc_start, *smccc_end;
struct arm_smccc_res res;
u32 midr = read_cpuid_id();
if (psci_ops.smccc_version == SMCCC_VERSION_1_0)
return -1;
switch (psci_ops.conduit) {
case PSCI_CONDUIT_HVC:
arm_smccc_1_1_hvc(ARM_SMCCC_ARCH_FEATURES_FUNC_ID,
ARM_SMCCC_ARCH_WORKAROUND_1, &res);
switch ((int)res.a0) {
case 1:
/* Firmware says we're just fine */
return 0;
case 0:
cb = call_hvc_arch_workaround_1;
/* This is a guest, no need to patch KVM vectors */
smccc_start = NULL;
smccc_end = NULL;
break;
default:
return -1;
}
break;
case PSCI_CONDUIT_SMC:
arm_smccc_1_1_smc(ARM_SMCCC_ARCH_FEATURES_FUNC_ID,
ARM_SMCCC_ARCH_WORKAROUND_1, &res);
switch ((int)res.a0) {
case 1:
/* Firmware says we're just fine */
return 0;
case 0:
cb = call_smc_arch_workaround_1;
smccc_start = __smccc_workaround_1_smc_start;
smccc_end = __smccc_workaround_1_smc_end;
break;
default:
return -1;
}
break;
default:
return -1;
}
if (((midr & MIDR_CPU_MODEL_MASK) == MIDR_QCOM_FALKOR) ||
((midr & MIDR_CPU_MODEL_MASK) == MIDR_QCOM_FALKOR_V1))
cb = qcom_link_stack_sanitization;
if (IS_ENABLED(CONFIG_HARDEN_BRANCH_PREDICTOR))
install_bp_hardening_cb(cb, smccc_start, smccc_end);
return 1;
}
DEFINE_PER_CPU_READ_MOSTLY(u64, arm64_ssbd_callback_required);
int ssbd_state __read_mostly = ARM64_SSBD_KERNEL;
static bool __ssb_safe = true;
static const struct ssbd_options {
const char *str;
int state;
} ssbd_options[] = {
{ "force-on", ARM64_SSBD_FORCE_ENABLE, },
{ "force-off", ARM64_SSBD_FORCE_DISABLE, },
{ "kernel", ARM64_SSBD_KERNEL, },
};
static int __init ssbd_cfg(char *buf)
{
int i;
if (!buf || !buf[0])
return -EINVAL;
for (i = 0; i < ARRAY_SIZE(ssbd_options); i++) {
int len = strlen(ssbd_options[i].str);
if (strncmp(buf, ssbd_options[i].str, len))
continue;
ssbd_state = ssbd_options[i].state;
return 0;
}
return -EINVAL;
}
early_param("ssbd", ssbd_cfg);
void __init arm64_update_smccc_conduit(struct alt_instr *alt,
__le32 *origptr, __le32 *updptr,
int nr_inst)
{
u32 insn;
BUG_ON(nr_inst != 1);
switch (psci_ops.conduit) {
case PSCI_CONDUIT_HVC:
insn = aarch64_insn_get_hvc_value();
break;
case PSCI_CONDUIT_SMC:
insn = aarch64_insn_get_smc_value();
break;
default:
return;
}
*updptr = cpu_to_le32(insn);
}
void __init arm64_enable_wa2_handling(struct alt_instr *alt,
__le32 *origptr, __le32 *updptr,
int nr_inst)
{
BUG_ON(nr_inst != 1);
/*
* Only allow mitigation on EL1 entry/exit and guest
* ARCH_WORKAROUND_2 handling if the SSBD state allows it to
* be flipped.
*/
if (arm64_get_ssbd_state() == ARM64_SSBD_KERNEL)
*updptr = cpu_to_le32(aarch64_insn_gen_nop());
}
void arm64_set_ssbd_mitigation(bool state)
{
if (!IS_ENABLED(CONFIG_ARM64_SSBD)) {
pr_info_once("SSBD disabled by kernel configuration\n");
return;
}
if (this_cpu_has_cap(ARM64_SSBS)) {
if (state)
asm volatile(SET_PSTATE_SSBS(0));
else
asm volatile(SET_PSTATE_SSBS(1));
return;
}
switch (psci_ops.conduit) {
case PSCI_CONDUIT_HVC:
arm_smccc_1_1_hvc(ARM_SMCCC_ARCH_WORKAROUND_2, state, NULL);
break;
case PSCI_CONDUIT_SMC:
arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, state, NULL);
break;
default:
WARN_ON_ONCE(1);
break;
}
}
static bool has_ssbd_mitigation(const struct arm64_cpu_capabilities *entry,
int scope)
{
struct arm_smccc_res res;
bool required = true;
s32 val;
bool this_cpu_safe = false;
WARN_ON(scope != SCOPE_LOCAL_CPU || preemptible());
if (cpu_mitigations_off())
ssbd_state = ARM64_SSBD_FORCE_DISABLE;
/* delay setting __ssb_safe until we get a firmware response */
if (is_midr_in_range_list(read_cpuid_id(), entry->midr_range_list))
this_cpu_safe = true;
if (this_cpu_has_cap(ARM64_SSBS)) {
if (!this_cpu_safe)
__ssb_safe = false;
required = false;
goto out_printmsg;
}
if (psci_ops.smccc_version == SMCCC_VERSION_1_0) {
ssbd_state = ARM64_SSBD_UNKNOWN;
if (!this_cpu_safe)
__ssb_safe = false;
return false;
}
switch (psci_ops.conduit) {
case PSCI_CONDUIT_HVC:
arm_smccc_1_1_hvc(ARM_SMCCC_ARCH_FEATURES_FUNC_ID,
ARM_SMCCC_ARCH_WORKAROUND_2, &res);
break;
case PSCI_CONDUIT_SMC:
arm_smccc_1_1_smc(ARM_SMCCC_ARCH_FEATURES_FUNC_ID,
ARM_SMCCC_ARCH_WORKAROUND_2, &res);
break;
default:
ssbd_state = ARM64_SSBD_UNKNOWN;
if (!this_cpu_safe)
__ssb_safe = false;
return false;
}
val = (s32)res.a0;
switch (val) {
case SMCCC_RET_NOT_SUPPORTED:
ssbd_state = ARM64_SSBD_UNKNOWN;
if (!this_cpu_safe)
__ssb_safe = false;
return false;
/* machines with mixed mitigation requirements must not return this */
case SMCCC_RET_NOT_REQUIRED:
pr_info_once("%s mitigation not required\n", entry->desc);
ssbd_state = ARM64_SSBD_MITIGATED;
return false;
case SMCCC_RET_SUCCESS:
__ssb_safe = false;
required = true;
break;
case 1: /* Mitigation not required on this CPU */
required = false;
break;
default:
WARN_ON(1);
if (!this_cpu_safe)
__ssb_safe = false;
return false;
}
switch (ssbd_state) {
case ARM64_SSBD_FORCE_DISABLE:
arm64_set_ssbd_mitigation(false);
required = false;
break;
case ARM64_SSBD_KERNEL:
if (required) {
__this_cpu_write(arm64_ssbd_callback_required, 1);
arm64_set_ssbd_mitigation(true);
}
break;
case ARM64_SSBD_FORCE_ENABLE:
arm64_set_ssbd_mitigation(true);
required = true;
break;
default:
WARN_ON(1);
break;
}
out_printmsg:
switch (ssbd_state) {
case ARM64_SSBD_FORCE_DISABLE:
pr_info_once("%s disabled from command-line\n", entry->desc);
break;
case ARM64_SSBD_FORCE_ENABLE:
pr_info_once("%s forced from command-line\n", entry->desc);
break;
}
return required;
}
/* known invulnerable cores */
static const struct midr_range arm64_ssb_cpus[] = {
MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
{},
};
#ifdef CONFIG_ARM64_ERRATUM_1463225
DEFINE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa);
static bool
has_cortex_a76_erratum_1463225(const struct arm64_cpu_capabilities *entry,
int scope)
{
u32 midr = read_cpuid_id();
/* Cortex-A76 r0p0 - r3p1 */
struct midr_range range = MIDR_RANGE(MIDR_CORTEX_A76, 0, 0, 3, 1);
WARN_ON(scope != SCOPE_LOCAL_CPU || preemptible());
return is_midr_in_range(midr, &range) && is_kernel_in_hyp_mode();
}
#endif
static void __maybe_unused
cpu_enable_cache_maint_trap(const struct arm64_cpu_capabilities *__unused)
{
sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCI, 0);
}
#define CAP_MIDR_RANGE(model, v_min, r_min, v_max, r_max) \
.matches = is_affected_midr_range, \
.midr_range = MIDR_RANGE(model, v_min, r_min, v_max, r_max)
#define CAP_MIDR_ALL_VERSIONS(model) \
.matches = is_affected_midr_range, \
.midr_range = MIDR_ALL_VERSIONS(model)
#define MIDR_FIXED(rev, revidr_mask) \
.fixed_revs = (struct arm64_midr_revidr[]){{ (rev), (revidr_mask) }, {}}
#define ERRATA_MIDR_RANGE(model, v_min, r_min, v_max, r_max) \
.type = ARM64_CPUCAP_LOCAL_CPU_ERRATUM, \
CAP_MIDR_RANGE(model, v_min, r_min, v_max, r_max)
#define CAP_MIDR_RANGE_LIST(list) \
.matches = is_affected_midr_range_list, \
.midr_range_list = list
/* Errata affecting a range of revisions of given model variant */
#define ERRATA_MIDR_REV_RANGE(m, var, r_min, r_max) \
ERRATA_MIDR_RANGE(m, var, r_min, var, r_max)
/* Errata affecting a single variant/revision of a model */
#define ERRATA_MIDR_REV(model, var, rev) \
ERRATA_MIDR_RANGE(model, var, rev, var, rev)
/* Errata affecting all variants/revisions of a given a model */
#define ERRATA_MIDR_ALL_VERSIONS(model) \
.type = ARM64_CPUCAP_LOCAL_CPU_ERRATUM, \
CAP_MIDR_ALL_VERSIONS(model)
/* Errata affecting a list of midr ranges, with same work around */
#define ERRATA_MIDR_RANGE_LIST(midr_list) \
.type = ARM64_CPUCAP_LOCAL_CPU_ERRATUM, \
CAP_MIDR_RANGE_LIST(midr_list)
/* Track overall mitigation state. We are only mitigated if all cores are ok */
static bool __hardenbp_enab = true;
static bool __spectrev2_safe = true;
int get_spectre_v2_workaround_state(void)
{
if (__spectrev2_safe)
return ARM64_BP_HARDEN_NOT_REQUIRED;
if (!__hardenbp_enab)
return ARM64_BP_HARDEN_UNKNOWN;
return ARM64_BP_HARDEN_WA_NEEDED;
}
/*
* List of CPUs that do not need any Spectre-v2 mitigation at all.
*/
static const struct midr_range spectre_v2_safe_list[] = {
MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
{ /* sentinel */ }
};
/*
* Track overall bp hardening for all heterogeneous cores in the machine.
* We are only considered "safe" if all booted cores are known safe.
*/
static bool __maybe_unused
check_branch_predictor(const struct arm64_cpu_capabilities *entry, int scope)
{
int need_wa;
WARN_ON(scope != SCOPE_LOCAL_CPU || preemptible());
/* If the CPU has CSV2 set, we're safe */
if (cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64PFR0_EL1),
ID_AA64PFR0_CSV2_SHIFT))
return false;
/* Alternatively, we have a list of unaffected CPUs */
if (is_midr_in_range_list(read_cpuid_id(), spectre_v2_safe_list))
return false;
/* Fallback to firmware detection */
need_wa = detect_harden_bp_fw();
if (!need_wa)
return false;
__spectrev2_safe = false;
if (!IS_ENABLED(CONFIG_HARDEN_BRANCH_PREDICTOR)) {
pr_warn_once("spectrev2 mitigation disabled by kernel configuration\n");
__hardenbp_enab = false;
return false;
}
/* forced off */
if (__nospectre_v2 || cpu_mitigations_off()) {
pr_info_once("spectrev2 mitigation disabled by command line option\n");
__hardenbp_enab = false;
return false;
}
if (need_wa < 0) {
pr_warn_once("ARM_SMCCC_ARCH_WORKAROUND_1 missing from firmware\n");
__hardenbp_enab = false;
}
return (need_wa > 0);
}
static const __maybe_unused struct midr_range tx2_family_cpus[] = {
MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
{},
};
static bool __maybe_unused
needs_tx2_tvm_workaround(const struct arm64_cpu_capabilities *entry,
int scope)
{
int i;
if (!is_affected_midr_range_list(entry, scope) ||
!is_hyp_mode_available())
return false;
for_each_possible_cpu(i) {
if (MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0) != 0)
return true;
}
return false;
}
#ifdef CONFIG_HARDEN_EL2_VECTORS
static const struct midr_range arm64_harden_el2_vectors[] = {
MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
{},
};
#endif
#ifdef CONFIG_ARM64_WORKAROUND_REPEAT_TLBI
static const struct arm64_cpu_capabilities arm64_repeat_tlbi_list[] = {
#ifdef CONFIG_QCOM_FALKOR_ERRATUM_1009
{
ERRATA_MIDR_REV(MIDR_QCOM_FALKOR_V1, 0, 0)
},
{
.midr_range.model = MIDR_QCOM_KRYO,
.matches = is_kryo_midr,
},
#endif
#ifdef CONFIG_ARM64_ERRATUM_1286807
{
ERRATA_MIDR_RANGE(MIDR_CORTEX_A76, 0, 0, 3, 0),
},
#endif
{},
};
#endif
#ifdef CONFIG_CAVIUM_ERRATUM_27456
const struct midr_range cavium_erratum_27456_cpus[] = {
/* Cavium ThunderX, T88 pass 1.x - 2.1 */
MIDR_RANGE(MIDR_THUNDERX, 0, 0, 1, 1),
/* Cavium ThunderX, T81 pass 1.0 */
MIDR_REV(MIDR_THUNDERX_81XX, 0, 0),
{},
};
#endif
#ifdef CONFIG_CAVIUM_ERRATUM_30115
static const struct midr_range cavium_erratum_30115_cpus[] = {
/* Cavium ThunderX, T88 pass 1.x - 2.2 */
MIDR_RANGE(MIDR_THUNDERX, 0, 0, 1, 2),
/* Cavium ThunderX, T81 pass 1.0 - 1.2 */
MIDR_REV_RANGE(MIDR_THUNDERX_81XX, 0, 0, 2),
/* Cavium ThunderX, T83 pass 1.0 */
MIDR_REV(MIDR_THUNDERX_83XX, 0, 0),
{},
};
#endif
#ifdef CONFIG_QCOM_FALKOR_ERRATUM_1003
static const struct arm64_cpu_capabilities qcom_erratum_1003_list[] = {
{
ERRATA_MIDR_REV(MIDR_QCOM_FALKOR_V1, 0, 0),
},
{
.midr_range.model = MIDR_QCOM_KRYO,
.matches = is_kryo_midr,
},
{},
};
#endif
#ifdef CONFIG_ARM64_WORKAROUND_CLEAN_CACHE
static const struct midr_range workaround_clean_cache[] = {
#if defined(CONFIG_ARM64_ERRATUM_826319) || \
defined(CONFIG_ARM64_ERRATUM_827319) || \
defined(CONFIG_ARM64_ERRATUM_824069)
/* Cortex-A53 r0p[012]: ARM errata 826319, 827319, 824069 */
MIDR_REV_RANGE(MIDR_CORTEX_A53, 0, 0, 2),
#endif
#ifdef CONFIG_ARM64_ERRATUM_819472
/* Cortex-A53 r0p[01] : ARM errata 819472 */
MIDR_REV_RANGE(MIDR_CORTEX_A53, 0, 0, 1),
#endif
{},
};
#endif
#ifdef CONFIG_ARM64_ERRATUM_1418040
/*
* - 1188873 affects r0p0 to r2p0
* - 1418040 affects r0p0 to r3p1
*/
static const struct midr_range erratum_1418040_list[] = {
/* Cortex-A76 r0p0 to r3p1 */
MIDR_RANGE(MIDR_CORTEX_A76, 0, 0, 3, 1),
/* Neoverse-N1 r0p0 to r3p1 */
MIDR_RANGE(MIDR_NEOVERSE_N1, 0, 0, 3, 1),
{},
};
#endif
#ifdef CONFIG_ARM64_ERRATUM_845719
static const struct midr_range erratum_845719_list[] = {
/* Cortex-A53 r0p[01234] */
MIDR_REV_RANGE(MIDR_CORTEX_A53, 0, 0, 4),
/* Brahma-B53 r0p[0] */
MIDR_REV(MIDR_BRAHMA_B53, 0, 0),
{},
};
#endif
#ifdef CONFIG_ARM64_ERRATUM_843419
static const struct arm64_cpu_capabilities erratum_843419_list[] = {
{
/* Cortex-A53 r0p[01234] */
.matches = is_affected_midr_range,
ERRATA_MIDR_REV_RANGE(MIDR_CORTEX_A53, 0, 0, 4),
MIDR_FIXED(0x4, BIT(8)),
},
{
/* Brahma-B53 r0p[0] */
.matches = is_affected_midr_range,
ERRATA_MIDR_REV(MIDR_BRAHMA_B53, 0, 0),
},
{},
};
#endif
const struct arm64_cpu_capabilities arm64_errata[] = {
#ifdef CONFIG_ARM64_WORKAROUND_CLEAN_CACHE
{
.desc = "ARM errata 826319, 827319, 824069, 819472",
.capability = ARM64_WORKAROUND_CLEAN_CACHE,
ERRATA_MIDR_RANGE_LIST(workaround_clean_cache),
.cpu_enable = cpu_enable_cache_maint_trap,
},
#endif
#ifdef CONFIG_ARM64_ERRATUM_832075
{
/* Cortex-A57 r0p0 - r1p2 */
.desc = "ARM erratum 832075",
.capability = ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE,
ERRATA_MIDR_RANGE(MIDR_CORTEX_A57,
0, 0,
1, 2),
},
#endif
#ifdef CONFIG_ARM64_ERRATUM_834220
{
/* Cortex-A57 r0p0 - r1p2 */
.desc = "ARM erratum 834220",
.capability = ARM64_WORKAROUND_834220,
ERRATA_MIDR_RANGE(MIDR_CORTEX_A57,
0, 0,
1, 2),
},
#endif
#ifdef CONFIG_ARM64_ERRATUM_843419
{
.desc = "ARM erratum 843419",
.capability = ARM64_WORKAROUND_843419,
.type = ARM64_CPUCAP_LOCAL_CPU_ERRATUM,
.matches = cpucap_multi_entry_cap_matches,
.match_list = erratum_843419_list,
},
#endif
#ifdef CONFIG_ARM64_ERRATUM_845719
{
.desc = "ARM erratum 845719",
.capability = ARM64_WORKAROUND_845719,
ERRATA_MIDR_RANGE_LIST(erratum_845719_list),
},
#endif
#ifdef CONFIG_CAVIUM_ERRATUM_23154
{
/* Cavium ThunderX, pass 1.x */
.desc = "Cavium erratum 23154",
.capability = ARM64_WORKAROUND_CAVIUM_23154,
ERRATA_MIDR_REV_RANGE(MIDR_THUNDERX, 0, 0, 1),
},
#endif
#ifdef CONFIG_CAVIUM_ERRATUM_27456
{
.desc = "Cavium erratum 27456",
.capability = ARM64_WORKAROUND_CAVIUM_27456,
ERRATA_MIDR_RANGE_LIST(cavium_erratum_27456_cpus),
},
#endif
#ifdef CONFIG_CAVIUM_ERRATUM_30115
{
.desc = "Cavium erratum 30115",
.capability = ARM64_WORKAROUND_CAVIUM_30115,
ERRATA_MIDR_RANGE_LIST(cavium_erratum_30115_cpus),
},
#endif
{
.desc = "Mismatched cache type (CTR_EL0)",
.capability = ARM64_MISMATCHED_CACHE_TYPE,
.matches = has_mismatched_cache_type,
.type = ARM64_CPUCAP_LOCAL_CPU_ERRATUM,
.cpu_enable = cpu_enable_trap_ctr_access,
},
#ifdef CONFIG_QCOM_FALKOR_ERRATUM_1003
{
.desc = "Qualcomm Technologies Falkor/Kryo erratum 1003",
.capability = ARM64_WORKAROUND_QCOM_FALKOR_E1003,
.type = ARM64_CPUCAP_LOCAL_CPU_ERRATUM,
.matches = cpucap_multi_entry_cap_matches,
.match_list = qcom_erratum_1003_list,
},
#endif
#ifdef CONFIG_ARM64_WORKAROUND_REPEAT_TLBI
{
.desc = "Qualcomm erratum 1009, ARM erratum 1286807",
.capability = ARM64_WORKAROUND_REPEAT_TLBI,
.type = ARM64_CPUCAP_LOCAL_CPU_ERRATUM,
.matches = cpucap_multi_entry_cap_matches,
.match_list = arm64_repeat_tlbi_list,
},
#endif
#ifdef CONFIG_ARM64_ERRATUM_858921
{
/* Cortex-A73 all versions */
.desc = "ARM erratum 858921",
.capability = ARM64_WORKAROUND_858921,
ERRATA_MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
},
#endif
{
.capability = ARM64_HARDEN_BRANCH_PREDICTOR,
.type = ARM64_CPUCAP_LOCAL_CPU_ERRATUM,
.matches = check_branch_predictor,
},
#ifdef CONFIG_HARDEN_EL2_VECTORS
{
.desc = "EL2 vector hardening",
.capability = ARM64_HARDEN_EL2_VECTORS,
ERRATA_MIDR_RANGE_LIST(arm64_harden_el2_vectors),
},
#endif
{
.desc = "Speculative Store Bypass Disable",
.capability = ARM64_SSBD,
.type = ARM64_CPUCAP_LOCAL_CPU_ERRATUM,
.matches = has_ssbd_mitigation,
.midr_range_list = arm64_ssb_cpus,
},
#ifdef CONFIG_ARM64_ERRATUM_1418040
{
.desc = "ARM erratum 1418040",
.capability = ARM64_WORKAROUND_1418040,
ERRATA_MIDR_RANGE_LIST(erratum_1418040_list),
},
#endif
#ifdef CONFIG_ARM64_ERRATUM_1165522
{
/* Cortex-A76 r0p0 to r2p0 */
.desc = "ARM erratum 1165522",
.capability = ARM64_WORKAROUND_1165522,
ERRATA_MIDR_RANGE(MIDR_CORTEX_A76, 0, 0, 2, 0),
},
#endif
#ifdef CONFIG_ARM64_ERRATUM_1463225
{
.desc = "ARM erratum 1463225",
.capability = ARM64_WORKAROUND_1463225,
.type = ARM64_CPUCAP_LOCAL_CPU_ERRATUM,
.matches = has_cortex_a76_erratum_1463225,
},
#endif
#ifdef CONFIG_CAVIUM_TX2_ERRATUM_219
{
.desc = "Cavium ThunderX2 erratum 219 (KVM guest sysreg trapping)",
.capability = ARM64_WORKAROUND_CAVIUM_TX2_219_TVM,
ERRATA_MIDR_RANGE_LIST(tx2_family_cpus),
.matches = needs_tx2_tvm_workaround,
},
{
.desc = "Cavium ThunderX2 erratum 219 (PRFM removal)",
.capability = ARM64_WORKAROUND_CAVIUM_TX2_219_PRFM,
ERRATA_MIDR_RANGE_LIST(tx2_family_cpus),
},
#endif
{
}
};
ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "Mitigation: __user pointer sanitization\n");
}
ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr,
char *buf)
{
switch (get_spectre_v2_workaround_state()) {
case ARM64_BP_HARDEN_NOT_REQUIRED:
return sprintf(buf, "Not affected\n");
case ARM64_BP_HARDEN_WA_NEEDED:
return sprintf(buf, "Mitigation: Branch predictor hardening\n");
case ARM64_BP_HARDEN_UNKNOWN:
default:
return sprintf(buf, "Vulnerable\n");
}
}
ssize_t cpu_show_spec_store_bypass(struct device *dev,
struct device_attribute *attr, char *buf)
{
if (__ssb_safe)
return sprintf(buf, "Not affected\n");
switch (ssbd_state) {
case ARM64_SSBD_KERNEL:
case ARM64_SSBD_FORCE_ENABLE:
if (IS_ENABLED(CONFIG_ARM64_SSBD))
return sprintf(buf,
"Mitigation: Speculative Store Bypass disabled via prctl\n");
}
return sprintf(buf, "Vulnerable\n");
}