| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2016 Linaro Ltd <ard.biesheuvel@linaro.org> |
| */ |
| |
| #include <linux/cache.h> |
| #include <linux/crc32.h> |
| #include <linux/init.h> |
| #include <linux/libfdt.h> |
| #include <linux/mm_types.h> |
| #include <linux/sched.h> |
| #include <linux/types.h> |
| |
| #include <asm/cacheflush.h> |
| #include <asm/fixmap.h> |
| #include <asm/kernel-pgtable.h> |
| #include <asm/memory.h> |
| #include <asm/mmu.h> |
| #include <asm/pgtable.h> |
| #include <asm/sections.h> |
| |
| u64 __ro_after_init module_alloc_base; |
| u16 __initdata memstart_offset_seed; |
| |
| static __init u64 get_kaslr_seed(void *fdt) |
| { |
| int node, len; |
| fdt64_t *prop; |
| u64 ret; |
| |
| node = fdt_path_offset(fdt, "/chosen"); |
| if (node < 0) |
| return 0; |
| |
| prop = fdt_getprop_w(fdt, node, "kaslr-seed", &len); |
| if (!prop || len != sizeof(u64)) |
| return 0; |
| |
| ret = fdt64_to_cpu(*prop); |
| *prop = 0; |
| return ret; |
| } |
| |
| static __init const u8 *kaslr_get_cmdline(void *fdt) |
| { |
| static __initconst const u8 default_cmdline[] = CONFIG_CMDLINE; |
| |
| if (!IS_ENABLED(CONFIG_CMDLINE_FORCE)) { |
| int node; |
| const u8 *prop; |
| |
| node = fdt_path_offset(fdt, "/chosen"); |
| if (node < 0) |
| goto out; |
| |
| prop = fdt_getprop(fdt, node, "bootargs", NULL); |
| if (!prop) |
| goto out; |
| return prop; |
| } |
| out: |
| return default_cmdline; |
| } |
| |
| /* |
| * This routine will be executed with the kernel mapped at its default virtual |
| * address, and if it returns successfully, the kernel will be remapped, and |
| * start_kernel() will be executed from a randomized virtual offset. The |
| * relocation will result in all absolute references (e.g., static variables |
| * containing function pointers) to be reinitialized, and zero-initialized |
| * .bss variables will be reset to 0. |
| */ |
| u64 __init kaslr_early_init(u64 dt_phys) |
| { |
| void *fdt; |
| u64 seed, offset, mask, module_range; |
| const u8 *cmdline, *str; |
| int size; |
| |
| /* |
| * Set a reasonable default for module_alloc_base in case |
| * we end up running with module randomization disabled. |
| */ |
| module_alloc_base = (u64)_etext - MODULES_VSIZE; |
| __flush_dcache_area(&module_alloc_base, sizeof(module_alloc_base)); |
| |
| /* |
| * Try to map the FDT early. If this fails, we simply bail, |
| * and proceed with KASLR disabled. We will make another |
| * attempt at mapping the FDT in setup_machine() |
| */ |
| early_fixmap_init(); |
| fdt = fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL); |
| if (!fdt) |
| return 0; |
| |
| /* |
| * Retrieve (and wipe) the seed from the FDT |
| */ |
| seed = get_kaslr_seed(fdt); |
| if (!seed) |
| return 0; |
| |
| /* |
| * Check if 'nokaslr' appears on the command line, and |
| * return 0 if that is the case. |
| */ |
| cmdline = kaslr_get_cmdline(fdt); |
| str = strstr(cmdline, "nokaslr"); |
| if (str == cmdline || (str > cmdline && *(str - 1) == ' ')) |
| return 0; |
| |
| /* |
| * OK, so we are proceeding with KASLR enabled. Calculate a suitable |
| * kernel image offset from the seed. Let's place the kernel in the |
| * middle half of the VMALLOC area (VA_BITS_MIN - 2), and stay clear of |
| * the lower and upper quarters to avoid colliding with other |
| * allocations. |
| * Even if we could randomize at page granularity for 16k and 64k pages, |
| * let's always round to 2 MB so we don't interfere with the ability to |
| * map using contiguous PTEs |
| */ |
| mask = ((1UL << (VA_BITS_MIN - 2)) - 1) & ~(SZ_2M - 1); |
| offset = BIT(VA_BITS_MIN - 3) + (seed & mask); |
| |
| /* use the top 16 bits to randomize the linear region */ |
| memstart_offset_seed = seed >> 48; |
| |
| if (IS_ENABLED(CONFIG_KASAN)) |
| /* |
| * KASAN does not expect the module region to intersect the |
| * vmalloc region, since shadow memory is allocated for each |
| * module at load time, whereas the vmalloc region is shadowed |
| * by KASAN zero pages. So keep modules out of the vmalloc |
| * region if KASAN is enabled, and put the kernel well within |
| * 4 GB of the module region. |
| */ |
| return offset % SZ_2G; |
| |
| if (IS_ENABLED(CONFIG_RANDOMIZE_MODULE_REGION_FULL)) { |
| /* |
| * Randomize the module region over a 2 GB window covering the |
| * kernel. This reduces the risk of modules leaking information |
| * about the address of the kernel itself, but results in |
| * branches between modules and the core kernel that are |
| * resolved via PLTs. (Branches between modules will be |
| * resolved normally.) |
| */ |
| module_range = SZ_2G - (u64)(_end - _stext); |
| module_alloc_base = max((u64)_end + offset - SZ_2G, |
| (u64)MODULES_VADDR); |
| } else { |
| /* |
| * Randomize the module region by setting module_alloc_base to |
| * a PAGE_SIZE multiple in the range [_etext - MODULES_VSIZE, |
| * _stext) . This guarantees that the resulting region still |
| * covers [_stext, _etext], and that all relative branches can |
| * be resolved without veneers. |
| */ |
| module_range = MODULES_VSIZE - (u64)(_etext - _stext); |
| module_alloc_base = (u64)_etext + offset - MODULES_VSIZE; |
| } |
| |
| /* use the lower 21 bits to randomize the base of the module region */ |
| module_alloc_base += (module_range * (seed & ((1 << 21) - 1))) >> 21; |
| module_alloc_base &= PAGE_MASK; |
| |
| __flush_dcache_area(&module_alloc_base, sizeof(module_alloc_base)); |
| __flush_dcache_area(&memstart_offset_seed, sizeof(memstart_offset_seed)); |
| |
| return offset; |
| } |