| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * VGICv2 MMIO handling functions |
| */ |
| |
| #include <linux/irqchip/arm-gic.h> |
| #include <linux/kvm.h> |
| #include <linux/kvm_host.h> |
| #include <linux/nospec.h> |
| |
| #include <kvm/iodev.h> |
| #include <kvm/arm_vgic.h> |
| |
| #include "vgic.h" |
| #include "vgic-mmio.h" |
| |
| /* |
| * The Revision field in the IIDR have the following meanings: |
| * |
| * Revision 1: Report GICv2 interrupts as group 0 instead of group 1 |
| * Revision 2: Interrupt groups are guest-configurable and signaled using |
| * their configured groups. |
| */ |
| |
| static unsigned long vgic_mmio_read_v2_misc(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len) |
| { |
| struct vgic_dist *vgic = &vcpu->kvm->arch.vgic; |
| u32 value; |
| |
| switch (addr & 0x0c) { |
| case GIC_DIST_CTRL: |
| value = vgic->enabled ? GICD_ENABLE : 0; |
| break; |
| case GIC_DIST_CTR: |
| value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS; |
| value = (value >> 5) - 1; |
| value |= (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5; |
| break; |
| case GIC_DIST_IIDR: |
| value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) | |
| (vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) | |
| (IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT); |
| break; |
| default: |
| return 0; |
| } |
| |
| return value; |
| } |
| |
| static void vgic_mmio_write_v2_misc(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len, |
| unsigned long val) |
| { |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| bool was_enabled = dist->enabled; |
| |
| switch (addr & 0x0c) { |
| case GIC_DIST_CTRL: |
| dist->enabled = val & GICD_ENABLE; |
| if (!was_enabled && dist->enabled) |
| vgic_kick_vcpus(vcpu->kvm); |
| break; |
| case GIC_DIST_CTR: |
| case GIC_DIST_IIDR: |
| /* Nothing to do */ |
| return; |
| } |
| } |
| |
| static int vgic_mmio_uaccess_write_v2_misc(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len, |
| unsigned long val) |
| { |
| switch (addr & 0x0c) { |
| case GIC_DIST_IIDR: |
| if (val != vgic_mmio_read_v2_misc(vcpu, addr, len)) |
| return -EINVAL; |
| |
| /* |
| * If we observe a write to GICD_IIDR we know that userspace |
| * has been updated and has had a chance to cope with older |
| * kernels (VGICv2 IIDR.Revision == 0) incorrectly reporting |
| * interrupts as group 1, and therefore we now allow groups to |
| * be user writable. Doing this by default would break |
| * migration from old kernels to new kernels with legacy |
| * userspace. |
| */ |
| vcpu->kvm->arch.vgic.v2_groups_user_writable = true; |
| return 0; |
| } |
| |
| vgic_mmio_write_v2_misc(vcpu, addr, len, val); |
| return 0; |
| } |
| |
| static int vgic_mmio_uaccess_write_v2_group(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len, |
| unsigned long val) |
| { |
| if (vcpu->kvm->arch.vgic.v2_groups_user_writable) |
| vgic_mmio_write_group(vcpu, addr, len, val); |
| |
| return 0; |
| } |
| |
| static void vgic_mmio_write_sgir(struct kvm_vcpu *source_vcpu, |
| gpa_t addr, unsigned int len, |
| unsigned long val) |
| { |
| int nr_vcpus = atomic_read(&source_vcpu->kvm->online_vcpus); |
| int intid = val & 0xf; |
| int targets = (val >> 16) & 0xff; |
| int mode = (val >> 24) & 0x03; |
| int c; |
| struct kvm_vcpu *vcpu; |
| unsigned long flags; |
| |
| switch (mode) { |
| case 0x0: /* as specified by targets */ |
| break; |
| case 0x1: |
| targets = (1U << nr_vcpus) - 1; /* all, ... */ |
| targets &= ~(1U << source_vcpu->vcpu_id); /* but self */ |
| break; |
| case 0x2: /* this very vCPU only */ |
| targets = (1U << source_vcpu->vcpu_id); |
| break; |
| case 0x3: /* reserved */ |
| return; |
| } |
| |
| kvm_for_each_vcpu(c, vcpu, source_vcpu->kvm) { |
| struct vgic_irq *irq; |
| |
| if (!(targets & (1U << c))) |
| continue; |
| |
| irq = vgic_get_irq(source_vcpu->kvm, vcpu, intid); |
| |
| raw_spin_lock_irqsave(&irq->irq_lock, flags); |
| irq->pending_latch = true; |
| irq->source |= 1U << source_vcpu->vcpu_id; |
| |
| vgic_queue_irq_unlock(source_vcpu->kvm, irq, flags); |
| vgic_put_irq(source_vcpu->kvm, irq); |
| } |
| } |
| |
| static unsigned long vgic_mmio_read_target(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len) |
| { |
| u32 intid = VGIC_ADDR_TO_INTID(addr, 8); |
| int i; |
| u64 val = 0; |
| |
| for (i = 0; i < len; i++) { |
| struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); |
| |
| val |= (u64)irq->targets << (i * 8); |
| |
| vgic_put_irq(vcpu->kvm, irq); |
| } |
| |
| return val; |
| } |
| |
| static void vgic_mmio_write_target(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len, |
| unsigned long val) |
| { |
| u32 intid = VGIC_ADDR_TO_INTID(addr, 8); |
| u8 cpu_mask = GENMASK(atomic_read(&vcpu->kvm->online_vcpus) - 1, 0); |
| int i; |
| unsigned long flags; |
| |
| /* GICD_ITARGETSR[0-7] are read-only */ |
| if (intid < VGIC_NR_PRIVATE_IRQS) |
| return; |
| |
| for (i = 0; i < len; i++) { |
| struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid + i); |
| int target; |
| |
| raw_spin_lock_irqsave(&irq->irq_lock, flags); |
| |
| irq->targets = (val >> (i * 8)) & cpu_mask; |
| target = irq->targets ? __ffs(irq->targets) : 0; |
| irq->target_vcpu = kvm_get_vcpu(vcpu->kvm, target); |
| |
| raw_spin_unlock_irqrestore(&irq->irq_lock, flags); |
| vgic_put_irq(vcpu->kvm, irq); |
| } |
| } |
| |
| static unsigned long vgic_mmio_read_sgipend(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len) |
| { |
| u32 intid = addr & 0x0f; |
| int i; |
| u64 val = 0; |
| |
| for (i = 0; i < len; i++) { |
| struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); |
| |
| val |= (u64)irq->source << (i * 8); |
| |
| vgic_put_irq(vcpu->kvm, irq); |
| } |
| return val; |
| } |
| |
| static void vgic_mmio_write_sgipendc(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len, |
| unsigned long val) |
| { |
| u32 intid = addr & 0x0f; |
| int i; |
| unsigned long flags; |
| |
| for (i = 0; i < len; i++) { |
| struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); |
| |
| raw_spin_lock_irqsave(&irq->irq_lock, flags); |
| |
| irq->source &= ~((val >> (i * 8)) & 0xff); |
| if (!irq->source) |
| irq->pending_latch = false; |
| |
| raw_spin_unlock_irqrestore(&irq->irq_lock, flags); |
| vgic_put_irq(vcpu->kvm, irq); |
| } |
| } |
| |
| static void vgic_mmio_write_sgipends(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len, |
| unsigned long val) |
| { |
| u32 intid = addr & 0x0f; |
| int i; |
| unsigned long flags; |
| |
| for (i = 0; i < len; i++) { |
| struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); |
| |
| raw_spin_lock_irqsave(&irq->irq_lock, flags); |
| |
| irq->source |= (val >> (i * 8)) & 0xff; |
| |
| if (irq->source) { |
| irq->pending_latch = true; |
| vgic_queue_irq_unlock(vcpu->kvm, irq, flags); |
| } else { |
| raw_spin_unlock_irqrestore(&irq->irq_lock, flags); |
| } |
| vgic_put_irq(vcpu->kvm, irq); |
| } |
| } |
| |
| #define GICC_ARCH_VERSION_V2 0x2 |
| |
| /* These are for userland accesses only, there is no guest-facing emulation. */ |
| static unsigned long vgic_mmio_read_vcpuif(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len) |
| { |
| struct vgic_vmcr vmcr; |
| u32 val; |
| |
| vgic_get_vmcr(vcpu, &vmcr); |
| |
| switch (addr & 0xff) { |
| case GIC_CPU_CTRL: |
| val = vmcr.grpen0 << GIC_CPU_CTRL_EnableGrp0_SHIFT; |
| val |= vmcr.grpen1 << GIC_CPU_CTRL_EnableGrp1_SHIFT; |
| val |= vmcr.ackctl << GIC_CPU_CTRL_AckCtl_SHIFT; |
| val |= vmcr.fiqen << GIC_CPU_CTRL_FIQEn_SHIFT; |
| val |= vmcr.cbpr << GIC_CPU_CTRL_CBPR_SHIFT; |
| val |= vmcr.eoim << GIC_CPU_CTRL_EOImodeNS_SHIFT; |
| |
| break; |
| case GIC_CPU_PRIMASK: |
| /* |
| * Our KVM_DEV_TYPE_ARM_VGIC_V2 device ABI exports the |
| * PMR field as GICH_VMCR.VMPriMask rather than |
| * GICC_PMR.Priority, so we expose the upper five bits of |
| * priority mask to userspace using the lower bits in the |
| * unsigned long. |
| */ |
| val = (vmcr.pmr & GICV_PMR_PRIORITY_MASK) >> |
| GICV_PMR_PRIORITY_SHIFT; |
| break; |
| case GIC_CPU_BINPOINT: |
| val = vmcr.bpr; |
| break; |
| case GIC_CPU_ALIAS_BINPOINT: |
| val = vmcr.abpr; |
| break; |
| case GIC_CPU_IDENT: |
| val = ((PRODUCT_ID_KVM << 20) | |
| (GICC_ARCH_VERSION_V2 << 16) | |
| IMPLEMENTER_ARM); |
| break; |
| default: |
| return 0; |
| } |
| |
| return val; |
| } |
| |
| static void vgic_mmio_write_vcpuif(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len, |
| unsigned long val) |
| { |
| struct vgic_vmcr vmcr; |
| |
| vgic_get_vmcr(vcpu, &vmcr); |
| |
| switch (addr & 0xff) { |
| case GIC_CPU_CTRL: |
| vmcr.grpen0 = !!(val & GIC_CPU_CTRL_EnableGrp0); |
| vmcr.grpen1 = !!(val & GIC_CPU_CTRL_EnableGrp1); |
| vmcr.ackctl = !!(val & GIC_CPU_CTRL_AckCtl); |
| vmcr.fiqen = !!(val & GIC_CPU_CTRL_FIQEn); |
| vmcr.cbpr = !!(val & GIC_CPU_CTRL_CBPR); |
| vmcr.eoim = !!(val & GIC_CPU_CTRL_EOImodeNS); |
| |
| break; |
| case GIC_CPU_PRIMASK: |
| /* |
| * Our KVM_DEV_TYPE_ARM_VGIC_V2 device ABI exports the |
| * PMR field as GICH_VMCR.VMPriMask rather than |
| * GICC_PMR.Priority, so we expose the upper five bits of |
| * priority mask to userspace using the lower bits in the |
| * unsigned long. |
| */ |
| vmcr.pmr = (val << GICV_PMR_PRIORITY_SHIFT) & |
| GICV_PMR_PRIORITY_MASK; |
| break; |
| case GIC_CPU_BINPOINT: |
| vmcr.bpr = val; |
| break; |
| case GIC_CPU_ALIAS_BINPOINT: |
| vmcr.abpr = val; |
| break; |
| } |
| |
| vgic_set_vmcr(vcpu, &vmcr); |
| } |
| |
| static unsigned long vgic_mmio_read_apr(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len) |
| { |
| int n; /* which APRn is this */ |
| |
| n = (addr >> 2) & 0x3; |
| |
| if (kvm_vgic_global_state.type == VGIC_V2) { |
| /* GICv2 hardware systems support max. 32 groups */ |
| if (n != 0) |
| return 0; |
| return vcpu->arch.vgic_cpu.vgic_v2.vgic_apr; |
| } else { |
| struct vgic_v3_cpu_if *vgicv3 = &vcpu->arch.vgic_cpu.vgic_v3; |
| |
| if (n > vgic_v3_max_apr_idx(vcpu)) |
| return 0; |
| |
| n = array_index_nospec(n, 4); |
| |
| /* GICv3 only uses ICH_AP1Rn for memory mapped (GICv2) guests */ |
| return vgicv3->vgic_ap1r[n]; |
| } |
| } |
| |
| static void vgic_mmio_write_apr(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len, |
| unsigned long val) |
| { |
| int n; /* which APRn is this */ |
| |
| n = (addr >> 2) & 0x3; |
| |
| if (kvm_vgic_global_state.type == VGIC_V2) { |
| /* GICv2 hardware systems support max. 32 groups */ |
| if (n != 0) |
| return; |
| vcpu->arch.vgic_cpu.vgic_v2.vgic_apr = val; |
| } else { |
| struct vgic_v3_cpu_if *vgicv3 = &vcpu->arch.vgic_cpu.vgic_v3; |
| |
| if (n > vgic_v3_max_apr_idx(vcpu)) |
| return; |
| |
| n = array_index_nospec(n, 4); |
| |
| /* GICv3 only uses ICH_AP1Rn for memory mapped (GICv2) guests */ |
| vgicv3->vgic_ap1r[n] = val; |
| } |
| } |
| |
| static const struct vgic_register_region vgic_v2_dist_registers[] = { |
| REGISTER_DESC_WITH_LENGTH_UACCESS(GIC_DIST_CTRL, |
| vgic_mmio_read_v2_misc, vgic_mmio_write_v2_misc, |
| NULL, vgic_mmio_uaccess_write_v2_misc, |
| 12, VGIC_ACCESS_32bit), |
| REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_IGROUP, |
| vgic_mmio_read_group, vgic_mmio_write_group, |
| NULL, vgic_mmio_uaccess_write_v2_group, 1, |
| VGIC_ACCESS_32bit), |
| REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ENABLE_SET, |
| vgic_mmio_read_enable, vgic_mmio_write_senable, |
| NULL, vgic_uaccess_write_senable, 1, |
| VGIC_ACCESS_32bit), |
| REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ENABLE_CLEAR, |
| vgic_mmio_read_enable, vgic_mmio_write_cenable, |
| NULL, vgic_uaccess_write_cenable, 1, |
| VGIC_ACCESS_32bit), |
| REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PENDING_SET, |
| vgic_mmio_read_pending, vgic_mmio_write_spending, |
| NULL, vgic_uaccess_write_spending, 1, |
| VGIC_ACCESS_32bit), |
| REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PENDING_CLEAR, |
| vgic_mmio_read_pending, vgic_mmio_write_cpending, |
| NULL, vgic_uaccess_write_cpending, 1, |
| VGIC_ACCESS_32bit), |
| REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ACTIVE_SET, |
| vgic_mmio_read_active, vgic_mmio_write_sactive, |
| vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 1, |
| VGIC_ACCESS_32bit), |
| REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ACTIVE_CLEAR, |
| vgic_mmio_read_active, vgic_mmio_write_cactive, |
| vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 1, |
| VGIC_ACCESS_32bit), |
| REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PRI, |
| vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL, |
| 8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit), |
| REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_TARGET, |
| vgic_mmio_read_target, vgic_mmio_write_target, NULL, NULL, 8, |
| VGIC_ACCESS_32bit | VGIC_ACCESS_8bit), |
| REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_CONFIG, |
| vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2, |
| VGIC_ACCESS_32bit), |
| REGISTER_DESC_WITH_LENGTH(GIC_DIST_SOFTINT, |
| vgic_mmio_read_raz, vgic_mmio_write_sgir, 4, |
| VGIC_ACCESS_32bit), |
| REGISTER_DESC_WITH_LENGTH(GIC_DIST_SGI_PENDING_CLEAR, |
| vgic_mmio_read_sgipend, vgic_mmio_write_sgipendc, 16, |
| VGIC_ACCESS_32bit | VGIC_ACCESS_8bit), |
| REGISTER_DESC_WITH_LENGTH(GIC_DIST_SGI_PENDING_SET, |
| vgic_mmio_read_sgipend, vgic_mmio_write_sgipends, 16, |
| VGIC_ACCESS_32bit | VGIC_ACCESS_8bit), |
| }; |
| |
| static const struct vgic_register_region vgic_v2_cpu_registers[] = { |
| REGISTER_DESC_WITH_LENGTH(GIC_CPU_CTRL, |
| vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4, |
| VGIC_ACCESS_32bit), |
| REGISTER_DESC_WITH_LENGTH(GIC_CPU_PRIMASK, |
| vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4, |
| VGIC_ACCESS_32bit), |
| REGISTER_DESC_WITH_LENGTH(GIC_CPU_BINPOINT, |
| vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4, |
| VGIC_ACCESS_32bit), |
| REGISTER_DESC_WITH_LENGTH(GIC_CPU_ALIAS_BINPOINT, |
| vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4, |
| VGIC_ACCESS_32bit), |
| REGISTER_DESC_WITH_LENGTH(GIC_CPU_ACTIVEPRIO, |
| vgic_mmio_read_apr, vgic_mmio_write_apr, 16, |
| VGIC_ACCESS_32bit), |
| REGISTER_DESC_WITH_LENGTH(GIC_CPU_IDENT, |
| vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4, |
| VGIC_ACCESS_32bit), |
| }; |
| |
| unsigned int vgic_v2_init_dist_iodev(struct vgic_io_device *dev) |
| { |
| dev->regions = vgic_v2_dist_registers; |
| dev->nr_regions = ARRAY_SIZE(vgic_v2_dist_registers); |
| |
| kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops); |
| |
| return SZ_4K; |
| } |
| |
| int vgic_v2_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr) |
| { |
| const struct vgic_register_region *region; |
| struct vgic_io_device iodev; |
| struct vgic_reg_attr reg_attr; |
| struct kvm_vcpu *vcpu; |
| gpa_t addr; |
| int ret; |
| |
| ret = vgic_v2_parse_attr(dev, attr, ®_attr); |
| if (ret) |
| return ret; |
| |
| vcpu = reg_attr.vcpu; |
| addr = reg_attr.addr; |
| |
| switch (attr->group) { |
| case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: |
| iodev.regions = vgic_v2_dist_registers; |
| iodev.nr_regions = ARRAY_SIZE(vgic_v2_dist_registers); |
| iodev.base_addr = 0; |
| break; |
| case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: |
| iodev.regions = vgic_v2_cpu_registers; |
| iodev.nr_regions = ARRAY_SIZE(vgic_v2_cpu_registers); |
| iodev.base_addr = 0; |
| break; |
| default: |
| return -ENXIO; |
| } |
| |
| /* We only support aligned 32-bit accesses. */ |
| if (addr & 3) |
| return -ENXIO; |
| |
| region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32)); |
| if (!region) |
| return -ENXIO; |
| |
| return 0; |
| } |
| |
| int vgic_v2_cpuif_uaccess(struct kvm_vcpu *vcpu, bool is_write, |
| int offset, u32 *val) |
| { |
| struct vgic_io_device dev = { |
| .regions = vgic_v2_cpu_registers, |
| .nr_regions = ARRAY_SIZE(vgic_v2_cpu_registers), |
| .iodev_type = IODEV_CPUIF, |
| }; |
| |
| return vgic_uaccess(vcpu, &dev, is_write, offset, val); |
| } |
| |
| int vgic_v2_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write, |
| int offset, u32 *val) |
| { |
| struct vgic_io_device dev = { |
| .regions = vgic_v2_dist_registers, |
| .nr_regions = ARRAY_SIZE(vgic_v2_dist_registers), |
| .iodev_type = IODEV_DIST, |
| }; |
| |
| return vgic_uaccess(vcpu, &dev, is_write, offset, val); |
| } |