blob: 46a3c1b6246382392325e98f7c518de2c820b244 [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2018 Intel Corp
*
* Author:
* Manasi Navare <manasi.d.navare@intel.com>
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/byteorder/generic.h>
#include <drm/drm_print.h>
#include <drm/drm_dp_helper.h>
#include <drm/drm_dsc.h>
/**
* DOC: dsc helpers
*
* VESA specification for DP 1.4 adds a new feature called Display Stream
* Compression (DSC) used to compress the pixel bits before sending it on
* DP/eDP/MIPI DSI interface. DSC is required to be enabled so that the existing
* display interfaces can support high resolutions at higher frames rates uisng
* the maximum available link capacity of these interfaces.
*
* These functions contain some common logic and helpers to deal with VESA
* Display Stream Compression standard required for DSC on Display Port/eDP or
* MIPI display interfaces.
*/
/**
* drm_dsc_dp_pps_header_init() - Initializes the PPS Header
* for DisplayPort as per the DP 1.4 spec.
* @pps_header: Secondary data packet header for DSC Picture
* Parameter Set as defined in &struct dp_sdp_header
*
* DP 1.4 spec defines the secondary data packet for sending the
* picture parameter infoframes from the source to the sink.
* This function populates the SDP header defined in
* &struct dp_sdp_header.
*/
void drm_dsc_dp_pps_header_init(struct dp_sdp_header *pps_header)
{
memset(pps_header, 0, sizeof(*pps_header));
pps_header->HB1 = DP_SDP_PPS;
pps_header->HB2 = DP_SDP_PPS_HEADER_PAYLOAD_BYTES_MINUS_1;
}
EXPORT_SYMBOL(drm_dsc_dp_pps_header_init);
/**
* drm_dsc_dp_rc_buffer_size - get rc buffer size in bytes
* @rc_buffer_block_size: block size code, according to DPCD offset 62h
* @rc_buffer_size: number of blocks - 1, according to DPCD offset 63h
*
* return:
* buffer size in bytes, or 0 on invalid input
*/
int drm_dsc_dp_rc_buffer_size(u8 rc_buffer_block_size, u8 rc_buffer_size)
{
int size = 1024 * (rc_buffer_size + 1);
switch (rc_buffer_block_size) {
case DP_DSC_RC_BUF_BLK_SIZE_1:
return 1 * size;
case DP_DSC_RC_BUF_BLK_SIZE_4:
return 4 * size;
case DP_DSC_RC_BUF_BLK_SIZE_16:
return 16 * size;
case DP_DSC_RC_BUF_BLK_SIZE_64:
return 64 * size;
default:
return 0;
}
}
EXPORT_SYMBOL(drm_dsc_dp_rc_buffer_size);
/**
* drm_dsc_pps_payload_pack() - Populates the DSC PPS
*
* @pps_payload:
* Bitwise struct for DSC Picture Parameter Set. This is defined
* by &struct drm_dsc_picture_parameter_set
* @dsc_cfg:
* DSC Configuration data filled by driver as defined by
* &struct drm_dsc_config
*
* DSC source device sends a picture parameter set (PPS) containing the
* information required by the sink to decode the compressed frame. Driver
* populates the DSC PPS struct using the DSC configuration parameters in
* the order expected by the DSC Display Sink device. For the DSC, the sink
* device expects the PPS payload in big endian format for fields
* that span more than 1 byte.
*/
void drm_dsc_pps_payload_pack(struct drm_dsc_picture_parameter_set *pps_payload,
const struct drm_dsc_config *dsc_cfg)
{
int i;
/* Protect against someone accidentally changing struct size */
BUILD_BUG_ON(sizeof(*pps_payload) !=
DP_SDP_PPS_HEADER_PAYLOAD_BYTES_MINUS_1 + 1);
memset(pps_payload, 0, sizeof(*pps_payload));
/* PPS 0 */
pps_payload->dsc_version =
dsc_cfg->dsc_version_minor |
dsc_cfg->dsc_version_major << DSC_PPS_VERSION_MAJOR_SHIFT;
/* PPS 1, 2 is 0 */
/* PPS 3 */
pps_payload->pps_3 =
dsc_cfg->line_buf_depth |
dsc_cfg->bits_per_component << DSC_PPS_BPC_SHIFT;
/* PPS 4 */
pps_payload->pps_4 =
((dsc_cfg->bits_per_pixel & DSC_PPS_BPP_HIGH_MASK) >>
DSC_PPS_MSB_SHIFT) |
dsc_cfg->vbr_enable << DSC_PPS_VBR_EN_SHIFT |
dsc_cfg->simple_422 << DSC_PPS_SIMPLE422_SHIFT |
dsc_cfg->convert_rgb << DSC_PPS_CONVERT_RGB_SHIFT |
dsc_cfg->block_pred_enable << DSC_PPS_BLOCK_PRED_EN_SHIFT;
/* PPS 5 */
pps_payload->bits_per_pixel_low =
(dsc_cfg->bits_per_pixel & DSC_PPS_LSB_MASK);
/*
* The DSC panel expects the PPS packet to have big endian format
* for data spanning 2 bytes. Use a macro cpu_to_be16() to convert
* to big endian format. If format is little endian, it will swap
* bytes to convert to Big endian else keep it unchanged.
*/
/* PPS 6, 7 */
pps_payload->pic_height = cpu_to_be16(dsc_cfg->pic_height);
/* PPS 8, 9 */
pps_payload->pic_width = cpu_to_be16(dsc_cfg->pic_width);
/* PPS 10, 11 */
pps_payload->slice_height = cpu_to_be16(dsc_cfg->slice_height);
/* PPS 12, 13 */
pps_payload->slice_width = cpu_to_be16(dsc_cfg->slice_width);
/* PPS 14, 15 */
pps_payload->chunk_size = cpu_to_be16(dsc_cfg->slice_chunk_size);
/* PPS 16 */
pps_payload->initial_xmit_delay_high =
((dsc_cfg->initial_xmit_delay &
DSC_PPS_INIT_XMIT_DELAY_HIGH_MASK) >>
DSC_PPS_MSB_SHIFT);
/* PPS 17 */
pps_payload->initial_xmit_delay_low =
(dsc_cfg->initial_xmit_delay & DSC_PPS_LSB_MASK);
/* PPS 18, 19 */
pps_payload->initial_dec_delay =
cpu_to_be16(dsc_cfg->initial_dec_delay);
/* PPS 20 is 0 */
/* PPS 21 */
pps_payload->initial_scale_value =
dsc_cfg->initial_scale_value;
/* PPS 22, 23 */
pps_payload->scale_increment_interval =
cpu_to_be16(dsc_cfg->scale_increment_interval);
/* PPS 24 */
pps_payload->scale_decrement_interval_high =
((dsc_cfg->scale_decrement_interval &
DSC_PPS_SCALE_DEC_INT_HIGH_MASK) >>
DSC_PPS_MSB_SHIFT);
/* PPS 25 */
pps_payload->scale_decrement_interval_low =
(dsc_cfg->scale_decrement_interval & DSC_PPS_LSB_MASK);
/* PPS 26[7:0], PPS 27[7:5] RESERVED */
/* PPS 27 */
pps_payload->first_line_bpg_offset =
dsc_cfg->first_line_bpg_offset;
/* PPS 28, 29 */
pps_payload->nfl_bpg_offset =
cpu_to_be16(dsc_cfg->nfl_bpg_offset);
/* PPS 30, 31 */
pps_payload->slice_bpg_offset =
cpu_to_be16(dsc_cfg->slice_bpg_offset);
/* PPS 32, 33 */
pps_payload->initial_offset =
cpu_to_be16(dsc_cfg->initial_offset);
/* PPS 34, 35 */
pps_payload->final_offset = cpu_to_be16(dsc_cfg->final_offset);
/* PPS 36 */
pps_payload->flatness_min_qp = dsc_cfg->flatness_min_qp;
/* PPS 37 */
pps_payload->flatness_max_qp = dsc_cfg->flatness_max_qp;
/* PPS 38, 39 */
pps_payload->rc_model_size = cpu_to_be16(dsc_cfg->rc_model_size);
/* PPS 40 */
pps_payload->rc_edge_factor = DSC_RC_EDGE_FACTOR_CONST;
/* PPS 41 */
pps_payload->rc_quant_incr_limit0 =
dsc_cfg->rc_quant_incr_limit0;
/* PPS 42 */
pps_payload->rc_quant_incr_limit1 =
dsc_cfg->rc_quant_incr_limit1;
/* PPS 43 */
pps_payload->rc_tgt_offset = DSC_RC_TGT_OFFSET_LO_CONST |
DSC_RC_TGT_OFFSET_HI_CONST << DSC_PPS_RC_TGT_OFFSET_HI_SHIFT;
/* PPS 44 - 57 */
for (i = 0; i < DSC_NUM_BUF_RANGES - 1; i++)
pps_payload->rc_buf_thresh[i] =
dsc_cfg->rc_buf_thresh[i];
/* PPS 58 - 87 */
/*
* For DSC sink programming the RC Range parameter fields
* are as follows: Min_qp[15:11], max_qp[10:6], offset[5:0]
*/
for (i = 0; i < DSC_NUM_BUF_RANGES; i++) {
pps_payload->rc_range_parameters[i] =
cpu_to_be16((dsc_cfg->rc_range_params[i].range_min_qp <<
DSC_PPS_RC_RANGE_MINQP_SHIFT) |
(dsc_cfg->rc_range_params[i].range_max_qp <<
DSC_PPS_RC_RANGE_MAXQP_SHIFT) |
(dsc_cfg->rc_range_params[i].range_bpg_offset));
}
/* PPS 88 */
pps_payload->native_422_420 = dsc_cfg->native_422 |
dsc_cfg->native_420 << DSC_PPS_NATIVE_420_SHIFT;
/* PPS 89 */
pps_payload->second_line_bpg_offset =
dsc_cfg->second_line_bpg_offset;
/* PPS 90, 91 */
pps_payload->nsl_bpg_offset =
cpu_to_be16(dsc_cfg->nsl_bpg_offset);
/* PPS 92, 93 */
pps_payload->second_line_offset_adj =
cpu_to_be16(dsc_cfg->second_line_offset_adj);
/* PPS 94 - 127 are O */
}
EXPORT_SYMBOL(drm_dsc_pps_payload_pack);
/**
* drm_dsc_compute_rc_parameters() - Write rate control
* parameters to the dsc configuration defined in
* &struct drm_dsc_config in accordance with the DSC 1.2
* specification. Some configuration fields must be present
* beforehand.
*
* @vdsc_cfg:
* DSC Configuration data partially filled by driver
*/
int drm_dsc_compute_rc_parameters(struct drm_dsc_config *vdsc_cfg)
{
unsigned long groups_per_line = 0;
unsigned long groups_total = 0;
unsigned long num_extra_mux_bits = 0;
unsigned long slice_bits = 0;
unsigned long hrd_delay = 0;
unsigned long final_scale = 0;
unsigned long rbs_min = 0;
if (vdsc_cfg->native_420 || vdsc_cfg->native_422) {
/* Number of groups used to code each line of a slice */
groups_per_line = DIV_ROUND_UP(vdsc_cfg->slice_width / 2,
DSC_RC_PIXELS_PER_GROUP);
/* chunksize in Bytes */
vdsc_cfg->slice_chunk_size = DIV_ROUND_UP(vdsc_cfg->slice_width / 2 *
vdsc_cfg->bits_per_pixel,
(8 * 16));
} else {
/* Number of groups used to code each line of a slice */
groups_per_line = DIV_ROUND_UP(vdsc_cfg->slice_width,
DSC_RC_PIXELS_PER_GROUP);
/* chunksize in Bytes */
vdsc_cfg->slice_chunk_size = DIV_ROUND_UP(vdsc_cfg->slice_width *
vdsc_cfg->bits_per_pixel,
(8 * 16));
}
if (vdsc_cfg->convert_rgb)
num_extra_mux_bits = 3 * (vdsc_cfg->mux_word_size +
(4 * vdsc_cfg->bits_per_component + 4)
- 2);
else if (vdsc_cfg->native_422)
num_extra_mux_bits = 4 * vdsc_cfg->mux_word_size +
(4 * vdsc_cfg->bits_per_component + 4) +
3 * (4 * vdsc_cfg->bits_per_component) - 2;
else
num_extra_mux_bits = 3 * vdsc_cfg->mux_word_size +
(4 * vdsc_cfg->bits_per_component + 4) +
2 * (4 * vdsc_cfg->bits_per_component) - 2;
/* Number of bits in one Slice */
slice_bits = 8 * vdsc_cfg->slice_chunk_size * vdsc_cfg->slice_height;
while ((num_extra_mux_bits > 0) &&
((slice_bits - num_extra_mux_bits) % vdsc_cfg->mux_word_size))
num_extra_mux_bits--;
if (groups_per_line < vdsc_cfg->initial_scale_value - 8)
vdsc_cfg->initial_scale_value = groups_per_line + 8;
/* scale_decrement_interval calculation according to DSC spec 1.11 */
if (vdsc_cfg->initial_scale_value > 8)
vdsc_cfg->scale_decrement_interval = groups_per_line /
(vdsc_cfg->initial_scale_value - 8);
else
vdsc_cfg->scale_decrement_interval = DSC_SCALE_DECREMENT_INTERVAL_MAX;
vdsc_cfg->final_offset = vdsc_cfg->rc_model_size -
(vdsc_cfg->initial_xmit_delay *
vdsc_cfg->bits_per_pixel + 8) / 16 + num_extra_mux_bits;
if (vdsc_cfg->final_offset >= vdsc_cfg->rc_model_size) {
DRM_DEBUG_KMS("FinalOfs < RcModelSze for this InitialXmitDelay\n");
return -ERANGE;
}
final_scale = (vdsc_cfg->rc_model_size * 8) /
(vdsc_cfg->rc_model_size - vdsc_cfg->final_offset);
if (vdsc_cfg->slice_height > 1)
/*
* NflBpgOffset is 16 bit value with 11 fractional bits
* hence we multiply by 2^11 for preserving the
* fractional part
*/
vdsc_cfg->nfl_bpg_offset = DIV_ROUND_UP((vdsc_cfg->first_line_bpg_offset << 11),
(vdsc_cfg->slice_height - 1));
else
vdsc_cfg->nfl_bpg_offset = 0;
/* Number of groups used to code the entire slice */
groups_total = groups_per_line * vdsc_cfg->slice_height;
/* slice_bpg_offset is 16 bit value with 11 fractional bits */
vdsc_cfg->slice_bpg_offset = DIV_ROUND_UP(((vdsc_cfg->rc_model_size -
vdsc_cfg->initial_offset +
num_extra_mux_bits) << 11),
groups_total);
if (final_scale > 9) {
/*
* ScaleIncrementInterval =
* finaloffset/((NflBpgOffset + SliceBpgOffset)*8(finalscale - 1.125))
* as (NflBpgOffset + SliceBpgOffset) has 11 bit fractional value,
* we need divide by 2^11 from pstDscCfg values
*/
vdsc_cfg->scale_increment_interval =
(vdsc_cfg->final_offset * (1 << 11)) /
((vdsc_cfg->nfl_bpg_offset +
vdsc_cfg->slice_bpg_offset) *
(final_scale - 9));
} else {
/*
* If finalScaleValue is less than or equal to 9, a value of 0 should
* be used to disable the scale increment at the end of the slice
*/
vdsc_cfg->scale_increment_interval = 0;
}
/*
* DSC spec mentions that bits_per_pixel specifies the target
* bits/pixel (bpp) rate that is used by the encoder,
* in steps of 1/16 of a bit per pixel
*/
rbs_min = vdsc_cfg->rc_model_size - vdsc_cfg->initial_offset +
DIV_ROUND_UP(vdsc_cfg->initial_xmit_delay *
vdsc_cfg->bits_per_pixel, 16) +
groups_per_line * vdsc_cfg->first_line_bpg_offset;
hrd_delay = DIV_ROUND_UP((rbs_min * 16), vdsc_cfg->bits_per_pixel);
vdsc_cfg->rc_bits = (hrd_delay * vdsc_cfg->bits_per_pixel) / 16;
vdsc_cfg->initial_dec_delay = hrd_delay - vdsc_cfg->initial_xmit_delay;
return 0;
}
EXPORT_SYMBOL(drm_dsc_compute_rc_parameters);