blob: 32431bbe69b8e0396b17e5fae34f15ed711a281f [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2018 Stefan Agner <stefan@agner.ch>
* Copyright (C) 2014-2015 Lucas Stach <dev@lynxeye.de>
* Copyright (C) 2012 Avionic Design GmbH
*/
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/gpio/consumer.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/rawnand.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/reset.h>
#define COMMAND 0x00
#define COMMAND_GO BIT(31)
#define COMMAND_CLE BIT(30)
#define COMMAND_ALE BIT(29)
#define COMMAND_PIO BIT(28)
#define COMMAND_TX BIT(27)
#define COMMAND_RX BIT(26)
#define COMMAND_SEC_CMD BIT(25)
#define COMMAND_AFT_DAT BIT(24)
#define COMMAND_TRANS_SIZE(size) ((((size) - 1) & 0xf) << 20)
#define COMMAND_A_VALID BIT(19)
#define COMMAND_B_VALID BIT(18)
#define COMMAND_RD_STATUS_CHK BIT(17)
#define COMMAND_RBSY_CHK BIT(16)
#define COMMAND_CE(x) BIT(8 + ((x) & 0x7))
#define COMMAND_CLE_SIZE(size) ((((size) - 1) & 0x3) << 4)
#define COMMAND_ALE_SIZE(size) ((((size) - 1) & 0xf) << 0)
#define STATUS 0x04
#define ISR 0x08
#define ISR_CORRFAIL_ERR BIT(24)
#define ISR_UND BIT(7)
#define ISR_OVR BIT(6)
#define ISR_CMD_DONE BIT(5)
#define ISR_ECC_ERR BIT(4)
#define IER 0x0c
#define IER_ERR_TRIG_VAL(x) (((x) & 0xf) << 16)
#define IER_UND BIT(7)
#define IER_OVR BIT(6)
#define IER_CMD_DONE BIT(5)
#define IER_ECC_ERR BIT(4)
#define IER_GIE BIT(0)
#define CONFIG 0x10
#define CONFIG_HW_ECC BIT(31)
#define CONFIG_ECC_SEL BIT(30)
#define CONFIG_ERR_COR BIT(29)
#define CONFIG_PIPE_EN BIT(28)
#define CONFIG_TVAL_4 (0 << 24)
#define CONFIG_TVAL_6 (1 << 24)
#define CONFIG_TVAL_8 (2 << 24)
#define CONFIG_SKIP_SPARE BIT(23)
#define CONFIG_BUS_WIDTH_16 BIT(21)
#define CONFIG_COM_BSY BIT(20)
#define CONFIG_PS_256 (0 << 16)
#define CONFIG_PS_512 (1 << 16)
#define CONFIG_PS_1024 (2 << 16)
#define CONFIG_PS_2048 (3 << 16)
#define CONFIG_PS_4096 (4 << 16)
#define CONFIG_SKIP_SPARE_SIZE_4 (0 << 14)
#define CONFIG_SKIP_SPARE_SIZE_8 (1 << 14)
#define CONFIG_SKIP_SPARE_SIZE_12 (2 << 14)
#define CONFIG_SKIP_SPARE_SIZE_16 (3 << 14)
#define CONFIG_TAG_BYTE_SIZE(x) ((x) & 0xff)
#define TIMING_1 0x14
#define TIMING_TRP_RESP(x) (((x) & 0xf) << 28)
#define TIMING_TWB(x) (((x) & 0xf) << 24)
#define TIMING_TCR_TAR_TRR(x) (((x) & 0xf) << 20)
#define TIMING_TWHR(x) (((x) & 0xf) << 16)
#define TIMING_TCS(x) (((x) & 0x3) << 14)
#define TIMING_TWH(x) (((x) & 0x3) << 12)
#define TIMING_TWP(x) (((x) & 0xf) << 8)
#define TIMING_TRH(x) (((x) & 0x3) << 4)
#define TIMING_TRP(x) (((x) & 0xf) << 0)
#define RESP 0x18
#define TIMING_2 0x1c
#define TIMING_TADL(x) ((x) & 0xf)
#define CMD_REG1 0x20
#define CMD_REG2 0x24
#define ADDR_REG1 0x28
#define ADDR_REG2 0x2c
#define DMA_MST_CTRL 0x30
#define DMA_MST_CTRL_GO BIT(31)
#define DMA_MST_CTRL_IN (0 << 30)
#define DMA_MST_CTRL_OUT BIT(30)
#define DMA_MST_CTRL_PERF_EN BIT(29)
#define DMA_MST_CTRL_IE_DONE BIT(28)
#define DMA_MST_CTRL_REUSE BIT(27)
#define DMA_MST_CTRL_BURST_1 (2 << 24)
#define DMA_MST_CTRL_BURST_4 (3 << 24)
#define DMA_MST_CTRL_BURST_8 (4 << 24)
#define DMA_MST_CTRL_BURST_16 (5 << 24)
#define DMA_MST_CTRL_IS_DONE BIT(20)
#define DMA_MST_CTRL_EN_A BIT(2)
#define DMA_MST_CTRL_EN_B BIT(1)
#define DMA_CFG_A 0x34
#define DMA_CFG_B 0x38
#define FIFO_CTRL 0x3c
#define FIFO_CTRL_CLR_ALL BIT(3)
#define DATA_PTR 0x40
#define TAG_PTR 0x44
#define ECC_PTR 0x48
#define DEC_STATUS 0x4c
#define DEC_STATUS_A_ECC_FAIL BIT(1)
#define DEC_STATUS_ERR_COUNT_MASK 0x00ff0000
#define DEC_STATUS_ERR_COUNT_SHIFT 16
#define HWSTATUS_CMD 0x50
#define HWSTATUS_MASK 0x54
#define HWSTATUS_RDSTATUS_MASK(x) (((x) & 0xff) << 24)
#define HWSTATUS_RDSTATUS_VALUE(x) (((x) & 0xff) << 16)
#define HWSTATUS_RBSY_MASK(x) (((x) & 0xff) << 8)
#define HWSTATUS_RBSY_VALUE(x) (((x) & 0xff) << 0)
#define BCH_CONFIG 0xcc
#define BCH_ENABLE BIT(0)
#define BCH_TVAL_4 (0 << 4)
#define BCH_TVAL_8 (1 << 4)
#define BCH_TVAL_14 (2 << 4)
#define BCH_TVAL_16 (3 << 4)
#define DEC_STAT_RESULT 0xd0
#define DEC_STAT_BUF 0xd4
#define DEC_STAT_BUF_FAIL_SEC_FLAG_MASK 0xff000000
#define DEC_STAT_BUF_FAIL_SEC_FLAG_SHIFT 24
#define DEC_STAT_BUF_CORR_SEC_FLAG_MASK 0x00ff0000
#define DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT 16
#define DEC_STAT_BUF_MAX_CORR_CNT_MASK 0x00001f00
#define DEC_STAT_BUF_MAX_CORR_CNT_SHIFT 8
#define OFFSET(val, off) ((val) < (off) ? 0 : (val) - (off))
#define SKIP_SPARE_BYTES 4
#define BITS_PER_STEP_RS 18
#define BITS_PER_STEP_BCH 13
#define INT_MASK (IER_UND | IER_OVR | IER_CMD_DONE | IER_GIE)
#define HWSTATUS_CMD_DEFAULT NAND_STATUS_READY
#define HWSTATUS_MASK_DEFAULT (HWSTATUS_RDSTATUS_MASK(1) | \
HWSTATUS_RDSTATUS_VALUE(0) | \
HWSTATUS_RBSY_MASK(NAND_STATUS_READY) | \
HWSTATUS_RBSY_VALUE(NAND_STATUS_READY))
struct tegra_nand_controller {
struct nand_controller controller;
struct device *dev;
void __iomem *regs;
int irq;
struct clk *clk;
struct completion command_complete;
struct completion dma_complete;
bool last_read_error;
int cur_cs;
struct nand_chip *chip;
};
struct tegra_nand_chip {
struct nand_chip chip;
struct gpio_desc *wp_gpio;
struct mtd_oob_region ecc;
u32 config;
u32 config_ecc;
u32 bch_config;
int cs[1];
};
static inline struct tegra_nand_controller *
to_tegra_ctrl(struct nand_controller *hw_ctrl)
{
return container_of(hw_ctrl, struct tegra_nand_controller, controller);
}
static inline struct tegra_nand_chip *to_tegra_chip(struct nand_chip *chip)
{
return container_of(chip, struct tegra_nand_chip, chip);
}
static int tegra_nand_ooblayout_rs_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_RS * chip->ecc.strength,
BITS_PER_BYTE);
if (section > 0)
return -ERANGE;
oobregion->offset = SKIP_SPARE_BYTES;
oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4);
return 0;
}
static int tegra_nand_ooblayout_no_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
return -ERANGE;
}
static const struct mtd_ooblayout_ops tegra_nand_oob_rs_ops = {
.ecc = tegra_nand_ooblayout_rs_ecc,
.free = tegra_nand_ooblayout_no_free,
};
static int tegra_nand_ooblayout_bch_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_BCH * chip->ecc.strength,
BITS_PER_BYTE);
if (section > 0)
return -ERANGE;
oobregion->offset = SKIP_SPARE_BYTES;
oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4);
return 0;
}
static const struct mtd_ooblayout_ops tegra_nand_oob_bch_ops = {
.ecc = tegra_nand_ooblayout_bch_ecc,
.free = tegra_nand_ooblayout_no_free,
};
static irqreturn_t tegra_nand_irq(int irq, void *data)
{
struct tegra_nand_controller *ctrl = data;
u32 isr, dma;
isr = readl_relaxed(ctrl->regs + ISR);
dma = readl_relaxed(ctrl->regs + DMA_MST_CTRL);
dev_dbg(ctrl->dev, "isr %08x\n", isr);
if (!isr && !(dma & DMA_MST_CTRL_IS_DONE))
return IRQ_NONE;
/*
* The bit name is somewhat missleading: This is also set when
* HW ECC was successful. The data sheet states:
* Correctable OR Un-correctable errors occurred in the DMA transfer...
*/
if (isr & ISR_CORRFAIL_ERR)
ctrl->last_read_error = true;
if (isr & ISR_CMD_DONE)
complete(&ctrl->command_complete);
if (isr & ISR_UND)
dev_err(ctrl->dev, "FIFO underrun\n");
if (isr & ISR_OVR)
dev_err(ctrl->dev, "FIFO overrun\n");
/* handle DMA interrupts */
if (dma & DMA_MST_CTRL_IS_DONE) {
writel_relaxed(dma, ctrl->regs + DMA_MST_CTRL);
complete(&ctrl->dma_complete);
}
/* clear interrupts */
writel_relaxed(isr, ctrl->regs + ISR);
return IRQ_HANDLED;
}
static const char * const tegra_nand_reg_names[] = {
"COMMAND",
"STATUS",
"ISR",
"IER",
"CONFIG",
"TIMING",
NULL,
"TIMING2",
"CMD_REG1",
"CMD_REG2",
"ADDR_REG1",
"ADDR_REG2",
"DMA_MST_CTRL",
"DMA_CFG_A",
"DMA_CFG_B",
"FIFO_CTRL",
};
static void tegra_nand_dump_reg(struct tegra_nand_controller *ctrl)
{
u32 reg;
int i;
dev_err(ctrl->dev, "Tegra NAND controller register dump\n");
for (i = 0; i < ARRAY_SIZE(tegra_nand_reg_names); i++) {
const char *reg_name = tegra_nand_reg_names[i];
if (!reg_name)
continue;
reg = readl_relaxed(ctrl->regs + (i * 4));
dev_err(ctrl->dev, "%s: 0x%08x\n", reg_name, reg);
}
}
static void tegra_nand_controller_abort(struct tegra_nand_controller *ctrl)
{
u32 isr, dma;
disable_irq(ctrl->irq);
/* Abort current command/DMA operation */
writel_relaxed(0, ctrl->regs + DMA_MST_CTRL);
writel_relaxed(0, ctrl->regs + COMMAND);
/* clear interrupts */
isr = readl_relaxed(ctrl->regs + ISR);
writel_relaxed(isr, ctrl->regs + ISR);
dma = readl_relaxed(ctrl->regs + DMA_MST_CTRL);
writel_relaxed(dma, ctrl->regs + DMA_MST_CTRL);
reinit_completion(&ctrl->command_complete);
reinit_completion(&ctrl->dma_complete);
enable_irq(ctrl->irq);
}
static int tegra_nand_cmd(struct nand_chip *chip,
const struct nand_subop *subop)
{
const struct nand_op_instr *instr;
const struct nand_op_instr *instr_data_in = NULL;
struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
unsigned int op_id, size = 0, offset = 0;
bool first_cmd = true;
u32 reg, cmd = 0;
int ret;
for (op_id = 0; op_id < subop->ninstrs; op_id++) {
unsigned int naddrs, i;
const u8 *addrs;
u32 addr1 = 0, addr2 = 0;
instr = &subop->instrs[op_id];
switch (instr->type) {
case NAND_OP_CMD_INSTR:
if (first_cmd) {
cmd |= COMMAND_CLE;
writel_relaxed(instr->ctx.cmd.opcode,
ctrl->regs + CMD_REG1);
} else {
cmd |= COMMAND_SEC_CMD;
writel_relaxed(instr->ctx.cmd.opcode,
ctrl->regs + CMD_REG2);
}
first_cmd = false;
break;
case NAND_OP_ADDR_INSTR:
offset = nand_subop_get_addr_start_off(subop, op_id);
naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
addrs = &instr->ctx.addr.addrs[offset];
cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(naddrs);
for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
addr1 |= *addrs++ << (BITS_PER_BYTE * i);
naddrs -= i;
for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
addr2 |= *addrs++ << (BITS_PER_BYTE * i);
writel_relaxed(addr1, ctrl->regs + ADDR_REG1);
writel_relaxed(addr2, ctrl->regs + ADDR_REG2);
break;
case NAND_OP_DATA_IN_INSTR:
size = nand_subop_get_data_len(subop, op_id);
offset = nand_subop_get_data_start_off(subop, op_id);
cmd |= COMMAND_TRANS_SIZE(size) | COMMAND_PIO |
COMMAND_RX | COMMAND_A_VALID;
instr_data_in = instr;
break;
case NAND_OP_DATA_OUT_INSTR:
size = nand_subop_get_data_len(subop, op_id);
offset = nand_subop_get_data_start_off(subop, op_id);
cmd |= COMMAND_TRANS_SIZE(size) | COMMAND_PIO |
COMMAND_TX | COMMAND_A_VALID;
memcpy(&reg, instr->ctx.data.buf.out + offset, size);
writel_relaxed(reg, ctrl->regs + RESP);
break;
case NAND_OP_WAITRDY_INSTR:
cmd |= COMMAND_RBSY_CHK;
break;
}
}
cmd |= COMMAND_GO | COMMAND_CE(ctrl->cur_cs);
writel_relaxed(cmd, ctrl->regs + COMMAND);
ret = wait_for_completion_timeout(&ctrl->command_complete,
msecs_to_jiffies(500));
if (!ret) {
dev_err(ctrl->dev, "COMMAND timeout\n");
tegra_nand_dump_reg(ctrl);
tegra_nand_controller_abort(ctrl);
return -ETIMEDOUT;
}
if (instr_data_in) {
reg = readl_relaxed(ctrl->regs + RESP);
memcpy(instr_data_in->ctx.data.buf.in + offset, &reg, size);
}
return 0;
}
static const struct nand_op_parser tegra_nand_op_parser = NAND_OP_PARSER(
NAND_OP_PARSER_PATTERN(tegra_nand_cmd,
NAND_OP_PARSER_PAT_CMD_ELEM(true),
NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8),
NAND_OP_PARSER_PAT_CMD_ELEM(true),
NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
NAND_OP_PARSER_PATTERN(tegra_nand_cmd,
NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 4)),
NAND_OP_PARSER_PATTERN(tegra_nand_cmd,
NAND_OP_PARSER_PAT_CMD_ELEM(true),
NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8),
NAND_OP_PARSER_PAT_CMD_ELEM(true),
NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 4)),
);
static void tegra_nand_select_target(struct nand_chip *chip,
unsigned int die_nr)
{
struct tegra_nand_chip *nand = to_tegra_chip(chip);
struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
ctrl->cur_cs = nand->cs[die_nr];
}
static int tegra_nand_exec_op(struct nand_chip *chip,
const struct nand_operation *op,
bool check_only)
{
if (!check_only)
tegra_nand_select_target(chip, op->cs);
return nand_op_parser_exec_op(chip, &tegra_nand_op_parser, op,
check_only);
}
static void tegra_nand_hw_ecc(struct tegra_nand_controller *ctrl,
struct nand_chip *chip, bool enable)
{
struct tegra_nand_chip *nand = to_tegra_chip(chip);
if (chip->ecc.algo == NAND_ECC_ALGO_BCH && enable)
writel_relaxed(nand->bch_config, ctrl->regs + BCH_CONFIG);
else
writel_relaxed(0, ctrl->regs + BCH_CONFIG);
if (enable)
writel_relaxed(nand->config_ecc, ctrl->regs + CONFIG);
else
writel_relaxed(nand->config, ctrl->regs + CONFIG);
}
static int tegra_nand_page_xfer(struct mtd_info *mtd, struct nand_chip *chip,
void *buf, void *oob_buf, int oob_len, int page,
bool read)
{
struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
enum dma_data_direction dir = read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
dma_addr_t dma_addr = 0, dma_addr_oob = 0;
u32 addr1, cmd, dma_ctrl;
int ret;
tegra_nand_select_target(chip, chip->cur_cs);
if (read) {
writel_relaxed(NAND_CMD_READ0, ctrl->regs + CMD_REG1);
writel_relaxed(NAND_CMD_READSTART, ctrl->regs + CMD_REG2);
} else {
writel_relaxed(NAND_CMD_SEQIN, ctrl->regs + CMD_REG1);
writel_relaxed(NAND_CMD_PAGEPROG, ctrl->regs + CMD_REG2);
}
cmd = COMMAND_CLE | COMMAND_SEC_CMD;
/* Lower 16-bits are column, by default 0 */
addr1 = page << 16;
if (!buf)
addr1 |= mtd->writesize;
writel_relaxed(addr1, ctrl->regs + ADDR_REG1);
if (chip->options & NAND_ROW_ADDR_3) {
writel_relaxed(page >> 16, ctrl->regs + ADDR_REG2);
cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(5);
} else {
cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(4);
}
if (buf) {
dma_addr = dma_map_single(ctrl->dev, buf, mtd->writesize, dir);
ret = dma_mapping_error(ctrl->dev, dma_addr);
if (ret) {
dev_err(ctrl->dev, "dma mapping error\n");
return -EINVAL;
}
writel_relaxed(mtd->writesize - 1, ctrl->regs + DMA_CFG_A);
writel_relaxed(dma_addr, ctrl->regs + DATA_PTR);
}
if (oob_buf) {
dma_addr_oob = dma_map_single(ctrl->dev, oob_buf, mtd->oobsize,
dir);
ret = dma_mapping_error(ctrl->dev, dma_addr_oob);
if (ret) {
dev_err(ctrl->dev, "dma mapping error\n");
ret = -EINVAL;
goto err_unmap_dma_page;
}
writel_relaxed(oob_len - 1, ctrl->regs + DMA_CFG_B);
writel_relaxed(dma_addr_oob, ctrl->regs + TAG_PTR);
}
dma_ctrl = DMA_MST_CTRL_GO | DMA_MST_CTRL_PERF_EN |
DMA_MST_CTRL_IE_DONE | DMA_MST_CTRL_IS_DONE |
DMA_MST_CTRL_BURST_16;
if (buf)
dma_ctrl |= DMA_MST_CTRL_EN_A;
if (oob_buf)
dma_ctrl |= DMA_MST_CTRL_EN_B;
if (read)
dma_ctrl |= DMA_MST_CTRL_IN | DMA_MST_CTRL_REUSE;
else
dma_ctrl |= DMA_MST_CTRL_OUT;
writel_relaxed(dma_ctrl, ctrl->regs + DMA_MST_CTRL);
cmd |= COMMAND_GO | COMMAND_RBSY_CHK | COMMAND_TRANS_SIZE(9) |
COMMAND_CE(ctrl->cur_cs);
if (buf)
cmd |= COMMAND_A_VALID;
if (oob_buf)
cmd |= COMMAND_B_VALID;
if (read)
cmd |= COMMAND_RX;
else
cmd |= COMMAND_TX | COMMAND_AFT_DAT;
writel_relaxed(cmd, ctrl->regs + COMMAND);
ret = wait_for_completion_timeout(&ctrl->command_complete,
msecs_to_jiffies(500));
if (!ret) {
dev_err(ctrl->dev, "COMMAND timeout\n");
tegra_nand_dump_reg(ctrl);
tegra_nand_controller_abort(ctrl);
ret = -ETIMEDOUT;
goto err_unmap_dma;
}
ret = wait_for_completion_timeout(&ctrl->dma_complete,
msecs_to_jiffies(500));
if (!ret) {
dev_err(ctrl->dev, "DMA timeout\n");
tegra_nand_dump_reg(ctrl);
tegra_nand_controller_abort(ctrl);
ret = -ETIMEDOUT;
goto err_unmap_dma;
}
ret = 0;
err_unmap_dma:
if (oob_buf)
dma_unmap_single(ctrl->dev, dma_addr_oob, mtd->oobsize, dir);
err_unmap_dma_page:
if (buf)
dma_unmap_single(ctrl->dev, dma_addr, mtd->writesize, dir);
return ret;
}
static int tegra_nand_read_page_raw(struct nand_chip *chip, u8 *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
void *oob_buf = oob_required ? chip->oob_poi : NULL;
return tegra_nand_page_xfer(mtd, chip, buf, oob_buf,
mtd->oobsize, page, true);
}
static int tegra_nand_write_page_raw(struct nand_chip *chip, const u8 *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
void *oob_buf = oob_required ? chip->oob_poi : NULL;
return tegra_nand_page_xfer(mtd, chip, (void *)buf, oob_buf,
mtd->oobsize, page, false);
}
static int tegra_nand_read_oob(struct nand_chip *chip, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
return tegra_nand_page_xfer(mtd, chip, NULL, chip->oob_poi,
mtd->oobsize, page, true);
}
static int tegra_nand_write_oob(struct nand_chip *chip, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
return tegra_nand_page_xfer(mtd, chip, NULL, chip->oob_poi,
mtd->oobsize, page, false);
}
static int tegra_nand_read_page_hwecc(struct nand_chip *chip, u8 *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
struct tegra_nand_chip *nand = to_tegra_chip(chip);
void *oob_buf = oob_required ? chip->oob_poi : NULL;
u32 dec_stat, max_corr_cnt;
unsigned long fail_sec_flag;
int ret;
tegra_nand_hw_ecc(ctrl, chip, true);
ret = tegra_nand_page_xfer(mtd, chip, buf, oob_buf, 0, page, true);
tegra_nand_hw_ecc(ctrl, chip, false);
if (ret)
return ret;
/* No correctable or un-correctable errors, page must have 0 bitflips */
if (!ctrl->last_read_error)
return 0;
/*
* Correctable or un-correctable errors occurred. Use DEC_STAT_BUF
* which contains information for all ECC selections.
*
* Note that since we do not use Command Queues DEC_RESULT does not
* state the number of pages we can read from the DEC_STAT_BUF. But
* since CORRFAIL_ERR did occur during page read we do have a valid
* result in DEC_STAT_BUF.
*/
ctrl->last_read_error = false;
dec_stat = readl_relaxed(ctrl->regs + DEC_STAT_BUF);
fail_sec_flag = (dec_stat & DEC_STAT_BUF_FAIL_SEC_FLAG_MASK) >>
DEC_STAT_BUF_FAIL_SEC_FLAG_SHIFT;
max_corr_cnt = (dec_stat & DEC_STAT_BUF_MAX_CORR_CNT_MASK) >>
DEC_STAT_BUF_MAX_CORR_CNT_SHIFT;
if (fail_sec_flag) {
int bit, max_bitflips = 0;
/*
* Since we do not support subpage writes, a complete page
* is either written or not. We can take a shortcut here by
* checking wheather any of the sector has been successful
* read. If at least one sectors has been read successfully,
* the page must have been a written previously. It cannot
* be an erased page.
*
* E.g. controller might return fail_sec_flag with 0x4, which
* would mean only the third sector failed to correct. The
* page must have been written and the third sector is really
* not correctable anymore.
*/
if (fail_sec_flag ^ GENMASK(chip->ecc.steps - 1, 0)) {
mtd->ecc_stats.failed += hweight8(fail_sec_flag);
return max_corr_cnt;
}
/*
* All sectors failed to correct, but the ECC isn't smart
* enough to figure out if a page is really just erased.
* Read OOB data and check whether data/OOB is completely
* erased or if error correction just failed for all sub-
* pages.
*/
ret = tegra_nand_read_oob(chip, page);
if (ret < 0)
return ret;
for_each_set_bit(bit, &fail_sec_flag, chip->ecc.steps) {
u8 *data = buf + (chip->ecc.size * bit);
u8 *oob = chip->oob_poi + nand->ecc.offset +
(chip->ecc.bytes * bit);
ret = nand_check_erased_ecc_chunk(data, chip->ecc.size,
oob, chip->ecc.bytes,
NULL, 0,
chip->ecc.strength);
if (ret < 0) {
mtd->ecc_stats.failed++;
} else {
mtd->ecc_stats.corrected += ret;
max_bitflips = max(ret, max_bitflips);
}
}
return max_t(unsigned int, max_corr_cnt, max_bitflips);
} else {
int corr_sec_flag;
corr_sec_flag = (dec_stat & DEC_STAT_BUF_CORR_SEC_FLAG_MASK) >>
DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT;
/*
* The value returned in the register is the maximum of
* bitflips encountered in any of the ECC regions. As there is
* no way to get the number of bitflips in a specific regions
* we are not able to deliver correct stats but instead
* overestimate the number of corrected bitflips by assuming
* that all regions where errors have been corrected
* encountered the maximum number of bitflips.
*/
mtd->ecc_stats.corrected += max_corr_cnt * hweight8(corr_sec_flag);
return max_corr_cnt;
}
}
static int tegra_nand_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
void *oob_buf = oob_required ? chip->oob_poi : NULL;
int ret;
tegra_nand_hw_ecc(ctrl, chip, true);
ret = tegra_nand_page_xfer(mtd, chip, (void *)buf, oob_buf,
0, page, false);
tegra_nand_hw_ecc(ctrl, chip, false);
return ret;
}
static void tegra_nand_setup_timing(struct tegra_nand_controller *ctrl,
const struct nand_sdr_timings *timings)
{
/*
* The period (and all other timings in this function) is in ps,
* so need to take care here to avoid integer overflows.
*/
unsigned int rate = clk_get_rate(ctrl->clk) / 1000000;
unsigned int period = DIV_ROUND_UP(1000000, rate);
u32 val, reg = 0;
val = DIV_ROUND_UP(max3(timings->tAR_min, timings->tRR_min,
timings->tRC_min), period);
reg |= TIMING_TCR_TAR_TRR(OFFSET(val, 3));
val = DIV_ROUND_UP(max(max(timings->tCS_min, timings->tCH_min),
max(timings->tALS_min, timings->tALH_min)),
period);
reg |= TIMING_TCS(OFFSET(val, 2));
val = DIV_ROUND_UP(max(timings->tRP_min, timings->tREA_max) + 6000,
period);
reg |= TIMING_TRP(OFFSET(val, 1)) | TIMING_TRP_RESP(OFFSET(val, 1));
reg |= TIMING_TWB(OFFSET(DIV_ROUND_UP(timings->tWB_max, period), 1));
reg |= TIMING_TWHR(OFFSET(DIV_ROUND_UP(timings->tWHR_min, period), 1));
reg |= TIMING_TWH(OFFSET(DIV_ROUND_UP(timings->tWH_min, period), 1));
reg |= TIMING_TWP(OFFSET(DIV_ROUND_UP(timings->tWP_min, period), 1));
reg |= TIMING_TRH(OFFSET(DIV_ROUND_UP(timings->tREH_min, period), 1));
writel_relaxed(reg, ctrl->regs + TIMING_1);
val = DIV_ROUND_UP(timings->tADL_min, period);
reg = TIMING_TADL(OFFSET(val, 3));
writel_relaxed(reg, ctrl->regs + TIMING_2);
}
static int tegra_nand_setup_interface(struct nand_chip *chip, int csline,
const struct nand_interface_config *conf)
{
struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
const struct nand_sdr_timings *timings;
timings = nand_get_sdr_timings(conf);
if (IS_ERR(timings))
return PTR_ERR(timings);
if (csline == NAND_DATA_IFACE_CHECK_ONLY)
return 0;
tegra_nand_setup_timing(ctrl, timings);
return 0;
}
static const int rs_strength_bootable[] = { 4 };
static const int rs_strength[] = { 4, 6, 8 };
static const int bch_strength_bootable[] = { 8, 16 };
static const int bch_strength[] = { 4, 8, 14, 16 };
static int tegra_nand_get_strength(struct nand_chip *chip, const int *strength,
int strength_len, int bits_per_step,
int oobsize)
{
struct nand_device *base = mtd_to_nanddev(nand_to_mtd(chip));
const struct nand_ecc_props *requirements =
nanddev_get_ecc_requirements(base);
bool maximize = base->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH;
int i;
/*
* Loop through available strengths. Backwards in case we try to
* maximize the BCH strength.
*/
for (i = 0; i < strength_len; i++) {
int strength_sel, bytes_per_step, bytes_per_page;
if (maximize) {
strength_sel = strength[strength_len - i - 1];
} else {
strength_sel = strength[i];
if (strength_sel < requirements->strength)
continue;
}
bytes_per_step = DIV_ROUND_UP(bits_per_step * strength_sel,
BITS_PER_BYTE);
bytes_per_page = round_up(bytes_per_step * chip->ecc.steps, 4);
/* Check whether strength fits OOB */
if (bytes_per_page < (oobsize - SKIP_SPARE_BYTES))
return strength_sel;
}
return -EINVAL;
}
static int tegra_nand_select_strength(struct nand_chip *chip, int oobsize)
{
const int *strength;
int strength_len, bits_per_step;
switch (chip->ecc.algo) {
case NAND_ECC_ALGO_RS:
bits_per_step = BITS_PER_STEP_RS;
if (chip->options & NAND_IS_BOOT_MEDIUM) {
strength = rs_strength_bootable;
strength_len = ARRAY_SIZE(rs_strength_bootable);
} else {
strength = rs_strength;
strength_len = ARRAY_SIZE(rs_strength);
}
break;
case NAND_ECC_ALGO_BCH:
bits_per_step = BITS_PER_STEP_BCH;
if (chip->options & NAND_IS_BOOT_MEDIUM) {
strength = bch_strength_bootable;
strength_len = ARRAY_SIZE(bch_strength_bootable);
} else {
strength = bch_strength;
strength_len = ARRAY_SIZE(bch_strength);
}
break;
default:
return -EINVAL;
}
return tegra_nand_get_strength(chip, strength, strength_len,
bits_per_step, oobsize);
}
static int tegra_nand_attach_chip(struct nand_chip *chip)
{
struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
const struct nand_ecc_props *requirements =
nanddev_get_ecc_requirements(&chip->base);
struct tegra_nand_chip *nand = to_tegra_chip(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
int bits_per_step;
int ret;
if (chip->bbt_options & NAND_BBT_USE_FLASH)
chip->bbt_options |= NAND_BBT_NO_OOB;
chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
chip->ecc.size = 512;
chip->ecc.steps = mtd->writesize / chip->ecc.size;
if (requirements->step_size != 512) {
dev_err(ctrl->dev, "Unsupported step size %d\n",
requirements->step_size);
return -EINVAL;
}
chip->ecc.read_page = tegra_nand_read_page_hwecc;
chip->ecc.write_page = tegra_nand_write_page_hwecc;
chip->ecc.read_page_raw = tegra_nand_read_page_raw;
chip->ecc.write_page_raw = tegra_nand_write_page_raw;
chip->ecc.read_oob = tegra_nand_read_oob;
chip->ecc.write_oob = tegra_nand_write_oob;
if (chip->options & NAND_BUSWIDTH_16)
nand->config |= CONFIG_BUS_WIDTH_16;
if (chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN) {
if (mtd->writesize < 2048)
chip->ecc.algo = NAND_ECC_ALGO_RS;
else
chip->ecc.algo = NAND_ECC_ALGO_BCH;
}
if (chip->ecc.algo == NAND_ECC_ALGO_BCH && mtd->writesize < 2048) {
dev_err(ctrl->dev, "BCH supports 2K or 4K page size only\n");
return -EINVAL;
}
if (!chip->ecc.strength) {
ret = tegra_nand_select_strength(chip, mtd->oobsize);
if (ret < 0) {
dev_err(ctrl->dev,
"No valid strength found, minimum %d\n",
requirements->strength);
return ret;
}
chip->ecc.strength = ret;
}
nand->config_ecc = CONFIG_PIPE_EN | CONFIG_SKIP_SPARE |
CONFIG_SKIP_SPARE_SIZE_4;
switch (chip->ecc.algo) {
case NAND_ECC_ALGO_RS:
bits_per_step = BITS_PER_STEP_RS * chip->ecc.strength;
mtd_set_ooblayout(mtd, &tegra_nand_oob_rs_ops);
nand->config_ecc |= CONFIG_HW_ECC | CONFIG_ECC_SEL |
CONFIG_ERR_COR;
switch (chip->ecc.strength) {
case 4:
nand->config_ecc |= CONFIG_TVAL_4;
break;
case 6:
nand->config_ecc |= CONFIG_TVAL_6;
break;
case 8:
nand->config_ecc |= CONFIG_TVAL_8;
break;
default:
dev_err(ctrl->dev, "ECC strength %d not supported\n",
chip->ecc.strength);
return -EINVAL;
}
break;
case NAND_ECC_ALGO_BCH:
bits_per_step = BITS_PER_STEP_BCH * chip->ecc.strength;
mtd_set_ooblayout(mtd, &tegra_nand_oob_bch_ops);
nand->bch_config = BCH_ENABLE;
switch (chip->ecc.strength) {
case 4:
nand->bch_config |= BCH_TVAL_4;
break;
case 8:
nand->bch_config |= BCH_TVAL_8;
break;
case 14:
nand->bch_config |= BCH_TVAL_14;
break;
case 16:
nand->bch_config |= BCH_TVAL_16;
break;
default:
dev_err(ctrl->dev, "ECC strength %d not supported\n",
chip->ecc.strength);
return -EINVAL;
}
break;
default:
dev_err(ctrl->dev, "ECC algorithm not supported\n");
return -EINVAL;
}
dev_info(ctrl->dev, "Using %s with strength %d per 512 byte step\n",
chip->ecc.algo == NAND_ECC_ALGO_BCH ? "BCH" : "RS",
chip->ecc.strength);
chip->ecc.bytes = DIV_ROUND_UP(bits_per_step, BITS_PER_BYTE);
switch (mtd->writesize) {
case 256:
nand->config |= CONFIG_PS_256;
break;
case 512:
nand->config |= CONFIG_PS_512;
break;
case 1024:
nand->config |= CONFIG_PS_1024;
break;
case 2048:
nand->config |= CONFIG_PS_2048;
break;
case 4096:
nand->config |= CONFIG_PS_4096;
break;
default:
dev_err(ctrl->dev, "Unsupported writesize %d\n",
mtd->writesize);
return -ENODEV;
}
/* Store complete configuration for HW ECC in config_ecc */
nand->config_ecc |= nand->config;
/* Non-HW ECC read/writes complete OOB */
nand->config |= CONFIG_TAG_BYTE_SIZE(mtd->oobsize - 1);
writel_relaxed(nand->config, ctrl->regs + CONFIG);
return 0;
}
static const struct nand_controller_ops tegra_nand_controller_ops = {
.attach_chip = &tegra_nand_attach_chip,
.exec_op = tegra_nand_exec_op,
.setup_interface = tegra_nand_setup_interface,
};
static int tegra_nand_chips_init(struct device *dev,
struct tegra_nand_controller *ctrl)
{
struct device_node *np = dev->of_node;
struct device_node *np_nand;
int nsels, nchips = of_get_child_count(np);
struct tegra_nand_chip *nand;
struct mtd_info *mtd;
struct nand_chip *chip;
int ret;
u32 cs;
if (nchips != 1) {
dev_err(dev, "Currently only one NAND chip supported\n");
return -EINVAL;
}
np_nand = of_get_next_child(np, NULL);
nsels = of_property_count_elems_of_size(np_nand, "reg", sizeof(u32));
if (nsels != 1) {
dev_err(dev, "Missing/invalid reg property\n");
return -EINVAL;
}
/* Retrieve CS id, currently only single die NAND supported */
ret = of_property_read_u32(np_nand, "reg", &cs);
if (ret) {
dev_err(dev, "could not retrieve reg property: %d\n", ret);
return ret;
}
nand = devm_kzalloc(dev, sizeof(*nand), GFP_KERNEL);
if (!nand)
return -ENOMEM;
nand->cs[0] = cs;
nand->wp_gpio = devm_gpiod_get_optional(dev, "wp", GPIOD_OUT_LOW);
if (IS_ERR(nand->wp_gpio)) {
ret = PTR_ERR(nand->wp_gpio);
dev_err(dev, "Failed to request WP GPIO: %d\n", ret);
return ret;
}
chip = &nand->chip;
chip->controller = &ctrl->controller;
mtd = nand_to_mtd(chip);
mtd->dev.parent = dev;
mtd->owner = THIS_MODULE;
nand_set_flash_node(chip, np_nand);
if (!mtd->name)
mtd->name = "tegra_nand";
chip->options = NAND_NO_SUBPAGE_WRITE | NAND_USES_DMA;
ret = nand_scan(chip, 1);
if (ret)
return ret;
mtd_ooblayout_ecc(mtd, 0, &nand->ecc);
ret = mtd_device_register(mtd, NULL, 0);
if (ret) {
dev_err(dev, "Failed to register mtd device: %d\n", ret);
nand_cleanup(chip);
return ret;
}
ctrl->chip = chip;
return 0;
}
static int tegra_nand_probe(struct platform_device *pdev)
{
struct reset_control *rst;
struct tegra_nand_controller *ctrl;
int err = 0;
ctrl = devm_kzalloc(&pdev->dev, sizeof(*ctrl), GFP_KERNEL);
if (!ctrl)
return -ENOMEM;
ctrl->dev = &pdev->dev;
nand_controller_init(&ctrl->controller);
ctrl->controller.ops = &tegra_nand_controller_ops;
ctrl->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(ctrl->regs))
return PTR_ERR(ctrl->regs);
rst = devm_reset_control_get(&pdev->dev, "nand");
if (IS_ERR(rst))
return PTR_ERR(rst);
ctrl->clk = devm_clk_get(&pdev->dev, "nand");
if (IS_ERR(ctrl->clk))
return PTR_ERR(ctrl->clk);
err = clk_prepare_enable(ctrl->clk);
if (err)
return err;
err = reset_control_reset(rst);
if (err) {
dev_err(ctrl->dev, "Failed to reset HW: %d\n", err);
goto err_disable_clk;
}
writel_relaxed(HWSTATUS_CMD_DEFAULT, ctrl->regs + HWSTATUS_CMD);
writel_relaxed(HWSTATUS_MASK_DEFAULT, ctrl->regs + HWSTATUS_MASK);
writel_relaxed(INT_MASK, ctrl->regs + IER);
init_completion(&ctrl->command_complete);
init_completion(&ctrl->dma_complete);
ctrl->irq = platform_get_irq(pdev, 0);
err = devm_request_irq(&pdev->dev, ctrl->irq, tegra_nand_irq, 0,
dev_name(&pdev->dev), ctrl);
if (err) {
dev_err(ctrl->dev, "Failed to get IRQ: %d\n", err);
goto err_disable_clk;
}
writel_relaxed(DMA_MST_CTRL_IS_DONE, ctrl->regs + DMA_MST_CTRL);
err = tegra_nand_chips_init(ctrl->dev, ctrl);
if (err)
goto err_disable_clk;
platform_set_drvdata(pdev, ctrl);
return 0;
err_disable_clk:
clk_disable_unprepare(ctrl->clk);
return err;
}
static int tegra_nand_remove(struct platform_device *pdev)
{
struct tegra_nand_controller *ctrl = platform_get_drvdata(pdev);
struct nand_chip *chip = ctrl->chip;
struct mtd_info *mtd = nand_to_mtd(chip);
int ret;
ret = mtd_device_unregister(mtd);
if (ret)
return ret;
nand_cleanup(chip);
clk_disable_unprepare(ctrl->clk);
return 0;
}
static const struct of_device_id tegra_nand_of_match[] = {
{ .compatible = "nvidia,tegra20-nand" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, tegra_nand_of_match);
static struct platform_driver tegra_nand_driver = {
.driver = {
.name = "tegra-nand",
.of_match_table = tegra_nand_of_match,
},
.probe = tegra_nand_probe,
.remove = tegra_nand_remove,
};
module_platform_driver(tegra_nand_driver);
MODULE_DESCRIPTION("NVIDIA Tegra NAND driver");
MODULE_AUTHOR("Thierry Reding <thierry.reding@nvidia.com>");
MODULE_AUTHOR("Lucas Stach <dev@lynxeye.de>");
MODULE_AUTHOR("Stefan Agner <stefan@agner.ch>");
MODULE_LICENSE("GPL v2");