| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * linux/arch/arm/kernel/setup.c |
| * |
| * Copyright (C) 1995-2001 Russell King |
| */ |
| #include <linux/efi.h> |
| #include <linux/export.h> |
| #include <linux/kernel.h> |
| #include <linux/stddef.h> |
| #include <linux/ioport.h> |
| #include <linux/delay.h> |
| #include <linux/utsname.h> |
| #include <linux/initrd.h> |
| #include <linux/console.h> |
| #include <linux/seq_file.h> |
| #include <linux/screen_info.h> |
| #include <linux/init.h> |
| #include <linux/kexec.h> |
| #include <linux/libfdt.h> |
| #include <linux/of.h> |
| #include <linux/of_fdt.h> |
| #include <linux/cpu.h> |
| #include <linux/interrupt.h> |
| #include <linux/smp.h> |
| #include <linux/proc_fs.h> |
| #include <linux/memblock.h> |
| #include <linux/bug.h> |
| #include <linux/compiler.h> |
| #include <linux/sort.h> |
| #include <linux/psci.h> |
| |
| #include <asm/unified.h> |
| #include <asm/cp15.h> |
| #include <asm/cpu.h> |
| #include <asm/cputype.h> |
| #include <asm/efi.h> |
| #include <asm/elf.h> |
| #include <asm/early_ioremap.h> |
| #include <asm/fixmap.h> |
| #include <asm/procinfo.h> |
| #include <asm/psci.h> |
| #include <asm/sections.h> |
| #include <asm/setup.h> |
| #include <asm/smp_plat.h> |
| #include <asm/mach-types.h> |
| #include <asm/cacheflush.h> |
| #include <asm/cachetype.h> |
| #include <asm/tlbflush.h> |
| #include <asm/xen/hypervisor.h> |
| |
| #include <asm/prom.h> |
| #include <asm/mach/arch.h> |
| #include <asm/mach/irq.h> |
| #include <asm/mach/time.h> |
| #include <asm/system_info.h> |
| #include <asm/system_misc.h> |
| #include <asm/traps.h> |
| #include <asm/unwind.h> |
| #include <asm/memblock.h> |
| #include <asm/virt.h> |
| #include <asm/kasan.h> |
| |
| #include "atags.h" |
| |
| |
| #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE) |
| char fpe_type[8]; |
| |
| static int __init fpe_setup(char *line) |
| { |
| memcpy(fpe_type, line, 8); |
| return 1; |
| } |
| |
| __setup("fpe=", fpe_setup); |
| #endif |
| |
| unsigned int processor_id; |
| EXPORT_SYMBOL(processor_id); |
| unsigned int __machine_arch_type __read_mostly; |
| EXPORT_SYMBOL(__machine_arch_type); |
| unsigned int cacheid __read_mostly; |
| EXPORT_SYMBOL(cacheid); |
| |
| unsigned int __atags_pointer __initdata; |
| |
| unsigned int system_rev; |
| EXPORT_SYMBOL(system_rev); |
| |
| const char *system_serial; |
| EXPORT_SYMBOL(system_serial); |
| |
| unsigned int system_serial_low; |
| EXPORT_SYMBOL(system_serial_low); |
| |
| unsigned int system_serial_high; |
| EXPORT_SYMBOL(system_serial_high); |
| |
| unsigned int elf_hwcap __read_mostly; |
| EXPORT_SYMBOL(elf_hwcap); |
| |
| unsigned int elf_hwcap2 __read_mostly; |
| EXPORT_SYMBOL(elf_hwcap2); |
| |
| |
| #ifdef MULTI_CPU |
| struct processor processor __ro_after_init; |
| #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR) |
| struct processor *cpu_vtable[NR_CPUS] = { |
| [0] = &processor, |
| }; |
| #endif |
| #endif |
| #ifdef MULTI_TLB |
| struct cpu_tlb_fns cpu_tlb __ro_after_init; |
| #endif |
| #ifdef MULTI_USER |
| struct cpu_user_fns cpu_user __ro_after_init; |
| #endif |
| #ifdef MULTI_CACHE |
| struct cpu_cache_fns cpu_cache __ro_after_init; |
| #endif |
| #ifdef CONFIG_OUTER_CACHE |
| struct outer_cache_fns outer_cache __ro_after_init; |
| EXPORT_SYMBOL(outer_cache); |
| #endif |
| |
| /* |
| * Cached cpu_architecture() result for use by assembler code. |
| * C code should use the cpu_architecture() function instead of accessing this |
| * variable directly. |
| */ |
| int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN; |
| |
| struct stack { |
| u32 irq[4]; |
| u32 abt[4]; |
| u32 und[4]; |
| u32 fiq[4]; |
| } ____cacheline_aligned; |
| |
| #ifndef CONFIG_CPU_V7M |
| static struct stack stacks[NR_CPUS]; |
| #endif |
| |
| char elf_platform[ELF_PLATFORM_SIZE]; |
| EXPORT_SYMBOL(elf_platform); |
| |
| static const char *cpu_name; |
| static const char *machine_name; |
| static char __initdata cmd_line[COMMAND_LINE_SIZE]; |
| const struct machine_desc *machine_desc __initdata; |
| |
| static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } }; |
| #define ENDIANNESS ((char)endian_test.l) |
| |
| DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data); |
| |
| /* |
| * Standard memory resources |
| */ |
| static struct resource mem_res[] = { |
| { |
| .name = "Video RAM", |
| .start = 0, |
| .end = 0, |
| .flags = IORESOURCE_MEM |
| }, |
| { |
| .name = "Kernel code", |
| .start = 0, |
| .end = 0, |
| .flags = IORESOURCE_SYSTEM_RAM |
| }, |
| { |
| .name = "Kernel data", |
| .start = 0, |
| .end = 0, |
| .flags = IORESOURCE_SYSTEM_RAM |
| } |
| }; |
| |
| #define video_ram mem_res[0] |
| #define kernel_code mem_res[1] |
| #define kernel_data mem_res[2] |
| |
| static struct resource io_res[] = { |
| { |
| .name = "reserved", |
| .start = 0x3bc, |
| .end = 0x3be, |
| .flags = IORESOURCE_IO | IORESOURCE_BUSY |
| }, |
| { |
| .name = "reserved", |
| .start = 0x378, |
| .end = 0x37f, |
| .flags = IORESOURCE_IO | IORESOURCE_BUSY |
| }, |
| { |
| .name = "reserved", |
| .start = 0x278, |
| .end = 0x27f, |
| .flags = IORESOURCE_IO | IORESOURCE_BUSY |
| } |
| }; |
| |
| #define lp0 io_res[0] |
| #define lp1 io_res[1] |
| #define lp2 io_res[2] |
| |
| static const char *proc_arch[] = { |
| "undefined/unknown", |
| "3", |
| "4", |
| "4T", |
| "5", |
| "5T", |
| "5TE", |
| "5TEJ", |
| "6TEJ", |
| "7", |
| "7M", |
| "?(12)", |
| "?(13)", |
| "?(14)", |
| "?(15)", |
| "?(16)", |
| "?(17)", |
| }; |
| |
| #ifdef CONFIG_CPU_V7M |
| static int __get_cpu_architecture(void) |
| { |
| return CPU_ARCH_ARMv7M; |
| } |
| #else |
| static int __get_cpu_architecture(void) |
| { |
| int cpu_arch; |
| |
| if ((read_cpuid_id() & 0x0008f000) == 0) { |
| cpu_arch = CPU_ARCH_UNKNOWN; |
| } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) { |
| cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3; |
| } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) { |
| cpu_arch = (read_cpuid_id() >> 16) & 7; |
| if (cpu_arch) |
| cpu_arch += CPU_ARCH_ARMv3; |
| } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) { |
| /* Revised CPUID format. Read the Memory Model Feature |
| * Register 0 and check for VMSAv7 or PMSAv7 */ |
| unsigned int mmfr0 = read_cpuid_ext(CPUID_EXT_MMFR0); |
| if ((mmfr0 & 0x0000000f) >= 0x00000003 || |
| (mmfr0 & 0x000000f0) >= 0x00000030) |
| cpu_arch = CPU_ARCH_ARMv7; |
| else if ((mmfr0 & 0x0000000f) == 0x00000002 || |
| (mmfr0 & 0x000000f0) == 0x00000020) |
| cpu_arch = CPU_ARCH_ARMv6; |
| else |
| cpu_arch = CPU_ARCH_UNKNOWN; |
| } else |
| cpu_arch = CPU_ARCH_UNKNOWN; |
| |
| return cpu_arch; |
| } |
| #endif |
| |
| int __pure cpu_architecture(void) |
| { |
| BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN); |
| |
| return __cpu_architecture; |
| } |
| |
| static int cpu_has_aliasing_icache(unsigned int arch) |
| { |
| int aliasing_icache; |
| unsigned int id_reg, num_sets, line_size; |
| |
| /* PIPT caches never alias. */ |
| if (icache_is_pipt()) |
| return 0; |
| |
| /* arch specifies the register format */ |
| switch (arch) { |
| case CPU_ARCH_ARMv7: |
| set_csselr(CSSELR_ICACHE | CSSELR_L1); |
| isb(); |
| id_reg = read_ccsidr(); |
| line_size = 4 << ((id_reg & 0x7) + 2); |
| num_sets = ((id_reg >> 13) & 0x7fff) + 1; |
| aliasing_icache = (line_size * num_sets) > PAGE_SIZE; |
| break; |
| case CPU_ARCH_ARMv6: |
| aliasing_icache = read_cpuid_cachetype() & (1 << 11); |
| break; |
| default: |
| /* I-cache aliases will be handled by D-cache aliasing code */ |
| aliasing_icache = 0; |
| } |
| |
| return aliasing_icache; |
| } |
| |
| static void __init cacheid_init(void) |
| { |
| unsigned int arch = cpu_architecture(); |
| |
| if (arch >= CPU_ARCH_ARMv6) { |
| unsigned int cachetype = read_cpuid_cachetype(); |
| |
| if ((arch == CPU_ARCH_ARMv7M) && !(cachetype & 0xf000f)) { |
| cacheid = 0; |
| } else if ((cachetype & (7 << 29)) == 4 << 29) { |
| /* ARMv7 register format */ |
| arch = CPU_ARCH_ARMv7; |
| cacheid = CACHEID_VIPT_NONALIASING; |
| switch (cachetype & (3 << 14)) { |
| case (1 << 14): |
| cacheid |= CACHEID_ASID_TAGGED; |
| break; |
| case (3 << 14): |
| cacheid |= CACHEID_PIPT; |
| break; |
| } |
| } else { |
| arch = CPU_ARCH_ARMv6; |
| if (cachetype & (1 << 23)) |
| cacheid = CACHEID_VIPT_ALIASING; |
| else |
| cacheid = CACHEID_VIPT_NONALIASING; |
| } |
| if (cpu_has_aliasing_icache(arch)) |
| cacheid |= CACHEID_VIPT_I_ALIASING; |
| } else { |
| cacheid = CACHEID_VIVT; |
| } |
| |
| pr_info("CPU: %s data cache, %s instruction cache\n", |
| cache_is_vivt() ? "VIVT" : |
| cache_is_vipt_aliasing() ? "VIPT aliasing" : |
| cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown", |
| cache_is_vivt() ? "VIVT" : |
| icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" : |
| icache_is_vipt_aliasing() ? "VIPT aliasing" : |
| icache_is_pipt() ? "PIPT" : |
| cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown"); |
| } |
| |
| /* |
| * These functions re-use the assembly code in head.S, which |
| * already provide the required functionality. |
| */ |
| extern struct proc_info_list *lookup_processor_type(unsigned int); |
| |
| void __init early_print(const char *str, ...) |
| { |
| extern void printascii(const char *); |
| char buf[256]; |
| va_list ap; |
| |
| va_start(ap, str); |
| vsnprintf(buf, sizeof(buf), str, ap); |
| va_end(ap); |
| |
| #ifdef CONFIG_DEBUG_LL |
| printascii(buf); |
| #endif |
| printk("%s", buf); |
| } |
| |
| #ifdef CONFIG_ARM_PATCH_IDIV |
| |
| static inline u32 __attribute_const__ sdiv_instruction(void) |
| { |
| if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) { |
| /* "sdiv r0, r0, r1" */ |
| u32 insn = __opcode_thumb32_compose(0xfb90, 0xf0f1); |
| return __opcode_to_mem_thumb32(insn); |
| } |
| |
| /* "sdiv r0, r0, r1" */ |
| return __opcode_to_mem_arm(0xe710f110); |
| } |
| |
| static inline u32 __attribute_const__ udiv_instruction(void) |
| { |
| if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) { |
| /* "udiv r0, r0, r1" */ |
| u32 insn = __opcode_thumb32_compose(0xfbb0, 0xf0f1); |
| return __opcode_to_mem_thumb32(insn); |
| } |
| |
| /* "udiv r0, r0, r1" */ |
| return __opcode_to_mem_arm(0xe730f110); |
| } |
| |
| static inline u32 __attribute_const__ bx_lr_instruction(void) |
| { |
| if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) { |
| /* "bx lr; nop" */ |
| u32 insn = __opcode_thumb32_compose(0x4770, 0x46c0); |
| return __opcode_to_mem_thumb32(insn); |
| } |
| |
| /* "bx lr" */ |
| return __opcode_to_mem_arm(0xe12fff1e); |
| } |
| |
| static void __init patch_aeabi_idiv(void) |
| { |
| extern void __aeabi_uidiv(void); |
| extern void __aeabi_idiv(void); |
| uintptr_t fn_addr; |
| unsigned int mask; |
| |
| mask = IS_ENABLED(CONFIG_THUMB2_KERNEL) ? HWCAP_IDIVT : HWCAP_IDIVA; |
| if (!(elf_hwcap & mask)) |
| return; |
| |
| pr_info("CPU: div instructions available: patching division code\n"); |
| |
| fn_addr = ((uintptr_t)&__aeabi_uidiv) & ~1; |
| asm ("" : "+g" (fn_addr)); |
| ((u32 *)fn_addr)[0] = udiv_instruction(); |
| ((u32 *)fn_addr)[1] = bx_lr_instruction(); |
| flush_icache_range(fn_addr, fn_addr + 8); |
| |
| fn_addr = ((uintptr_t)&__aeabi_idiv) & ~1; |
| asm ("" : "+g" (fn_addr)); |
| ((u32 *)fn_addr)[0] = sdiv_instruction(); |
| ((u32 *)fn_addr)[1] = bx_lr_instruction(); |
| flush_icache_range(fn_addr, fn_addr + 8); |
| } |
| |
| #else |
| static inline void patch_aeabi_idiv(void) { } |
| #endif |
| |
| static void __init cpuid_init_hwcaps(void) |
| { |
| int block; |
| u32 isar5; |
| u32 isar6; |
| u32 pfr2; |
| |
| if (cpu_architecture() < CPU_ARCH_ARMv7) |
| return; |
| |
| block = cpuid_feature_extract(CPUID_EXT_ISAR0, 24); |
| if (block >= 2) |
| elf_hwcap |= HWCAP_IDIVA; |
| if (block >= 1) |
| elf_hwcap |= HWCAP_IDIVT; |
| |
| /* LPAE implies atomic ldrd/strd instructions */ |
| block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0); |
| if (block >= 5) |
| elf_hwcap |= HWCAP_LPAE; |
| |
| /* check for supported v8 Crypto instructions */ |
| isar5 = read_cpuid_ext(CPUID_EXT_ISAR5); |
| |
| block = cpuid_feature_extract_field(isar5, 4); |
| if (block >= 2) |
| elf_hwcap2 |= HWCAP2_PMULL; |
| if (block >= 1) |
| elf_hwcap2 |= HWCAP2_AES; |
| |
| block = cpuid_feature_extract_field(isar5, 8); |
| if (block >= 1) |
| elf_hwcap2 |= HWCAP2_SHA1; |
| |
| block = cpuid_feature_extract_field(isar5, 12); |
| if (block >= 1) |
| elf_hwcap2 |= HWCAP2_SHA2; |
| |
| block = cpuid_feature_extract_field(isar5, 16); |
| if (block >= 1) |
| elf_hwcap2 |= HWCAP2_CRC32; |
| |
| /* Check for Speculation barrier instruction */ |
| isar6 = read_cpuid_ext(CPUID_EXT_ISAR6); |
| block = cpuid_feature_extract_field(isar6, 12); |
| if (block >= 1) |
| elf_hwcap2 |= HWCAP2_SB; |
| |
| /* Check for Speculative Store Bypassing control */ |
| pfr2 = read_cpuid_ext(CPUID_EXT_PFR2); |
| block = cpuid_feature_extract_field(pfr2, 4); |
| if (block >= 1) |
| elf_hwcap2 |= HWCAP2_SSBS; |
| } |
| |
| static void __init elf_hwcap_fixup(void) |
| { |
| unsigned id = read_cpuid_id(); |
| |
| /* |
| * HWCAP_TLS is available only on 1136 r1p0 and later, |
| * see also kuser_get_tls_init. |
| */ |
| if (read_cpuid_part() == ARM_CPU_PART_ARM1136 && |
| ((id >> 20) & 3) == 0) { |
| elf_hwcap &= ~HWCAP_TLS; |
| return; |
| } |
| |
| /* Verify if CPUID scheme is implemented */ |
| if ((id & 0x000f0000) != 0x000f0000) |
| return; |
| |
| /* |
| * If the CPU supports LDREX/STREX and LDREXB/STREXB, |
| * avoid advertising SWP; it may not be atomic with |
| * multiprocessing cores. |
| */ |
| if (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) > 1 || |
| (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) == 1 && |
| cpuid_feature_extract(CPUID_EXT_ISAR4, 20) >= 3)) |
| elf_hwcap &= ~HWCAP_SWP; |
| } |
| |
| /* |
| * cpu_init - initialise one CPU. |
| * |
| * cpu_init sets up the per-CPU stacks. |
| */ |
| void notrace cpu_init(void) |
| { |
| #ifndef CONFIG_CPU_V7M |
| unsigned int cpu = smp_processor_id(); |
| struct stack *stk = &stacks[cpu]; |
| |
| if (cpu >= NR_CPUS) { |
| pr_crit("CPU%u: bad primary CPU number\n", cpu); |
| BUG(); |
| } |
| |
| /* |
| * This only works on resume and secondary cores. For booting on the |
| * boot cpu, smp_prepare_boot_cpu is called after percpu area setup. |
| */ |
| set_my_cpu_offset(per_cpu_offset(cpu)); |
| |
| cpu_proc_init(); |
| |
| /* |
| * Define the placement constraint for the inline asm directive below. |
| * In Thumb-2, msr with an immediate value is not allowed. |
| */ |
| #ifdef CONFIG_THUMB2_KERNEL |
| #define PLC_l "l" |
| #define PLC_r "r" |
| #else |
| #define PLC_l "I" |
| #define PLC_r "I" |
| #endif |
| |
| /* |
| * setup stacks for re-entrant exception handlers |
| */ |
| __asm__ ( |
| "msr cpsr_c, %1\n\t" |
| "add r14, %0, %2\n\t" |
| "mov sp, r14\n\t" |
| "msr cpsr_c, %3\n\t" |
| "add r14, %0, %4\n\t" |
| "mov sp, r14\n\t" |
| "msr cpsr_c, %5\n\t" |
| "add r14, %0, %6\n\t" |
| "mov sp, r14\n\t" |
| "msr cpsr_c, %7\n\t" |
| "add r14, %0, %8\n\t" |
| "mov sp, r14\n\t" |
| "msr cpsr_c, %9" |
| : |
| : "r" (stk), |
| PLC_r (PSR_F_BIT | PSR_I_BIT | IRQ_MODE), |
| "I" (offsetof(struct stack, irq[0])), |
| PLC_r (PSR_F_BIT | PSR_I_BIT | ABT_MODE), |
| "I" (offsetof(struct stack, abt[0])), |
| PLC_r (PSR_F_BIT | PSR_I_BIT | UND_MODE), |
| "I" (offsetof(struct stack, und[0])), |
| PLC_r (PSR_F_BIT | PSR_I_BIT | FIQ_MODE), |
| "I" (offsetof(struct stack, fiq[0])), |
| PLC_l (PSR_F_BIT | PSR_I_BIT | SVC_MODE) |
| : "r14"); |
| #endif |
| } |
| |
| u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID }; |
| |
| void __init smp_setup_processor_id(void) |
| { |
| int i; |
| u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0; |
| u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0); |
| |
| cpu_logical_map(0) = cpu; |
| for (i = 1; i < nr_cpu_ids; ++i) |
| cpu_logical_map(i) = i == cpu ? 0 : i; |
| |
| /* |
| * clear __my_cpu_offset on boot CPU to avoid hang caused by |
| * using percpu variable early, for example, lockdep will |
| * access percpu variable inside lock_release |
| */ |
| set_my_cpu_offset(0); |
| |
| pr_info("Booting Linux on physical CPU 0x%x\n", mpidr); |
| } |
| |
| struct mpidr_hash mpidr_hash; |
| #ifdef CONFIG_SMP |
| /** |
| * smp_build_mpidr_hash - Pre-compute shifts required at each affinity |
| * level in order to build a linear index from an |
| * MPIDR value. Resulting algorithm is a collision |
| * free hash carried out through shifting and ORing |
| */ |
| static void __init smp_build_mpidr_hash(void) |
| { |
| u32 i, affinity; |
| u32 fs[3], bits[3], ls, mask = 0; |
| /* |
| * Pre-scan the list of MPIDRS and filter out bits that do |
| * not contribute to affinity levels, ie they never toggle. |
| */ |
| for_each_possible_cpu(i) |
| mask |= (cpu_logical_map(i) ^ cpu_logical_map(0)); |
| pr_debug("mask of set bits 0x%x\n", mask); |
| /* |
| * Find and stash the last and first bit set at all affinity levels to |
| * check how many bits are required to represent them. |
| */ |
| for (i = 0; i < 3; i++) { |
| affinity = MPIDR_AFFINITY_LEVEL(mask, i); |
| /* |
| * Find the MSB bit and LSB bits position |
| * to determine how many bits are required |
| * to express the affinity level. |
| */ |
| ls = fls(affinity); |
| fs[i] = affinity ? ffs(affinity) - 1 : 0; |
| bits[i] = ls - fs[i]; |
| } |
| /* |
| * An index can be created from the MPIDR by isolating the |
| * significant bits at each affinity level and by shifting |
| * them in order to compress the 24 bits values space to a |
| * compressed set of values. This is equivalent to hashing |
| * the MPIDR through shifting and ORing. It is a collision free |
| * hash though not minimal since some levels might contain a number |
| * of CPUs that is not an exact power of 2 and their bit |
| * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}. |
| */ |
| mpidr_hash.shift_aff[0] = fs[0]; |
| mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0]; |
| mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] - |
| (bits[1] + bits[0]); |
| mpidr_hash.mask = mask; |
| mpidr_hash.bits = bits[2] + bits[1] + bits[0]; |
| pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n", |
| mpidr_hash.shift_aff[0], |
| mpidr_hash.shift_aff[1], |
| mpidr_hash.shift_aff[2], |
| mpidr_hash.mask, |
| mpidr_hash.bits); |
| /* |
| * 4x is an arbitrary value used to warn on a hash table much bigger |
| * than expected on most systems. |
| */ |
| if (mpidr_hash_size() > 4 * num_possible_cpus()) |
| pr_warn("Large number of MPIDR hash buckets detected\n"); |
| sync_cache_w(&mpidr_hash); |
| } |
| #endif |
| |
| /* |
| * locate processor in the list of supported processor types. The linker |
| * builds this table for us from the entries in arch/arm/mm/proc-*.S |
| */ |
| struct proc_info_list *lookup_processor(u32 midr) |
| { |
| struct proc_info_list *list = lookup_processor_type(midr); |
| |
| if (!list) { |
| pr_err("CPU%u: configuration botched (ID %08x), CPU halted\n", |
| smp_processor_id(), midr); |
| while (1) |
| /* can't use cpu_relax() here as it may require MMU setup */; |
| } |
| |
| return list; |
| } |
| |
| static void __init setup_processor(void) |
| { |
| unsigned int midr = read_cpuid_id(); |
| struct proc_info_list *list = lookup_processor(midr); |
| |
| cpu_name = list->cpu_name; |
| __cpu_architecture = __get_cpu_architecture(); |
| |
| init_proc_vtable(list->proc); |
| #ifdef MULTI_TLB |
| cpu_tlb = *list->tlb; |
| #endif |
| #ifdef MULTI_USER |
| cpu_user = *list->user; |
| #endif |
| #ifdef MULTI_CACHE |
| cpu_cache = *list->cache; |
| #endif |
| |
| pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n", |
| list->cpu_name, midr, midr & 15, |
| proc_arch[cpu_architecture()], get_cr()); |
| |
| snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c", |
| list->arch_name, ENDIANNESS); |
| snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c", |
| list->elf_name, ENDIANNESS); |
| elf_hwcap = list->elf_hwcap; |
| |
| cpuid_init_hwcaps(); |
| patch_aeabi_idiv(); |
| |
| #ifndef CONFIG_ARM_THUMB |
| elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT); |
| #endif |
| #ifdef CONFIG_MMU |
| init_default_cache_policy(list->__cpu_mm_mmu_flags); |
| #endif |
| erratum_a15_798181_init(); |
| |
| elf_hwcap_fixup(); |
| |
| cacheid_init(); |
| cpu_init(); |
| } |
| |
| void __init dump_machine_table(void) |
| { |
| const struct machine_desc *p; |
| |
| early_print("Available machine support:\n\nID (hex)\tNAME\n"); |
| for_each_machine_desc(p) |
| early_print("%08x\t%s\n", p->nr, p->name); |
| |
| early_print("\nPlease check your kernel config and/or bootloader.\n"); |
| |
| while (true) |
| /* can't use cpu_relax() here as it may require MMU setup */; |
| } |
| |
| int __init arm_add_memory(u64 start, u64 size) |
| { |
| u64 aligned_start; |
| |
| /* |
| * Ensure that start/size are aligned to a page boundary. |
| * Size is rounded down, start is rounded up. |
| */ |
| aligned_start = PAGE_ALIGN(start); |
| if (aligned_start > start + size) |
| size = 0; |
| else |
| size -= aligned_start - start; |
| |
| #ifndef CONFIG_PHYS_ADDR_T_64BIT |
| if (aligned_start > ULONG_MAX) { |
| pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n", |
| start); |
| return -EINVAL; |
| } |
| |
| if (aligned_start + size > ULONG_MAX) { |
| pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n", |
| (long long)start); |
| /* |
| * To ensure bank->start + bank->size is representable in |
| * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB. |
| * This means we lose a page after masking. |
| */ |
| size = ULONG_MAX - aligned_start; |
| } |
| #endif |
| |
| if (aligned_start < PHYS_OFFSET) { |
| if (aligned_start + size <= PHYS_OFFSET) { |
| pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n", |
| aligned_start, aligned_start + size); |
| return -EINVAL; |
| } |
| |
| pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n", |
| aligned_start, (u64)PHYS_OFFSET); |
| |
| size -= PHYS_OFFSET - aligned_start; |
| aligned_start = PHYS_OFFSET; |
| } |
| |
| start = aligned_start; |
| size = size & ~(phys_addr_t)(PAGE_SIZE - 1); |
| |
| /* |
| * Check whether this memory region has non-zero size or |
| * invalid node number. |
| */ |
| if (size == 0) |
| return -EINVAL; |
| |
| memblock_add(start, size); |
| return 0; |
| } |
| |
| /* |
| * Pick out the memory size. We look for mem=size@start, |
| * where start and size are "size[KkMm]" |
| */ |
| |
| static int __init early_mem(char *p) |
| { |
| static int usermem __initdata = 0; |
| u64 size; |
| u64 start; |
| char *endp; |
| |
| /* |
| * If the user specifies memory size, we |
| * blow away any automatically generated |
| * size. |
| */ |
| if (usermem == 0) { |
| usermem = 1; |
| memblock_remove(memblock_start_of_DRAM(), |
| memblock_end_of_DRAM() - memblock_start_of_DRAM()); |
| } |
| |
| start = PHYS_OFFSET; |
| size = memparse(p, &endp); |
| if (*endp == '@') |
| start = memparse(endp + 1, NULL); |
| |
| arm_add_memory(start, size); |
| |
| return 0; |
| } |
| early_param("mem", early_mem); |
| |
| static void __init request_standard_resources(const struct machine_desc *mdesc) |
| { |
| phys_addr_t start, end, res_end; |
| struct resource *res; |
| u64 i; |
| |
| kernel_code.start = virt_to_phys(_text); |
| kernel_code.end = virt_to_phys(__init_begin - 1); |
| kernel_data.start = virt_to_phys(_sdata); |
| kernel_data.end = virt_to_phys(_end - 1); |
| |
| for_each_mem_range(i, &start, &end) { |
| unsigned long boot_alias_start; |
| |
| /* |
| * In memblock, end points to the first byte after the |
| * range while in resourses, end points to the last byte in |
| * the range. |
| */ |
| res_end = end - 1; |
| |
| /* |
| * Some systems have a special memory alias which is only |
| * used for booting. We need to advertise this region to |
| * kexec-tools so they know where bootable RAM is located. |
| */ |
| boot_alias_start = phys_to_idmap(start); |
| if (arm_has_idmap_alias() && boot_alias_start != IDMAP_INVALID_ADDR) { |
| res = memblock_alloc(sizeof(*res), SMP_CACHE_BYTES); |
| if (!res) |
| panic("%s: Failed to allocate %zu bytes\n", |
| __func__, sizeof(*res)); |
| res->name = "System RAM (boot alias)"; |
| res->start = boot_alias_start; |
| res->end = phys_to_idmap(res_end); |
| res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; |
| request_resource(&iomem_resource, res); |
| } |
| |
| res = memblock_alloc(sizeof(*res), SMP_CACHE_BYTES); |
| if (!res) |
| panic("%s: Failed to allocate %zu bytes\n", __func__, |
| sizeof(*res)); |
| res->name = "System RAM"; |
| res->start = start; |
| res->end = res_end; |
| res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; |
| |
| request_resource(&iomem_resource, res); |
| |
| if (kernel_code.start >= res->start && |
| kernel_code.end <= res->end) |
| request_resource(res, &kernel_code); |
| if (kernel_data.start >= res->start && |
| kernel_data.end <= res->end) |
| request_resource(res, &kernel_data); |
| } |
| |
| if (mdesc->video_start) { |
| video_ram.start = mdesc->video_start; |
| video_ram.end = mdesc->video_end; |
| request_resource(&iomem_resource, &video_ram); |
| } |
| |
| /* |
| * Some machines don't have the possibility of ever |
| * possessing lp0, lp1 or lp2 |
| */ |
| if (mdesc->reserve_lp0) |
| request_resource(&ioport_resource, &lp0); |
| if (mdesc->reserve_lp1) |
| request_resource(&ioport_resource, &lp1); |
| if (mdesc->reserve_lp2) |
| request_resource(&ioport_resource, &lp2); |
| } |
| |
| #if defined(CONFIG_VGA_CONSOLE) |
| struct screen_info vgacon_screen_info = { |
| .orig_video_lines = 30, |
| .orig_video_cols = 80, |
| .orig_video_mode = 0, |
| .orig_video_ega_bx = 0, |
| .orig_video_isVGA = 1, |
| .orig_video_points = 8 |
| }; |
| #endif |
| |
| static int __init customize_machine(void) |
| { |
| /* |
| * customizes platform devices, or adds new ones |
| * On DT based machines, we fall back to populating the |
| * machine from the device tree, if no callback is provided, |
| * otherwise we would always need an init_machine callback. |
| */ |
| if (machine_desc->init_machine) |
| machine_desc->init_machine(); |
| |
| return 0; |
| } |
| arch_initcall(customize_machine); |
| |
| static int __init init_machine_late(void) |
| { |
| struct device_node *root; |
| int ret; |
| |
| if (machine_desc->init_late) |
| machine_desc->init_late(); |
| |
| root = of_find_node_by_path("/"); |
| if (root) { |
| ret = of_property_read_string(root, "serial-number", |
| &system_serial); |
| if (ret) |
| system_serial = NULL; |
| } |
| |
| if (!system_serial) |
| system_serial = kasprintf(GFP_KERNEL, "%08x%08x", |
| system_serial_high, |
| system_serial_low); |
| |
| return 0; |
| } |
| late_initcall(init_machine_late); |
| |
| #ifdef CONFIG_KEXEC |
| /* |
| * The crash region must be aligned to 128MB to avoid |
| * zImage relocating below the reserved region. |
| */ |
| #define CRASH_ALIGN (128 << 20) |
| |
| static inline unsigned long long get_total_mem(void) |
| { |
| unsigned long total; |
| |
| total = max_low_pfn - min_low_pfn; |
| return total << PAGE_SHIFT; |
| } |
| |
| /** |
| * reserve_crashkernel() - reserves memory are for crash kernel |
| * |
| * This function reserves memory area given in "crashkernel=" kernel command |
| * line parameter. The memory reserved is used by a dump capture kernel when |
| * primary kernel is crashing. |
| */ |
| static void __init reserve_crashkernel(void) |
| { |
| unsigned long long crash_size, crash_base; |
| unsigned long long total_mem; |
| int ret; |
| |
| total_mem = get_total_mem(); |
| ret = parse_crashkernel(boot_command_line, total_mem, |
| &crash_size, &crash_base, |
| NULL, NULL); |
| /* invalid value specified or crashkernel=0 */ |
| if (ret || !crash_size) |
| return; |
| |
| if (crash_base <= 0) { |
| unsigned long long crash_max = idmap_to_phys((u32)~0); |
| unsigned long long lowmem_max = __pa(high_memory - 1) + 1; |
| if (crash_max > lowmem_max) |
| crash_max = lowmem_max; |
| |
| crash_base = memblock_phys_alloc_range(crash_size, CRASH_ALIGN, |
| CRASH_ALIGN, crash_max); |
| if (!crash_base) { |
| pr_err("crashkernel reservation failed - No suitable area found.\n"); |
| return; |
| } |
| } else { |
| unsigned long long crash_max = crash_base + crash_size; |
| unsigned long long start; |
| |
| start = memblock_phys_alloc_range(crash_size, SECTION_SIZE, |
| crash_base, crash_max); |
| if (!start) { |
| pr_err("crashkernel reservation failed - memory is in use.\n"); |
| return; |
| } |
| } |
| |
| pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n", |
| (unsigned long)(crash_size >> 20), |
| (unsigned long)(crash_base >> 20), |
| (unsigned long)(total_mem >> 20)); |
| |
| /* The crashk resource must always be located in normal mem */ |
| crashk_res.start = crash_base; |
| crashk_res.end = crash_base + crash_size - 1; |
| insert_resource(&iomem_resource, &crashk_res); |
| |
| if (arm_has_idmap_alias()) { |
| /* |
| * If we have a special RAM alias for use at boot, we |
| * need to advertise to kexec tools where the alias is. |
| */ |
| static struct resource crashk_boot_res = { |
| .name = "Crash kernel (boot alias)", |
| .flags = IORESOURCE_BUSY | IORESOURCE_MEM, |
| }; |
| |
| crashk_boot_res.start = phys_to_idmap(crash_base); |
| crashk_boot_res.end = crashk_boot_res.start + crash_size - 1; |
| insert_resource(&iomem_resource, &crashk_boot_res); |
| } |
| } |
| #else |
| static inline void reserve_crashkernel(void) {} |
| #endif /* CONFIG_KEXEC */ |
| |
| void __init hyp_mode_check(void) |
| { |
| #ifdef CONFIG_ARM_VIRT_EXT |
| sync_boot_mode(); |
| |
| if (is_hyp_mode_available()) { |
| pr_info("CPU: All CPU(s) started in HYP mode.\n"); |
| pr_info("CPU: Virtualization extensions available.\n"); |
| } else if (is_hyp_mode_mismatched()) { |
| pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n", |
| __boot_cpu_mode & MODE_MASK); |
| pr_warn("CPU: This may indicate a broken bootloader or firmware.\n"); |
| } else |
| pr_info("CPU: All CPU(s) started in SVC mode.\n"); |
| #endif |
| } |
| |
| static void (*__arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd); |
| |
| static int arm_restart(struct notifier_block *nb, unsigned long action, |
| void *data) |
| { |
| __arm_pm_restart(action, data); |
| return NOTIFY_DONE; |
| } |
| |
| static struct notifier_block arm_restart_nb = { |
| .notifier_call = arm_restart, |
| .priority = 128, |
| }; |
| |
| void __init setup_arch(char **cmdline_p) |
| { |
| const struct machine_desc *mdesc = NULL; |
| void *atags_vaddr = NULL; |
| |
| if (__atags_pointer) |
| atags_vaddr = FDT_VIRT_BASE(__atags_pointer); |
| |
| setup_processor(); |
| if (atags_vaddr) { |
| mdesc = setup_machine_fdt(atags_vaddr); |
| if (mdesc) |
| memblock_reserve(__atags_pointer, |
| fdt_totalsize(atags_vaddr)); |
| } |
| if (!mdesc) |
| mdesc = setup_machine_tags(atags_vaddr, __machine_arch_type); |
| if (!mdesc) { |
| early_print("\nError: invalid dtb and unrecognized/unsupported machine ID\n"); |
| early_print(" r1=0x%08x, r2=0x%08x\n", __machine_arch_type, |
| __atags_pointer); |
| if (__atags_pointer) |
| early_print(" r2[]=%*ph\n", 16, atags_vaddr); |
| dump_machine_table(); |
| } |
| |
| machine_desc = mdesc; |
| machine_name = mdesc->name; |
| dump_stack_set_arch_desc("%s", mdesc->name); |
| |
| if (mdesc->reboot_mode != REBOOT_HARD) |
| reboot_mode = mdesc->reboot_mode; |
| |
| setup_initial_init_mm(_text, _etext, _edata, _end); |
| |
| /* populate cmd_line too for later use, preserving boot_command_line */ |
| strscpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE); |
| *cmdline_p = cmd_line; |
| |
| early_fixmap_init(); |
| early_ioremap_init(); |
| |
| parse_early_param(); |
| |
| #ifdef CONFIG_MMU |
| early_mm_init(mdesc); |
| #endif |
| setup_dma_zone(mdesc); |
| xen_early_init(); |
| arm_efi_init(); |
| /* |
| * Make sure the calculation for lowmem/highmem is set appropriately |
| * before reserving/allocating any memory |
| */ |
| adjust_lowmem_bounds(); |
| arm_memblock_init(mdesc); |
| /* Memory may have been removed so recalculate the bounds. */ |
| adjust_lowmem_bounds(); |
| |
| early_ioremap_reset(); |
| |
| paging_init(mdesc); |
| kasan_init(); |
| request_standard_resources(mdesc); |
| |
| if (mdesc->restart) { |
| __arm_pm_restart = mdesc->restart; |
| register_restart_handler(&arm_restart_nb); |
| } |
| |
| unflatten_device_tree(); |
| |
| arm_dt_init_cpu_maps(); |
| psci_dt_init(); |
| #ifdef CONFIG_SMP |
| if (is_smp()) { |
| if (!mdesc->smp_init || !mdesc->smp_init()) { |
| if (psci_smp_available()) |
| smp_set_ops(&psci_smp_ops); |
| else if (mdesc->smp) |
| smp_set_ops(mdesc->smp); |
| } |
| smp_init_cpus(); |
| smp_build_mpidr_hash(); |
| } |
| #endif |
| |
| if (!is_smp()) |
| hyp_mode_check(); |
| |
| reserve_crashkernel(); |
| |
| #ifdef CONFIG_VT |
| #if defined(CONFIG_VGA_CONSOLE) |
| vgacon_register_screen(&vgacon_screen_info); |
| #endif |
| #endif |
| |
| if (mdesc->init_early) |
| mdesc->init_early(); |
| } |
| |
| |
| static int __init topology_init(void) |
| { |
| int cpu; |
| |
| for_each_possible_cpu(cpu) { |
| struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu); |
| cpuinfo->cpu.hotpluggable = platform_can_hotplug_cpu(cpu); |
| register_cpu(&cpuinfo->cpu, cpu); |
| } |
| |
| return 0; |
| } |
| subsys_initcall(topology_init); |
| |
| #ifdef CONFIG_HAVE_PROC_CPU |
| static int __init proc_cpu_init(void) |
| { |
| struct proc_dir_entry *res; |
| |
| res = proc_mkdir("cpu", NULL); |
| if (!res) |
| return -ENOMEM; |
| return 0; |
| } |
| fs_initcall(proc_cpu_init); |
| #endif |
| |
| static const char *hwcap_str[] = { |
| "swp", |
| "half", |
| "thumb", |
| "26bit", |
| "fastmult", |
| "fpa", |
| "vfp", |
| "edsp", |
| "java", |
| "iwmmxt", |
| "crunch", |
| "thumbee", |
| "neon", |
| "vfpv3", |
| "vfpv3d16", |
| "tls", |
| "vfpv4", |
| "idiva", |
| "idivt", |
| "vfpd32", |
| "lpae", |
| "evtstrm", |
| "fphp", |
| "asimdhp", |
| "asimddp", |
| "asimdfhm", |
| "asimdbf16", |
| "i8mm", |
| NULL |
| }; |
| |
| static const char *hwcap2_str[] = { |
| "aes", |
| "pmull", |
| "sha1", |
| "sha2", |
| "crc32", |
| "sb", |
| "ssbs", |
| NULL |
| }; |
| |
| static int c_show(struct seq_file *m, void *v) |
| { |
| int i, j; |
| u32 cpuid; |
| |
| for_each_online_cpu(i) { |
| /* |
| * glibc reads /proc/cpuinfo to determine the number of |
| * online processors, looking for lines beginning with |
| * "processor". Give glibc what it expects. |
| */ |
| seq_printf(m, "processor\t: %d\n", i); |
| cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id(); |
| seq_printf(m, "model name\t: %s rev %d (%s)\n", |
| cpu_name, cpuid & 15, elf_platform); |
| |
| #if defined(CONFIG_SMP) |
| seq_printf(m, "BogoMIPS\t: %lu.%02lu\n", |
| per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ), |
| (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100); |
| #else |
| seq_printf(m, "BogoMIPS\t: %lu.%02lu\n", |
| loops_per_jiffy / (500000/HZ), |
| (loops_per_jiffy / (5000/HZ)) % 100); |
| #endif |
| /* dump out the processor features */ |
| seq_puts(m, "Features\t: "); |
| |
| for (j = 0; hwcap_str[j]; j++) |
| if (elf_hwcap & (1 << j)) |
| seq_printf(m, "%s ", hwcap_str[j]); |
| |
| for (j = 0; hwcap2_str[j]; j++) |
| if (elf_hwcap2 & (1 << j)) |
| seq_printf(m, "%s ", hwcap2_str[j]); |
| |
| seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24); |
| seq_printf(m, "CPU architecture: %s\n", |
| proc_arch[cpu_architecture()]); |
| |
| if ((cpuid & 0x0008f000) == 0x00000000) { |
| /* pre-ARM7 */ |
| seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4); |
| } else { |
| if ((cpuid & 0x0008f000) == 0x00007000) { |
| /* ARM7 */ |
| seq_printf(m, "CPU variant\t: 0x%02x\n", |
| (cpuid >> 16) & 127); |
| } else { |
| /* post-ARM7 */ |
| seq_printf(m, "CPU variant\t: 0x%x\n", |
| (cpuid >> 20) & 15); |
| } |
| seq_printf(m, "CPU part\t: 0x%03x\n", |
| (cpuid >> 4) & 0xfff); |
| } |
| seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15); |
| } |
| |
| seq_printf(m, "Hardware\t: %s\n", machine_name); |
| seq_printf(m, "Revision\t: %04x\n", system_rev); |
| seq_printf(m, "Serial\t\t: %s\n", system_serial); |
| |
| return 0; |
| } |
| |
| static void *c_start(struct seq_file *m, loff_t *pos) |
| { |
| return *pos < 1 ? (void *)1 : NULL; |
| } |
| |
| static void *c_next(struct seq_file *m, void *v, loff_t *pos) |
| { |
| ++*pos; |
| return NULL; |
| } |
| |
| static void c_stop(struct seq_file *m, void *v) |
| { |
| } |
| |
| const struct seq_operations cpuinfo_op = { |
| .start = c_start, |
| .next = c_next, |
| .stop = c_stop, |
| .show = c_show |
| }; |