| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2011 Fujitsu. All rights reserved. |
| * Written by Miao Xie <miaox@cn.fujitsu.com> |
| */ |
| |
| #include <linux/slab.h> |
| #include <linux/iversion.h> |
| #include "ctree.h" |
| #include "fs.h" |
| #include "messages.h" |
| #include "misc.h" |
| #include "delayed-inode.h" |
| #include "disk-io.h" |
| #include "transaction.h" |
| #include "qgroup.h" |
| #include "locking.h" |
| #include "inode-item.h" |
| #include "space-info.h" |
| #include "accessors.h" |
| #include "file-item.h" |
| |
| #define BTRFS_DELAYED_WRITEBACK 512 |
| #define BTRFS_DELAYED_BACKGROUND 128 |
| #define BTRFS_DELAYED_BATCH 16 |
| |
| static struct kmem_cache *delayed_node_cache; |
| |
| int __init btrfs_delayed_inode_init(void) |
| { |
| delayed_node_cache = kmem_cache_create("btrfs_delayed_node", |
| sizeof(struct btrfs_delayed_node), |
| 0, |
| SLAB_MEM_SPREAD, |
| NULL); |
| if (!delayed_node_cache) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| void __cold btrfs_delayed_inode_exit(void) |
| { |
| kmem_cache_destroy(delayed_node_cache); |
| } |
| |
| static inline void btrfs_init_delayed_node( |
| struct btrfs_delayed_node *delayed_node, |
| struct btrfs_root *root, u64 inode_id) |
| { |
| delayed_node->root = root; |
| delayed_node->inode_id = inode_id; |
| refcount_set(&delayed_node->refs, 0); |
| delayed_node->ins_root = RB_ROOT_CACHED; |
| delayed_node->del_root = RB_ROOT_CACHED; |
| mutex_init(&delayed_node->mutex); |
| INIT_LIST_HEAD(&delayed_node->n_list); |
| INIT_LIST_HEAD(&delayed_node->p_list); |
| } |
| |
| static struct btrfs_delayed_node *btrfs_get_delayed_node( |
| struct btrfs_inode *btrfs_inode) |
| { |
| struct btrfs_root *root = btrfs_inode->root; |
| u64 ino = btrfs_ino(btrfs_inode); |
| struct btrfs_delayed_node *node; |
| |
| node = READ_ONCE(btrfs_inode->delayed_node); |
| if (node) { |
| refcount_inc(&node->refs); |
| return node; |
| } |
| |
| spin_lock(&root->inode_lock); |
| node = xa_load(&root->delayed_nodes, ino); |
| |
| if (node) { |
| if (btrfs_inode->delayed_node) { |
| refcount_inc(&node->refs); /* can be accessed */ |
| BUG_ON(btrfs_inode->delayed_node != node); |
| spin_unlock(&root->inode_lock); |
| return node; |
| } |
| |
| /* |
| * It's possible that we're racing into the middle of removing |
| * this node from the xarray. In this case, the refcount |
| * was zero and it should never go back to one. Just return |
| * NULL like it was never in the xarray at all; our release |
| * function is in the process of removing it. |
| * |
| * Some implementations of refcount_inc refuse to bump the |
| * refcount once it has hit zero. If we don't do this dance |
| * here, refcount_inc() may decide to just WARN_ONCE() instead |
| * of actually bumping the refcount. |
| * |
| * If this node is properly in the xarray, we want to bump the |
| * refcount twice, once for the inode and once for this get |
| * operation. |
| */ |
| if (refcount_inc_not_zero(&node->refs)) { |
| refcount_inc(&node->refs); |
| btrfs_inode->delayed_node = node; |
| } else { |
| node = NULL; |
| } |
| |
| spin_unlock(&root->inode_lock); |
| return node; |
| } |
| spin_unlock(&root->inode_lock); |
| |
| return NULL; |
| } |
| |
| /* Will return either the node or PTR_ERR(-ENOMEM) */ |
| static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node( |
| struct btrfs_inode *btrfs_inode) |
| { |
| struct btrfs_delayed_node *node; |
| struct btrfs_root *root = btrfs_inode->root; |
| u64 ino = btrfs_ino(btrfs_inode); |
| int ret; |
| void *ptr; |
| |
| again: |
| node = btrfs_get_delayed_node(btrfs_inode); |
| if (node) |
| return node; |
| |
| node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS); |
| if (!node) |
| return ERR_PTR(-ENOMEM); |
| btrfs_init_delayed_node(node, root, ino); |
| |
| /* Cached in the inode and can be accessed. */ |
| refcount_set(&node->refs, 2); |
| |
| /* Allocate and reserve the slot, from now it can return a NULL from xa_load(). */ |
| ret = xa_reserve(&root->delayed_nodes, ino, GFP_NOFS); |
| if (ret == -ENOMEM) { |
| kmem_cache_free(delayed_node_cache, node); |
| return ERR_PTR(-ENOMEM); |
| } |
| spin_lock(&root->inode_lock); |
| ptr = xa_load(&root->delayed_nodes, ino); |
| if (ptr) { |
| /* Somebody inserted it, go back and read it. */ |
| spin_unlock(&root->inode_lock); |
| kmem_cache_free(delayed_node_cache, node); |
| node = NULL; |
| goto again; |
| } |
| ptr = xa_store(&root->delayed_nodes, ino, node, GFP_ATOMIC); |
| ASSERT(xa_err(ptr) != -EINVAL); |
| ASSERT(xa_err(ptr) != -ENOMEM); |
| ASSERT(ptr == NULL); |
| btrfs_inode->delayed_node = node; |
| spin_unlock(&root->inode_lock); |
| |
| return node; |
| } |
| |
| /* |
| * Call it when holding delayed_node->mutex |
| * |
| * If mod = 1, add this node into the prepared list. |
| */ |
| static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root, |
| struct btrfs_delayed_node *node, |
| int mod) |
| { |
| spin_lock(&root->lock); |
| if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { |
| if (!list_empty(&node->p_list)) |
| list_move_tail(&node->p_list, &root->prepare_list); |
| else if (mod) |
| list_add_tail(&node->p_list, &root->prepare_list); |
| } else { |
| list_add_tail(&node->n_list, &root->node_list); |
| list_add_tail(&node->p_list, &root->prepare_list); |
| refcount_inc(&node->refs); /* inserted into list */ |
| root->nodes++; |
| set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); |
| } |
| spin_unlock(&root->lock); |
| } |
| |
| /* Call it when holding delayed_node->mutex */ |
| static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root, |
| struct btrfs_delayed_node *node) |
| { |
| spin_lock(&root->lock); |
| if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { |
| root->nodes--; |
| refcount_dec(&node->refs); /* not in the list */ |
| list_del_init(&node->n_list); |
| if (!list_empty(&node->p_list)) |
| list_del_init(&node->p_list); |
| clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); |
| } |
| spin_unlock(&root->lock); |
| } |
| |
| static struct btrfs_delayed_node *btrfs_first_delayed_node( |
| struct btrfs_delayed_root *delayed_root) |
| { |
| struct list_head *p; |
| struct btrfs_delayed_node *node = NULL; |
| |
| spin_lock(&delayed_root->lock); |
| if (list_empty(&delayed_root->node_list)) |
| goto out; |
| |
| p = delayed_root->node_list.next; |
| node = list_entry(p, struct btrfs_delayed_node, n_list); |
| refcount_inc(&node->refs); |
| out: |
| spin_unlock(&delayed_root->lock); |
| |
| return node; |
| } |
| |
| static struct btrfs_delayed_node *btrfs_next_delayed_node( |
| struct btrfs_delayed_node *node) |
| { |
| struct btrfs_delayed_root *delayed_root; |
| struct list_head *p; |
| struct btrfs_delayed_node *next = NULL; |
| |
| delayed_root = node->root->fs_info->delayed_root; |
| spin_lock(&delayed_root->lock); |
| if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { |
| /* not in the list */ |
| if (list_empty(&delayed_root->node_list)) |
| goto out; |
| p = delayed_root->node_list.next; |
| } else if (list_is_last(&node->n_list, &delayed_root->node_list)) |
| goto out; |
| else |
| p = node->n_list.next; |
| |
| next = list_entry(p, struct btrfs_delayed_node, n_list); |
| refcount_inc(&next->refs); |
| out: |
| spin_unlock(&delayed_root->lock); |
| |
| return next; |
| } |
| |
| static void __btrfs_release_delayed_node( |
| struct btrfs_delayed_node *delayed_node, |
| int mod) |
| { |
| struct btrfs_delayed_root *delayed_root; |
| |
| if (!delayed_node) |
| return; |
| |
| delayed_root = delayed_node->root->fs_info->delayed_root; |
| |
| mutex_lock(&delayed_node->mutex); |
| if (delayed_node->count) |
| btrfs_queue_delayed_node(delayed_root, delayed_node, mod); |
| else |
| btrfs_dequeue_delayed_node(delayed_root, delayed_node); |
| mutex_unlock(&delayed_node->mutex); |
| |
| if (refcount_dec_and_test(&delayed_node->refs)) { |
| struct btrfs_root *root = delayed_node->root; |
| |
| spin_lock(&root->inode_lock); |
| /* |
| * Once our refcount goes to zero, nobody is allowed to bump it |
| * back up. We can delete it now. |
| */ |
| ASSERT(refcount_read(&delayed_node->refs) == 0); |
| xa_erase(&root->delayed_nodes, delayed_node->inode_id); |
| spin_unlock(&root->inode_lock); |
| kmem_cache_free(delayed_node_cache, delayed_node); |
| } |
| } |
| |
| static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node) |
| { |
| __btrfs_release_delayed_node(node, 0); |
| } |
| |
| static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node( |
| struct btrfs_delayed_root *delayed_root) |
| { |
| struct list_head *p; |
| struct btrfs_delayed_node *node = NULL; |
| |
| spin_lock(&delayed_root->lock); |
| if (list_empty(&delayed_root->prepare_list)) |
| goto out; |
| |
| p = delayed_root->prepare_list.next; |
| list_del_init(p); |
| node = list_entry(p, struct btrfs_delayed_node, p_list); |
| refcount_inc(&node->refs); |
| out: |
| spin_unlock(&delayed_root->lock); |
| |
| return node; |
| } |
| |
| static inline void btrfs_release_prepared_delayed_node( |
| struct btrfs_delayed_node *node) |
| { |
| __btrfs_release_delayed_node(node, 1); |
| } |
| |
| static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len, |
| struct btrfs_delayed_node *node, |
| enum btrfs_delayed_item_type type) |
| { |
| struct btrfs_delayed_item *item; |
| |
| item = kmalloc(struct_size(item, data, data_len), GFP_NOFS); |
| if (item) { |
| item->data_len = data_len; |
| item->type = type; |
| item->bytes_reserved = 0; |
| item->delayed_node = node; |
| RB_CLEAR_NODE(&item->rb_node); |
| INIT_LIST_HEAD(&item->log_list); |
| item->logged = false; |
| refcount_set(&item->refs, 1); |
| } |
| return item; |
| } |
| |
| /* |
| * Look up the delayed item by key. |
| * |
| * @delayed_node: pointer to the delayed node |
| * @index: the dir index value to lookup (offset of a dir index key) |
| * |
| * Note: if we don't find the right item, we will return the prev item and |
| * the next item. |
| */ |
| static struct btrfs_delayed_item *__btrfs_lookup_delayed_item( |
| struct rb_root *root, |
| u64 index) |
| { |
| struct rb_node *node = root->rb_node; |
| struct btrfs_delayed_item *delayed_item = NULL; |
| |
| while (node) { |
| delayed_item = rb_entry(node, struct btrfs_delayed_item, |
| rb_node); |
| if (delayed_item->index < index) |
| node = node->rb_right; |
| else if (delayed_item->index > index) |
| node = node->rb_left; |
| else |
| return delayed_item; |
| } |
| |
| return NULL; |
| } |
| |
| static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node, |
| struct btrfs_delayed_item *ins) |
| { |
| struct rb_node **p, *node; |
| struct rb_node *parent_node = NULL; |
| struct rb_root_cached *root; |
| struct btrfs_delayed_item *item; |
| bool leftmost = true; |
| |
| if (ins->type == BTRFS_DELAYED_INSERTION_ITEM) |
| root = &delayed_node->ins_root; |
| else |
| root = &delayed_node->del_root; |
| |
| p = &root->rb_root.rb_node; |
| node = &ins->rb_node; |
| |
| while (*p) { |
| parent_node = *p; |
| item = rb_entry(parent_node, struct btrfs_delayed_item, |
| rb_node); |
| |
| if (item->index < ins->index) { |
| p = &(*p)->rb_right; |
| leftmost = false; |
| } else if (item->index > ins->index) { |
| p = &(*p)->rb_left; |
| } else { |
| return -EEXIST; |
| } |
| } |
| |
| rb_link_node(node, parent_node, p); |
| rb_insert_color_cached(node, root, leftmost); |
| |
| if (ins->type == BTRFS_DELAYED_INSERTION_ITEM && |
| ins->index >= delayed_node->index_cnt) |
| delayed_node->index_cnt = ins->index + 1; |
| |
| delayed_node->count++; |
| atomic_inc(&delayed_node->root->fs_info->delayed_root->items); |
| return 0; |
| } |
| |
| static void finish_one_item(struct btrfs_delayed_root *delayed_root) |
| { |
| int seq = atomic_inc_return(&delayed_root->items_seq); |
| |
| /* atomic_dec_return implies a barrier */ |
| if ((atomic_dec_return(&delayed_root->items) < |
| BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0)) |
| cond_wake_up_nomb(&delayed_root->wait); |
| } |
| |
| static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item) |
| { |
| struct btrfs_delayed_node *delayed_node = delayed_item->delayed_node; |
| struct rb_root_cached *root; |
| struct btrfs_delayed_root *delayed_root; |
| |
| /* Not inserted, ignore it. */ |
| if (RB_EMPTY_NODE(&delayed_item->rb_node)) |
| return; |
| |
| /* If it's in a rbtree, then we need to have delayed node locked. */ |
| lockdep_assert_held(&delayed_node->mutex); |
| |
| delayed_root = delayed_node->root->fs_info->delayed_root; |
| |
| BUG_ON(!delayed_root); |
| |
| if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM) |
| root = &delayed_node->ins_root; |
| else |
| root = &delayed_node->del_root; |
| |
| rb_erase_cached(&delayed_item->rb_node, root); |
| RB_CLEAR_NODE(&delayed_item->rb_node); |
| delayed_node->count--; |
| |
| finish_one_item(delayed_root); |
| } |
| |
| static void btrfs_release_delayed_item(struct btrfs_delayed_item *item) |
| { |
| if (item) { |
| __btrfs_remove_delayed_item(item); |
| if (refcount_dec_and_test(&item->refs)) |
| kfree(item); |
| } |
| } |
| |
| static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item( |
| struct btrfs_delayed_node *delayed_node) |
| { |
| struct rb_node *p; |
| struct btrfs_delayed_item *item = NULL; |
| |
| p = rb_first_cached(&delayed_node->ins_root); |
| if (p) |
| item = rb_entry(p, struct btrfs_delayed_item, rb_node); |
| |
| return item; |
| } |
| |
| static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item( |
| struct btrfs_delayed_node *delayed_node) |
| { |
| struct rb_node *p; |
| struct btrfs_delayed_item *item = NULL; |
| |
| p = rb_first_cached(&delayed_node->del_root); |
| if (p) |
| item = rb_entry(p, struct btrfs_delayed_item, rb_node); |
| |
| return item; |
| } |
| |
| static struct btrfs_delayed_item *__btrfs_next_delayed_item( |
| struct btrfs_delayed_item *item) |
| { |
| struct rb_node *p; |
| struct btrfs_delayed_item *next = NULL; |
| |
| p = rb_next(&item->rb_node); |
| if (p) |
| next = rb_entry(p, struct btrfs_delayed_item, rb_node); |
| |
| return next; |
| } |
| |
| static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans, |
| struct btrfs_delayed_item *item) |
| { |
| struct btrfs_block_rsv *src_rsv; |
| struct btrfs_block_rsv *dst_rsv; |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| u64 num_bytes; |
| int ret; |
| |
| if (!trans->bytes_reserved) |
| return 0; |
| |
| src_rsv = trans->block_rsv; |
| dst_rsv = &fs_info->delayed_block_rsv; |
| |
| num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1); |
| |
| /* |
| * Here we migrate space rsv from transaction rsv, since have already |
| * reserved space when starting a transaction. So no need to reserve |
| * qgroup space here. |
| */ |
| ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); |
| if (!ret) { |
| trace_btrfs_space_reservation(fs_info, "delayed_item", |
| item->delayed_node->inode_id, |
| num_bytes, 1); |
| /* |
| * For insertions we track reserved metadata space by accounting |
| * for the number of leaves that will be used, based on the delayed |
| * node's curr_index_batch_size and index_item_leaves fields. |
| */ |
| if (item->type == BTRFS_DELAYED_DELETION_ITEM) |
| item->bytes_reserved = num_bytes; |
| } |
| |
| return ret; |
| } |
| |
| static void btrfs_delayed_item_release_metadata(struct btrfs_root *root, |
| struct btrfs_delayed_item *item) |
| { |
| struct btrfs_block_rsv *rsv; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| |
| if (!item->bytes_reserved) |
| return; |
| |
| rsv = &fs_info->delayed_block_rsv; |
| /* |
| * Check btrfs_delayed_item_reserve_metadata() to see why we don't need |
| * to release/reserve qgroup space. |
| */ |
| trace_btrfs_space_reservation(fs_info, "delayed_item", |
| item->delayed_node->inode_id, |
| item->bytes_reserved, 0); |
| btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL); |
| } |
| |
| static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node, |
| unsigned int num_leaves) |
| { |
| struct btrfs_fs_info *fs_info = node->root->fs_info; |
| const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves); |
| |
| /* There are no space reservations during log replay, bail out. */ |
| if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) |
| return; |
| |
| trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id, |
| bytes, 0); |
| btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL); |
| } |
| |
| static int btrfs_delayed_inode_reserve_metadata( |
| struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_delayed_node *node) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_block_rsv *src_rsv; |
| struct btrfs_block_rsv *dst_rsv; |
| u64 num_bytes; |
| int ret; |
| |
| src_rsv = trans->block_rsv; |
| dst_rsv = &fs_info->delayed_block_rsv; |
| |
| num_bytes = btrfs_calc_metadata_size(fs_info, 1); |
| |
| /* |
| * btrfs_dirty_inode will update the inode under btrfs_join_transaction |
| * which doesn't reserve space for speed. This is a problem since we |
| * still need to reserve space for this update, so try to reserve the |
| * space. |
| * |
| * Now if src_rsv == delalloc_block_rsv we'll let it just steal since |
| * we always reserve enough to update the inode item. |
| */ |
| if (!src_rsv || (!trans->bytes_reserved && |
| src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) { |
| ret = btrfs_qgroup_reserve_meta(root, num_bytes, |
| BTRFS_QGROUP_RSV_META_PREALLOC, true); |
| if (ret < 0) |
| return ret; |
| ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes, |
| BTRFS_RESERVE_NO_FLUSH); |
| /* NO_FLUSH could only fail with -ENOSPC */ |
| ASSERT(ret == 0 || ret == -ENOSPC); |
| if (ret) |
| btrfs_qgroup_free_meta_prealloc(root, num_bytes); |
| } else { |
| ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); |
| } |
| |
| if (!ret) { |
| trace_btrfs_space_reservation(fs_info, "delayed_inode", |
| node->inode_id, num_bytes, 1); |
| node->bytes_reserved = num_bytes; |
| } |
| |
| return ret; |
| } |
| |
| static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info, |
| struct btrfs_delayed_node *node, |
| bool qgroup_free) |
| { |
| struct btrfs_block_rsv *rsv; |
| |
| if (!node->bytes_reserved) |
| return; |
| |
| rsv = &fs_info->delayed_block_rsv; |
| trace_btrfs_space_reservation(fs_info, "delayed_inode", |
| node->inode_id, node->bytes_reserved, 0); |
| btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL); |
| if (qgroup_free) |
| btrfs_qgroup_free_meta_prealloc(node->root, |
| node->bytes_reserved); |
| else |
| btrfs_qgroup_convert_reserved_meta(node->root, |
| node->bytes_reserved); |
| node->bytes_reserved = 0; |
| } |
| |
| /* |
| * Insert a single delayed item or a batch of delayed items, as many as possible |
| * that fit in a leaf. The delayed items (dir index keys) are sorted by their key |
| * in the rbtree, and if there's a gap between two consecutive dir index items, |
| * then it means at some point we had delayed dir indexes to add but they got |
| * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them |
| * into the subvolume tree. Dir index keys also have their offsets coming from a |
| * monotonically increasing counter, so we can't get new keys with an offset that |
| * fits within a gap between delayed dir index items. |
| */ |
| static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct btrfs_delayed_item *first_item) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_delayed_node *node = first_item->delayed_node; |
| LIST_HEAD(item_list); |
| struct btrfs_delayed_item *curr; |
| struct btrfs_delayed_item *next; |
| const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info); |
| struct btrfs_item_batch batch; |
| struct btrfs_key first_key; |
| const u32 first_data_size = first_item->data_len; |
| int total_size; |
| char *ins_data = NULL; |
| int ret; |
| bool continuous_keys_only = false; |
| |
| lockdep_assert_held(&node->mutex); |
| |
| /* |
| * During normal operation the delayed index offset is continuously |
| * increasing, so we can batch insert all items as there will not be any |
| * overlapping keys in the tree. |
| * |
| * The exception to this is log replay, where we may have interleaved |
| * offsets in the tree, so our batch needs to be continuous keys only in |
| * order to ensure we do not end up with out of order items in our leaf. |
| */ |
| if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) |
| continuous_keys_only = true; |
| |
| /* |
| * For delayed items to insert, we track reserved metadata bytes based |
| * on the number of leaves that we will use. |
| * See btrfs_insert_delayed_dir_index() and |
| * btrfs_delayed_item_reserve_metadata()). |
| */ |
| ASSERT(first_item->bytes_reserved == 0); |
| |
| list_add_tail(&first_item->tree_list, &item_list); |
| batch.total_data_size = first_data_size; |
| batch.nr = 1; |
| total_size = first_data_size + sizeof(struct btrfs_item); |
| curr = first_item; |
| |
| while (true) { |
| int next_size; |
| |
| next = __btrfs_next_delayed_item(curr); |
| if (!next) |
| break; |
| |
| /* |
| * We cannot allow gaps in the key space if we're doing log |
| * replay. |
| */ |
| if (continuous_keys_only && (next->index != curr->index + 1)) |
| break; |
| |
| ASSERT(next->bytes_reserved == 0); |
| |
| next_size = next->data_len + sizeof(struct btrfs_item); |
| if (total_size + next_size > max_size) |
| break; |
| |
| list_add_tail(&next->tree_list, &item_list); |
| batch.nr++; |
| total_size += next_size; |
| batch.total_data_size += next->data_len; |
| curr = next; |
| } |
| |
| if (batch.nr == 1) { |
| first_key.objectid = node->inode_id; |
| first_key.type = BTRFS_DIR_INDEX_KEY; |
| first_key.offset = first_item->index; |
| batch.keys = &first_key; |
| batch.data_sizes = &first_data_size; |
| } else { |
| struct btrfs_key *ins_keys; |
| u32 *ins_sizes; |
| int i = 0; |
| |
| ins_data = kmalloc(batch.nr * sizeof(u32) + |
| batch.nr * sizeof(struct btrfs_key), GFP_NOFS); |
| if (!ins_data) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| ins_sizes = (u32 *)ins_data; |
| ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32)); |
| batch.keys = ins_keys; |
| batch.data_sizes = ins_sizes; |
| list_for_each_entry(curr, &item_list, tree_list) { |
| ins_keys[i].objectid = node->inode_id; |
| ins_keys[i].type = BTRFS_DIR_INDEX_KEY; |
| ins_keys[i].offset = curr->index; |
| ins_sizes[i] = curr->data_len; |
| i++; |
| } |
| } |
| |
| ret = btrfs_insert_empty_items(trans, root, path, &batch); |
| if (ret) |
| goto out; |
| |
| list_for_each_entry(curr, &item_list, tree_list) { |
| char *data_ptr; |
| |
| data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char); |
| write_extent_buffer(path->nodes[0], &curr->data, |
| (unsigned long)data_ptr, curr->data_len); |
| path->slots[0]++; |
| } |
| |
| /* |
| * Now release our path before releasing the delayed items and their |
| * metadata reservations, so that we don't block other tasks for more |
| * time than needed. |
| */ |
| btrfs_release_path(path); |
| |
| ASSERT(node->index_item_leaves > 0); |
| |
| /* |
| * For normal operations we will batch an entire leaf's worth of delayed |
| * items, so if there are more items to process we can decrement |
| * index_item_leaves by 1 as we inserted 1 leaf's worth of items. |
| * |
| * However for log replay we may not have inserted an entire leaf's |
| * worth of items, we may have not had continuous items, so decrementing |
| * here would mess up the index_item_leaves accounting. For this case |
| * only clean up the accounting when there are no items left. |
| */ |
| if (next && !continuous_keys_only) { |
| /* |
| * We inserted one batch of items into a leaf a there are more |
| * items to flush in a future batch, now release one unit of |
| * metadata space from the delayed block reserve, corresponding |
| * the leaf we just flushed to. |
| */ |
| btrfs_delayed_item_release_leaves(node, 1); |
| node->index_item_leaves--; |
| } else if (!next) { |
| /* |
| * There are no more items to insert. We can have a number of |
| * reserved leaves > 1 here - this happens when many dir index |
| * items are added and then removed before they are flushed (file |
| * names with a very short life, never span a transaction). So |
| * release all remaining leaves. |
| */ |
| btrfs_delayed_item_release_leaves(node, node->index_item_leaves); |
| node->index_item_leaves = 0; |
| } |
| |
| list_for_each_entry_safe(curr, next, &item_list, tree_list) { |
| list_del(&curr->tree_list); |
| btrfs_release_delayed_item(curr); |
| } |
| out: |
| kfree(ins_data); |
| return ret; |
| } |
| |
| static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans, |
| struct btrfs_path *path, |
| struct btrfs_root *root, |
| struct btrfs_delayed_node *node) |
| { |
| int ret = 0; |
| |
| while (ret == 0) { |
| struct btrfs_delayed_item *curr; |
| |
| mutex_lock(&node->mutex); |
| curr = __btrfs_first_delayed_insertion_item(node); |
| if (!curr) { |
| mutex_unlock(&node->mutex); |
| break; |
| } |
| ret = btrfs_insert_delayed_item(trans, root, path, curr); |
| mutex_unlock(&node->mutex); |
| } |
| |
| return ret; |
| } |
| |
| static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct btrfs_delayed_item *item) |
| { |
| const u64 ino = item->delayed_node->inode_id; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_delayed_item *curr, *next; |
| struct extent_buffer *leaf = path->nodes[0]; |
| LIST_HEAD(batch_list); |
| int nitems, slot, last_slot; |
| int ret; |
| u64 total_reserved_size = item->bytes_reserved; |
| |
| ASSERT(leaf != NULL); |
| |
| slot = path->slots[0]; |
| last_slot = btrfs_header_nritems(leaf) - 1; |
| /* |
| * Our caller always gives us a path pointing to an existing item, so |
| * this can not happen. |
| */ |
| ASSERT(slot <= last_slot); |
| if (WARN_ON(slot > last_slot)) |
| return -ENOENT; |
| |
| nitems = 1; |
| curr = item; |
| list_add_tail(&curr->tree_list, &batch_list); |
| |
| /* |
| * Keep checking if the next delayed item matches the next item in the |
| * leaf - if so, we can add it to the batch of items to delete from the |
| * leaf. |
| */ |
| while (slot < last_slot) { |
| struct btrfs_key key; |
| |
| next = __btrfs_next_delayed_item(curr); |
| if (!next) |
| break; |
| |
| slot++; |
| btrfs_item_key_to_cpu(leaf, &key, slot); |
| if (key.objectid != ino || |
| key.type != BTRFS_DIR_INDEX_KEY || |
| key.offset != next->index) |
| break; |
| nitems++; |
| curr = next; |
| list_add_tail(&curr->tree_list, &batch_list); |
| total_reserved_size += curr->bytes_reserved; |
| } |
| |
| ret = btrfs_del_items(trans, root, path, path->slots[0], nitems); |
| if (ret) |
| return ret; |
| |
| /* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */ |
| if (total_reserved_size > 0) { |
| /* |
| * Check btrfs_delayed_item_reserve_metadata() to see why we |
| * don't need to release/reserve qgroup space. |
| */ |
| trace_btrfs_space_reservation(fs_info, "delayed_item", ino, |
| total_reserved_size, 0); |
| btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, |
| total_reserved_size, NULL); |
| } |
| |
| list_for_each_entry_safe(curr, next, &batch_list, tree_list) { |
| list_del(&curr->tree_list); |
| btrfs_release_delayed_item(curr); |
| } |
| |
| return 0; |
| } |
| |
| static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans, |
| struct btrfs_path *path, |
| struct btrfs_root *root, |
| struct btrfs_delayed_node *node) |
| { |
| struct btrfs_key key; |
| int ret = 0; |
| |
| key.objectid = node->inode_id; |
| key.type = BTRFS_DIR_INDEX_KEY; |
| |
| while (ret == 0) { |
| struct btrfs_delayed_item *item; |
| |
| mutex_lock(&node->mutex); |
| item = __btrfs_first_delayed_deletion_item(node); |
| if (!item) { |
| mutex_unlock(&node->mutex); |
| break; |
| } |
| |
| key.offset = item->index; |
| ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
| if (ret > 0) { |
| /* |
| * There's no matching item in the leaf. This means we |
| * have already deleted this item in a past run of the |
| * delayed items. We ignore errors when running delayed |
| * items from an async context, through a work queue job |
| * running btrfs_async_run_delayed_root(), and don't |
| * release delayed items that failed to complete. This |
| * is because we will retry later, and at transaction |
| * commit time we always run delayed items and will |
| * then deal with errors if they fail to run again. |
| * |
| * So just release delayed items for which we can't find |
| * an item in the tree, and move to the next item. |
| */ |
| btrfs_release_path(path); |
| btrfs_release_delayed_item(item); |
| ret = 0; |
| } else if (ret == 0) { |
| ret = btrfs_batch_delete_items(trans, root, path, item); |
| btrfs_release_path(path); |
| } |
| |
| /* |
| * We unlock and relock on each iteration, this is to prevent |
| * blocking other tasks for too long while we are being run from |
| * the async context (work queue job). Those tasks are typically |
| * running system calls like creat/mkdir/rename/unlink/etc which |
| * need to add delayed items to this delayed node. |
| */ |
| mutex_unlock(&node->mutex); |
| } |
| |
| return ret; |
| } |
| |
| static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node) |
| { |
| struct btrfs_delayed_root *delayed_root; |
| |
| if (delayed_node && |
| test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { |
| BUG_ON(!delayed_node->root); |
| clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); |
| delayed_node->count--; |
| |
| delayed_root = delayed_node->root->fs_info->delayed_root; |
| finish_one_item(delayed_root); |
| } |
| } |
| |
| static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node) |
| { |
| |
| if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) { |
| struct btrfs_delayed_root *delayed_root; |
| |
| ASSERT(delayed_node->root); |
| delayed_node->count--; |
| |
| delayed_root = delayed_node->root->fs_info->delayed_root; |
| finish_one_item(delayed_root); |
| } |
| } |
| |
| static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct btrfs_delayed_node *node) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_key key; |
| struct btrfs_inode_item *inode_item; |
| struct extent_buffer *leaf; |
| int mod; |
| int ret; |
| |
| key.objectid = node->inode_id; |
| key.type = BTRFS_INODE_ITEM_KEY; |
| key.offset = 0; |
| |
| if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) |
| mod = -1; |
| else |
| mod = 1; |
| |
| ret = btrfs_lookup_inode(trans, root, path, &key, mod); |
| if (ret > 0) |
| ret = -ENOENT; |
| if (ret < 0) |
| goto out; |
| |
| leaf = path->nodes[0]; |
| inode_item = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_inode_item); |
| write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item, |
| sizeof(struct btrfs_inode_item)); |
| btrfs_mark_buffer_dirty(trans, leaf); |
| |
| if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) |
| goto out; |
| |
| /* |
| * Now we're going to delete the INODE_REF/EXTREF, which should be the |
| * only one ref left. Check if the next item is an INODE_REF/EXTREF. |
| * |
| * But if we're the last item already, release and search for the last |
| * INODE_REF/EXTREF. |
| */ |
| if (path->slots[0] + 1 >= btrfs_header_nritems(leaf)) { |
| key.objectid = node->inode_id; |
| key.type = BTRFS_INODE_EXTREF_KEY; |
| key.offset = (u64)-1; |
| |
| btrfs_release_path(path); |
| ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
| if (ret < 0) |
| goto err_out; |
| ASSERT(ret > 0); |
| ASSERT(path->slots[0] > 0); |
| ret = 0; |
| path->slots[0]--; |
| leaf = path->nodes[0]; |
| } else { |
| path->slots[0]++; |
| } |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| if (key.objectid != node->inode_id) |
| goto out; |
| if (key.type != BTRFS_INODE_REF_KEY && |
| key.type != BTRFS_INODE_EXTREF_KEY) |
| goto out; |
| |
| /* |
| * Delayed iref deletion is for the inode who has only one link, |
| * so there is only one iref. The case that several irefs are |
| * in the same item doesn't exist. |
| */ |
| ret = btrfs_del_item(trans, root, path); |
| out: |
| btrfs_release_delayed_iref(node); |
| btrfs_release_path(path); |
| err_out: |
| btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0)); |
| btrfs_release_delayed_inode(node); |
| |
| /* |
| * If we fail to update the delayed inode we need to abort the |
| * transaction, because we could leave the inode with the improper |
| * counts behind. |
| */ |
| if (ret && ret != -ENOENT) |
| btrfs_abort_transaction(trans, ret); |
| |
| return ret; |
| } |
| |
| static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_path *path, |
| struct btrfs_delayed_node *node) |
| { |
| int ret; |
| |
| mutex_lock(&node->mutex); |
| if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) { |
| mutex_unlock(&node->mutex); |
| return 0; |
| } |
| |
| ret = __btrfs_update_delayed_inode(trans, root, path, node); |
| mutex_unlock(&node->mutex); |
| return ret; |
| } |
| |
| static inline int |
| __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, |
| struct btrfs_path *path, |
| struct btrfs_delayed_node *node) |
| { |
| int ret; |
| |
| ret = btrfs_insert_delayed_items(trans, path, node->root, node); |
| if (ret) |
| return ret; |
| |
| ret = btrfs_delete_delayed_items(trans, path, node->root, node); |
| if (ret) |
| return ret; |
| |
| ret = btrfs_update_delayed_inode(trans, node->root, path, node); |
| return ret; |
| } |
| |
| /* |
| * Called when committing the transaction. |
| * Returns 0 on success. |
| * Returns < 0 on error and returns with an aborted transaction with any |
| * outstanding delayed items cleaned up. |
| */ |
| static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct btrfs_delayed_root *delayed_root; |
| struct btrfs_delayed_node *curr_node, *prev_node; |
| struct btrfs_path *path; |
| struct btrfs_block_rsv *block_rsv; |
| int ret = 0; |
| bool count = (nr > 0); |
| |
| if (TRANS_ABORTED(trans)) |
| return -EIO; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| block_rsv = trans->block_rsv; |
| trans->block_rsv = &fs_info->delayed_block_rsv; |
| |
| delayed_root = fs_info->delayed_root; |
| |
| curr_node = btrfs_first_delayed_node(delayed_root); |
| while (curr_node && (!count || nr--)) { |
| ret = __btrfs_commit_inode_delayed_items(trans, path, |
| curr_node); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| break; |
| } |
| |
| prev_node = curr_node; |
| curr_node = btrfs_next_delayed_node(curr_node); |
| /* |
| * See the comment below about releasing path before releasing |
| * node. If the commit of delayed items was successful the path |
| * should always be released, but in case of an error, it may |
| * point to locked extent buffers (a leaf at the very least). |
| */ |
| ASSERT(path->nodes[0] == NULL); |
| btrfs_release_delayed_node(prev_node); |
| } |
| |
| /* |
| * Release the path to avoid a potential deadlock and lockdep splat when |
| * releasing the delayed node, as that requires taking the delayed node's |
| * mutex. If another task starts running delayed items before we take |
| * the mutex, it will first lock the mutex and then it may try to lock |
| * the same btree path (leaf). |
| */ |
| btrfs_free_path(path); |
| |
| if (curr_node) |
| btrfs_release_delayed_node(curr_node); |
| trans->block_rsv = block_rsv; |
| |
| return ret; |
| } |
| |
| int btrfs_run_delayed_items(struct btrfs_trans_handle *trans) |
| { |
| return __btrfs_run_delayed_items(trans, -1); |
| } |
| |
| int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr) |
| { |
| return __btrfs_run_delayed_items(trans, nr); |
| } |
| |
| int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *inode) |
| { |
| struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); |
| struct btrfs_path *path; |
| struct btrfs_block_rsv *block_rsv; |
| int ret; |
| |
| if (!delayed_node) |
| return 0; |
| |
| mutex_lock(&delayed_node->mutex); |
| if (!delayed_node->count) { |
| mutex_unlock(&delayed_node->mutex); |
| btrfs_release_delayed_node(delayed_node); |
| return 0; |
| } |
| mutex_unlock(&delayed_node->mutex); |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| btrfs_release_delayed_node(delayed_node); |
| return -ENOMEM; |
| } |
| |
| block_rsv = trans->block_rsv; |
| trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; |
| |
| ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node); |
| |
| btrfs_release_delayed_node(delayed_node); |
| btrfs_free_path(path); |
| trans->block_rsv = block_rsv; |
| |
| return ret; |
| } |
| |
| int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode) |
| { |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| struct btrfs_trans_handle *trans; |
| struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); |
| struct btrfs_path *path; |
| struct btrfs_block_rsv *block_rsv; |
| int ret; |
| |
| if (!delayed_node) |
| return 0; |
| |
| mutex_lock(&delayed_node->mutex); |
| if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { |
| mutex_unlock(&delayed_node->mutex); |
| btrfs_release_delayed_node(delayed_node); |
| return 0; |
| } |
| mutex_unlock(&delayed_node->mutex); |
| |
| trans = btrfs_join_transaction(delayed_node->root); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto out; |
| } |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| ret = -ENOMEM; |
| goto trans_out; |
| } |
| |
| block_rsv = trans->block_rsv; |
| trans->block_rsv = &fs_info->delayed_block_rsv; |
| |
| mutex_lock(&delayed_node->mutex); |
| if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) |
| ret = __btrfs_update_delayed_inode(trans, delayed_node->root, |
| path, delayed_node); |
| else |
| ret = 0; |
| mutex_unlock(&delayed_node->mutex); |
| |
| btrfs_free_path(path); |
| trans->block_rsv = block_rsv; |
| trans_out: |
| btrfs_end_transaction(trans); |
| btrfs_btree_balance_dirty(fs_info); |
| out: |
| btrfs_release_delayed_node(delayed_node); |
| |
| return ret; |
| } |
| |
| void btrfs_remove_delayed_node(struct btrfs_inode *inode) |
| { |
| struct btrfs_delayed_node *delayed_node; |
| |
| delayed_node = READ_ONCE(inode->delayed_node); |
| if (!delayed_node) |
| return; |
| |
| inode->delayed_node = NULL; |
| btrfs_release_delayed_node(delayed_node); |
| } |
| |
| struct btrfs_async_delayed_work { |
| struct btrfs_delayed_root *delayed_root; |
| int nr; |
| struct btrfs_work work; |
| }; |
| |
| static void btrfs_async_run_delayed_root(struct btrfs_work *work) |
| { |
| struct btrfs_async_delayed_work *async_work; |
| struct btrfs_delayed_root *delayed_root; |
| struct btrfs_trans_handle *trans; |
| struct btrfs_path *path; |
| struct btrfs_delayed_node *delayed_node = NULL; |
| struct btrfs_root *root; |
| struct btrfs_block_rsv *block_rsv; |
| int total_done = 0; |
| |
| async_work = container_of(work, struct btrfs_async_delayed_work, work); |
| delayed_root = async_work->delayed_root; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| goto out; |
| |
| do { |
| if (atomic_read(&delayed_root->items) < |
| BTRFS_DELAYED_BACKGROUND / 2) |
| break; |
| |
| delayed_node = btrfs_first_prepared_delayed_node(delayed_root); |
| if (!delayed_node) |
| break; |
| |
| root = delayed_node->root; |
| |
| trans = btrfs_join_transaction(root); |
| if (IS_ERR(trans)) { |
| btrfs_release_path(path); |
| btrfs_release_prepared_delayed_node(delayed_node); |
| total_done++; |
| continue; |
| } |
| |
| block_rsv = trans->block_rsv; |
| trans->block_rsv = &root->fs_info->delayed_block_rsv; |
| |
| __btrfs_commit_inode_delayed_items(trans, path, delayed_node); |
| |
| trans->block_rsv = block_rsv; |
| btrfs_end_transaction(trans); |
| btrfs_btree_balance_dirty_nodelay(root->fs_info); |
| |
| btrfs_release_path(path); |
| btrfs_release_prepared_delayed_node(delayed_node); |
| total_done++; |
| |
| } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) |
| || total_done < async_work->nr); |
| |
| btrfs_free_path(path); |
| out: |
| wake_up(&delayed_root->wait); |
| kfree(async_work); |
| } |
| |
| |
| static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root, |
| struct btrfs_fs_info *fs_info, int nr) |
| { |
| struct btrfs_async_delayed_work *async_work; |
| |
| async_work = kmalloc(sizeof(*async_work), GFP_NOFS); |
| if (!async_work) |
| return -ENOMEM; |
| |
| async_work->delayed_root = delayed_root; |
| btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL); |
| async_work->nr = nr; |
| |
| btrfs_queue_work(fs_info->delayed_workers, &async_work->work); |
| return 0; |
| } |
| |
| void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info) |
| { |
| WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root)); |
| } |
| |
| static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq) |
| { |
| int val = atomic_read(&delayed_root->items_seq); |
| |
| if (val < seq || val >= seq + BTRFS_DELAYED_BATCH) |
| return 1; |
| |
| if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) |
| return 1; |
| |
| return 0; |
| } |
| |
| void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_delayed_root *delayed_root = fs_info->delayed_root; |
| |
| if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) || |
| btrfs_workqueue_normal_congested(fs_info->delayed_workers)) |
| return; |
| |
| if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) { |
| int seq; |
| int ret; |
| |
| seq = atomic_read(&delayed_root->items_seq); |
| |
| ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0); |
| if (ret) |
| return; |
| |
| wait_event_interruptible(delayed_root->wait, |
| could_end_wait(delayed_root, seq)); |
| return; |
| } |
| |
| btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH); |
| } |
| |
| static void btrfs_release_dir_index_item_space(struct btrfs_trans_handle *trans) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); |
| |
| if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) |
| return; |
| |
| /* |
| * Adding the new dir index item does not require touching another |
| * leaf, so we can release 1 unit of metadata that was previously |
| * reserved when starting the transaction. This applies only to |
| * the case where we had a transaction start and excludes the |
| * transaction join case (when replaying log trees). |
| */ |
| trace_btrfs_space_reservation(fs_info, "transaction", |
| trans->transid, bytes, 0); |
| btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL); |
| ASSERT(trans->bytes_reserved >= bytes); |
| trans->bytes_reserved -= bytes; |
| } |
| |
| /* Will return 0, -ENOMEM or -EEXIST (index number collision, unexpected). */ |
| int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans, |
| const char *name, int name_len, |
| struct btrfs_inode *dir, |
| struct btrfs_disk_key *disk_key, u8 flags, |
| u64 index) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info); |
| struct btrfs_delayed_node *delayed_node; |
| struct btrfs_delayed_item *delayed_item; |
| struct btrfs_dir_item *dir_item; |
| bool reserve_leaf_space; |
| u32 data_len; |
| int ret; |
| |
| delayed_node = btrfs_get_or_create_delayed_node(dir); |
| if (IS_ERR(delayed_node)) |
| return PTR_ERR(delayed_node); |
| |
| delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len, |
| delayed_node, |
| BTRFS_DELAYED_INSERTION_ITEM); |
| if (!delayed_item) { |
| ret = -ENOMEM; |
| goto release_node; |
| } |
| |
| delayed_item->index = index; |
| |
| dir_item = (struct btrfs_dir_item *)delayed_item->data; |
| dir_item->location = *disk_key; |
| btrfs_set_stack_dir_transid(dir_item, trans->transid); |
| btrfs_set_stack_dir_data_len(dir_item, 0); |
| btrfs_set_stack_dir_name_len(dir_item, name_len); |
| btrfs_set_stack_dir_flags(dir_item, flags); |
| memcpy((char *)(dir_item + 1), name, name_len); |
| |
| data_len = delayed_item->data_len + sizeof(struct btrfs_item); |
| |
| mutex_lock(&delayed_node->mutex); |
| |
| /* |
| * First attempt to insert the delayed item. This is to make the error |
| * handling path simpler in case we fail (-EEXIST). There's no risk of |
| * any other task coming in and running the delayed item before we do |
| * the metadata space reservation below, because we are holding the |
| * delayed node's mutex and that mutex must also be locked before the |
| * node's delayed items can be run. |
| */ |
| ret = __btrfs_add_delayed_item(delayed_node, delayed_item); |
| if (unlikely(ret)) { |
| btrfs_err(trans->fs_info, |
| "error adding delayed dir index item, name: %.*s, index: %llu, root: %llu, dir: %llu, dir->index_cnt: %llu, delayed_node->index_cnt: %llu, error: %d", |
| name_len, name, index, btrfs_root_id(delayed_node->root), |
| delayed_node->inode_id, dir->index_cnt, |
| delayed_node->index_cnt, ret); |
| btrfs_release_delayed_item(delayed_item); |
| btrfs_release_dir_index_item_space(trans); |
| mutex_unlock(&delayed_node->mutex); |
| goto release_node; |
| } |
| |
| if (delayed_node->index_item_leaves == 0 || |
| delayed_node->curr_index_batch_size + data_len > leaf_data_size) { |
| delayed_node->curr_index_batch_size = data_len; |
| reserve_leaf_space = true; |
| } else { |
| delayed_node->curr_index_batch_size += data_len; |
| reserve_leaf_space = false; |
| } |
| |
| if (reserve_leaf_space) { |
| ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item); |
| /* |
| * Space was reserved for a dir index item insertion when we |
| * started the transaction, so getting a failure here should be |
| * impossible. |
| */ |
| if (WARN_ON(ret)) { |
| btrfs_release_delayed_item(delayed_item); |
| mutex_unlock(&delayed_node->mutex); |
| goto release_node; |
| } |
| |
| delayed_node->index_item_leaves++; |
| } else { |
| btrfs_release_dir_index_item_space(trans); |
| } |
| mutex_unlock(&delayed_node->mutex); |
| |
| release_node: |
| btrfs_release_delayed_node(delayed_node); |
| return ret; |
| } |
| |
| static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info, |
| struct btrfs_delayed_node *node, |
| u64 index) |
| { |
| struct btrfs_delayed_item *item; |
| |
| mutex_lock(&node->mutex); |
| item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index); |
| if (!item) { |
| mutex_unlock(&node->mutex); |
| return 1; |
| } |
| |
| /* |
| * For delayed items to insert, we track reserved metadata bytes based |
| * on the number of leaves that we will use. |
| * See btrfs_insert_delayed_dir_index() and |
| * btrfs_delayed_item_reserve_metadata()). |
| */ |
| ASSERT(item->bytes_reserved == 0); |
| ASSERT(node->index_item_leaves > 0); |
| |
| /* |
| * If there's only one leaf reserved, we can decrement this item from the |
| * current batch, otherwise we can not because we don't know which leaf |
| * it belongs to. With the current limit on delayed items, we rarely |
| * accumulate enough dir index items to fill more than one leaf (even |
| * when using a leaf size of 4K). |
| */ |
| if (node->index_item_leaves == 1) { |
| const u32 data_len = item->data_len + sizeof(struct btrfs_item); |
| |
| ASSERT(node->curr_index_batch_size >= data_len); |
| node->curr_index_batch_size -= data_len; |
| } |
| |
| btrfs_release_delayed_item(item); |
| |
| /* If we now have no more dir index items, we can release all leaves. */ |
| if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) { |
| btrfs_delayed_item_release_leaves(node, node->index_item_leaves); |
| node->index_item_leaves = 0; |
| } |
| |
| mutex_unlock(&node->mutex); |
| return 0; |
| } |
| |
| int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *dir, u64 index) |
| { |
| struct btrfs_delayed_node *node; |
| struct btrfs_delayed_item *item; |
| int ret; |
| |
| node = btrfs_get_or_create_delayed_node(dir); |
| if (IS_ERR(node)) |
| return PTR_ERR(node); |
| |
| ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node, index); |
| if (!ret) |
| goto end; |
| |
| item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM); |
| if (!item) { |
| ret = -ENOMEM; |
| goto end; |
| } |
| |
| item->index = index; |
| |
| ret = btrfs_delayed_item_reserve_metadata(trans, item); |
| /* |
| * we have reserved enough space when we start a new transaction, |
| * so reserving metadata failure is impossible. |
| */ |
| if (ret < 0) { |
| btrfs_err(trans->fs_info, |
| "metadata reservation failed for delayed dir item deltiona, should have been reserved"); |
| btrfs_release_delayed_item(item); |
| goto end; |
| } |
| |
| mutex_lock(&node->mutex); |
| ret = __btrfs_add_delayed_item(node, item); |
| if (unlikely(ret)) { |
| btrfs_err(trans->fs_info, |
| "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", |
| index, node->root->root_key.objectid, |
| node->inode_id, ret); |
| btrfs_delayed_item_release_metadata(dir->root, item); |
| btrfs_release_delayed_item(item); |
| } |
| mutex_unlock(&node->mutex); |
| end: |
| btrfs_release_delayed_node(node); |
| return ret; |
| } |
| |
| int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode) |
| { |
| struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); |
| |
| if (!delayed_node) |
| return -ENOENT; |
| |
| /* |
| * Since we have held i_mutex of this directory, it is impossible that |
| * a new directory index is added into the delayed node and index_cnt |
| * is updated now. So we needn't lock the delayed node. |
| */ |
| if (!delayed_node->index_cnt) { |
| btrfs_release_delayed_node(delayed_node); |
| return -EINVAL; |
| } |
| |
| inode->index_cnt = delayed_node->index_cnt; |
| btrfs_release_delayed_node(delayed_node); |
| return 0; |
| } |
| |
| bool btrfs_readdir_get_delayed_items(struct inode *inode, |
| u64 last_index, |
| struct list_head *ins_list, |
| struct list_head *del_list) |
| { |
| struct btrfs_delayed_node *delayed_node; |
| struct btrfs_delayed_item *item; |
| |
| delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); |
| if (!delayed_node) |
| return false; |
| |
| /* |
| * We can only do one readdir with delayed items at a time because of |
| * item->readdir_list. |
| */ |
| btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); |
| btrfs_inode_lock(BTRFS_I(inode), 0); |
| |
| mutex_lock(&delayed_node->mutex); |
| item = __btrfs_first_delayed_insertion_item(delayed_node); |
| while (item && item->index <= last_index) { |
| refcount_inc(&item->refs); |
| list_add_tail(&item->readdir_list, ins_list); |
| item = __btrfs_next_delayed_item(item); |
| } |
| |
| item = __btrfs_first_delayed_deletion_item(delayed_node); |
| while (item && item->index <= last_index) { |
| refcount_inc(&item->refs); |
| list_add_tail(&item->readdir_list, del_list); |
| item = __btrfs_next_delayed_item(item); |
| } |
| mutex_unlock(&delayed_node->mutex); |
| /* |
| * This delayed node is still cached in the btrfs inode, so refs |
| * must be > 1 now, and we needn't check it is going to be freed |
| * or not. |
| * |
| * Besides that, this function is used to read dir, we do not |
| * insert/delete delayed items in this period. So we also needn't |
| * requeue or dequeue this delayed node. |
| */ |
| refcount_dec(&delayed_node->refs); |
| |
| return true; |
| } |
| |
| void btrfs_readdir_put_delayed_items(struct inode *inode, |
| struct list_head *ins_list, |
| struct list_head *del_list) |
| { |
| struct btrfs_delayed_item *curr, *next; |
| |
| list_for_each_entry_safe(curr, next, ins_list, readdir_list) { |
| list_del(&curr->readdir_list); |
| if (refcount_dec_and_test(&curr->refs)) |
| kfree(curr); |
| } |
| |
| list_for_each_entry_safe(curr, next, del_list, readdir_list) { |
| list_del(&curr->readdir_list); |
| if (refcount_dec_and_test(&curr->refs)) |
| kfree(curr); |
| } |
| |
| /* |
| * The VFS is going to do up_read(), so we need to downgrade back to a |
| * read lock. |
| */ |
| downgrade_write(&inode->i_rwsem); |
| } |
| |
| int btrfs_should_delete_dir_index(struct list_head *del_list, |
| u64 index) |
| { |
| struct btrfs_delayed_item *curr; |
| int ret = 0; |
| |
| list_for_each_entry(curr, del_list, readdir_list) { |
| if (curr->index > index) |
| break; |
| if (curr->index == index) { |
| ret = 1; |
| break; |
| } |
| } |
| return ret; |
| } |
| |
| /* |
| * Read dir info stored in the delayed tree. |
| */ |
| int btrfs_readdir_delayed_dir_index(struct dir_context *ctx, |
| struct list_head *ins_list) |
| { |
| struct btrfs_dir_item *di; |
| struct btrfs_delayed_item *curr, *next; |
| struct btrfs_key location; |
| char *name; |
| int name_len; |
| int over = 0; |
| unsigned char d_type; |
| |
| /* |
| * Changing the data of the delayed item is impossible. So |
| * we needn't lock them. And we have held i_mutex of the |
| * directory, nobody can delete any directory indexes now. |
| */ |
| list_for_each_entry_safe(curr, next, ins_list, readdir_list) { |
| list_del(&curr->readdir_list); |
| |
| if (curr->index < ctx->pos) { |
| if (refcount_dec_and_test(&curr->refs)) |
| kfree(curr); |
| continue; |
| } |
| |
| ctx->pos = curr->index; |
| |
| di = (struct btrfs_dir_item *)curr->data; |
| name = (char *)(di + 1); |
| name_len = btrfs_stack_dir_name_len(di); |
| |
| d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type)); |
| btrfs_disk_key_to_cpu(&location, &di->location); |
| |
| over = !dir_emit(ctx, name, name_len, |
| location.objectid, d_type); |
| |
| if (refcount_dec_and_test(&curr->refs)) |
| kfree(curr); |
| |
| if (over) |
| return 1; |
| ctx->pos++; |
| } |
| return 0; |
| } |
| |
| static void fill_stack_inode_item(struct btrfs_trans_handle *trans, |
| struct btrfs_inode_item *inode_item, |
| struct inode *inode) |
| { |
| u64 flags; |
| |
| btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode)); |
| btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode)); |
| btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size); |
| btrfs_set_stack_inode_mode(inode_item, inode->i_mode); |
| btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink); |
| btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode)); |
| btrfs_set_stack_inode_generation(inode_item, |
| BTRFS_I(inode)->generation); |
| btrfs_set_stack_inode_sequence(inode_item, |
| inode_peek_iversion(inode)); |
| btrfs_set_stack_inode_transid(inode_item, trans->transid); |
| btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev); |
| flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, |
| BTRFS_I(inode)->ro_flags); |
| btrfs_set_stack_inode_flags(inode_item, flags); |
| btrfs_set_stack_inode_block_group(inode_item, 0); |
| |
| btrfs_set_stack_timespec_sec(&inode_item->atime, |
| inode_get_atime_sec(inode)); |
| btrfs_set_stack_timespec_nsec(&inode_item->atime, |
| inode_get_atime_nsec(inode)); |
| |
| btrfs_set_stack_timespec_sec(&inode_item->mtime, |
| inode_get_mtime_sec(inode)); |
| btrfs_set_stack_timespec_nsec(&inode_item->mtime, |
| inode_get_mtime_nsec(inode)); |
| |
| btrfs_set_stack_timespec_sec(&inode_item->ctime, |
| inode_get_ctime_sec(inode)); |
| btrfs_set_stack_timespec_nsec(&inode_item->ctime, |
| inode_get_ctime_nsec(inode)); |
| |
| btrfs_set_stack_timespec_sec(&inode_item->otime, BTRFS_I(inode)->i_otime_sec); |
| btrfs_set_stack_timespec_nsec(&inode_item->otime, BTRFS_I(inode)->i_otime_nsec); |
| } |
| |
| int btrfs_fill_inode(struct inode *inode, u32 *rdev) |
| { |
| struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; |
| struct btrfs_delayed_node *delayed_node; |
| struct btrfs_inode_item *inode_item; |
| |
| delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); |
| if (!delayed_node) |
| return -ENOENT; |
| |
| mutex_lock(&delayed_node->mutex); |
| if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { |
| mutex_unlock(&delayed_node->mutex); |
| btrfs_release_delayed_node(delayed_node); |
| return -ENOENT; |
| } |
| |
| inode_item = &delayed_node->inode_item; |
| |
| i_uid_write(inode, btrfs_stack_inode_uid(inode_item)); |
| i_gid_write(inode, btrfs_stack_inode_gid(inode_item)); |
| btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item)); |
| btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, |
| round_up(i_size_read(inode), fs_info->sectorsize)); |
| inode->i_mode = btrfs_stack_inode_mode(inode_item); |
| set_nlink(inode, btrfs_stack_inode_nlink(inode_item)); |
| inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item)); |
| BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item); |
| BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item); |
| |
| inode_set_iversion_queried(inode, |
| btrfs_stack_inode_sequence(inode_item)); |
| inode->i_rdev = 0; |
| *rdev = btrfs_stack_inode_rdev(inode_item); |
| btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item), |
| &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags); |
| |
| inode_set_atime(inode, btrfs_stack_timespec_sec(&inode_item->atime), |
| btrfs_stack_timespec_nsec(&inode_item->atime)); |
| |
| inode_set_mtime(inode, btrfs_stack_timespec_sec(&inode_item->mtime), |
| btrfs_stack_timespec_nsec(&inode_item->mtime)); |
| |
| inode_set_ctime(inode, btrfs_stack_timespec_sec(&inode_item->ctime), |
| btrfs_stack_timespec_nsec(&inode_item->ctime)); |
| |
| BTRFS_I(inode)->i_otime_sec = btrfs_stack_timespec_sec(&inode_item->otime); |
| BTRFS_I(inode)->i_otime_nsec = btrfs_stack_timespec_nsec(&inode_item->otime); |
| |
| inode->i_generation = BTRFS_I(inode)->generation; |
| BTRFS_I(inode)->index_cnt = (u64)-1; |
| |
| mutex_unlock(&delayed_node->mutex); |
| btrfs_release_delayed_node(delayed_node); |
| return 0; |
| } |
| |
| int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *inode) |
| { |
| struct btrfs_root *root = inode->root; |
| struct btrfs_delayed_node *delayed_node; |
| int ret = 0; |
| |
| delayed_node = btrfs_get_or_create_delayed_node(inode); |
| if (IS_ERR(delayed_node)) |
| return PTR_ERR(delayed_node); |
| |
| mutex_lock(&delayed_node->mutex); |
| if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { |
| fill_stack_inode_item(trans, &delayed_node->inode_item, |
| &inode->vfs_inode); |
| goto release_node; |
| } |
| |
| ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node); |
| if (ret) |
| goto release_node; |
| |
| fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode); |
| set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); |
| delayed_node->count++; |
| atomic_inc(&root->fs_info->delayed_root->items); |
| release_node: |
| mutex_unlock(&delayed_node->mutex); |
| btrfs_release_delayed_node(delayed_node); |
| return ret; |
| } |
| |
| int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode) |
| { |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| struct btrfs_delayed_node *delayed_node; |
| |
| /* |
| * we don't do delayed inode updates during log recovery because it |
| * leads to enospc problems. This means we also can't do |
| * delayed inode refs |
| */ |
| if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) |
| return -EAGAIN; |
| |
| delayed_node = btrfs_get_or_create_delayed_node(inode); |
| if (IS_ERR(delayed_node)) |
| return PTR_ERR(delayed_node); |
| |
| /* |
| * We don't reserve space for inode ref deletion is because: |
| * - We ONLY do async inode ref deletion for the inode who has only |
| * one link(i_nlink == 1), it means there is only one inode ref. |
| * And in most case, the inode ref and the inode item are in the |
| * same leaf, and we will deal with them at the same time. |
| * Since we are sure we will reserve the space for the inode item, |
| * it is unnecessary to reserve space for inode ref deletion. |
| * - If the inode ref and the inode item are not in the same leaf, |
| * We also needn't worry about enospc problem, because we reserve |
| * much more space for the inode update than it needs. |
| * - At the worst, we can steal some space from the global reservation. |
| * It is very rare. |
| */ |
| mutex_lock(&delayed_node->mutex); |
| if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) |
| goto release_node; |
| |
| set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); |
| delayed_node->count++; |
| atomic_inc(&fs_info->delayed_root->items); |
| release_node: |
| mutex_unlock(&delayed_node->mutex); |
| btrfs_release_delayed_node(delayed_node); |
| return 0; |
| } |
| |
| static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node) |
| { |
| struct btrfs_root *root = delayed_node->root; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_delayed_item *curr_item, *prev_item; |
| |
| mutex_lock(&delayed_node->mutex); |
| curr_item = __btrfs_first_delayed_insertion_item(delayed_node); |
| while (curr_item) { |
| prev_item = curr_item; |
| curr_item = __btrfs_next_delayed_item(prev_item); |
| btrfs_release_delayed_item(prev_item); |
| } |
| |
| if (delayed_node->index_item_leaves > 0) { |
| btrfs_delayed_item_release_leaves(delayed_node, |
| delayed_node->index_item_leaves); |
| delayed_node->index_item_leaves = 0; |
| } |
| |
| curr_item = __btrfs_first_delayed_deletion_item(delayed_node); |
| while (curr_item) { |
| btrfs_delayed_item_release_metadata(root, curr_item); |
| prev_item = curr_item; |
| curr_item = __btrfs_next_delayed_item(prev_item); |
| btrfs_release_delayed_item(prev_item); |
| } |
| |
| btrfs_release_delayed_iref(delayed_node); |
| |
| if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { |
| btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false); |
| btrfs_release_delayed_inode(delayed_node); |
| } |
| mutex_unlock(&delayed_node->mutex); |
| } |
| |
| void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode) |
| { |
| struct btrfs_delayed_node *delayed_node; |
| |
| delayed_node = btrfs_get_delayed_node(inode); |
| if (!delayed_node) |
| return; |
| |
| __btrfs_kill_delayed_node(delayed_node); |
| btrfs_release_delayed_node(delayed_node); |
| } |
| |
| void btrfs_kill_all_delayed_nodes(struct btrfs_root *root) |
| { |
| unsigned long index = 0; |
| struct btrfs_delayed_node *delayed_nodes[8]; |
| |
| while (1) { |
| struct btrfs_delayed_node *node; |
| int count; |
| |
| spin_lock(&root->inode_lock); |
| if (xa_empty(&root->delayed_nodes)) { |
| spin_unlock(&root->inode_lock); |
| return; |
| } |
| |
| count = 0; |
| xa_for_each_start(&root->delayed_nodes, index, node, index) { |
| /* |
| * Don't increase refs in case the node is dead and |
| * about to be removed from the tree in the loop below |
| */ |
| if (refcount_inc_not_zero(&node->refs)) { |
| delayed_nodes[count] = node; |
| count++; |
| } |
| if (count >= ARRAY_SIZE(delayed_nodes)) |
| break; |
| } |
| spin_unlock(&root->inode_lock); |
| index++; |
| |
| for (int i = 0; i < count; i++) { |
| __btrfs_kill_delayed_node(delayed_nodes[i]); |
| btrfs_release_delayed_node(delayed_nodes[i]); |
| } |
| } |
| } |
| |
| void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_delayed_node *curr_node, *prev_node; |
| |
| curr_node = btrfs_first_delayed_node(fs_info->delayed_root); |
| while (curr_node) { |
| __btrfs_kill_delayed_node(curr_node); |
| |
| prev_node = curr_node; |
| curr_node = btrfs_next_delayed_node(curr_node); |
| btrfs_release_delayed_node(prev_node); |
| } |
| } |
| |
| void btrfs_log_get_delayed_items(struct btrfs_inode *inode, |
| struct list_head *ins_list, |
| struct list_head *del_list) |
| { |
| struct btrfs_delayed_node *node; |
| struct btrfs_delayed_item *item; |
| |
| node = btrfs_get_delayed_node(inode); |
| if (!node) |
| return; |
| |
| mutex_lock(&node->mutex); |
| item = __btrfs_first_delayed_insertion_item(node); |
| while (item) { |
| /* |
| * It's possible that the item is already in a log list. This |
| * can happen in case two tasks are trying to log the same |
| * directory. For example if we have tasks A and task B: |
| * |
| * Task A collected the delayed items into a log list while |
| * under the inode's log_mutex (at btrfs_log_inode()), but it |
| * only releases the items after logging the inodes they point |
| * to (if they are new inodes), which happens after unlocking |
| * the log mutex; |
| * |
| * Task B enters btrfs_log_inode() and acquires the log_mutex |
| * of the same directory inode, before task B releases the |
| * delayed items. This can happen for example when logging some |
| * inode we need to trigger logging of its parent directory, so |
| * logging two files that have the same parent directory can |
| * lead to this. |
| * |
| * If this happens, just ignore delayed items already in a log |
| * list. All the tasks logging the directory are under a log |
| * transaction and whichever finishes first can not sync the log |
| * before the other completes and leaves the log transaction. |
| */ |
| if (!item->logged && list_empty(&item->log_list)) { |
| refcount_inc(&item->refs); |
| list_add_tail(&item->log_list, ins_list); |
| } |
| item = __btrfs_next_delayed_item(item); |
| } |
| |
| item = __btrfs_first_delayed_deletion_item(node); |
| while (item) { |
| /* It may be non-empty, for the same reason mentioned above. */ |
| if (!item->logged && list_empty(&item->log_list)) { |
| refcount_inc(&item->refs); |
| list_add_tail(&item->log_list, del_list); |
| } |
| item = __btrfs_next_delayed_item(item); |
| } |
| mutex_unlock(&node->mutex); |
| |
| /* |
| * We are called during inode logging, which means the inode is in use |
| * and can not be evicted before we finish logging the inode. So we never |
| * have the last reference on the delayed inode. |
| * Also, we don't use btrfs_release_delayed_node() because that would |
| * requeue the delayed inode (change its order in the list of prepared |
| * nodes) and we don't want to do such change because we don't create or |
| * delete delayed items. |
| */ |
| ASSERT(refcount_read(&node->refs) > 1); |
| refcount_dec(&node->refs); |
| } |
| |
| void btrfs_log_put_delayed_items(struct btrfs_inode *inode, |
| struct list_head *ins_list, |
| struct list_head *del_list) |
| { |
| struct btrfs_delayed_node *node; |
| struct btrfs_delayed_item *item; |
| struct btrfs_delayed_item *next; |
| |
| node = btrfs_get_delayed_node(inode); |
| if (!node) |
| return; |
| |
| mutex_lock(&node->mutex); |
| |
| list_for_each_entry_safe(item, next, ins_list, log_list) { |
| item->logged = true; |
| list_del_init(&item->log_list); |
| if (refcount_dec_and_test(&item->refs)) |
| kfree(item); |
| } |
| |
| list_for_each_entry_safe(item, next, del_list, log_list) { |
| item->logged = true; |
| list_del_init(&item->log_list); |
| if (refcount_dec_and_test(&item->refs)) |
| kfree(item); |
| } |
| |
| mutex_unlock(&node->mutex); |
| |
| /* |
| * We are called during inode logging, which means the inode is in use |
| * and can not be evicted before we finish logging the inode. So we never |
| * have the last reference on the delayed inode. |
| * Also, we don't use btrfs_release_delayed_node() because that would |
| * requeue the delayed inode (change its order in the list of prepared |
| * nodes) and we don't want to do such change because we don't create or |
| * delete delayed items. |
| */ |
| ASSERT(refcount_read(&node->refs) > 1); |
| refcount_dec(&node->refs); |
| } |