| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Test driver to test endpoint functionality |
| * |
| * Copyright (C) 2017 Texas Instruments |
| * Author: Kishon Vijay Abraham I <kishon@ti.com> |
| */ |
| |
| #include <linux/crc32.h> |
| #include <linux/delay.h> |
| #include <linux/dmaengine.h> |
| #include <linux/io.h> |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <linux/pci_ids.h> |
| #include <linux/random.h> |
| |
| #include <linux/pci-epc.h> |
| #include <linux/pci-epf.h> |
| #include <linux/pci_regs.h> |
| |
| #define IRQ_TYPE_INTX 0 |
| #define IRQ_TYPE_MSI 1 |
| #define IRQ_TYPE_MSIX 2 |
| |
| #define COMMAND_RAISE_INTX_IRQ BIT(0) |
| #define COMMAND_RAISE_MSI_IRQ BIT(1) |
| #define COMMAND_RAISE_MSIX_IRQ BIT(2) |
| #define COMMAND_READ BIT(3) |
| #define COMMAND_WRITE BIT(4) |
| #define COMMAND_COPY BIT(5) |
| |
| #define STATUS_READ_SUCCESS BIT(0) |
| #define STATUS_READ_FAIL BIT(1) |
| #define STATUS_WRITE_SUCCESS BIT(2) |
| #define STATUS_WRITE_FAIL BIT(3) |
| #define STATUS_COPY_SUCCESS BIT(4) |
| #define STATUS_COPY_FAIL BIT(5) |
| #define STATUS_IRQ_RAISED BIT(6) |
| #define STATUS_SRC_ADDR_INVALID BIT(7) |
| #define STATUS_DST_ADDR_INVALID BIT(8) |
| |
| #define FLAG_USE_DMA BIT(0) |
| |
| #define TIMER_RESOLUTION 1 |
| |
| static struct workqueue_struct *kpcitest_workqueue; |
| |
| struct pci_epf_test { |
| void *reg[PCI_STD_NUM_BARS]; |
| struct pci_epf *epf; |
| enum pci_barno test_reg_bar; |
| size_t msix_table_offset; |
| struct delayed_work cmd_handler; |
| struct dma_chan *dma_chan_tx; |
| struct dma_chan *dma_chan_rx; |
| struct dma_chan *transfer_chan; |
| dma_cookie_t transfer_cookie; |
| enum dma_status transfer_status; |
| struct completion transfer_complete; |
| bool dma_supported; |
| bool dma_private; |
| const struct pci_epc_features *epc_features; |
| }; |
| |
| struct pci_epf_test_reg { |
| u32 magic; |
| u32 command; |
| u32 status; |
| u64 src_addr; |
| u64 dst_addr; |
| u32 size; |
| u32 checksum; |
| u32 irq_type; |
| u32 irq_number; |
| u32 flags; |
| } __packed; |
| |
| static struct pci_epf_header test_header = { |
| .vendorid = PCI_ANY_ID, |
| .deviceid = PCI_ANY_ID, |
| .baseclass_code = PCI_CLASS_OTHERS, |
| .interrupt_pin = PCI_INTERRUPT_INTA, |
| }; |
| |
| static size_t bar_size[] = { 512, 512, 1024, 16384, 131072, 1048576 }; |
| |
| static void pci_epf_test_dma_callback(void *param) |
| { |
| struct pci_epf_test *epf_test = param; |
| struct dma_tx_state state; |
| |
| epf_test->transfer_status = |
| dmaengine_tx_status(epf_test->transfer_chan, |
| epf_test->transfer_cookie, &state); |
| if (epf_test->transfer_status == DMA_COMPLETE || |
| epf_test->transfer_status == DMA_ERROR) |
| complete(&epf_test->transfer_complete); |
| } |
| |
| /** |
| * pci_epf_test_data_transfer() - Function that uses dmaengine API to transfer |
| * data between PCIe EP and remote PCIe RC |
| * @epf_test: the EPF test device that performs the data transfer operation |
| * @dma_dst: The destination address of the data transfer. It can be a physical |
| * address given by pci_epc_mem_alloc_addr or DMA mapping APIs. |
| * @dma_src: The source address of the data transfer. It can be a physical |
| * address given by pci_epc_mem_alloc_addr or DMA mapping APIs. |
| * @len: The size of the data transfer |
| * @dma_remote: remote RC physical address |
| * @dir: DMA transfer direction |
| * |
| * Function that uses dmaengine API to transfer data between PCIe EP and remote |
| * PCIe RC. The source and destination address can be a physical address given |
| * by pci_epc_mem_alloc_addr or the one obtained using DMA mapping APIs. |
| * |
| * The function returns '0' on success and negative value on failure. |
| */ |
| static int pci_epf_test_data_transfer(struct pci_epf_test *epf_test, |
| dma_addr_t dma_dst, dma_addr_t dma_src, |
| size_t len, dma_addr_t dma_remote, |
| enum dma_transfer_direction dir) |
| { |
| struct dma_chan *chan = (dir == DMA_MEM_TO_DEV) ? |
| epf_test->dma_chan_tx : epf_test->dma_chan_rx; |
| dma_addr_t dma_local = (dir == DMA_MEM_TO_DEV) ? dma_src : dma_dst; |
| enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; |
| struct pci_epf *epf = epf_test->epf; |
| struct dma_async_tx_descriptor *tx; |
| struct dma_slave_config sconf = {}; |
| struct device *dev = &epf->dev; |
| int ret; |
| |
| if (IS_ERR_OR_NULL(chan)) { |
| dev_err(dev, "Invalid DMA memcpy channel\n"); |
| return -EINVAL; |
| } |
| |
| if (epf_test->dma_private) { |
| sconf.direction = dir; |
| if (dir == DMA_MEM_TO_DEV) |
| sconf.dst_addr = dma_remote; |
| else |
| sconf.src_addr = dma_remote; |
| |
| if (dmaengine_slave_config(chan, &sconf)) { |
| dev_err(dev, "DMA slave config fail\n"); |
| return -EIO; |
| } |
| tx = dmaengine_prep_slave_single(chan, dma_local, len, dir, |
| flags); |
| } else { |
| tx = dmaengine_prep_dma_memcpy(chan, dma_dst, dma_src, len, |
| flags); |
| } |
| |
| if (!tx) { |
| dev_err(dev, "Failed to prepare DMA memcpy\n"); |
| return -EIO; |
| } |
| |
| reinit_completion(&epf_test->transfer_complete); |
| epf_test->transfer_chan = chan; |
| tx->callback = pci_epf_test_dma_callback; |
| tx->callback_param = epf_test; |
| epf_test->transfer_cookie = dmaengine_submit(tx); |
| |
| ret = dma_submit_error(epf_test->transfer_cookie); |
| if (ret) { |
| dev_err(dev, "Failed to do DMA tx_submit %d\n", ret); |
| goto terminate; |
| } |
| |
| dma_async_issue_pending(chan); |
| ret = wait_for_completion_interruptible(&epf_test->transfer_complete); |
| if (ret < 0) { |
| dev_err(dev, "DMA wait_for_completion interrupted\n"); |
| goto terminate; |
| } |
| |
| if (epf_test->transfer_status == DMA_ERROR) { |
| dev_err(dev, "DMA transfer failed\n"); |
| ret = -EIO; |
| } |
| |
| terminate: |
| dmaengine_terminate_sync(chan); |
| |
| return ret; |
| } |
| |
| struct epf_dma_filter { |
| struct device *dev; |
| u32 dma_mask; |
| }; |
| |
| static bool epf_dma_filter_fn(struct dma_chan *chan, void *node) |
| { |
| struct epf_dma_filter *filter = node; |
| struct dma_slave_caps caps; |
| |
| memset(&caps, 0, sizeof(caps)); |
| dma_get_slave_caps(chan, &caps); |
| |
| return chan->device->dev == filter->dev |
| && (filter->dma_mask & caps.directions); |
| } |
| |
| /** |
| * pci_epf_test_init_dma_chan() - Function to initialize EPF test DMA channel |
| * @epf_test: the EPF test device that performs data transfer operation |
| * |
| * Function to initialize EPF test DMA channel. |
| */ |
| static int pci_epf_test_init_dma_chan(struct pci_epf_test *epf_test) |
| { |
| struct pci_epf *epf = epf_test->epf; |
| struct device *dev = &epf->dev; |
| struct epf_dma_filter filter; |
| struct dma_chan *dma_chan; |
| dma_cap_mask_t mask; |
| int ret; |
| |
| filter.dev = epf->epc->dev.parent; |
| filter.dma_mask = BIT(DMA_DEV_TO_MEM); |
| |
| dma_cap_zero(mask); |
| dma_cap_set(DMA_SLAVE, mask); |
| dma_chan = dma_request_channel(mask, epf_dma_filter_fn, &filter); |
| if (!dma_chan) { |
| dev_info(dev, "Failed to get private DMA rx channel. Falling back to generic one\n"); |
| goto fail_back_tx; |
| } |
| |
| epf_test->dma_chan_rx = dma_chan; |
| |
| filter.dma_mask = BIT(DMA_MEM_TO_DEV); |
| dma_chan = dma_request_channel(mask, epf_dma_filter_fn, &filter); |
| |
| if (!dma_chan) { |
| dev_info(dev, "Failed to get private DMA tx channel. Falling back to generic one\n"); |
| goto fail_back_rx; |
| } |
| |
| epf_test->dma_chan_tx = dma_chan; |
| epf_test->dma_private = true; |
| |
| init_completion(&epf_test->transfer_complete); |
| |
| return 0; |
| |
| fail_back_rx: |
| dma_release_channel(epf_test->dma_chan_rx); |
| epf_test->dma_chan_tx = NULL; |
| |
| fail_back_tx: |
| dma_cap_zero(mask); |
| dma_cap_set(DMA_MEMCPY, mask); |
| |
| dma_chan = dma_request_chan_by_mask(&mask); |
| if (IS_ERR(dma_chan)) { |
| ret = PTR_ERR(dma_chan); |
| if (ret != -EPROBE_DEFER) |
| dev_err(dev, "Failed to get DMA channel\n"); |
| return ret; |
| } |
| init_completion(&epf_test->transfer_complete); |
| |
| epf_test->dma_chan_tx = epf_test->dma_chan_rx = dma_chan; |
| |
| return 0; |
| } |
| |
| /** |
| * pci_epf_test_clean_dma_chan() - Function to cleanup EPF test DMA channel |
| * @epf_test: the EPF test device that performs data transfer operation |
| * |
| * Helper to cleanup EPF test DMA channel. |
| */ |
| static void pci_epf_test_clean_dma_chan(struct pci_epf_test *epf_test) |
| { |
| if (!epf_test->dma_supported) |
| return; |
| |
| dma_release_channel(epf_test->dma_chan_tx); |
| if (epf_test->dma_chan_tx == epf_test->dma_chan_rx) { |
| epf_test->dma_chan_tx = NULL; |
| epf_test->dma_chan_rx = NULL; |
| return; |
| } |
| |
| dma_release_channel(epf_test->dma_chan_rx); |
| epf_test->dma_chan_rx = NULL; |
| |
| return; |
| } |
| |
| static void pci_epf_test_print_rate(struct pci_epf_test *epf_test, |
| const char *op, u64 size, |
| struct timespec64 *start, |
| struct timespec64 *end, bool dma) |
| { |
| struct timespec64 ts = timespec64_sub(*end, *start); |
| u64 rate = 0, ns; |
| |
| /* calculate the rate */ |
| ns = timespec64_to_ns(&ts); |
| if (ns) |
| rate = div64_u64(size * NSEC_PER_SEC, ns * 1000); |
| |
| dev_info(&epf_test->epf->dev, |
| "%s => Size: %llu B, DMA: %s, Time: %llu.%09u s, Rate: %llu KB/s\n", |
| op, size, dma ? "YES" : "NO", |
| (u64)ts.tv_sec, (u32)ts.tv_nsec, rate); |
| } |
| |
| static void pci_epf_test_copy(struct pci_epf_test *epf_test, |
| struct pci_epf_test_reg *reg) |
| { |
| int ret; |
| void __iomem *src_addr; |
| void __iomem *dst_addr; |
| phys_addr_t src_phys_addr; |
| phys_addr_t dst_phys_addr; |
| struct timespec64 start, end; |
| struct pci_epf *epf = epf_test->epf; |
| struct device *dev = &epf->dev; |
| struct pci_epc *epc = epf->epc; |
| |
| src_addr = pci_epc_mem_alloc_addr(epc, &src_phys_addr, reg->size); |
| if (!src_addr) { |
| dev_err(dev, "Failed to allocate source address\n"); |
| reg->status = STATUS_SRC_ADDR_INVALID; |
| ret = -ENOMEM; |
| goto err; |
| } |
| |
| ret = pci_epc_map_addr(epc, epf->func_no, epf->vfunc_no, src_phys_addr, |
| reg->src_addr, reg->size); |
| if (ret) { |
| dev_err(dev, "Failed to map source address\n"); |
| reg->status = STATUS_SRC_ADDR_INVALID; |
| goto err_src_addr; |
| } |
| |
| dst_addr = pci_epc_mem_alloc_addr(epc, &dst_phys_addr, reg->size); |
| if (!dst_addr) { |
| dev_err(dev, "Failed to allocate destination address\n"); |
| reg->status = STATUS_DST_ADDR_INVALID; |
| ret = -ENOMEM; |
| goto err_src_map_addr; |
| } |
| |
| ret = pci_epc_map_addr(epc, epf->func_no, epf->vfunc_no, dst_phys_addr, |
| reg->dst_addr, reg->size); |
| if (ret) { |
| dev_err(dev, "Failed to map destination address\n"); |
| reg->status = STATUS_DST_ADDR_INVALID; |
| goto err_dst_addr; |
| } |
| |
| ktime_get_ts64(&start); |
| if (reg->flags & FLAG_USE_DMA) { |
| if (epf_test->dma_private) { |
| dev_err(dev, "Cannot transfer data using DMA\n"); |
| ret = -EINVAL; |
| goto err_map_addr; |
| } |
| |
| ret = pci_epf_test_data_transfer(epf_test, dst_phys_addr, |
| src_phys_addr, reg->size, 0, |
| DMA_MEM_TO_MEM); |
| if (ret) |
| dev_err(dev, "Data transfer failed\n"); |
| } else { |
| void *buf; |
| |
| buf = kzalloc(reg->size, GFP_KERNEL); |
| if (!buf) { |
| ret = -ENOMEM; |
| goto err_map_addr; |
| } |
| |
| memcpy_fromio(buf, src_addr, reg->size); |
| memcpy_toio(dst_addr, buf, reg->size); |
| kfree(buf); |
| } |
| ktime_get_ts64(&end); |
| pci_epf_test_print_rate(epf_test, "COPY", reg->size, &start, &end, |
| reg->flags & FLAG_USE_DMA); |
| |
| err_map_addr: |
| pci_epc_unmap_addr(epc, epf->func_no, epf->vfunc_no, dst_phys_addr); |
| |
| err_dst_addr: |
| pci_epc_mem_free_addr(epc, dst_phys_addr, dst_addr, reg->size); |
| |
| err_src_map_addr: |
| pci_epc_unmap_addr(epc, epf->func_no, epf->vfunc_no, src_phys_addr); |
| |
| err_src_addr: |
| pci_epc_mem_free_addr(epc, src_phys_addr, src_addr, reg->size); |
| |
| err: |
| if (!ret) |
| reg->status |= STATUS_COPY_SUCCESS; |
| else |
| reg->status |= STATUS_COPY_FAIL; |
| } |
| |
| static void pci_epf_test_read(struct pci_epf_test *epf_test, |
| struct pci_epf_test_reg *reg) |
| { |
| int ret; |
| void __iomem *src_addr; |
| void *buf; |
| u32 crc32; |
| phys_addr_t phys_addr; |
| phys_addr_t dst_phys_addr; |
| struct timespec64 start, end; |
| struct pci_epf *epf = epf_test->epf; |
| struct device *dev = &epf->dev; |
| struct pci_epc *epc = epf->epc; |
| struct device *dma_dev = epf->epc->dev.parent; |
| |
| src_addr = pci_epc_mem_alloc_addr(epc, &phys_addr, reg->size); |
| if (!src_addr) { |
| dev_err(dev, "Failed to allocate address\n"); |
| reg->status = STATUS_SRC_ADDR_INVALID; |
| ret = -ENOMEM; |
| goto err; |
| } |
| |
| ret = pci_epc_map_addr(epc, epf->func_no, epf->vfunc_no, phys_addr, |
| reg->src_addr, reg->size); |
| if (ret) { |
| dev_err(dev, "Failed to map address\n"); |
| reg->status = STATUS_SRC_ADDR_INVALID; |
| goto err_addr; |
| } |
| |
| buf = kzalloc(reg->size, GFP_KERNEL); |
| if (!buf) { |
| ret = -ENOMEM; |
| goto err_map_addr; |
| } |
| |
| if (reg->flags & FLAG_USE_DMA) { |
| dst_phys_addr = dma_map_single(dma_dev, buf, reg->size, |
| DMA_FROM_DEVICE); |
| if (dma_mapping_error(dma_dev, dst_phys_addr)) { |
| dev_err(dev, "Failed to map destination buffer addr\n"); |
| ret = -ENOMEM; |
| goto err_dma_map; |
| } |
| |
| ktime_get_ts64(&start); |
| ret = pci_epf_test_data_transfer(epf_test, dst_phys_addr, |
| phys_addr, reg->size, |
| reg->src_addr, DMA_DEV_TO_MEM); |
| if (ret) |
| dev_err(dev, "Data transfer failed\n"); |
| ktime_get_ts64(&end); |
| |
| dma_unmap_single(dma_dev, dst_phys_addr, reg->size, |
| DMA_FROM_DEVICE); |
| } else { |
| ktime_get_ts64(&start); |
| memcpy_fromio(buf, src_addr, reg->size); |
| ktime_get_ts64(&end); |
| } |
| |
| pci_epf_test_print_rate(epf_test, "READ", reg->size, &start, &end, |
| reg->flags & FLAG_USE_DMA); |
| |
| crc32 = crc32_le(~0, buf, reg->size); |
| if (crc32 != reg->checksum) |
| ret = -EIO; |
| |
| err_dma_map: |
| kfree(buf); |
| |
| err_map_addr: |
| pci_epc_unmap_addr(epc, epf->func_no, epf->vfunc_no, phys_addr); |
| |
| err_addr: |
| pci_epc_mem_free_addr(epc, phys_addr, src_addr, reg->size); |
| |
| err: |
| if (!ret) |
| reg->status |= STATUS_READ_SUCCESS; |
| else |
| reg->status |= STATUS_READ_FAIL; |
| } |
| |
| static void pci_epf_test_write(struct pci_epf_test *epf_test, |
| struct pci_epf_test_reg *reg) |
| { |
| int ret; |
| void __iomem *dst_addr; |
| void *buf; |
| phys_addr_t phys_addr; |
| phys_addr_t src_phys_addr; |
| struct timespec64 start, end; |
| struct pci_epf *epf = epf_test->epf; |
| struct device *dev = &epf->dev; |
| struct pci_epc *epc = epf->epc; |
| struct device *dma_dev = epf->epc->dev.parent; |
| |
| dst_addr = pci_epc_mem_alloc_addr(epc, &phys_addr, reg->size); |
| if (!dst_addr) { |
| dev_err(dev, "Failed to allocate address\n"); |
| reg->status = STATUS_DST_ADDR_INVALID; |
| ret = -ENOMEM; |
| goto err; |
| } |
| |
| ret = pci_epc_map_addr(epc, epf->func_no, epf->vfunc_no, phys_addr, |
| reg->dst_addr, reg->size); |
| if (ret) { |
| dev_err(dev, "Failed to map address\n"); |
| reg->status = STATUS_DST_ADDR_INVALID; |
| goto err_addr; |
| } |
| |
| buf = kzalloc(reg->size, GFP_KERNEL); |
| if (!buf) { |
| ret = -ENOMEM; |
| goto err_map_addr; |
| } |
| |
| get_random_bytes(buf, reg->size); |
| reg->checksum = crc32_le(~0, buf, reg->size); |
| |
| if (reg->flags & FLAG_USE_DMA) { |
| src_phys_addr = dma_map_single(dma_dev, buf, reg->size, |
| DMA_TO_DEVICE); |
| if (dma_mapping_error(dma_dev, src_phys_addr)) { |
| dev_err(dev, "Failed to map source buffer addr\n"); |
| ret = -ENOMEM; |
| goto err_dma_map; |
| } |
| |
| ktime_get_ts64(&start); |
| |
| ret = pci_epf_test_data_transfer(epf_test, phys_addr, |
| src_phys_addr, reg->size, |
| reg->dst_addr, |
| DMA_MEM_TO_DEV); |
| if (ret) |
| dev_err(dev, "Data transfer failed\n"); |
| ktime_get_ts64(&end); |
| |
| dma_unmap_single(dma_dev, src_phys_addr, reg->size, |
| DMA_TO_DEVICE); |
| } else { |
| ktime_get_ts64(&start); |
| memcpy_toio(dst_addr, buf, reg->size); |
| ktime_get_ts64(&end); |
| } |
| |
| pci_epf_test_print_rate(epf_test, "WRITE", reg->size, &start, &end, |
| reg->flags & FLAG_USE_DMA); |
| |
| /* |
| * wait 1ms inorder for the write to complete. Without this delay L3 |
| * error in observed in the host system. |
| */ |
| usleep_range(1000, 2000); |
| |
| err_dma_map: |
| kfree(buf); |
| |
| err_map_addr: |
| pci_epc_unmap_addr(epc, epf->func_no, epf->vfunc_no, phys_addr); |
| |
| err_addr: |
| pci_epc_mem_free_addr(epc, phys_addr, dst_addr, reg->size); |
| |
| err: |
| if (!ret) |
| reg->status |= STATUS_WRITE_SUCCESS; |
| else |
| reg->status |= STATUS_WRITE_FAIL; |
| } |
| |
| static void pci_epf_test_raise_irq(struct pci_epf_test *epf_test, |
| struct pci_epf_test_reg *reg) |
| { |
| struct pci_epf *epf = epf_test->epf; |
| struct device *dev = &epf->dev; |
| struct pci_epc *epc = epf->epc; |
| u32 status = reg->status | STATUS_IRQ_RAISED; |
| int count; |
| |
| /* |
| * Set the status before raising the IRQ to ensure that the host sees |
| * the updated value when it gets the IRQ. |
| */ |
| WRITE_ONCE(reg->status, status); |
| |
| switch (reg->irq_type) { |
| case IRQ_TYPE_INTX: |
| pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no, |
| PCI_IRQ_INTX, 0); |
| break; |
| case IRQ_TYPE_MSI: |
| count = pci_epc_get_msi(epc, epf->func_no, epf->vfunc_no); |
| if (reg->irq_number > count || count <= 0) { |
| dev_err(dev, "Invalid MSI IRQ number %d / %d\n", |
| reg->irq_number, count); |
| return; |
| } |
| pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no, |
| PCI_IRQ_MSI, reg->irq_number); |
| break; |
| case IRQ_TYPE_MSIX: |
| count = pci_epc_get_msix(epc, epf->func_no, epf->vfunc_no); |
| if (reg->irq_number > count || count <= 0) { |
| dev_err(dev, "Invalid MSIX IRQ number %d / %d\n", |
| reg->irq_number, count); |
| return; |
| } |
| pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no, |
| PCI_IRQ_MSIX, reg->irq_number); |
| break; |
| default: |
| dev_err(dev, "Failed to raise IRQ, unknown type\n"); |
| break; |
| } |
| } |
| |
| static void pci_epf_test_cmd_handler(struct work_struct *work) |
| { |
| u32 command; |
| struct pci_epf_test *epf_test = container_of(work, struct pci_epf_test, |
| cmd_handler.work); |
| struct pci_epf *epf = epf_test->epf; |
| struct device *dev = &epf->dev; |
| enum pci_barno test_reg_bar = epf_test->test_reg_bar; |
| struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar]; |
| |
| command = READ_ONCE(reg->command); |
| if (!command) |
| goto reset_handler; |
| |
| WRITE_ONCE(reg->command, 0); |
| WRITE_ONCE(reg->status, 0); |
| |
| if ((READ_ONCE(reg->flags) & FLAG_USE_DMA) && |
| !epf_test->dma_supported) { |
| dev_err(dev, "Cannot transfer data using DMA\n"); |
| goto reset_handler; |
| } |
| |
| if (reg->irq_type > IRQ_TYPE_MSIX) { |
| dev_err(dev, "Failed to detect IRQ type\n"); |
| goto reset_handler; |
| } |
| |
| switch (command) { |
| case COMMAND_RAISE_INTX_IRQ: |
| case COMMAND_RAISE_MSI_IRQ: |
| case COMMAND_RAISE_MSIX_IRQ: |
| pci_epf_test_raise_irq(epf_test, reg); |
| break; |
| case COMMAND_WRITE: |
| pci_epf_test_write(epf_test, reg); |
| pci_epf_test_raise_irq(epf_test, reg); |
| break; |
| case COMMAND_READ: |
| pci_epf_test_read(epf_test, reg); |
| pci_epf_test_raise_irq(epf_test, reg); |
| break; |
| case COMMAND_COPY: |
| pci_epf_test_copy(epf_test, reg); |
| pci_epf_test_raise_irq(epf_test, reg); |
| break; |
| default: |
| dev_err(dev, "Invalid command 0x%x\n", command); |
| break; |
| } |
| |
| reset_handler: |
| queue_delayed_work(kpcitest_workqueue, &epf_test->cmd_handler, |
| msecs_to_jiffies(1)); |
| } |
| |
| static void pci_epf_test_unbind(struct pci_epf *epf) |
| { |
| struct pci_epf_test *epf_test = epf_get_drvdata(epf); |
| struct pci_epc *epc = epf->epc; |
| struct pci_epf_bar *epf_bar; |
| int bar; |
| |
| cancel_delayed_work(&epf_test->cmd_handler); |
| pci_epf_test_clean_dma_chan(epf_test); |
| for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) { |
| epf_bar = &epf->bar[bar]; |
| |
| if (epf_test->reg[bar]) { |
| pci_epc_clear_bar(epc, epf->func_no, epf->vfunc_no, |
| epf_bar); |
| pci_epf_free_space(epf, epf_test->reg[bar], bar, |
| PRIMARY_INTERFACE); |
| } |
| } |
| } |
| |
| static int pci_epf_test_set_bar(struct pci_epf *epf) |
| { |
| int bar, add; |
| int ret; |
| struct pci_epf_bar *epf_bar; |
| struct pci_epc *epc = epf->epc; |
| struct device *dev = &epf->dev; |
| struct pci_epf_test *epf_test = epf_get_drvdata(epf); |
| enum pci_barno test_reg_bar = epf_test->test_reg_bar; |
| const struct pci_epc_features *epc_features; |
| |
| epc_features = epf_test->epc_features; |
| |
| for (bar = 0; bar < PCI_STD_NUM_BARS; bar += add) { |
| epf_bar = &epf->bar[bar]; |
| /* |
| * pci_epc_set_bar() sets PCI_BASE_ADDRESS_MEM_TYPE_64 |
| * if the specific implementation required a 64-bit BAR, |
| * even if we only requested a 32-bit BAR. |
| */ |
| add = (epf_bar->flags & PCI_BASE_ADDRESS_MEM_TYPE_64) ? 2 : 1; |
| |
| if (!!(epc_features->reserved_bar & (1 << bar))) |
| continue; |
| |
| ret = pci_epc_set_bar(epc, epf->func_no, epf->vfunc_no, |
| epf_bar); |
| if (ret) { |
| pci_epf_free_space(epf, epf_test->reg[bar], bar, |
| PRIMARY_INTERFACE); |
| dev_err(dev, "Failed to set BAR%d\n", bar); |
| if (bar == test_reg_bar) |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int pci_epf_test_core_init(struct pci_epf *epf) |
| { |
| struct pci_epf_test *epf_test = epf_get_drvdata(epf); |
| struct pci_epf_header *header = epf->header; |
| const struct pci_epc_features *epc_features; |
| struct pci_epc *epc = epf->epc; |
| struct device *dev = &epf->dev; |
| bool msix_capable = false; |
| bool msi_capable = true; |
| int ret; |
| |
| epc_features = pci_epc_get_features(epc, epf->func_no, epf->vfunc_no); |
| if (epc_features) { |
| msix_capable = epc_features->msix_capable; |
| msi_capable = epc_features->msi_capable; |
| } |
| |
| if (epf->vfunc_no <= 1) { |
| ret = pci_epc_write_header(epc, epf->func_no, epf->vfunc_no, header); |
| if (ret) { |
| dev_err(dev, "Configuration header write failed\n"); |
| return ret; |
| } |
| } |
| |
| ret = pci_epf_test_set_bar(epf); |
| if (ret) |
| return ret; |
| |
| if (msi_capable) { |
| ret = pci_epc_set_msi(epc, epf->func_no, epf->vfunc_no, |
| epf->msi_interrupts); |
| if (ret) { |
| dev_err(dev, "MSI configuration failed\n"); |
| return ret; |
| } |
| } |
| |
| if (msix_capable) { |
| ret = pci_epc_set_msix(epc, epf->func_no, epf->vfunc_no, |
| epf->msix_interrupts, |
| epf_test->test_reg_bar, |
| epf_test->msix_table_offset); |
| if (ret) { |
| dev_err(dev, "MSI-X configuration failed\n"); |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int pci_epf_test_link_up(struct pci_epf *epf) |
| { |
| struct pci_epf_test *epf_test = epf_get_drvdata(epf); |
| |
| queue_delayed_work(kpcitest_workqueue, &epf_test->cmd_handler, |
| msecs_to_jiffies(1)); |
| |
| return 0; |
| } |
| |
| static const struct pci_epc_event_ops pci_epf_test_event_ops = { |
| .core_init = pci_epf_test_core_init, |
| .link_up = pci_epf_test_link_up, |
| }; |
| |
| static int pci_epf_test_alloc_space(struct pci_epf *epf) |
| { |
| struct pci_epf_test *epf_test = epf_get_drvdata(epf); |
| struct device *dev = &epf->dev; |
| struct pci_epf_bar *epf_bar; |
| size_t msix_table_size = 0; |
| size_t test_reg_bar_size; |
| size_t pba_size = 0; |
| bool msix_capable; |
| void *base; |
| int bar, add; |
| enum pci_barno test_reg_bar = epf_test->test_reg_bar; |
| const struct pci_epc_features *epc_features; |
| size_t test_reg_size; |
| |
| epc_features = epf_test->epc_features; |
| |
| test_reg_bar_size = ALIGN(sizeof(struct pci_epf_test_reg), 128); |
| |
| msix_capable = epc_features->msix_capable; |
| if (msix_capable) { |
| msix_table_size = PCI_MSIX_ENTRY_SIZE * epf->msix_interrupts; |
| epf_test->msix_table_offset = test_reg_bar_size; |
| /* Align to QWORD or 8 Bytes */ |
| pba_size = ALIGN(DIV_ROUND_UP(epf->msix_interrupts, 8), 8); |
| } |
| test_reg_size = test_reg_bar_size + msix_table_size + pba_size; |
| |
| if (epc_features->bar_fixed_size[test_reg_bar]) { |
| if (test_reg_size > bar_size[test_reg_bar]) |
| return -ENOMEM; |
| test_reg_size = bar_size[test_reg_bar]; |
| } |
| |
| base = pci_epf_alloc_space(epf, test_reg_size, test_reg_bar, |
| epc_features->align, PRIMARY_INTERFACE); |
| if (!base) { |
| dev_err(dev, "Failed to allocated register space\n"); |
| return -ENOMEM; |
| } |
| epf_test->reg[test_reg_bar] = base; |
| |
| for (bar = 0; bar < PCI_STD_NUM_BARS; bar += add) { |
| epf_bar = &epf->bar[bar]; |
| add = (epf_bar->flags & PCI_BASE_ADDRESS_MEM_TYPE_64) ? 2 : 1; |
| |
| if (bar == test_reg_bar) |
| continue; |
| |
| if (!!(epc_features->reserved_bar & (1 << bar))) |
| continue; |
| |
| base = pci_epf_alloc_space(epf, bar_size[bar], bar, |
| epc_features->align, |
| PRIMARY_INTERFACE); |
| if (!base) |
| dev_err(dev, "Failed to allocate space for BAR%d\n", |
| bar); |
| epf_test->reg[bar] = base; |
| } |
| |
| return 0; |
| } |
| |
| static void pci_epf_configure_bar(struct pci_epf *epf, |
| const struct pci_epc_features *epc_features) |
| { |
| struct pci_epf_bar *epf_bar; |
| bool bar_fixed_64bit; |
| int i; |
| |
| for (i = 0; i < PCI_STD_NUM_BARS; i++) { |
| epf_bar = &epf->bar[i]; |
| bar_fixed_64bit = !!(epc_features->bar_fixed_64bit & (1 << i)); |
| if (bar_fixed_64bit) |
| epf_bar->flags |= PCI_BASE_ADDRESS_MEM_TYPE_64; |
| if (epc_features->bar_fixed_size[i]) |
| bar_size[i] = epc_features->bar_fixed_size[i]; |
| } |
| } |
| |
| static int pci_epf_test_bind(struct pci_epf *epf) |
| { |
| int ret; |
| struct pci_epf_test *epf_test = epf_get_drvdata(epf); |
| const struct pci_epc_features *epc_features; |
| enum pci_barno test_reg_bar = BAR_0; |
| struct pci_epc *epc = epf->epc; |
| bool linkup_notifier = false; |
| bool core_init_notifier = false; |
| |
| if (WARN_ON_ONCE(!epc)) |
| return -EINVAL; |
| |
| epc_features = pci_epc_get_features(epc, epf->func_no, epf->vfunc_no); |
| if (!epc_features) { |
| dev_err(&epf->dev, "epc_features not implemented\n"); |
| return -EOPNOTSUPP; |
| } |
| |
| linkup_notifier = epc_features->linkup_notifier; |
| core_init_notifier = epc_features->core_init_notifier; |
| test_reg_bar = pci_epc_get_first_free_bar(epc_features); |
| if (test_reg_bar < 0) |
| return -EINVAL; |
| pci_epf_configure_bar(epf, epc_features); |
| |
| epf_test->test_reg_bar = test_reg_bar; |
| epf_test->epc_features = epc_features; |
| |
| ret = pci_epf_test_alloc_space(epf); |
| if (ret) |
| return ret; |
| |
| if (!core_init_notifier) { |
| ret = pci_epf_test_core_init(epf); |
| if (ret) |
| return ret; |
| } |
| |
| epf_test->dma_supported = true; |
| |
| ret = pci_epf_test_init_dma_chan(epf_test); |
| if (ret) |
| epf_test->dma_supported = false; |
| |
| if (!linkup_notifier && !core_init_notifier) |
| queue_work(kpcitest_workqueue, &epf_test->cmd_handler.work); |
| |
| return 0; |
| } |
| |
| static const struct pci_epf_device_id pci_epf_test_ids[] = { |
| { |
| .name = "pci_epf_test", |
| }, |
| {}, |
| }; |
| |
| static int pci_epf_test_probe(struct pci_epf *epf, |
| const struct pci_epf_device_id *id) |
| { |
| struct pci_epf_test *epf_test; |
| struct device *dev = &epf->dev; |
| |
| epf_test = devm_kzalloc(dev, sizeof(*epf_test), GFP_KERNEL); |
| if (!epf_test) |
| return -ENOMEM; |
| |
| epf->header = &test_header; |
| epf_test->epf = epf; |
| |
| INIT_DELAYED_WORK(&epf_test->cmd_handler, pci_epf_test_cmd_handler); |
| |
| epf->event_ops = &pci_epf_test_event_ops; |
| |
| epf_set_drvdata(epf, epf_test); |
| return 0; |
| } |
| |
| static const struct pci_epf_ops ops = { |
| .unbind = pci_epf_test_unbind, |
| .bind = pci_epf_test_bind, |
| }; |
| |
| static struct pci_epf_driver test_driver = { |
| .driver.name = "pci_epf_test", |
| .probe = pci_epf_test_probe, |
| .id_table = pci_epf_test_ids, |
| .ops = &ops, |
| .owner = THIS_MODULE, |
| }; |
| |
| static int __init pci_epf_test_init(void) |
| { |
| int ret; |
| |
| kpcitest_workqueue = alloc_workqueue("kpcitest", |
| WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); |
| if (!kpcitest_workqueue) { |
| pr_err("Failed to allocate the kpcitest work queue\n"); |
| return -ENOMEM; |
| } |
| |
| ret = pci_epf_register_driver(&test_driver); |
| if (ret) { |
| destroy_workqueue(kpcitest_workqueue); |
| pr_err("Failed to register pci epf test driver --> %d\n", ret); |
| return ret; |
| } |
| |
| return 0; |
| } |
| module_init(pci_epf_test_init); |
| |
| static void __exit pci_epf_test_exit(void) |
| { |
| if (kpcitest_workqueue) |
| destroy_workqueue(kpcitest_workqueue); |
| pci_epf_unregister_driver(&test_driver); |
| } |
| module_exit(pci_epf_test_exit); |
| |
| MODULE_DESCRIPTION("PCI EPF TEST DRIVER"); |
| MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>"); |
| MODULE_LICENSE("GPL v2"); |